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Abstract

This paper proposes new techniques for data representation in the context of deep learning us-

ing agglomerative clustering. Existing autoencoder-based data representation techniques tend

to produce a number of encoding and decoding receptive fields of layered autoencoders that

are duplicative, thereby leading to extraction of similar features, thus resulting in filtering re-

dundancy. We propose a way to address this problem and show that such redundancy can

be eliminated. This yields smaller networks and produces unique receptive fields that extract

distinct features. It is also shown that autoencoders with nonnegativity constraints on weights

are capable of extracting fewer redundant features than conventional sparse autoencoders. The

concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained

autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale

face dataset.

Keywords: Autoencoder, agglomerative clustering, deep learning, filter clustering, receptive
fields.

1. Introduction

Feature extraction through constrained learning of receptive fields (RFs) offers special promise

and has recently become one of the important tenets of deep learning (DL) (Bengio (2009); Hin-

ton and Salakhutdinov (2006)). In deep autoencoding, autoencoder (AE) performs unsuper-
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vised learning to detect feature hierarchies which shatter the data and generate features. In this

process each added AE layer adds one more abstract representation of inputs, in effect produc-

ing a cascade of encodings. Further, the architectural complexity and the excessive number of

weights and units are often built in into the DL data representation by design and are deliber-

ate (Bengio and LeCun (2007); Bengio (2009); Hinton and Salakhutdinov (2006); Deng (2014);

Bengio et al. (2013)).

Our observations and those of other researchers (Bengio et al. (2013); LeCun et al. (2015))

indicate that over-sized DL architectures typically result in largely over-determined (or over-

complete) systems. Unless special ad-hoc precautions are implemented to achieve acceptable

accuracy such as de-noising, contraction of layers, and elimination of initially assumed and in-

herent redundancies, the generalization abilities of DL resulting methods suffer (Bengio et al.

(2013)). The resulting architectures may therefore not be the most computationally efficient due

to their size, computational complexity, and due to their over-representation of data. Such sub-

optimal architectures sometime may learn local, or isolated features, especially with shallower

architectures which have a limited capacity to combine inputs/features.

To address the over-representation of data mapping into the DL multilayer architectures,

layers can be trained under specific and well-defined sets of constraints that remove a number

of training limitations. The subsequent sections discuss the purpose and specific techniques of

defining the constraints. The constraints criteria refer to the RFs (or simply filters) originally

introduced in (Olshausen and Field (1996)).

In general, as a result of learning for minimum error of reconstruction or classification, the

RFs manifest themselves as quasi basis functions that are usually sparse and of the same dimen-

sionality as the input layer (or, in general, of dimensionality of the preceding processing layer).

Experiments show that a large number of filters are similar or even duplicative, thus creating

unnecessary amount of filtering redundancy. The same features are therefore extracted multi-

ple times. In this paper, we aim at reducing the number of redundant RFs first in the offline

setting, and in order to fully leverage on the proposed heuristic, their clustering is automated

with the goal of reaching a predetermined number of filter clusters. It is remarked that the pro-

posed approach requires final retraining of the AE to lower its reconstruction error. Further, we
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focus on filters that sort classes of images.

Deep autoencoding attempts to combine many simple transformations into a more complex

one. One of its implementations is a sparse AE which learns representation of data. It de-

composes the input samples into a number of binary and/or continuous but preferably sparse

concepts. The reconstruction is then achieved by adding "parts": ideally it could be an additive

linear combination of few basis functions by the decoder that provides nonnegative scaling co-

efficients (Chorowski and Zurada (2015)).

The most closely related work to the described is the dropout technique - one of the recently

introduced heuristics to sparsify the AEs to prevent overfitting. The key idea is to randomly

drop units and their connections from the neural network during training (Srivastava et al.

(2014)). Other related work is the k-sparse AE (Ngiam et al. (2011); Li et al. (2015); He et al.

(2013)), which aims at reducing the number of filters by sorting the hidden units’ activations

and retaining k largest units, while setting the rest to zero. Our algorithm, on the other hand,

aims at detecting the number of filter clusters according to the differentiation of filters based on

their distances and the reconstruction error value. Hence, the proposed method in this paper

leads to comparable reconstruction error with a reduced number of filters.

The proposed method is also applicable to AEs that extract non-negative latent features.

This concept has been demonstrated using two AE architectures with non-negative weights that

produce additive decompositions layer-wise (Lemme et al. (2012); Hosseini-Asl et al. (2016);

Ayinde et al. (2016)). In this paper, the novel way of obtaining a near-optimal number of AE

filters for sparse representation of data preliminarily discussed in (Ayinde and Zurada (2016))

is extended by: (i) reformulating the proposed algorithms for optimal performance, (ii) demon-

strating the efficacy of the proposed heuristics with three different AEs, (iii) showing that the

proposed heuristics improve network generalization, and lastly (iv) supporting with new ex-

periments on new datasets. The rest of the paper is structured as follows: Section 2 gives the

notation and discusses the high level feature extraction. The method of obtaining optimal num-

ber of filters is discussed in section 3. Section 4 discusses the experimental designs and presents

the results. Finally, conclusions are drawn in section 5.
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Figure 1: (a) Schematic diagram of (a) a three-layer AE or SAE and (b) a deep AE of L + 1 layers constructed using
Stacked Sparse Autoencoder (SSAE) and Softmax Classifier (SMC).

2. Deep Feature Learning using Stacked Sparse Autoencoders

Sparse autoencoder (SAE) is an unsupervised feature learning algorithm that learns sparse,

high-level, structured representations of data. Generally, the input layer of SAE shown in Fig. 1a

serves as an encoder that maps the input x to corresponding feature representation h. The out-

put layer can be abstracted as a decoder trained to reconstruct the original input with acceptable

error. The training objective of SAE is to find parameters that minimize the norm between the

input x and its reconstruction x̂, or the reconstruction error. The SAE learns to minimize the

reconstruction error by learning encoding (W(1)), decoding (W(2)) weights, and biases (bx, bh)

using the backpropagation algorithm. The objective function of a conventional SAE has three

components (Ng (2011); Xu et al. (2014); Ngiam et al. (2011); Schulz et al. (2015)):

JSAE(W, b) = JAE(θ) + β
n′

∑
j=1

DKL

(
p
∥∥∥∥ 1

m

m

∑
k=1

hj(x(k))
)

+
α

2

2

∑
l=1

sl

∑
i=1

sl−1

∑
j=1

(
w(l)

ij
)2

(1)

where W = {W(1), W(2)}, b = {bx, bh}, sl is the number of units in layer l, w(l)
ij represents the

connection between jth unit in layer l− 1 and ith unit in layer l; m is the number of training ex-
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amples, n′ is the number of hidden units, hj(x(k)) = σ(W(1)
j x(k) + bx,j) denotes the activation of

hidden unit j due to input x(k), and σ(�) is the element-wise application of the logistic sigmoid,

σ(x) = 1/(1 + exp(−x)).

JAE(W, b) =
1
m

m

∑
k=1

∥∥∥σ(W(2)σ(W(1)x(k) + bx) + bh)− x(k)
∥∥∥2

2
(2)

where || � ||2 is the Euclidean norm.

The first component of (1) is the reconstruction error over the entire data as in (2). DKL(�)

is the Kullback-Leibler (KL) divergence (Lee et al. (2007); Nair and Hinton (2009); Hinton et al.

(2006); Poultney et al. (2006)) between the average activation of hidden unit j over the training

set and the desired activation p; β ≥ 0 controls the sparsity penalty term. Lastly, the third term

of (1) is a regularizer that helps prevent overfitting by reducing the magnitude of the weights.

In order to constrain conventional SAE to extract non-negative latent features, the third term

in (1) is replaced with P in (3) to penalize the negative weights simultaneously with both L1

and L2 norms yielding a L1/L2-Nonnegative Constrained Sparse Autoencoder (L1/L2-NCAE)

Ayinde et al. (2016).

P =
2

∑
l=1

sl

∑
i=1

sl−1

∑
j=1

{
α1

∥∥∥w(l)
ij

∥∥∥+ α2
2

∥∥∥w(l)
ij

∥∥∥2

2
w(l)

ij < 0

0 w(l)
ij ≥ 0

(3)

where α1,α2 ≥ 0. The weights are updated as below using the error backpropagation:

w(l)
ij = w(l)

ij − ξ
∂

∂w(l)
ij

JL1/L2-NCAE(W, b) (4)

b(l)i = b(l)i − ξ
∂

∂b(l)i

JL1/L2-NCAE(W, b) (5)

where ξ > 0 is the learning rate and the gradient of L1/L2-NCAE loss function is computed as

in (6).

∂

∂w(l)
ij

JL1/L2-NCAE(W, b) =
∂

∂w(l)
ij

JAE
(
W, b

)
+ β

∂

∂w(l)
ij

DKL

(
p
∥∥∥∥ 1

m

m

∑
k=1

hj(x(k))
)
+ g
(
w(l)

ij
) (6)
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where g(wij) is a derivative of P (3) with respect to wij as in (7).

g(wij) =

{
α1∇w

∥∥wij
∥∥+ α2wij wij < 0

0 wij ≥ 0
(7)

One of the advantages of constraining the weights of AEs to be nonnegative is that the average

reconstruction error is reduced and the sparsity of the hidden layer activations is increased as

shown in (Hosseini-Asl et al. (2016); Ayinde et al. (2016)) on variety of dataset such as MNIST

handwritten digits, NORB normalized uniform object data, and the Reuters text categorization

dataset. By using both L1 and L2 to penalize the negative weights, most of them are forced to be

nonnegative and sparse, and thus enhance the network interpretability (Ayinde et al. (2016)).

In deep feature learning, basic SAEs are stacked over one another with the output of each

layer feeding the input of the successive layer. A greedy layer-wise training approach is adopted

to train each successive layer (Hinton et al. (2006)). The activations of the last AE are then used

as the input to the Softmax layer (SMC), a supervised classifier as shown in Fig. 1b. The param-

eters obtained after the training yield the transformation f : Rdx → Rd
h(L) which maps input

to new high level feature representation h(L). Since the activation of the last AE is the input

to the Softmax layer, the training input of the supervised learning (classification) is given as

{h(L)(k), y(k)}m
k=1 which is the pair of high level feature representation and its corresponding la-

bel. In the case of nonnegativity-constrained AEs, it must be noted that weights in the softmax

layer are also nonnegativity constrained (Ayinde et al. (2016)). More details on NCAE training

are in (Hosseini-Asl et al. (2016); Ayinde et al. (2016)).

3. Filter Clustering and Reduction

Training of SAEs indicate that resulting RFs are duplicative thus leading to a number of

redundant RFs with the same feature to be extracted by two or more filters. In this section, two

heuristics that aim at agglomerative static and dynamic clustering of filters as well as reduction

of the hidden layer size are discussed. These criteria need to enforce:

1. Static reduction of the number of redundant filters while preserving and/or enhancing

their sparsity. This reduction is analyzed and performed initially in the offline mode and
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for the filters that have been pre-trained. The essence of the pre-training is to avail the

filters enough iterations.

2. Dynamic reduction and reconciliation of filters that is undertaken concurrently with

their unsupervised learning. Such clustering of filters aims at automatically choosing a

good similarity threshold for RFs for a given AE architecture and detecting the number of

distinct filter clusters.

The above two criteria aim at producing a reduced set of filters. The term reduction refers here

to computing their smallest number according to a specific chosen measure.

3.1. Static Reduction of the Number of Redundant Filters

The objective here is to remove filters that are identical or very similar to eliminate duplica-

tive retrieval of features. While this concept is simple, suitable similarity measures are needed

to express the intra-filter distances between vectors Vs that define the filters. Assuming (Vs,

bs), s=1,...n’, are weight vectors and biases, each Vs corresponds to the s-th row of the weight

matrix W(1) as in Fig. 1a

Vs = W(1)
s s = 1, ...n′ (8)

The set of n′ vectors Vs exhibits mutual distances as follows:

dsr = ||Vs −Vr|| s, r = 1, ...n′; s 6= r (9)

A number of suitable agglomerative similarity testing/clustering algorithms can be applied

for elimination (and possibly merger) of originally developed redundant filters. Based on a

comparative review, a clustering approach from (Walter et al. (2008); Ding and He (2002)) has

been adapted and reformulated for this purpose as shown in Algorithm 1.

Starting with each original filter as a potential cluster, agglomerative clustering is performed

by merging the two most similar clusters Ci and Cj as long as the average similarity between

their constituent filters is above a chosen cluster similarity threshold denoted as τ (Leibe et al.

(2004); Manickam et al. (2000)). The similarity threshold is an hyperparameter that has to be set
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Algorithm 1 Offline Feature Extraction (OFE)

1: function OFE(data,autoencoder(AE)):
2: initialize: {n′0, pretrain_iter, max_iter}
3: initialize W and b: W(init), b(init)

4: set: τ
5: W, b = TRAIN_AE

(
data, n′0, W(init), b(init), pretrain_iter

)
6: L = COMPUTE_LOSS

(
data, W, b

)
as in (2)

7: n′new, W(agglo), b(agglo) = AGGLOMCLUSTERING
(
W, b, τ

)
8: W(new), b(new) = TRAIN_AE

(
data, n′new, W(agglo), b(agglo), max_iter

)
9: end function

10:
11: function AGGLOMCLUSTERING():
12: Input: {W, b, τ}
13: Scan for cluster(s) of vectors in W with similarity > τ
14: Replace each cluster with its corresponding centroid
15: Output: Number of distinct filters in W;
16: return n′new, W(new), b(new)

17: end function

in order to achieve optimal performance. The set of n′ vectors Vs exhibits mutual similarities

as follows:

similarity(Ci, Cj) =
∑Vs∈Ci,Vr∈Cj

NGC(Vs, Vr)

|Ci| × |Cj|
> τ

i, j = 1, ...n′new; s = 1, ...|Ci|, r = 1, ...|Cj| and s 6= r

(10)

where the similarity between two filters is measured by Normalized Greyscale Correlation

(NGC):

NGC(Vs, Vr) =
∑n

k=1(pk − p̄k)(qk − q̄k)√
∑n

k=1(pk − p̄k)2 ∑n
k=1(qk − q̄k)2 (11)

where pk ∈ Vs and qk ∈ Vr; p̄k = ∑n
k=1 pk/n and q̄k = ∑n

k=1 qk/n and n is the size of the filter

vector Vs.

This clustering scheme guarantees that similar filters are grouped, and that the clusters stay

compact (Leibe et al. (2004)). That is, the constituent filters in each cluster stay as close as

possible to one another or simply put, the intra-cluster distances are as small as possible.
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Figure 2: Filters learned from NORB data set using SAE with (a) 100 original filters (b) 14 examples of very similar
filters with their corresponding indices at the bottom (c) 32 filters resulting from agglo-SAE with τ=16, and (d) 32
original filters. Black pixels indicate negative, and white pixels indicate positive weights.

3.2. Dynamic Reduction and Reconciliation of Filters

The objective here is to discover c clusters in the set of n′ original filters, where c < n′. Fur-

ther evaluation is performed on how to replace filters that are within a single cluster with this

cluster prototype or centroid’s representation. The algorithm has been designed to heuristically

set τ to develop novel representation that expresses aggregated properties of input data across

the training set. The Algorithm 2 also tries to reduce the number of hidden units based on clus-

tering of the input weights. It trains an AE with initial number of hidden units for pretrain_iter

epochs, which must be chosen large enough to enable formation of duplicative filters. Number

of hidden units is initialized as large as practical and τ is also initialized to a small value in

order to fully activate the filter reduction heuristic. The reconstruction error is evaluated using

the weights and biases obtained from the pre-training stage. The weight vectors are then clus-

tered and filters with similarity above the threshold τ are collapsed.

The resulting filters are fine-tuned for scan_iter epochs such that reconstruction error (2)
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does not increase in comparison with the reconstruction error computed using previous τ. If

the reconstruction error reduces, τ value is incremented by ∆τ and the process is repeated. As

mentioned above, the filter reduction becomes less active as τ increases, which in turn implies

that reconstruction error should decrease due to increasing number of hidden units. At certain

τ value and beyond, reconstruction error stops reducing which might be as a result of duplica-

tive filters formation. Once no significant decrease in the reconstruction error associated with

previous and current τ values is observed or the error starts to increase, Algorithm 2 stops

and outputs the optimal number of filters and the resulting τ. The filters are then fine-tuned

for max_iter epoch to ensure good reconstruction. It is worth mentioning that Algorithms 1

and 2 are alternative approaches and can be used independently. Also note that Algorithm 2

is an extended version of Algorithm 1 where acceptable RF cluster similarity threshold is set

automatically to eliminate most redundant RFs, whereas in Algorithm 1 the hyperparameter

τ is selected using trial and error. In this paper, we denote the SAE, NCAE, and L1/L2-NCAE

trained using the approach in Algorithms 1 and 2 as agglo-SAE, agglo-NCAE and agglo-L1/L2-

NCAE, respectively.

4. Experimental Setup

This section discusses the performance of the proposed method in redundant filter reduc-

tion and reported for three benchmark image data sets: MNIST, NORB normalized-uniform

dataset and the Yale face dataset. The input to the first layer of the AE is the vector of pixel

intensities. For MNIST, the size of the each example is 28× 28, and this corresponds to a vector

of 784 pixels intensities (n = 784). The vector size is 1024 for NORB and Yale face data sets. The

rest of the training parameters in Table 1 have been found experimentally for hyperparameter

tuning of each of the algorithm with various parameters that best minimize the cost function. In

Algorithm 1, pretrain_iter and max_iter were both experimentally set to 200. Both AEs with re-

ceptive field clustering and those without clustering have very similar training time. Although

clustering overhead is introduced by the proposed algorithm.

It is worth mentioning that the computational complexity of the proposed algorithm does

not grow with increasing number of data points. Also, the method proposed does not require
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a fully trained network but a network partially trained for few epochs (pretrain_iter). For in-

stance, SAE and agglo-SAE were both trained for 400 epochs. In the case of agglo-SAE, the

network was first pre-trained for 200 epochs, then clustering was performed, followed by fine-

tuning for another 200 epochs. It must be noted that the last 200 epoch is faster in agglo-network

than its counterpart. This compensates for the clustering overhead. In Algorithm 2, hyperpa-

rameters pretrain_iter, scaniter, and max_iter were set to 200, 50, and 150 respectively. It is

remarked that this choice of iteration parameters should ensure that both traditional AEs and

agglo-based ones were trained with similar training time. Also in experiments using Algo-

rithm 2, ∆τ was set to 0.5 and τ initialized to 1.

All experiments were performed on Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz and a 64GB

Algorithm 2 Automatic Feature Extraction (AFE)

1: function AFE(data,autoencoder(AE)):
2: initialize: n′0, pretrain_iter, scan_iter, max_iter
3: initialize: W(init), b(init), k, τ,∆τ
4: W, b = TRAIN_AE

(
data, n′0, W(init), b(init), pretrain_iter

)
5: L = COMPUTE_LOSS

(
data, W, b

)
as in (2)

6: while L(iter+1) < L(iter) do
{

7: n′(iter+1), W(agglo), b(agglo) = AGGLOMCLUSTERING
(
W, b, τ

)
8: W(iter+1), b(iter+1) = TRAIN_AE

(
data, n′(iter+1), W(agglo), b(agglo), scan_iter

)
9: L(iter+1) = COMPUTE_LOSS

(
data, W(iter+1), b(iter+1))

10: if L(iter+1) ≥ L(iter):
11: return n′(iter)

12: τ←− τ+ ∆τ

}
13: W, b = TRAIN_AE

(
data, n′(iter), W(iter), b(iter), max_iter

)
14: end function

of RAM running a 64-bit Windows 10 Enterprise edition. The software implementation has

been with MATLAB 2015b, and LBFGS in minFunc (Byrd et al. (1995)) is used to minimize the

objective function. The usage time in seconds is the time elapsed in seconds a fully trained deep

network (DN) requires to classify all the test samples.
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Table 1: Parameter settings

Parameters SAE NCAE L1/L2-NCAE
Sparsity penalty (β) 3 3 3

Sparsity parameter (p) 0.05 0.05 0.05
Weight decay penalty (α) 3e-3 - -

Nonnegativity constraint penalty (α1) - - 1e-4
Nonnegativity constraint penalty (α2) - 3e-3 3e-3

Maximum No. of Iterations 400 400 400
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Figure 3: Performance of AE on the NORB dataset. (a) Reconstruction error vs. cluster similarity threshold. (b)
Number of RFs vs. cluster similarity threshold for 196 initial filters.

4.1. Unsupervised Feature Reduction via Filter Reduction

In the first set of experiments, conventional SAE with 100 hidden units is trained using the

NORB normalized-uniform dataset. This dataset contains 24, 300 training images and 24, 300

test images of 50 toys from 5 generic categories: four-legged animals, human figures, airplanes,

trucks, and cars. The training and test sets consist of 5 instances of each category. Each image

consists of two channels, each of size 96× 96 pixels. We take the inner 64× 64 pixels of one of

the channels and resize it using bicubic interpolation (Kang et al. (2012); Han (2013)) to 32× 32

pixels vector with 1024 entries as the input. To foster the claim that filter duplication is proba-

ble, the indexed receptive fields learned from NORB data are shown in Fig. 2a. Fig. 2b shows

select RFs from Fig. 2a. The visual inspection indicates that a good number of these filters are

very similar.

In order to eliminate the redundancy of RFs in Fig. 2a, SAE is retrained with the Algorithm 1.
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Figure 4: Reconstruction error using SAE, NCAE, and L1/L2-NCAE trained with the same number of hidden units
from experiment with agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE on NORB data.

Figure 5: 100 receptive fields learned from Yale Face Dataset using SAE with examples of two duplicative RFs.

Fig. 2c shows the 32 RFs learned using agglo-SAE with similarity threshold τ = 16. A quick

inspection reveals that most duplicative filters in Fig. 2a have been grouped in Fig. 2c. In order
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Figure 6: 100 receptive fields learned from Yale Face Dataset using NCAE with examples of duplicative RFs.

Figure 7: 100 receptive fields learned using L1/L2-NCAE from Yale Face Dataset, with examples of duplicative
RFs.

to compare filter duplication and the consequent filtering redundancy with and without the

agglomerative clustering approach, conventional SAE was trained with the same number of

32 hidden units. As shown in Fig. 2d, a number of RFs resulting from SAE training with 32

hidden units can still be observed even though the network was trained with the same number

of hidden units as produced by agglo-SAE heuristic.

Similarly, Nonnegativity Constrained Autoencoder (NCAE) (Hosseini-Asl et al. (2016)) and

L1/L2-NCAE (Ayinde et al. (2016)) with 200 hidden units each were trained using the NORB

data. As observed in Fig 3a, both agglo-NCAE and agglo-L1/L2-NCAE achieve better recon-
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(a)

(b)

Figure 8: Filters learned from MNIST data set using SAE (a) 200 RFs with examples of duplicative filters, (b) 125
RFs for agglo-SAE with τ=6.

struction accuracy than agglo-SAE. It can also be observed in Fig. 3b that more distinct filters

are produced as τ is varied in agglo-NCAE and agglo-L1/L2-NCAE than in agglo-SAE. This

indicates that imposing nonnegativity constraint on the network’s weights helps in learning

an elevated number of distinct features, while also improving the reconstruction. Again, SAE,

NCAE, and L1/L2-NCAE were trained with the same number of hidden units that resulted

from the experiment in Fig. 3b. The error curves shown in Fig 4 reveal that networks trained

with agglo-SAE, agglo-NCAE and agglo-L1/L2-NCAE also yield a lower reconstruction error

in comparison with those trained without agglomerative-clustering-based approach. Fig 4 is

averaged over ten experiments to show the statistical significance of improved reconstruction
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Figure 9: Performance of AE on the MNIST dataset vs. cluster similarity threshold (a) Reconstruction error (b) RF
size (n′new) using 200 initial filters.

capability of agglo-AEs over the traditional AEs considered (SAE, NCAE and L1/L2-NCAE).

The second set of experiments is to show redundant feature extraction using AEs trained on

Yale Face Dataset (Belhumeur et al. (1997)). The database contains 11 images of 15 individuals,

one per different facial expression or configuration: center-light, w/glasses, happy, left-light,

w/no glasses, normal, right-light, sad, sleepy, surprised, and wink. The original size of each

image is 320×243 with 256 gray levels per pixel. We resize each image to 32×32 to reduce the

computational time and normalize between 0 and 1 (Cai et al. (2007)). SAE, NCAE and L1/L2-

NCAE each with 100 hidden units were trained on this dataset and the RFs learned are shown

in Figs 5, 6 and 7, respectively. It was observed that some of the filters are very similar and

will thereby extract similar features. Again, it is observed that both types of nonnegativity-

constrained AEs also learned duplicative filters that produce redundant filtering. This experi-

ment shows that the tendency to learn redundant features is not specific to conventional SAE

only but to a variety AE architectures.

In the third experiment, SAE, NCAE and L1/L2-NCAE were trained using the MNIST dig-

its dataset. The standard MNIST dataset has 60000 training and 10000 testing examples. Each

example is a grayscale image of an handwritten digit scaled and centered in a 28 × 28 pixel

box (LeCun et al. (1998)). A careful look at the 200 RFs of trained SAE in Fig. 8a shows that
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Figure 10: Reconstruction error using SAE, NCAE, and L1/L2-NCAE trained with the same number of hidden
units from experiment with agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE on MNIST data.

many of the filters are duplicative and redundant, and thereby resulting in redundant over-

representation of data and increased computational complexity. By visual inspection it can be

observed that a good number of filters can be considered as redundant and eliminated with

no significant loss of reconstruction accuracy. By deploying Algorithm 1, 75 redundant filters

were eliminated and the resulting distinct agglomerative filters are shown in Fig. 8b. In the

case of agglo-SAE, it was observed that the reconstruction error does not decrease significantly

beyond the similarity threshold of 7 in Fig. 9a, which corresponds to approximately 172 filters

in Fig. 9b. No significant reduction in the reconstruction error was observed for agglo-NCAE

and agglo-L1/L2-NCAE for values of τ greater than 5 corresponding to 194 and 166 distinct

filters, respectively. It is remarked that decreasing τ will decrease the number of RFs and hence

increase the error. By implication, increasing τ will lead to the increase of duplicative RFs. The

18



0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of filters

D
KL     

 

 

agglo−SAE
SAE
agglo−NCAE
NCAE
agglo−L1/L2−NCAE
L1/L2−NCAE

190 192 194
0.104

0.106

0.108

 

 

199 200
0.015

0.02

 

 

Figure 11: KL-Divergence sparsity measure with respect to a desired p = 0.05 using SAE, NCAE, and L1/L2-NCAE
trained with the same number of hidden units (n′new) from experiment with agglo-SAE, agglo-NCAE, and agglo-
L1/L2-NCAE on MNIST data.

two bottom curves on Fig. 9a also indicate that nonnegativity constraints yield better recon-

struction quality on this data set. It is again shown in Fig. 9b that imposition of nonnegativity

constraints on the network’s weights results in networks with larger n′new for a large range of

similarity τ compared to SAE.

Similarly, SAE, NCAE, and L1/L2-NCAE were trained with the same n′new that resulted from

the experiment in Fig. 9b using the MNIST handwritten digits data. It can be observed in Fig. 10

that the proposed agglomerative-based heuristic improves the reconstruction accuracy for all

three AEs. Also, the sparsity has increased in agglo-NCAE and agglo-L1/L2-NCAE, respec-

tively, compared to their counterparts NCAE and L1/L2-NCAE as shown in Fig. 11.

However, no obvious sparsity improvement was noticed in the case of agglo-SAE. The pro-

posed heuristic has been also evaluated based on the distribution of data in high level feature
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Figure 12: t-SNE projection (der Maaten and Hinton (2008)) of 200D representations of MNIST handwritten digits
using (a) SAE (b) NCAE (c) L1/L2-NCAE, (d) 174D representations using agglo-SAE (e) 153D representations
using agglo-NCAE, and (f) 172D representations using agglo-L1/L2-NCAE.

space. In this regard, t-distributed stochastic neighbor embedding (t-SNE) was used to project

the high-level representations (that is, the hidden activations) of SAE, NCAE, L1/L2-NCAE,

agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE to 2D space (der Maaten and Hinton (2008)).

The 2D projections of high-level (200D) representations of MNIST handwritten digits test set

corresponding to hidden activities of SAE, NCAE, and L1/L2-NCAE are respectively visual-

ized in Figs. 12a,b, and c. For the purpose of comparison, 174, 153, and 172D representations

of MNIST handwritten digits for agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE are respec-

tively depicted in Figs. 12d,e, and f.

The t-SNE projections in Fig. 12 no visible/obvious deterioration in the manifolds of the

174D representations of agglo-SAE compared to 200-D representations of SAE. This is an in-

dication that more than 25 hidden activations are redundant and eliminating them does not

deteriorate the manifold shown in Fig. 12a and d. Similarly as shown in Fig. 12b and e, ap-

proximatively 50 hidden activations can be eliminated without overlapping the manifolds that

enclose the 200-D representations of MNIST digits using NCAE. In a similar manner, elimina-
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tion of more than 25 duplicative hidden activities has not adversely affected the manifolds of

the digits’ projections as shown in Fig. 12f of agglo-L1/L2-NCAE in comparison with Fig. 12c

of L1/L2-NCAE.

Table 2: Classification performance on MNIST dataset using initial network configuration 784-200-20-10.

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′1=200)

Λb 0.860 (±0.007) 0.1517 59.9 (±3.51)

Λa 0.977 (±0.0011) 0.8268 60.6 (±2.51)

agglo-SAE (τ=7)

n′1,new 174 (±2) - -

Λb 0.855 (±0.005) - 59.2 (±1.93)

Λa 0.978 (±5.8e-4) - 54.0 (±2.09)

NCAE (n′1=200)

Λb 0.849 (±0.008) 0.028 59.2 (±2.14)

Λa 0.975 (±8.94e-4) 0.0645 55 (±2.27)

agglo-NCAE (τ=3.5)

n′1,new 153 (±3) - -

Λb 0.852 (±0.0061) - 50.9 (±2.44)

Λa 0.974 (±0.0016) - 48.6 (±1.29)

L1/L2-NCAE (n′1 = 200)

Λb 0.845 (±0.205) 0.108 62.1 (±4.13)

Λa 0.974 (±0.0014) 0.7374 56.3 (±1.90)

agglo-L1/L2-NCAE (τ=5)

n′1,new 172 (±3) - -

Λb 0.842 (±0.0067) - 58.2 (±1.84)

Λa 0.974 (±8.9e-4) - 53.1 (±1.12)

4.2. Supervised Learning

In the last set of experiments, a DN was tested using two stacked AEs and a softmax classi-

fication output to evaluate the effect of filter reduction on classification. The network was fine

tuned by backpropagation algorithm to improve the classification accuracy. MNIST dataset

was utilized for the first set of experiments, and it is noted that the filter reduction algorithm is

only implemented on the first layer of the DN for experiments reported in Table 2. However,

as will be shown below, this concept can also be applied to all layers of the deep architectures.

21



For convenience of presentation on Tables 2-7, Λb and Λa are respectively defined in (12) and

(13); n′1,new and n′2,new are the number of agglomeratve filters in the first and second layer, re-

spectively.

Λb =
Number of correctly classified test cases before supervised fine-tuning

Total number of test cases
(12)

Λa =
Number of correctly classified test cases after supervised fine-tuning

Total number of test cases
(13)

where Λb is commonly referred to as accuracy before fine-tuning and Λa as accuracy after fine-
tuning.

The classification accuracy and testing time are reported in Table 2 for the three benchmark

AEs. Reported are averaged results of 10 independent trials and related mean values and stan-

dard deviation (SD) of 6 simulation series. It can be observed from the results that removing

redundant filters in agglo-SAE-pretrained network does not deteriorate the classification per-

formance of the DN. τ = 7 was chosen based on the result in Fig. 9a, which shows that the

reconstruction error does not significantly decrease beyond τ = 7. This indicates that no matter

how many filters are added beyond n′new corresponding to τ = 7, the performance of the DN is

not likely to improve. One of the direct aftermaths of filter reduction is the drastic reduction in

training time and the usage time. It is apparent from the results that more than 6ms have been

saved on the usage time, which is significant when dealing with very large datasets encoun-

tered in real world scenarios. However, for agglo-NCAE-pretrained DN, a slight improvement

of ≈ 1% in classification accuracy was observed before fine-tuning and this can be due to the

features extracted in agglo-NCAE that are more sparse than those obtained using conventional

NCAE. As can be inferred from the p-values, there is a significant difference in the performance

before fine-tuning and no significant improvement observed after fine-tuning. Again τ=3.5 for

NCAE was chosen in connection with Fig. 9a.

The observations from experiments with DN pretrained using agglo-L1/L2-NCAE also re-

veal that usage time is reduced and no significant difference was noticed in the accuracy before

and after finetuning compared to the L1/L2-NCAE-pretrained network. It is worthy of note

that the hidden size of the second layer used in the first set of experiments was chosen to be
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Table 3: Classification performance on MNIST dataset using initial network configuration 784-1000-20-10.

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′1=1000, n′2=20)

Λb 0.8063 (±0.0124) 0.0004 281.8 (±25.0)

Λa 0.9782 (± 0.000704) 0.0030 257.1 (± 34.2)

agglo-SAE (τ=7)

n′1,new 889 (±6) - -

n′2,new 17 (±1) - -

Λb 0.8514 (±0.0106) - 147.9 (±2.5)

Λa 0.9819 (±9.2e-4) - 146.7 (± 0.35)

DpAE (20% dropout)

Λb 0.7314 (± 0.0363) 0.0017 209.7 (± 30.9)

Λa 0.9585 (±0.0107) 0.0090 203.4 (± 38.5)

20 for computational reasons and negligible reduction of RFs number was noticed for most of

τ values considered. However, the size of the hidden layers of all the AEs were chosen to be

as large as the hidden layer size of the first AE in subsequent experiments and near-optimal

number of RFs were obtained using the proposed heuristic.

In the next large-scale experiment reported in Tables 3-6, the effect of removing redundant

filters on network performance is demonstrated using the MNIST dataset. Every run of the

experiments is repeated five times and averaged for statistical significance. The classification

performance of the DN pre-trained with DpAE (Hinton et al. (2012)) was used as a benchmark.

In Table 3, the number of hidden units in the first and second layers were set to 1000 and 20

respectively. It can be observed from the results that more than 100 redundant filters have

been removed in the first layer and 2 in second layer. An improved classification accuracy in

agglo-SAE was also observed after eliminating the redundancy compared to SAE and DpAE

counterparts. In addition, the usage times of SAE and DpAE-trained networks have been re-

spectively reduced more than 40% and 28% in agglo-SAE. Similar trends were observed in the

classification accuracy after fine-tuning when the number of hidden units of the first and sec-

ond layer were respectively set to 1000 and 200 as detailed in Table 4.
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Table 4: Classification performance on MNIST dataset using initial network configuration 784-1000-200-10.

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′1=1000, n′2=200)

Λb 0.9604 (± 0.0014) 0.0151 324.1(±39)

Λa 0.9667 (±0.0015) 0.0172 290.2(±16)

agglo-SAE (τ=7)

n′1,new 874 (±13) - -

n′2,new 95(±2) - -

Λb 0.9422 (± 0.0039) - 162.3 (±43)

Λa 0.9826 (±3.9e-4) - 165.0 (±35.6)

DpAE (20% dropout)

Λb 0.9612 (± 0.0024) 0.3743 193.4 (±37.8)

Λa 0.9768 (± 0.0013) 0.3738 209.2 (± 41.4)

In an attempt to investigate the effect of the proposed algorithm on overfitting, the number

of hidden units of the first and second layer were increased to 500 and 500, respectively as in

Table 5 and 1000-1000 as in Table 6. One of the key observations in Tables 5-6 is that as the

AE’s hidden layer size grows, the performance of SAE deteriorates. It was also observed that

the use of dropout did not help in improving the performance. It is remarked that during the

experiments, 20%, 30%, and 50% dropout fractions were tested and the one with the best out-

put performance was reported. However, in these experiments, agglo-SAE outperforms both

SAE and DpAE before and after fine-tuning. The performance of agglo-SAE could be traced

to its ability to eliminate filtering redundancy and it is worth mentioning that such elimina-

tion might help in reducing overfitting. Table 7 reports the classification results on the small

NORB data set and demonstrates that the network with agglo-SAE outperforms the two other

networks before and after fine-tuning. It can be noticed that more than 50% of the filters in first

layer and 75% in the second layer were redundant and removed with improved classification

performance. Lastly, it was also observed that the results obtained in most of the experiments

using Algorithm 2 are close to the results obtained using Algorithm 1. The conclusion drawn

from this observation is that Algorithm 2 implements faster search of hyperparameter τ, hence

it is more practical in the training phase.
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Table 5: Classification performance on MNIST dataset using initial network configuration 784-500-500-10.

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′1=500, n′2=500)

Λb 0.9595 (±0.0012) <0.0001 240.6 (±10)

Λa 0.9642 (± 0.0012) 0.0025 223.6 (±16)

agglo-SAE (τ=7)

n′1,new 483 (±3) - -

n′2,new 392 (±3) - -

Λb 0.9708 (± 0.0013) - 220.8 (±9.8)

Λa 0.9785 (± 0.0046) - 211.8 (± 20)

DpAE (20% dropout)

Λb 0.9640 (±0.0074) 0.1777 253.7 (± 12.2)

Λa 0.9704 (± 0.0112) 0.1777 227.1 (±19.8)

Table 6: Classification performance on MNIST dataset using initial network configuration 784-1000-1000-10.

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′1=1000, n′2=1000)

Λb 0.9647 (± 0.0012) 0.0004 480.6 (±18.1)

Λa 0.9689 (±9.6e-4) <0.0001 476.1 (±57.9)

agglo-SAE (τ=7)

n′1,new 844 (±6) - -

n′2,new 272 (±10) - -

Λb 0.9730 (±8.9e-4) - 298.8 (± 8.2)

Λa 0.9812 (±9.0e-4) - 275.9 (±17)

DpAE (20% dropout)

Λb 0.9464 (±0.0513) 0.3124 403.4 (±59.5)

Λa 0.8483 (± 0.2701) 0.3336 378.2 (±57.7)

5. Conclusion

This paper proposes new techniques for data representation in the context of DL for stacked

AEs by leveraging on the ability to agglomerate regularized sparse RFs and also by enhancing

the feature generation process at the output layer via controlled feature compression. The per-

formance of the proposed method in terms of decomposing data into parts and non-redundant

feature extraction was compared for the conventional SAE with constrained AEs of type DpAE,
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Table 7: Classification performance on NORB dataset.

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′1=500, n′2=500)

Λb 0.8085 (± 0.0065) 0.3516 385.7 (±38.8)

Λa 0.8143 (±0.0065) 0.0313 387.8 (±34.6)

agglo-SAE (τ=14)

n′1,new 242 (±14) - -

n′2,new 123 (±8) - -

Λb 0.8129 (±0.0102) - 159.1 (±27.0)

Λa 0.8303 (±0.0087) - 170.7 (±31.8)

DpAE (20% dropout)

Λb 0.5042 (±0.1377) 0.0062 443.0 (±66.1)

Λa 0.5090 (±0.1208) <0.001 475.2 (± 57.3)

NCAE, and L1/L2-NCAE. The proposed technique uses agglomerative clustering which starts

off by allocating each original filter to a separate cluster and merges two most similar clusters

as long as the average similarity between their members is above a set threshold τ. This concept

is illustrated using the NORB normalized-uniform object data set, MNIST handwritten digits

data and Yale Face Dataset. The results show that a large number of originally generated RFs

are overlapping across these three data sets, creating unnecessary amount of filtering redun-

dancy. By using the proposed methods, such redundancy can be controlled, eliminated and

AEs are enabled to extract fewer and more distinctive features.
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