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Mingjian Wen and Ellad B. Tadmor

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA

® (Received 22 September 2019; published 18 November 2019)

Monolayer and multilayer graphene are promising materials for applications such as electronic devices,
sensors, energy generation and storage, and medicine. In order to perform large-scale atomistic simulations
of the mechanical and thermal behavior of graphene-based devices, accurate interatomic potentials are required.
Here, we present an interatomic potential for multilayer graphene structures referred to as “hNN-Gr,.” This
hybrid potential employs a neural network to describe short-range interactions and a theoretically motivated
analytical term to model long-range dispersion. The potential is trained against a large dataset of monolayer
graphene, bilayer graphene, and graphite configurations obtained from ab initio total-energy calculations based
on density functional theory (DFT). The potential provides accurate energy and forces for both intralayer and
interlayer interactions, correctly reproducing DFT results for structural, energetic, and elastic properties such
as the equilibrium layer spacing, interlayer binding energy, elastic moduli, and phonon dispersions to which it
was not fit. The potential is used to study the effect of vacancies on thermal conductivity in monolayer graphene
and interlayer friction in bilayer graphene. The potential is available through the OPENKIM interatomic potential

repository at https://openkim.org.
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I. INTRODUCTION

Since the discovery of graphene [1], two-dimensional (2D)
materials have been shown to possess remarkable electronic,
mechanical, thermal, and optical properties, with great po-
tential for nanotechnology applications, such as ultrasensitive
sensors and medical devices [2-5]. Stacked 2D materials are
even more exciting as they offer an opportunity to create
completely new materials with remarkable properties by con-
trolling the stacking order and orientation [6,7]. A striking
example is the recent discovery of unconventional supercon-
ductivity in bilayer graphene with an imposed twist of about
1.1° [8].

Stacked 2D materials can be simulated accurately using
a first-principles density functional theory (DFT) calcula-
tion, which involves a numerical solution to the Schrodinger
equation. However, due to hardware and algorithmic limita-
tions, DFT is typically limited to small molecular systems
and crystalline materials composed of several hundred atoms
at most. For example, the supercell required to simulate a
graphene bilayer with 1.1° twist has too many atoms to be
simulated by first principles.! In contrast, empirical inter-
atomic potentials are computationally far less costly and can
therefore be used via molecular simulations to compute static
and dynamic properties that are inaccessible to first-principles
calculations [9-11].

“Corresponding author: tadmor@umn.edu

'A DFT calculation of a twisted bilayer employs a commensurate
supercell. By increasing the size of the supercell it is possible to
approach arbitrarily close to any twist angle, but the supercell can
be quite large. For example, commensurate supercells for 1.084° and
1.103° (close to 1.1°) include 11 164 and 42 204 atoms, respectively,
which is far beyond DFT capabilities.
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Development of an interatomic potential for stacked 2D
materials is challenging due to very different natures of the
intralayer and interlayer bonding, and the different energy
scales associated with these interactions. Multilayer graphene
exhibits strong sp? covalent bonds within a layer and weak
dispersion and orbital repulsion interactions between layers.
The cohesive energy of monolayer graphene, characterizing
intralayer bonding, is 8.06 eV /atom, whereas the interlayer
binding energy of bilayer graphene is only 0.02263 eV /atom.
Although weak, it is the interlayer interactions that define the
function of many nanodevices such as nanobearings, nanomo-
tors, and nanoresonators [12] and also drive incommensurate
to commensurate structural transitions [13,14], which lead to
novel transport properties [8,15].

There have been several efforts to develop an interatomic
potential for carbon systems. Early efforts include the Tersoff
[16,17] and reactive empirical bond order (REBO) [18,19] po-
tentials, which modulate the strength of bonds based on their
atomic environments. These potentials provide a reasonable
description for strong covalent bonds, but do not account for
dispersion interactions and thus are inherently short ranged in
nature. To address this limitation, the adaptive intermolecular
reactive empirical bond order (AIREBO) [20] potential adds
a 6-12 Lennard-Jones [21] (LJ) term to model dispersion, and
the long-range carbon bond order potential (LCBOP) [22] and
AIREBO-M [23] potentials add Morse [24] terms for this pur-
pose. The more complex reactivate force field (ReaxFF) [25]
potential constructs the bond order differently than the above
potentials and includes explicit terms to account for van der
Waals (vdW), Coulombic, and under- and overcoordination
energies.

These potentials have been shown to work well for a vari-
ety of applications, but in many cases their quantitative pre-
dictions are inaccurate when compared with first-principles
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and experimental results. For example, the phonon dispersion
curves of monolayer graphene at 0 K computed using these
potentials deviate largely from DFT results, especially for the
optical modes (discussed later in Sec. III). As for interlayer
interactions, the Tersoff and REBO potentials cannot be used
because they do not account for long-range dispersion in-
teractions. The AIREBO, AIREBO-M, LCBOP, and ReaxFF
potentials do predict overall binding characteristics between
graphene layers, such as the equilibrium layer spacing and
the c-axis elastic modulus, but are unable to accurately dis-
tinguish energy variations for different relative alignments of
layers [26]. The reason is that in addition to dispersion the
interlayer interactions include short-range Pauli repulsion be-
tween overlapping 7 orbitals of adjacent layers. The repulsive
interaction is not correctly modeled in these potentials. The
registry-dependent Kolmogorov-Crespi (KC) potential [12]
and an extension called the dihedral-angle-corrected registry-
dependent interlayer potential (DRIP) [26] address this by
employing a term that depends on the transverse distance
between atom pairs to capture the repulsion due to orbital
overlapping. However, a major limitation of the KC potential
and DRIP is that they are not reactive, i.e., they require an a
priori fixed assignment of atoms into layers. This prevents the
study of many problems of interest, such as vacancy migration
between layers [27].

Physics-based potentials (such as those discussed above)
are devised by selecting functional forms designed to rep-
resent the physics underlying the material system and then
fitting a handful of parameters. In recent years, machine
learning potentials [28-33] have been shown to be highly
effective for a spectrum of material systems ranging from
organic molecules [30] to alloys [33]. Different from physics-
based potentials, machine learning potentials are typically
constructed by first transforming the atomic environment
information in a large dataset of first-principles results into
vector representations (descriptors) and then training general-
purpose regression functions against them. Several machine
learning regression methods have been used to construct
potentials, including linear regression [31], kernel ridge re-
gression [30], Gaussian process [29], and neural network
(NN) [28]. Kernel ridge regression and Gaussian process are
nonparametric methods, and therefore their evaluation time
is proportional to the size of the training set. This makes
them computationally expensive if large datasets are used
for the training (although sparsification approaches can be
applied to select a representative subset of the training data
for sparse model approximation). Linear regression and NN
are parametric methods, and thus their evaluation time is
independent of the size of the training set. An advantage of
Gaussian process regression is that it can provide uncertainty
in the predictions (a feature the other three methods do not
possess?), because it is essentially a Bayesian model.

2Standard fully connected NNs do not have the ability to provide
uncertainty information, whereas an NN trained with the dropout
technique approximates a Bayesian NN, thus enabling uncertainty
quantification [34,35]. We have explored the application of dropout
NN potentials to estimate uncertainty propagation in atomistic simu-
lations. See [36] for more information.

For carbon systems, Csdnyi and coworkers have developed
two Gaussian approximation potentials (GAPs)*: one for lig-
uid and amorphous carbon [37] and the other for monolayer
graphene [38]. Khaliullin et al. [39,40] have developed NN
potentials to model phase transition from graphite to diamond.
Generally speaking, the transferability (i.e., the ability of a
potential to make accurate predictions outside its training set)
of machine learning potentials is low. Therefore, given their
training sets, the GAP for liquid and amorphous carbon and
the NN potentials for phase transition are not suitable for
multilayer graphene structures. The GAP for graphene is an
accurate model that correctly reproduces many properties of
monolayer graphene obtained from DFT [38]; however, simi-
lar to the Tersoff and REBO potentials, it lacks a description
of the interlayer interactions and therefore cannot be used for
multilayer graphene structures.

In this paper, we present a hybrid NN and physics-based
potential for multilayer graphene systems that is reactive and
provides an accurate description of both the intralayer and
the interlayer interactions. The potential is referred to as
“hNN-Gr,” (where the subscript x indicates that it can be
used for multiple graphene layers). The long-range dispersion
attraction is modeled using a theoretically motivated ~° term
(as in the LJ potential), and the short-range interactions are
described using a general-purpose NN. The latter include both
the covalent bonds within a layer and the repulsion due to
overlapping orbitals of adjacent layers. The inclusion of the
theoretical long-range term improves the performance of the
potential since the NN does not need to learn known physics.
The parameters in the hNN-Gr, potential are trained against
a large dataset of monolayer graphene, bilayer graphene, and
graphite configurations obtained from DFT calculations with
an accurate dispersion correction.

The paper is structured as follows. In Sec. II we intro-
duce the hNN-Gr, potential model and describe the training
procedure. In Sec. III, we test the ability of the hNN-Gr,
potential to reproduce various canonical properties of interest
obtained from DFT. Results are compared with those of other
potentials. In Sec. IV, we discuss applications of the hNN-
Gr, potential to study selected problems that are beyond
the scope of DFT: the effect of vacancies on the thermal
conductivity of monolayer graphene and interlayer friction in
bilayer graphene. The paper is summarized in Sec. V.

I1. DEFINITION OF THE MODEL

A. Mathematical form

The total potential energy of a configuration consisting of
N atoms is decomposed into the contributions of individual
atoms:

E:ZEC,, )

where E, is the energy of atom «, composed of a long-
range interaction part and a short-range interaction part, i.e.,

E, = E™ + ES™. The long-range dispersion attraction is

3GAP uses Gaussian process as the regression method.
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TABLE I. Summary of parameters in the hNN-Gr, potential and
hyperparameters that define the NN structure in the short-range part
of the potential.

Parameter Value

A 8.3427 eV A°
rl‘l“;“ 2A
romax 4A
pmin 9A
Tdown 10A
Number of hidden layers 3
Number of nodes in hidden layers 30
Activation function & tanh

T :Eﬁ;}f 5A
Descriptors See SM [41]
Weights See SM [41]
Biases See SM [41]

modeled by a theoretically motivated r~® term as in the LJ
potential:

N
E{iong = —A Z 7;136 Sup (xaﬂ) Sdown (xotﬁ ), @)
B#a

where A is a fitting parameter, 7, is the distance between
atoms o and B, and Syp(x) and Sgown(x) are switching func-
tions that turn interactions on and off in certain distance
ranges. The down switching function is defined as

1, x<0
Stoun () = 1 =65 + 15x* — 1083 +1, 0<x<1. (3)
0, x>1

This function monotonically decreases from one to zero over
the range x € [0, 1], and has zero first and second derivatives
at both x = 0 and 1. The up switching function is the comple-
mentary expression, Syp(x) = 1 — Sgown (X). The switches are
applied within a desired distance interval [r™", ¥™®*] using the
dimensionless argument

_ Tap — rmin
Yoff = o i @
The values of ™" and r™* for the up and down switching

functions are given in Table I. With these values, the down
switching function Sqown(x) causes the potential to smoothly
vanish at the cutoff 73" , and the up switching function Sy, (x)
turns off the long-range interactions when the pair distance
rap is smaller than rjn®.

The short-range interactions (including both the covalent
bonds within a layer and the repulsion between overlapping
orbitals of adjacent layers) are represented by an NN as shown
schematically in Fig. 1. The NN returns the short-range energy
E;h"” of one atom in the system (atom «) based on the
positions of itself and its neighbors up to a cutoff distance r¢y;.
The use of a cutoff significantly reduces the computational
cost by restricting the dependence of an atom’s energy to its
local environment.

Between the input layer and the energy output layer are
so-called “hidden” layers that add complexity to the NN. The

Atomic Input
Configuration

Hidden Hidden Output
layer 1 layer 2 layer

s’
'3
4,4
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@

short
E:x

=
<
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FIG. 1. Schematic representation of an NN potential for the
short-range energy ES™" of atom «. This NN consists of an input
layer, two hidden layers, and an output layer. The configuration of
neighbors of atom o« within a cutoff r,, is transformed to a descriptor
vector yé (j=1,2,...,5), which serves as the input to the NN. The
arrows connecting nodes in adjacent layers represent weights. Biases
and activation functions are not shown in this figure. See text for
explanation of the variables.

NN in Fig. 1 consists of an input layer, two hidden layers, and
an output layer. Each node in a hidden layer is connected to
all nodes in the previous layer and in the following layer. The
value of node j in layer i is*

vl = h(Zy{»‘lwf'f +b‘5>, i=123 O

k

where wf” is the weight connecting node k in layer i — 1 and
node j in layer i, blj is the bias applied to node j of layer
i, and h is an activation function (e.g., a hyperbolic tangent)
that introduces nonlinearity into the NN. More compactly,
Eq. (5) can be written as y; = h(y,_;W; +b;),” where y, is
a row vector of the node values in layer i, W; is a weight
matrix, and b; is a row vector of the biases. For example for
the NN shown in Fig. 1, y, and b; are row vectors each with
four elements and W is a 5 x 4 matrix. Consequently, the
short-range atomic energy ES™" can be expressed as®

E;hort = h[h(yoW 1 +b1)W, + b ]W3 + b;. (6)

Interatomic potentials must be invariant with respect to
translation, rotation, and inversion of space, and permuta-
tion of chemically equivalent atoms [42]. To ensure that the
NN satisfies these requirements, the environment of atom «,
which is the input to the NN, must be transformed to a new
representation called a descriptor that automatically satisfies
these invariances. Thus the input layer y, is a descriptor vector
which is a function of the set of positions 2" €" of all atoms
within the neighborhood of atom « defined by the cutoff

4The input layer and the output layer are indexed as the zeroth layer
and third layer, respectively.

3The activation function is applied elementwise.

®Note that typically the activation function is not applied to the
output layer.
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distance 7.y (including atom « itself), i.e.,”
vo =& (™), @
where j ranges over the components of the descriptor vector.

Various types of descriptors have been proposed in recent
years including the Coulomb matrix [30] and bag of bonds
[43] for molecular systems, and the smooth overlap of atomic
positions [44], symmetry functions [45], and moment tensor
[32] for crystalline materials. In this paper, we use symmetry
functions [45,46], which are discussed in detail in the Supple-
mental Material (SM) [41].

A challenging aspect of training an NN, which is also a
source of the power and flexibility of the method, is that it is
up to the developer to select the number of descriptor terms
to retain, the number of hidden layers, the number of nodes
within each hidden layer (which need not be the same), and
the activation function. It is also possible to create different
connectivity scenarios between layers. Here we have opted
for simplicity and adopted a fully connected network with
the same number of nodes in each hidden layer to reduce
the number of hyperparameters that need to be determined
in the training process. We chose the commonly used hyper-
bolic tangent function, tanh(x) = (e¢* — e ™)/(e* + e7"), as
the nonlinear activation function 4.

B. Dataset

The hNN-Gr, potential parameters were determined from
a dataset of energies and forces for pristine and defected
monolayer graphene, bilayer graphene, and graphite at var-
ious states. This includes configurations with compressed
and stretched cells, random perturbations of atoms, and con-
figurations drawn from ab initio molecular dynamics (MD)
trajectories at different temperatures. The dataset consists of
a total number of 14 250 configurations that are randomly
divided into a training set of 13 500 configurations (95%) and
a test set of 750 configurations (5%). The dataset along with a
detailed description of the configurations are provided in the
SM [41].

The dataset is generated from DFT calculations using the
Vienna Ab initio Simulation Package [47,48]. The exchange-
correlation energy of the electrons is treated within the gen-
eralized gradient approximated (GGA) functional of Perdew,
Burke, and Ernzerhof (PBE) [49]. For monolayer and bilayer
graphene, the supercell size in the direction perpendicular to
graphene planes is set to 30 A to minimize the interaction
between periodic images. The reciprocal space is sampled
using the I'-centered Monkhorst-Pack grids [50] and the
number of grids is chosen so that the energy is converged to
1 meV /atom. The energy cutoff for the plane-wave basis is
set to 500 eV. Standard density functionals such as the local-
density approximation (LDA) and GGA accurately represent
Pauli repulsion in interlayer interactions, but fail to capture
vdW forces that result from dynamical correlations between

"The descriptor values are normalized by subtracting from each
component y; the mean value for this component across all atomic
environments in the training set and dividing by the standard devia-
tion.

fluctuating charge distributions.® To address this limitation,
various approximate corrections have been proposed and we
adopt the many-body dispersion (MBD) method [51], which
has been shown to reproduce the more accurate adiabatic-
connection fluctuation-dissipation theory based random-phase
approximation (ACFDT-RPA) and experimental results quite
well [26].

C. Training

The hNN-Gr, potential is fit in two stages: first the pa-
rameters in the long-range part in Eq. (2) are determined,;
then the parameters in the short-range NN part in Eq. (6) are
determined.

For the long-range part, the interval bounds in the switch-

ing functions (pmin, pmax pmin ©max y are Jisted in Table I.

) up °> ‘up ° Tdown> "down
The ry," and r;™ values are selected based on the graphene

equilibrium lattice spacing of about 3.4 A, raeee  sets the cutoff
of the long-range interactions and is based on prior experience
with DRIP [26], and r(‘j‘g\i‘m is set a bit lower to create a
smooth transition. After fixing these, a single parameter § =
{A} remains to be determined. It is optimized by minimizing
a loss function L(#) that quantifies the difference between
the predictions of Eq. (2) and DFT results for a subset of
the training set composed of AB stacked bilayer graphene
at various layer spacings ranging from rig™ to rcrl“(jv“m. The
subset consists of M = 52 configurations with concatenated
coordinates r,, for m € [1, M], such that r,, € R*» where N,,

is the number of atoms in configuration m. The loss function is

M

L(o) = Z %w;[E(rm;a) - E’EFT]Z
m=1
LB £ DFT || 2
+Z§wm”f(rm;0)_fm H ’ ®)
m=1

where E(r,;0) and f(r,;0) = —(3E/r)|, € R are the
potential energy and concatenated forces for configuration m,
in which E(r,;0) = E' = "N E°™ The energy weight
w¢ and force weight w’, of configuration m have units of eV 2
and (eV/A)~2, respectively, given energy in units of eV
and forces in units of eV/A. We set w to 1/(N,)* and
w! to 1/(10(N,,)*).” The target DFT energy and forces for
the long-range part EX™ and fP'T consider only interlayer
interactions, obtained in the same way as described in detail
in [26]. The resulting parameter A is given in Table 1.

With the long-range interactions determined, the next step
is to determine the short-range part of the potential. The
same loss function in Eq. (8) is used with three differences

8GGA predicts no binding at all at physically meaningful spacings
for graphite. LDA gives the correct interlayer spacing for AB stack-
ing; however, it underestimates the exfoliation energy by a factor of
2 and overestimates the compressibility [12].

°The weights are inversely proportional to (N,,)?> such that each
configuration contributes more or less equally to the loss L(@).
This prevents configurations with more atoms from dominating the
optimization.
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TABLE II. Summary of structural, energetic, and elastic properties computed from the hNN-Gr, potential and other widely used potentials.
The properties include the in-plane lattice parameter of monolayer graphene, a; equilibrium layer spacing of bilayer graphene in AB stacking,
dag; equilibrium layer spacing of bilayer graphene in AA stacking, daa; equilibrium layer spacing of graphite, dgraphice; interlayer binding
energy of bilayer graphene, Eag; cohesive energy of monolayer graphene, E..p; single-vacancy formation energy in monolayer graphene, E;
and elastic moduli of graphite (outside parentheses) and monolayer graphene (in parentheses). Also included are some first-principles and
experimental results, as well as the computational expense relative to Tersoff. Note that (1) since the Tersoff, REBO, and GAP-Gr (GAP for
graphene) potentials lack the ability to model interlayer interactions (see Sec. I) they do not have predictions for properties related to interlayer
interactions and (2) the KC and DRIP potentials only model interlayer interactions and therefore cannot be used to compute the in-plane
lattice parameter and therefore results from the two potentials used an in-plane lattice parameter of a = 2.46 A. For elastic properties, only the
modulus related to stretching perpendicular to the layers is computed in this case.

Method a dap  dan dgaphie  Eas Econ E, Cu Cpp Ciz Gy Cy  Time

A A A (A (eV/atom) (eV/atom) (eV) (GPa) (GPa) (GPa) (GPa) (GPa) (relative)
hNN-Gr, (present) 2.467 3.457 3.618 3.402  21.63 8.07  8.08 978.31(1061.83) 176.54 (208.77) —66.74 40.35 1.79 279.4
AIREBO [20] 2.4193.392 3.416 3.358  23.61 743 7.94 1153.50 (1162.46) 144.87 (147.64) 0.08 4040 028 4.5
AIREBO-M [23] 2.4203.299 3.324 3.294 16.18 742 7.93 1174.25 (1157.43) 147.66 (146.23) —0.02 35.72 028 4.9
LCBOP [22] 2.459 3.346 3.365 3.346  12.52 735 8.13 1049.91 (1054.32) 157.29 (159.03) 0.04 29.80 023 1.6
ReaxFF [25] 2.4623.2853.294 3260 34.59 752 7.52 1147.67 (1119.84) 831.84 (811.43) —0.77 34.41 0.15 26.1
Tersoff [17] 2.530 739 712 (1274.00) (=240.11) 1
REBO [19] 2.460 739 782 (1059.25) (148.33) 1.6
GAP-Gr [38] 2.467 796 655  (1108.81) (212.19) 3814.7
KC[12] 3.3743.602 3.337  21.60 34.45 36.6
DRIP [26] 3.4393.612 3415  23.05 32.00 35.5
DFT(PBE + MBD) 2.466 3.426 3.641 3.400 22.63 8.06  7.93 1080.12 (1084.41) 162.25 (161.25) —4.63 33.18 3.32 ~107
ACFDT-RPA 3.39 3.34b 36
Experiment 2.46° 3.344 1060° (1018 180° 15¢ 36.5° 0.27°

2.468 3.356" 1109" 139" 0" 387" 4.95h

*[59]; °[60]; °[611; U[62]; °[63]; "[5]; £[64]; "([65].

compared with the long-range fitting: (1) the parameters 6
are the weights W and biases b in the NN; (2) the entire
training set is used; and (3) the target energies E2'T and forces
P are the differences between the total DFT values and
the predictions from the long-range contribution in Eq. (2).
The third item ensures that the potential produces correct total
energy and forces when the long-range and short-range parts
are used together.

The optimization was carried out using the Knowledgebase
of Interatomic Models (KIM) based Learning-Integrated Fit-
ting Framework (KLIFF) [52] with an L-BFGS-B minimizer
[53]. KLIFF is compatible with potentials conforming to the
KIM application programming interface (API) [54]. See the
SM [41] (also, references in [55-58]) for more details on KIM
and how to use KIM potentials. A grid search was performed to
determine the optimal number of hidden layers and nodes by
fitting the potential to the training set in each case and finding
which provided the minimum loss for the test set.'? Using this
process, it was found that three hidden layers with 30 nodes
per layer was the optimal choice. The resulting energy root-
mean-square error (RMSE) and forces RMSE for the test set
are 4.66 meV /atom and 41.41 meV/(A atom), respectively,
and 4.56 meV /atom and 41.13 meV /(A atom) for the training
set. See Table I for details of the NN parameters.

10The loss of the test set is used to make the determination, rather
than the training set, to prevent overfitting.

III. TESTING OF THE hNN-Gr, POTENTIAL

An extensive set of calculations was performed to test
the ability of the hNN-Gr, potential to reproduce structural,
energetic, and elastic properties of monolayer graphene, bi-
layer graphene, and graphite obtained from DFT. A portion
of the results is presented in Table II together with results
from widely used potentials, ab initio ACFDT-RPA, and
experiments.

The in-plane lattice parameter of monolayer graphene,
a, is obtained by fitting the Birch-Murnaghan equation of
state (EOS) [66] (to conform to the approach used in DFT
computations). The results presented in Table II show that
AIREBO and AIREBO-M underestimate the value of a,
Tersoff overestimates it, and the other potentials give values
close to the experimental and DFT results. Table II also
shows the values of the equilibrium layer spacing for bilayer
graphene in AB stacking dag, for bilayer graphene in AA
stacking daa, and for graphite dgraphire- These values are also
obtained from the Birch-Murnaghan EOS, keeping the in-
plane lattice parameter fixed to its equilibrium monolayer
value. The hNN-Gr, potential and DRIP are in good agree-
ment with DFT(PBE + MBD) results to which they were fit.
The KC model is in better agreement with more accurate
ACDFT-RPA. The remaining potentials all underestimate the
AA separation, and have inconsistent results for AB and
graphite: AIREBO and LCBOP are accurate for both, and
AIREBO-M and ReaxFF underestimate both. Given this it is
not surprising that except for hNN-Gr,, KC, and DRIP all of
the above potentials provide inaccurate values for daa — dag.
The DFT value is 0.215 A, and the potentials predict 0.024 A
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FIG. 2. Interlayer binding energy of a graphene bilayer vs layer
spacing for AB and AA stackings obtained from various potentials
compared with DFT results. The curves are shifted such that the
minimum energy in AB stacking is located at (0, 0).

(AIREBO), 0.025 A (AIREBO-M), 0.019 A (LCBOP), and
0.009 A (ReaxFF). The reason for the poor accuracy is that
these potentials cannot distinguish the AA and AB stacking
states. This is discussed further below.

Next, we consider energetics. The interlayer binding en-
ergy of a graphene bilayer E}, as a function of layer spacing
d is shown in Fig. 2 for AB and AA stacking. The curves
are shifted such that AE = E, — Eaxg and Ad = d — dag,
where Eap (listed in Table II) is the interlayer binding energy
of AB stacked bilayer graphene at the equilibrium layer
spacing dap (i.e., Eap is the depth of the energy well rela-
tive to a reference state at infinite separation). We see that
the AIREBO, AIREBO-M, LCBOP, and ReaxFF potentials
give nearly identical results for energy versus separation in the
AB and AA stacking states in contrast to DFT, where a clear
difference exists. In addition, the AIREBO-M and LCBOP po-
tentials underestimate the depth of the energy wells, whereas
the ReaxFF potential overestimates it. (This can be seen by
considering the values predicted by these potentials relative
to DFT at the largest separation of Ad =2.5 A, which
is approaching the reference state). The hNN-Gr, potential
correctly captures the energy difference between the AB and
AA stacking states as well as the depth of the energy wells.
KC and DRIP can also capture the energy difference (see
[26]). Also notable is that at large separation the curves for
the two stacking states merge since registry effects due to 7-
orbital overlap become negligible and interlayer interactions
are dominated by dispersion attraction. This effect is captured
correctly by the hNN-Gr, potential.

Aay Aa,

AFEar A = 5.07 AEsp ap = 0.54 AEan-aB = 6.17 AFEsp_ap = 0.69

0 1 2 3 4 5 6 (meV/atom)

FIG. 3. The GSFE of bilayer graphene obtained by sliding one
layer relative to the other at a fixed layer spacing of d = 3.4 A.
The energy is relative to the AB state, which is —21.53 meV /atom
for the new hNN-Gr, potential (on the left) and —22.33 meV /atom
for DFT (on the right). AEaaap denotes the energy difference
between the AA and AB states, and similarly AEspap denotes the
energy difference between saddle-point (SP) and AB states. The
sliding parameters Aa; and Aa, are in units of lattice parameter
a=2.466 A.

A more complete view of the interlayer energetics is ob-
tained by considering the generalized stacking fault energy
(GSFE) surface obtained by sliding one layer relative to the
other while keeping the layer spacing fixed. Figure 3 shows
the results for a layer spacing of d = 3.4 A; the hNN-Gr,
potential is in quantitative agreement with DFT results. The
KC and DRIP GSFEs have a similar appearance (see [26]),
whereas the AIREBO, AIREBO-M, LCBOP, and ReaxFF
GSFEs are nearly flat (not shown).

Also listed in Table II are the cohesive energy E.,, and
relaxed single-vacancy formation energy E, for monolayer
graphene. The latter is computed as E, = E; — E| — u, where
E, and E, are the relaxed energy of monolayer graphene
before and after the single vacancy is created (by removing an
atom from the simulation cell), and  is the chemical potential
of carbon, taken to be the cohesive energy E, here. All
potentials perform reasonably well for these two properties
except that the single-vacancy formation energy predicted
by GAP-Gr is significantly smaller compared with the other
potentials and DFT. This is likely because GAP-Gr was only
trained against configurations drawn from MD trajectories of
ideal graphene.

Another interesting example, which tests the ability of the
hNN-Gr, potential to capture changes in hybridization, is the
concerted exchange mechanism first studied in graphene by
Kaxiras and Pandey [67]. In this process a pair of atoms ro-
tates by 90° converting four hexagonal rings to two pentagons
and two heptagons, thereby creating a Stone-Wales (SW)
defect [see Fig. 4(a)]. To explore the energetics of the process,
the total energy of a system of 96 atoms was computed as a
function of the rotation angle using DFT and the hNN-Gr,
potential. At each angle, the energy is minimized with respect
to the positions of the atoms subject to the constraint that the
two rotating atoms can only move along the line connecting
them [i.e., along the blue line shown in Fig. 4(a)].

The energy versus rotation curves for DFT and hNN-Gr,
are shown in Fig. 4(b), where the DFT results are interpolated
by a cubic spline. Overall the hNN-Gr, results follow the DFT
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FIG. 4. Stone-Wales defect created by rotating a pair of atoms.
(a) Monolayer graphene with a pair of atoms rotated at angles 0° (on
the left) and 90° (on the right) and (b) energy vs rotation for both
relaxed and unrelaxed structures predicted by DFT and the hNN-Gr,
potential.

curve, predicting a SW defect formation energy of 5.85 eV
(red curve at rotation 90°), about 9% higher than the DFT
prediction of 5.37 eV (blue curve at rotation 90°). The energy
barriers at the transition state are 7.68 eV at a rotation of
58° for hNN-Gr,, and 9.32 eV at a rotation of 51° for DFT,
a relative difference of about 17.6%. Since hNN-Gr, is a
machine learning potential, the accuracy can be systematically
improved by augmenting the training set with configurations
along the concerted exchange path. As a comparison, we also
computed the energy versus rotation using the other potentials
listed in Table II (see the results in the SM [41]). None of the
potentials are in very good agreement with DFT; in particular,
none capture the energy plateau in the vicinity of the SW
defect.

Finally, we consider elasticity properties. The elastic
moduli of hexagonal graphite was computed using finite
differences. The five independent components are listed in
Table II. For each potential, the graphitic structure is con-
structed using its corresponding in-plane lattice parameter,
a, and equilibrium layer spacing dgraphire- In addition, the in-
plane elastic moduli C;; and Cj, of monolayer graphene were
computed (values listed in parentheses). Similar to graphite,
the graphene structure is constructed using the correspond-
ing in-plane lattice parameter of each potential, whereas the
“thickness” of graphene (required to obtain bulk units) is
assumed to be 3.34 A in all cases. The results show that for
graphite the hNN-Gr, potential is in good agreement with

DFT for Cy; (9.5%) and Cy, (8.8%), in reasonable agree-
ment for Cs3 (21.6%) and Cyy (46.1%), and incorrect for C3
(1340%) (although we note that the DFT results disagree with
experiments in this case). For graphene, the hNN-Gr, poten-
tial is in excellent agreement for Cy; (2.1%), but overestimates
C12 (29.5%). For the other potentials, notable disagreements
are that (1) ReaxFF predicts significantly larger values of Ci,
of both graphite and graphene; (2) all of the potentials greatly
underestimate Cy4 for graphite; (3) Tersoff overestimates Cj;
and predicts negative Cj, for graphene; and (4) GAP-Gr
overestimates C}, for graphene.

While the elastic moduli provide insight into the elastic be-
havior of the potentials, a more complete view is gained from
the phonon dispersion curves. A number of thermodynamic
properties, such as the thermal expansion coefficient and heat
capacity, can be obtained directly from dispersion relations
via calculation of the free energy. Figure 5 shows the phonon
dispersion curves of monolayer graphene calculated using
finite differences as implemented in the PHONOPY package
[68]. The predictions of the hNN-Gr, potential and GAP-Gr
are in excellent agreement with DFT. The other potentials
provide good agreement for some phonon branches, but not
all. REBO quantitatively predicts the shape and dispersion
character of most of the phonon branches, but fails for the
high-frequency transverse optical (TO) and longitudinal op-
tical (LO) branches. LCBOP, AIREBO, AIREBO-M, and
ReaxFF are comparable, qualitatively predicting the overall
shapes of most curves, but are in poor quantitative agreement
with DFT. Tersoff has the worst performance with poor qual-
itative agreement for most branches. We note that a drawback
common to all of the physics-based potentials is that they fail
to capture the dispersive behavior of the high-frequency LO
and TO branches, which hNN-Gr, and GAP-Gr predict with
negligible error. The phonon dispersions of bilayer graphene
and graphite (not shown here) are identical to monolayer
graphene, except that the flexural acoustic (ZA) branch splits
into two doubly degenerate branches near the I" point [69,70].

For the properties computed above and the potentials
tested, the results indicate that, overall, machine learning
potentials (both hNN-Gr, and GAP-Gr) have higher accu-
racy than the physics-based potentials. However, the accuracy
comes at the price of increased computational cost. Table IT
shows the time (relative to Tersoff) that it takes each po-
tential to complete an MD trajectory of the same duration
under the canonical ensemble. The simulations were carried
out using LAMMPS [55,71] with hNN-Gr, implemented in
KM [54,72], GAP-Gr implemented in QUIP [73], and the
other potentials natively built into LAMMPS.!! While GAP-
Gr is nearly 4000 times slower than Tersoff, the hNN-Gr,
potential is much faster, only about 280 times'? slower than
Tersoff. As discussed in Sec. I, this is a benefit of parametric

"'The configuration used in the simulations is monolayer graphene
consisting of 192 atoms (bilayer graphene with 384 atoms for KC and
DRIP). Both KIM and QUIP have interfaces to LAMMPS so that their
potentials can be used directly. The simulations were performed in
serial mode with one core.

12For the hNN-Gr, potential, the relative computational cost of the
long-range LJ part to the short-range NN part is 1: 93. Within the
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Tersoff

Phonon frequency (THz)

FIG. 5. Phonon dispersion curves of monolayer graphene along
high-symmetry points in the first Brillouin zone. The red curve is the
DFT prediction, and the blue curves are results from the potentials.
Branch labels are shown in the upper left panel, where “L” stands for
longitudinal, “T” stands for transverse, “Z” stands for flexural, “O”
stands for optical, and “A” stands for acoustic. Note that parts of the
highest two branches by the Tersoff potential are not shown.

methods; the evaluation time does not depend on the size of
the training set. Both hNN-Gr, and GAP-Gr are still signifi-
cantly faster than a first-principles method like DFT, although
they are significantly slower than the tested physics-based

NN part, the ratio of the time to evaluate the descriptors and the
time associated with other computations (e.g., calculating energy and
forces) is 75 : 18. Thus it is clear that the bottleneck is the evaluation
of the descriptors.

potentials. KC and DRIP are relatively more expensive than
the other physics-based potentials because to model long-
range dispersion attraction they need to use a much larger
cutoff distance. For example, DRIP uses a cutoff of 12 /f\,
whereas the other physics-based potentials considered here
typically have cutoffs smaller than 5 A.

IV. APPLICATIONS

The new hNN-Gr, potential is applied to two problems of
interest that are beyond the capabilities of DFT: (1) thermal
conductivity of monolayer graphene and (2) interlayer friction
in bilayer graphene. In both cases the effects of vacancies on
the results are explored.

A. Thermal conductivity

Graphene has been reported to have extremely high ther-
mal conductivity with experimentally measured values be-
tween 1500 and 2500 W/mK [74-78] in suspended sam-
ples at room temperature. (For comparison, copper has a
thermal conductivity of about 400 W/mK.) Despite these
efforts, accurate determination of the thermal conductivity
of graphene remains challenging because thermal transport
in this material is very sensitive to defects and experimental
conditions [79,80]. Atomistic simulations using interatomic
potentials provide an alternative approach to study the thermal
conductivity in graphene and investigate the effect of defects.
One concern is that interatomic potentials do not account
for electron contributions to thermal transport, which are the
dominant effect in metals. Fortunately, although graphene is a
semimetal, at room temperature lattice vibrations account for
the majority of the thermal transport, making the interatomic
potential estimate meaningful [81,82]. An accurate prediction
of the lattice contribution depends on the ability of the po-
tential to describe the phonon dispersion curves, and in par-
ticular the ZA mode associated with out-of-plane vibrations
that provides the dominant contribution to the lattice thermal
conductivity in suspended graphene [83,84]. As seen in Fig. 5,
the hNN-Gr, potential is highly accurate in predicting all
phonon dispersion branches including ZA.

The thermal conductivity is computed using the Green-
Kubo method, an equilibrium MD approach. The Green-Kubo
expression, based on linear-response theory, is [85,86]

1 o0
Kij = W/o (Ji(¥)J;(0)) dt, 9)

where i, j € {x, y, z} are Cartesian components, kg is Boltz-
mann’s constant, T is the temperature, (J;(¢)J;(0)) is the heat
current autocorrelation (HCA) function expressed as a phase
average, and 2 is the volume of the system defined as the
area of graphene multiplied by the van der Waals thickness
(3.457 A in the present case; see Table II). The upper limit
of the integral in Eq. (9) can be approximated by ¢p, the
correlation time required for the HCA to decay to zero. In
the case of an MD simulation, the phase average in the HCA
is approximated by a time average computed at discrete MD
time steps. Consequently, Eq. (9) is in fact a summation and
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we actually compute [86]

At P - 0o-p
ijltr) = G ;(Q— P) 1;Ji(p+q)1,-(q), (10)

where At is the MD time step, Q is the total number of steps,
P = tp/ At is the number of steps for integration (should be
smaller than Q), and J;(p + ¢) is the ith component of the heat
current at step p + q.

A key component of the Green-Kubo method is the def-
inition of the heat current. We note that the heat current
implemented in the LAMMPS MD code [55,71] is intended for
pair potentials only. For many-body potentials, such as the
hNN-Gr, potential, using the LAMMPS expression can lead to
incorrect results.!? In this paper, we use the definition in [88],
which applies to arbitrary many-body potentials.

We study the thermal conductivity in pristine graphene and
investigate the impact of defects. In practice, graphene can
contain a variety of defects including single vacancies, double
vacancies, Stone-Wales defects, adatoms, dislocations, and
grain boundaries [89,90]. Here, we focus on single vacancies,
which have been experimentally shown to be a common type
of defect in graphene [91]. The base graphene system consists
of a periodic rectangular supercell of size 51.25 x 49.32 A
in the x (armchair) and y (zigzag) directions composed of
960 atoms. Separate calculations showed that this system is
sufficiently large to obtain converged thermal conductivity
for ideal graphene in agreement with previously published
results in [84]. Single vacancies are generated by randomly
removing atoms from the supercell. The equations of motion
are integrated using a velocity-Verlet algorithm with a time
step of At =1 fs. The system is initially thermalized for
0.5 ns at a constant temperature of 7 = 300 K under NVT
conditions (canonical ensemble) using a Langevin thermo-
stat. The thermostat is then switched off and data for the
Green-Kubo expression are collected under NV E conditions
(microcanonical ensemble). A time scale on the order of
nanoseconds is necessary to sufficiently converge the HCA
function [86]. We ran the NVE simulation for 10 ns based on
previous studies of thermal conductivity in graphene [92,93].

The thermal conductivity in the x (armchair) direction, x,,
as a function of #p for pristine graphene, graphene with a 0.1%
vacancy density (one vacancy per supercell), and graphene
with a 0.2% vacancy density (two vacancies per supercell)
is plotted in Fig. 6. In each case, the thermal conductivity
is computed by averaging over eight uncorrelated trajectories
with different initial conditions. We see that the majority of the
samples are well converged after 7 = 0.5 ns, with the mean
showing an even better convergence. The thermal conductivity
of pristine graphene measured at tp = 0.5 ns is 2531 W/mK,
in good agreement with the experimental values of
1500-2500 W/mK for suspended graphene [74-78]. The
thermal conductivity for the graphene with a 0.1% vacancy
density is 415 W/mK, an 84% reduction, and for graphene

13See [87] for a comparison of the thermal conductivity obtained
using different definitions of the heat current for the Tersoff potential
[16,17].
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L — mean X T

samples

= mean X

samples
400
mean X

300} - . )

200 ===

100} - ' =Y

0.0 0.2 0.4 0.6 0.8 1.0
tp(ns)

FIG. 6. Thermal conductivity in the x direction, «,, as a function
of tp for pristine graphene, graphene with 0.1% vacancy density,
and graphene with 0.2% vacancy density. In each panel, the thin
gray lines are the HCA cumulative averages obtained from eight
independent trajectories, and the thick lines (red, blue, or green) are
the means of these HCA curves. The “X” denotes the sample with
the largest «,, at p = 1 ns among the eight samples the normalized
HCA of which is shown in Fig. 7.

with a 0.2% vacancy density it is 195 W/mK, a 92% reduc-
tion. Similar values were obtained in the y (zigzag) direction,
1.e., Ky, A Ky, as expected due to isotropy in the graphene
plane.

In Fig. 7, we plot the normalized HCA,
(J(#)J:(0))/(J,(0)J(0)), for the samples marked with an “X”
in Fig. 6. It is clear that the normalized HCA decays to zero
much earlier than ¢+ = 0.5 ns for all three types of graphene,
indicating that 7p = 0.5 ns is sufficient for calculating the
thermal conductivity. Further, the decay of the normalized
HCAs for graphene containing vacancies is much faster
than that of pristine graphene, which is related to the fact
that the thermal conductivity in defective graphene is much
smaller than in pristine graphene. [Note that (J,(0)J,(0)) is
almost the same for all three cases and thermal conductivity
is the integral of the HCA.] The underlying mechanism for
the reduced thermal conductivity of graphene with vacancies
is that vacancy defects are a strong scattering source for
phonons, which govern heat transport in this system. Creation
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FIG. 7. Normalized HCA, (J.(¢)J,(0))/(J:(0)J,(0)), as a func-
tion of time ¢ for pristine graphene, graphene with 0.1% vacancy
density, and graphene with 0.2% vacancy density. The red, blue, and
green curves are for the samples marked with an “X” for graphene
with 0, 0.1% and 0.2% vacancy density in Fig. 6.

of a single vacancy leaves three carbon atoms with twofold
coordination, effectively breaking the sp? characteristics of
the local lattice. These twofold coordinated atoms are less
likely to follow the normal pattern of vibrations in pristine
graphene and cause a significant degree of scattering [93].

B. Interlayer friction

Although the bonding between layers in multilayer
graphene is weak, the material still exhibits significant resis-
tance to sliding due to orbital overlap between layers. The
friction becomes even larger when covalent bonds are formed
between adjacent layers. Such bonds have been proposed to
occur when vacancies exist in close proximity to each other in
the top and bottom layers and react to form covalent bonds in
their vicinity [94]. A plausible mechanism for this to happen is
the creation of vacancies through high-energy ion or electron
bombardment of multilayer graphene [95]. Here, we study the
effect of vacancies and interlayer covalent bonding on friction
in bilayer graphene.

A number of possible interlayer divacancies can form via
the coalescence of single vacancies in adjacent layers leading
to the formation of covalent bonds [94,96]. We focus on the
two structures shown in Fig. 8, where the two vacancies are
first- and second-nearest interlayer neighbors referred to as
V21 (BB) and V22 (BB) (see the figure caption for an explanation
of the notation).

Graphene bilayers containing the two types of divacancies
V,'(BB) and VZ(BB) are fully relaxed using DFT and the
hNN-Gr, potential. An important point is that in order for
covalent bonds to form between layers it is necessary to
compress the bilayer in the direction perpendicular to the
layers, so that the layers are brought to within a spacing of
about 2.4 A prior to relaxation. Both DFT and the hNN-Gr,
potential predict the same core structure after relaxation as
shown in Fig. 9. Two interlayer covalent bonds of equal length
(colored green) are formed in the first-nearest-neighbor diva-
cancy [V, (BB)]. The bond length is predicted by the hNN-Gr,

potential to be 1.44 A, which is in good agreement with the

4
%
%
V3 (80) V3 (60)

FIG. 8. Close-proximity divacancies in adjacent layers of AB
stacked bilayer graphene that favor the formation of covalent bonds
between layers. Hollow circles denote vacancies, and gray squares
are locations where covalent bonds can form between atoms in
adjacent layers. (There are two atoms in each gray square; the blue
atom in the bottom layer is hidden by the red atom in the top layer.)
Following the notation in [94], the subscript 2 in V,' (88) and V22(/3 B)
indicates that two single vacancies form a divacancy, the superscripts
1 and 2 denote first- and second-nearest interlayer neighbors, and 8
means that a vacancy is located at the hexagonal ring center of the
other layer.

DFT value of 1.53 A. The formation of the covalently bonded
divacancy leaves a twofold coordinated atom in each layer,
which is electronically unsaturated and could be chemically
active. For the second-nearest-neighbor divacancy [V22(ﬂ Bl
only one bridging bond is formed with a length of 1.40 A
according to the hNN-Gr, potential. Again there is good
agreement with DFT, which predicts a bond length of 1.38 A.
As expected the single bond is stronger than the pair of bonds
for the first-nearest-neighbor divacancy as demonstrated by
the shorter bond length in this case. The V;(8p) divacancy
leaves two twofold coordinated atoms in each layer, which
reconstruct to form a bond (not shown) with a bond length
predicted to be 1.84 A by hNN-Gr, and 2.15 A by DFT.
(The two atoms are 2.466 A away from each other in pristine
graphene.)

Next, we measure the interlayer friction force in bilayer
graphene with and without the two types of divacancies. The
setup for this simulation is shown in Fig. 10 for the armchair
direction. A graphene layer (red) is placed on top of a larger
layer (blue) and pulled to the right under displacement control
conditions. The bottom layer has a width of 76.88 A (in the
x direction) and height of 22.19 A (in the y direction) and
contains 648 atoms. The top layer has a width of 49.83 A
and 432 atoms. When divacancies are included, they are

Sl E e

1.53 A(1.44 A 1.38 A (1.40 A)

Va6 Vi63

FIG. 9. Core structures of the V,'(88) and V,*(8B) divacancies
after relaxation. The interlayer covalent bond(s) formed near the
divacancy are colored green. The bond length predicted by DFT
(hNN-Gr,) is shown.
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FIG. 10. Representation of the simulation supercell used to com-
pute the friction force in bilayer graphene with and without co-
valently bonded divacancies in adjacent layers. The force required
to pull the top layer to the right along the armchair direction is
measured. The black rectangle indicates the location of divacancies
when included.

introduced into the center of the bilayer at the location in-
dicated by the black rectangle in Fig. 10. Periodic boundary
conditions are applied in the x and y directions, and the
direction perpendicular to the plane is free. Thus the system
corresponds to an infinite graphene nanoribbon with finite
width in the x direction (top layer) sliding on an infinite
graphene layer (bottom). The atoms at the right end of the top
layer (green shaded region) are displaced in the x direction
with a step size of 0.1 A. At each step, after applying the
displacement to these atoms, the total energy of the system is
minimized subject to the following constraints: (1) the atoms
at the right end of the bottom layer are fixed in all three
directions and (2) the x coordinates of the atoms at the right
end of the top layer are fixed to their displaced positions.
Following relaxation, the force F required to hold the top
layer in its displaced position is computed as the total force
acting on the constrained atoms in the top layer. From this the
shear stress is computed as T = F /A, where A is the area of the
top layer. The shear stress is a more useful property than the
force since it can be more readily compared across systems.

Figure 11(a) shows 7 as a function of the pulling distance
Ax along the positive armchair direction. For a pristine bilayer
without vacancies, the maximum shear stress is 423 MPa at
Ax = 0.6 A with a periodicity of v/3a = 4.27 A reflecting
the underlying periodic nature of the bilayer structure. Note
that the shear stress is negative once the top layer passes
the unstable equilibrium state where it is balanced between
forces pulling it forward and backwards. The maximum shear
stress for V,! (BB) is 1014 MPa at Ax = 2.9 A. The interlayer
bond breaks immediately once the shear stress reaches this
maximum, leading to an abrupt drop in the shear stress.
In contrast, for the Vf(ﬂﬂ) divacancy, the interlayer bond
does not break at the maximum shear stress of 597 MPa at
Ax = 0.8 A, but instead breaks later at a somewhat lower
shear stress at Ax = 2.2 A. Once the interlayer bonds are
broken, the V21 (BB) and V22 (BB) curves follow the pristine bi-
layer curve almost identically. This suggests that the presence
of single vacancies in the layers (in the absence of interlayer
covalent bonding) has a negligible effect on friction.

We expect the shear stress for pristine graphene to depend
on the pulling direction due to the changing crystallographic
orientation. The effect of the divacancies will also depend
on orientation. For example, referring to Fig. 8, we see that
when pulling the top layer to the right the single vacancies

1000 - —— no vacancy -
— V1(8P)
= 500} T VQQ(/Bﬁ)
2l
2
= 0
=500+ armchair, positive X
0 1 2 3 4 5 6 7 8
Az (A)
(a)
1000 |- — N0 vacancy -
— V2(8P)
= 500 T VZQ(@B)
2}
2
= 0
=500} armchair, negative X 1
0 1 2 3 4 5 6 7 8
Az (A)
(b)
1000 - —— no vacancy -
— V5(60)
= 500} T Vg(ﬂﬂ)
2l
2
o of
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0 1 2 3 5 6 7 8
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()

FIG. 11. Shear stress T vs pulling distance Ax for bilayer
graphene with and without divacancies. Three different pulling direc-
tions are shown (see Fig. 10): (a), (b) armchair edge in the positive
and negative x directions and (c) zigzag edge in the y direction
(positive and negative are the same).

in V,'(BB) move apart, whereas when pulling to the left they
initially move closer together. We explore friction anisotropy
by considering two more directions in Fig. 10: (1) pulling to
the left along the armchair direction and (2) pulling upwards
along the zigzag direction (downwards is the same due to
symmetry). In the first case, the simulation setup is the same
as in Fig. 10, except that the atoms on the left end of the
top layer are pulled in the negative x direction. In the second
case, a bilayer is constructed with similar geometry to Fig. 10,
but with the zigzag edge aligned with the x direction and
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the armchair edge aligned with the y direction. This system
contains 370 atoms in the top layer and 560 atoms in the
bottom layer.

The shear stress versus pulling distance for these two
cases are shown in Figs. 11(b) and 11(c). The results in the
negative armchair direction [Fig. 11(b)] are similar to those
in the positive armchair direction [Fig. 11(a)], but with some
differences. The maximum shear stress for pristine graphene
is the same as in Fig. 11(a) due to symmetry, but for V21 (BB)
it is 1018 MPa at Ax =2.2 A, which is still larger than that
for V22(,8/3), 824 MPa at Ax = 4.8 A. However, in this ori-
entation V,' (BB) breaks earlier (and immediately as before),
whereas V(B ) exhibits a large amount of slip prior to bond
failure. For the zigzag direction in Fig. 11(c), the shear stress
for pristine bilayer has a periodicity of 2.466 A [smaller than
that in Figs. 11(a) and 11(b)]. The maximum shear stress for
the pristine bilayer, V21 (BB), and sz(ﬂ,B) are 248, 352, and
583 MPa, respectively, all smaller than their counterparts in
Figs. 11(a) and 11(b). This direction has the lowest friction
resistance.

V. SUMMARY

We have developed a hybrid NN interatomic potential
for multilayer graphene structures called “hNN-Gr,.” This
potential employs an NN to capture the short-range intralayer
covalent bonds and interlayer orbital overlap interactions, and
a theoretically motivated r~® term to model the long-range
interlayer dispersion. The inclusion of the theoretical term
improves the performance of the potential since the NN does
not need to learn known physics. The potential parameters are
determined by training against a large dataset of energies and
forces for monolayer graphene, bilayer graphene, and graphite
in various states. The training set is computed from DFT
using the PBE functional augmented with the MBD dispersion
correction to account for long-range vdW interactions.

The potential was tested against a variety of structural,
energetic, and elastic properties to which it was not directly
fit. The validation tests show the following.

(1) The hNN-Gr, potential correctly predicts the in-plane
lattice parameter, equilibrium layer spacings, interlayer bind-
ing energies, and generalized stack fault energies for multi-
layer graphene structures. An important feature is that it can
distinguish the energies of bilayer graphene in the AA and AB
stacking states.

(2) The hNN-Gr, potential has good agreement with DFT
for the C;; and Cj, elastic moduli for both graphene and
graphite. For the other elastic moduli of graphite the agree-
ment is reasonable for C33 and Cy4, but poor for Cy3. (We note,
however, that DFT results are inconsistent with experiments
in the latter case.)

(3) The phonon dispersion curves calculated from the
hNN-Gr, potential are in excellent agreement with DFT re-

sults, significantly better than any other empirical potential,
except for GAP-Gr (which is also a machine learning poten-
tial). However, GAP-Gr is limited to single-layer graphene.

The hNN-Gr, potential was applied to several large-scale
applications, not amenable to DFT calculations. The thermal
conductivity of monolayer graphene with different vacancy
densities is computed using a Green-Kubo approach. The
thermal conductivity of pristine graphene is found to be
2531 W/mK, consistent with experimental measurements
(1500-2500 W/mK). The thermal conductivity is dramati-
cally reduced with the addition of vacancies due to phonon
scattering: 415 W/mK for a vacancy density of 0.1%, and
195 W/mK for 0.2%.

In a second application, the effect of covalent bonds be-
tween layers in bilayer graphene on friction is explored. Such
bonds are predicted to occur when vacancies in separate
layers exist in close proximity and the bilayer is compressed.
The hNN-Gr, potential predicts the formation of interlayer
covalent bonds and a corresponding divacancy structure in
agreement with DFT. It is found that the presence of these
bonds increases the friction between layers by up to a factor
of 4 depending on the sliding direction.

We have shown that the hNN-Gr, potential provides a
complete and accurate description of both the intralayer and
interlayer interactions in multilayer graphene structures. It
can be used to study mechanical and thermal properties of
these materials, and investigate the effects of vacancy defects.
Unlike interlayer potentials like KC [12] and DRIP [26]
this potential does not assign atoms membership to layers
or assume a layered structure to characterized the registry
geometry. Thus, for example, hNN-Gr, could be used to
model passage of atoms between layers.

The hNN-Gr, potential is compatible with the KIM API
[54] and available for download from [72,97,98]. This poten-
tial can be used with any KIM-compliant atomistic simulation
code. (For more details on KIM, and an example of how to use
the hNN-Gr, potential in LAMMPS to compute the cohesive
energy of a graphene bilayer in AB stacking, see the SM [41].)
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