Regularizing Deep Neural Networks by Enhancing
Diversity in Feature Extraction

Babajide O. Ayinde, Student Member, IEEE, Tamer Inanc, Senior Member, IEEE, and
Jacek M. Zurada, Life Fellow, IEEE

Abstract—This paper proposes a new and efficient technique
to regularize neural network in the context of deep learning
using correlations among features. Previous studies have shown
that over-sized deep neural network models tend to produce a
lot of redundant features that are either shifted version of one
another or are very similar and show little or no variations; thus
resulting in redundant filtering. We propose a way to address
this problem and show that such redundancy can be avoided
using regularization and adaptive feature dropout mechanism.
We show that regularizing both negative and correlated features
according to their differentiation and based on their relative
cosine distances yields network extracting dissimilar features,
with less overfitting, and better generalization. The concept
is illustrated with deep multilayer perceptron, convolutional
neural network, Gated Recurrent Unit (GRU), and Long short-
term memory (LSTM) on MNIST digits recognition, CIFAR-10,
ImageNet, and Stanford Natural Language Inference data sets.

Index Terms—Deep learning, feature correlation, feature clus-
tering, regularization, cosine similarity, redundancy elimination.

I. INTRODUCTION

HE expressiveness of deep neural networks, usually with

huge number of trainable parameters, sometimes comes
at a disadvantage when trained on limited amount of data
due to their susceptibility to overfitting. To circumvent this
problem, a plethora of regularization and initialization methods
such as weight decay, dropout [1], and weight initialization [2]
have been purported to ameliorate overfitting and convergence
problems resulting from data scarcity and network size [3].
Moreover, recent advances in deep learning for image classifi-
cation [4], [5], language processing [6], [7], speech synthesis
and recognition [8—10] have been attributed to efficient reg-
ularization of randomly initialized deep and complex models
trained with Stochastic Gradient Descent (SGD).

Over the last few decades, research focused on strategies
for reducing overfitting and improving the capabilities of deep
neural network. Examples of such strategies include Batch
Normalization [11] that aims to minimize the internal covari-
ance shift. Also, keeping similar variance at each layer’s input

B. O. Ayinde is with the Department of Electrical and Computer En-
gineering, University of Louisville, Louisville, KY, 40292 USA (e-mail:
babajide.ayinde @louisville.edu).

T. Inanc is with the Department of Electrical and Computer Engi-
neering, University of Louisville, Louisville, KY, 40292 USA, (e-mail:
t.inanc @louisville.edu).

J. M. Zurada is with the Department of Electrical and Computer Engineer-
ing, University of Louisville, Louisville, KY, 40292 USA, and also with the
Information Technology Institute, University of Social Science,£.6dz 90-113,
Poland (Corresponding author, e-mail: jacek.zurada@louisville.edu).

This work was supported by the NSF under grant 1641042.

and output of deep network using initialization has shown to
preserve signal propagation and improve generalization [2],
[12]. Orthonormal initialization coupled with output variance
normalization has also been shown as decorrelating neural
network’s initial weights for better convergence [13].

Another important and popular paradigm for reducing over-
fitting is regularization. In general, the two most commonly
used regularization paradigms utilize the hidden activations,
weights or output distribution. The first family of regulariza-
tion strategy aims to extenuate the model complexity by using
weight decay [14], [15] to reduce the number of effective
model parameters, or using dropout [1] to randomly drop
hidden activations, or using DropConnect [16] to randomly
drop weights during training. Even though these methods have
shown improvements on generalization, they regularize in a
manner that under-utilizes the capacity of the model. The
second family of regularization methods focuses on improving
the generalization without undermining the model’s capacity.
For instance, [17] presented pre-training algorithms to learn
decorrelated features and [18] discusses decorrelated activa-
tions using incoherent training.

Other mechanisms that also fall in the second category are
those that regularize the output distribution. In this sense,
entropy-based regularizer with deterministic annealing was
applied to train multilayer perceptrons for the purpose of
avoiding poor initialization, local minima, and for improving
model generalization [19]. Regularization has also been ap-
plied in form of label smoothing for estimating the marginal-
ized effect of label-dropout during training. This, in effect,
reduces overfitting by restricting the model from assigning
full probability to each training sample and maintaining a
reasonable ratio between the logits of the incorrect classes
[20]. Label smoothing has also been achieved using a teacher
model [21] instead of smoothing with uniform distribution
as in [20]. Injecting label noise has equally been shown to
have a tremendous regularizing effect [22]. Moreover, models
with high level of overfitting have recently been shown to
assign all output probability to a single class in the training
set, thus giving rise to output distributions with low entropy - a
phenomenon referred to as overconfidence [20]. Methods for
effective regularization of overconfident networks have also
been reported that penalize the confident output distribution
[23].

Our observations and those of other researchers [3], [24],
[25] indicate that over-sized deep neural networks are typically
prone to high level of overfitting and usually rely on many
redundant features that can be either shifted version of each

other or be very similar with little or no variations. For
instance, this redundancy is evidently pronounced in features
learned by popular deep neural network architecture such as
AlexNet [26] as emphasized in [3], [27]. To address this
redundancy problem, layers of deep and/or wide architectures
have to be trained under specific and well-defined sets of
constraints in order to remove this limitation during training.

The most closely related work to ours is the recently
introduced regularization technique known as OrthoReg [3]
that locally enforces feature orthogonality by removing inter-
ference between negatively correlated features. The key idea
addressed is to regularize positively correlated features during
training. In effect, OrthoReg reduces overfitting by enforcing
higher decorrelation bounds on features. Our algorithms, on
the other hand, aim at regularizing both negatively and posi-
tively correlated features according to their differentiation and
based on their relative cosine distances. This way we only
penalize features that are correlated above a certain correla-
tion threshold, thus strengthening feature diversity as training
progresses. This approach affords the flexibility of choosing
the absolute correlation bound. Hence, the proposed method
leads to elimination of redundancy and better generalization.

Other related work is [28], which aims at training neu-
ral networks for classification with few training samples by
constraining the hidden units to learn class-wise invariant
features, with samples of the same class having the same
feature representation. It is remarked that our methods have
the flavor of the two aforementioned families of regularization
in the sense that we aim to improve generalization without
undermining the model’s capacity by bounding the pairwise
correlation of features and at the same time temporarily drop
redundant feature maps during training.

The problem addressed here is four-fold: (i) we propose an
optimized algorithm that inhibits learning of redundant filters,
thereby enforcing the extraction of diverse features (ii) we
further propose to use hierarchical agglomerative clustering
(HAC) to drop activations (or feature maps) of redundant
features during training, (iii) we propose a heuristic that
eliminates the computational overhead introduced by HAC for
very deep and/or wide neural networks by using the pairwise
feature correlation to compute the fraction of the feature maps
to be dropped during training, and lastly (iv) we show that
the proposed regularization methods improve state-of-the-art
models across many benchmark learning tasks and datasets.
The paper is structured as follows: Section II introduces
the notion of diversity regularization for extracting dissimilar
features during training. Section III introduces novel online
redundant feature detection and dropout using agglomerative
hierarchical clustering. Section IV discusses the experimental
designs and presents the results. Finally, conclusions are drawn
in Section V.

II. ENHANCING FEATURE DIVERSITY BY ENFORCING
DISSIMILAR FEATURE EXTRACTION

Our objective is to enforce constraints on the learning
process by simply encouraging diverse feature learning and
preventing the extraction of redundant features that are very

similar or shifted version of one another. A symptom of learn-
ing replicated or similar features is that two or more processing
units extract very similar and correlated information. From an
information theory standpoint, similar or shifted versions of
filters do not add extra information to the feature hierarchy, and
therefore should be possibly suppressed. In other words, the
activation of one unit should not be predictable based on the
activations of other units of the same layer. Enforcing feature
dissimilarity in traditional way can be generally involved and
would require computation of huge joint probability table and
batch statistics which can be computationally intractable [3].

One tractable way of computing correlation between two
features is by evaluating the cosine similarity measure
(SIM¢) between them:

SIMC(Wl,WZ): M (1)
[([l we |

where < wi,wy > is the inner product of arbitrary feature
vectors wy and wo. The similarity between two feature vectors
corresponds to correlation between them, that is, the cosine of
the angle between the feature vectors in the feature space.
Since the entries of the vectors can take both negative and
positive values, SIM¢ is bounded by [-1,1]. It is 1 when
wi1=wy or when w; and wy are identical. STM is -1 when
the two vectors are in exact opposite direction. The two filter
vectors are orthogonal in feature space when SIM¢ is 0. The
corresponding distance measure is given as Do = 1—SIMc.

A. Diversity Regularization

In order to minimize the extraction of redundant features
during training, it is necessary to maximize the information
encoded by each processing hidden units by incorporating a
penalty term into the overall learning objective, here referred
to as diversity regularization (divReg). The constraints induced
as a result of diversity regularization term need to be recon-
ciled with usual regularization through a judicious choice of
appropriate penalty function. The diversity regularization cost
(Jp) for a single layer of the deep network is thus defined as:

1 Tl/ n’
Jp(w) = 52 _ Z 'miJ(SIMC(wiawj))z 2)
i=1 j=1,5#1
where w; are the weights connecting the activations of layer
I —1 to i*" neuron of layer [, n’ is the number of neurons in
layer [. m; ; is a binary variable defined as in

1
mi,j:{ 0
0

0 < 7 < 1 is an hyperparameter. It is worthy to note that
self correlation of each feature vector w; has been discarded
in (3). Also, both negative and positive correlations above the
threshold 7 are taken into consideration. This implies feature
pair with |SIM¢| below 7 will not be penalized.

It is important to also note the importance and relevance of
7 in (3). Setting 7 = 0 results in orthogonal feature set and
this is in most cases neither desirable nor practical because
some features are still required to be shared. For instance, if

\SIMc(wi,wj)| >T
=] 3)

otherwise

Toy filters, Jp =2.061538 (32radient Descent (lteration 1), Jp = 1.9962¢

Gradient Descent (lteration 2), Jp =1.89497 Gradient Descent (lteration 4), Jp =1.67008
2 3t /
2l D2] /

/

L A
i
L4] /
’
1t a
1
’
2l T : : i /

(a) (®)

(c) ()]

Fig. 1: Illustration of effect of divReg with A = 10 and 7 = 0.1 (a) on three toy filters in (b) iteration 1 (c) iteration 2 and (d)

iteration 4.

[7)\:1 —A=3 —A=5 —A=7 —A=10 —A=20

1001

80

Iteration
(a)
Fig. 2: Effect of (a) diversity penalty factor A and (b) thresholding parameter 7 on diversity regularization cost Jp

we consider a model trained on CIAFR-10 dataset [29] that
has “automobiles” and “trucks” as two of its ten categories. If
a particular lower-level feature describes the “wheel”, then, it
will not be out of place if two higher-level features describing
automobile and truck share common feature that describes
the wheel. The choice of 7 determines the level of sharing
allowed, that is, the degree of feature sharing across features
of a particular layer. In other words, 7 serves as a trade-off
parameter that ensures some degree of feature sharing across
multiple high-level features and at the same time ensuring
features are sufficiently dissimilar.

By letting @ < R™ " contain n’ normalized filter vectors
@i = wi/\/||w;||? as columns, each with n elements correspond-
ing to connections from layer [— 1 to ‘" neuron of layer [,
then, Jp for all layers can be rewritten in a vectorized form
as:

ny

LN B0
aoe) =Y (330w n2)

=1 i=1 j=1

“4)

0) o @) @)
where Q € R™ *™ denotes ®T® which clontains the inner

products of each pair of columns ¢ and j of ® in each position

O] fd
i,j of Q in layer [; M € R™ *™ is a binary mask for layer
l defined in (5); n; is the number of layers to be regularized

—7=0.1
55 —7=0.2

v Al
40 60 80 100
Iteration

(b)

and © is the element-wise multiplication of two matrices.

L <193, 5) <1

0 otherwise

&)

In order to enforce diversity while training, the diversity
regularization term (4) is added to the learning loss function
J(0;X,y), where 6 comprises of network’s weights (W)
and biases (b); X, y are the data matrix and label vector,
respectively. The overall cost is then

Jnet - J(ev Xa Y) +)‘JD(¢) (6)
where)\ is the diversity penalty factor experimentally chosen
to be 10. The weights are updated as below using the error
backpropagation:

0
1) _ l
W()_Wu_ga Gy Tnet @)
0
) _ g
e S ®)

where £ > 0 is the learning rate and the gradient of the loss
function is computed as in (9).

) 0!

aW(l) Jnet = vI/V(l) J(0) X, y) +)\Vw(l) JD ((ﬁ) (9)

and

(ONOENO)

Vi Jp(6) = $(Q © M) (10)

B. Implications of imposing feature diversity

The graphical illustration of impact of diversity regulariza-
tion on features is shown in Fig. 1. Since this illustration
does not utilize training data to update feature matrix w®

l

in Eq.(7), we thus set VW(z)J((G);X,y)% 0. The three 2D
filters shown as vectors in Fig. la were synthesized for
visual illustration and both 7 and \ were set to 0.1 and 10,
respectively. Jp(¢) as a result of three initial filters evaluates
to 2.062 using Eq.(4) with n; = 1. Making a step along the
gradient reduces the diversity regularization cost to 1.996 as
shown in Fig. 1b. Likewise, the updated features after second
and fourth iterations of gradient descent resulted in diversity
regularization cost of 1.895 and 1.67 as shown in Figs. Ic
and d, respectively. It is observed that at every iteration, the
optimizer is forced to find features that are less similar in order
to minimize Jp(¢).

Another crucial observation is that the filter far away from
others in feature space is less regularized and has little
influence on the regularization of other filters. The effect of
both diversity penalty factor A and thresholding parameter 7
on diversity regularization cost Jp is shown in Figs.2a and
b, respectively. As expected, Jp increases as the value of
A is increased for 7 = 0.1. The effect of 7 on Jp is also
explored and it can be observed in Figs.2b that when 7 = 0.1,
the features are regularized more aggressively due to more
feature-pair having similarity exceeding this threshold value
and leading to a situation whereby feature vectors are heavily
updated in every iteration leading to fluctuations of Jp. In
contrast, when 7 = 0.2 features are heavily updated in the first
fifteen iterations and subsequently settles into a local optimum.

III. ONLINE REDUNDANT FILTER DETECTION AND
DROPOUT

This section introduces the concept of online agglomerative
hierarchical clustering of features for detecting and dropping
of N, redundant features and their maps during training
originally introduced in [25], [30] for pruning redundant fea-
tures in unsupervised pretraining. In this section, two dropout
heuristics considered both aim at online detection of redundant
features and:

1) dropping of redundant features maps in the forward
pass during training. Here, clustering of features aims
at automatically detecting the features whose activa-
tions/maps will be dropped in each training epoch.

2) random dropping of NV, feature maps during training.

The above two criteria are alternative approaches and they
both aim at temporarily dropping a set of feature maps during
training. The term redundant reflects a choice of a specific
chosen measure, SIMc and of the 7 value.

A. Online Filtering Redundancy Dropout

The objective here is to dropout feature maps that have
identical or very similar features in weight space according
to well-defined similarity measure. Achieving this involves
choosing suitable similarity measures to express the inter-
feature distances between vectors ¢; that define the features. A
number of suitable agglomerative similarity testing/clustering
algorithms can be applied for localizing redundant features.
Based on a comparative review, a clustering approach from
[30], [31] has been adapted and reformulated for this purpose
as shown in Algorithm 1. By starting with each feature vector
as a potential cluster, agglomerative clustering is performed by
merging the two most similar clusters C, and Cj as long as
the average similarity between their constituent feature vectors
is above a chosen cluster similarity threshold denoted as T
[32-34]. T is an hyperparameter that has to be set in order to
achieve optimal performance. The pair of clusters C, and C}
exhibits average mutual similarities as follows:

Do pieCat ec, STMce(dis ¢5)

SIMc(C,,Cy) = > T
C(b) ‘Ca| » |Cb| (1])
a,b=1,.n"; a#b; i=1,..|C,.l;
J=1,...|C|; and i#j

where 0 < T < 7 It is remarked that the above similarity def-
inition uses the graph-based-group-average technique, which
defines cluster proximity/similarity as the average of pairwise
similarities (that is, the average length of edges of the graph) of
all pairs of features from different clusters. In this work, other
similarity definitions such as the single and complete links
were also experimented with. Single link defines cluster simi-
larity as the proximity between the two closest feature vectors
that are in different clusters. On the other hand, complete link
assumes that cluster proximity is the proximity between the
farthest two feature vectors of different clusters. Group average
proximity definition empirically yielded better performance
compared to the other two definitions and thus, we report
experimental results using average proximity approach.

The nitty-gritty of the redundant feature dropout procedure
is detailed in Algorithm 1. It first initializes weights to small
random numbers by following the method introduced in [2].
Training data are shuffled and split into batches in each
epoch. The loss in (6) is computed on each batch of the
training samples. The backpropagation algorithm computes the
gradient of the loss with respect to all the model parameters.
Weights and biases are updated using the update rules in (7)
and (8), respectively. At the end of every epoch, the weights
connecting the activations of layer ! — 1 to neurons of layer [
are examined for possible similarity using (11). The objective
here is to discover ny clusters in the set of n’ original weight
vectors (or simply features), where ny < n’. Upon detecting
these distinct ny clusters, a representative feature from each
of these ny clusters is randomly sampled without replacement
and the remaining set of features are tagged as redundant (Sg).
This process continues for prescribed number of epochs. The
detection of redundant feature vectors is generally tractable
especially from practical standpoint since the number of
features in each layer is reasonably sized (mostly less than

Algorithm 1 Online Redundant Feature Dropout (divReg-1)

1: {The parameters are: Bg - the batch size, { - learning
rate, n’ - number of filters, 7 - diversity regularization
correlation threshold, and 7 - filter clustering similarity
threshold }

2: {0 is the vector of concatenated weights (W(l)) and biases
(b®). Initialize # from a normal distribution as proposed
in [2]. Initialize dropout fraction «}

3: 0 < 0y {Initial weight and biases}

4: for prescribed number of epochs (nbepoch) do

5: permute training samples

6: for all batches of Bg train samples do

7 Jnet < loss on batch samples from eq. (6)

8 A0 + compute gradient using eq. (7) and (8)

9: {Make a step along the gradient}

10: 0+ 60—EAP

11: end for

12: {Compute the set of redundant features}

13: Sg « FilterClusteringl()

14: {Drop activation maps corresponding to features in Sy}

15: end for

16: function FILTERCLUSTERING1():

17: Input: W(l), T

18: Scan for cluster(s) of vectors in WO with STM¢ > T

19: {Randomly sample and tag one representative features
from each of the ny clusters as non-redundant}

20: Output: Set of redundant features in w®;

21: end function

a thousand). For large enough network, approximate measure
of redundancy measure will be discussed in Section III(B).

B. Online Redundancy-based Dropout

The complexity of agglomerative clustering in Algorithm 1
is O((n’)*log(n’)), which might sometimes make it imprac-
tical to deploy in online settings (that is, during training)
especially for large n’ and [. For instance, clustering 1024
feature vectors empirically takes on average on our machine
(see specs in the Section V) 12 seconds and this is executed at
least once in every epoch. This amounts to at least additional
(12 x| « nbepoch) seconds of computational overhead, where
l is the number of layers and nbepoch is number of epochs.
However, the computational overhead is practical for relatively
shallow network architectures.

To circumvent this problem for very deep and wide net-
works, we propose Algorithm 2 to estimate the dropout
fraction based on the number of feature pairs that are cor-
related above a set threshold 7. It uses cosine similarity
with thresholding mechanism to dynamically set the dropout
fraction of conventional dropout regularizer. This incorporates
the redundancy information in the dropout mechanism. It is
worth motivating and mentioning that Algorithms 1 and 2 are
alternative approaches and should be used independently. The
main difference between these algorithms is that Algorithm 1
uses hierarchical agglomerative clustering to detect and drop
out the exact redundant features in each epoch, while Algo-

rithm 2 estimates the number of feature maps to be randomly
dropped at each epoch. Computationally, the dropout fraction
of layer [in each epoch in Algorithm 2 is computed as the

mean of the upper (or lower) triangular part of matrix M as
in (12) below:
O]

o SIS M ()

(12)
@ (n/)2 _ n/
where .
. 1 7<Q3,j) <1
M(i,j) =1 0 1= (13)
0 otherwise.

It must be noted that both Algorithms 1 and 2 are adaptive in
the sense that they adapt accordingly in every epoch to varying
number of redundant filters. Another crucial detail about
Algorithm 2 is the initialization of «. We tried different initial-
ization values [0, 0.25, 0.5, 0.75], and we found different value
works best for different datasets as will be detailed in Section
IV. Unlike conventional dropout [1] that randomly drops a
fixed number of units throughout the training process, the
number of units dropped during training using Algorithms 1
and 2 adapts accordingly as training progresses. In this paper,
we denote training under the diversity regularization in (4)
without dropout as divReg while training using Algorithms 1
and 2 is denoted as divReg-1 and divReg-2, respectively.

Each of divReg-1 and divReg-2 can be used in tandem
with the diversity regularization introduced in the previous
section. However, they could also be deployed as stand-alone
regularization tools in which case the regularization term in
(4) is discarded by setting A = 0. It must be noted that when
using any of these procedures in conjunction with diversity
regularization term (when A # 0), the width of the similarity
bound [-7, 7] must be chosen as large as possible to allow the
detection of some similar features and also 7 <.

IV. EXPERIMENTS

Diversity regularization (divReg) was evaluated on MNIST
dataset of handwritten digits [35], CIFAR-10 [29], and
Stanford Natural Language Inference (SNLI) Corpus [36].
All experiments were performed on Intel(r) Core(TM) i7-
6700 CPU @ 3.40Ghz and a 64GB of RAM running
a 64-bit Ubuntu 14.04 edition. The software implemen-
tation has been in Keras library ' with Tensorflow [37]
backend on two Titan X 12GB GPUs. Implementation
of divReg can be found in https://github.com/babajide07/
Diversity-Regularization-Keras-Implementation.

A. Feature Evolution during Training

In the preliminary experiment, a multilayer perceptron
with two hidden layers was trained using MNIST digits.
The standard MNIST dataset has 60000 training and 10000
testing examples. Each example is a grayscale image of an
handwritten digit scaled and centered in a 28 x 28 pixel box.

! https://keras.io/keras-the-python-deep-learning-library

https://github.com/babajide07/Diversity-Regularization-Keras-Implementation
https://github.com/babajide07/Diversity-Regularization-Keras-Implementation

Epoch 2

25000
. 20000}
2
§ 15000
5 10000}
5000}

0 . .
—0.04 0.00 0.02 0.04
120000 T T T

;
100000 — No Regularization |

80000
60000
40000
20000
0 . .
-1.0 -0.5 0.0
600000 .
.. 500000
S 400000
5.300000
g 200000
* 100000

0 " . . . n
-1.0 -0.8 -0.6 -0.4 -0.2

SIM,

— divReg(r = 0.05) |

Fr

Frequency
T

0.5 1.0 15

— OrthoReg()\ = 10) [

(a)

(1)

Epoch 300

— divReg(r = 0.05) ||

—0.04 -0.02 0.00 0.02 0.04
180000 T T

— No Regularization (]

> 140000+
ol

Frequenc

20000}
0

0.0 0.5 1.0

~05

600000 .
500000}
400000}
300000}
o

@ 200000}
* 1000001

0 L
-08 -07 -06 -05 -04 -03 -02 -0.1 0.0

SIM,.

— OrthoReg() = 10) [

uel

0.1

(b)
1

Fig. 3: The distribution of pairwise feature correlation ({2) in first hidden layer at (a) epoch 2 (b) epoch 300

Epoch 2

— divReg(r = 0.05)

—0.02 0.00 0.02 0.04 0.06

0
=0.
120000 T T T

— No Regularization [{

60000 |- 1

0.5 1.0 15 2.0

— OrthoReg(\ = 10) [
S 150000 |- 4
& 100000 |- 1
50000 - 1

—0.0010 —0.0008 —0.0006 —0.0004

SIM¢

0 .
—0.0016 -0.0014 -0.0012

()

25000 Epoch 300 . .
. 20000} — divReg(r = 0.05) |
9
S 150001 ,
5-10000—
= 5000+
0
—-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
120000— , : :
-, 100000 — No Regularization |
S 8oooof ,
$ 60000} —
o
9 40000(1
20000}
ol . . .
-0.5 0.0 0.5 1.0
200000
3 150000] — OrthoReg() = 10) |
g
$ 100000}
o
[
E 50000}
0 . ; . . .
-0.0013 -0.0012 -0.0011 -0.0010 -0.0009 —0.0008 —0.0007
SIM,.
(b)

()

Fig. 4: The distribution of pairwise feature correlation ({2) in second hidden layer at (a) epoch 2 (b) epoch 300

Each layer has 1024 ReLU-activated hidden units and Adam
optimizer [38] with batch size of 128 was used to train the
model for 300 epochs and 7 and ¢ in divReg was both set to
0.05.

The hyperparameters of OrthoReg was set as reported in [3].
Figs. 3a and b show the distribution(of pairwise correlation

1 DR¢!

of first hidden layer features ((Q) = @Tg) in the beginning
and end of training, respectively. It can be observed that
divReg was able to constrain the pairwise feature correla-
tions between the desired bound (-0.05 and 0.05) compared
to the highly correlated features extracted by unregularized
counterpart. Although OrthoReg was able to eliminate all
the positively correlated features using exponential squashing
function, but it did so in a more rigid way which could lead
to extraction of noisy features. Similarly in Figs. 4a and b, the
pairwise feature correlations of the second hidden layer have
been bounded by the set threshold for divReg, unconstrained
for unregularized model, and negatively correlated with tight

bound for OrthoReg.

Table I reports the performance of divReg along with four
other regularization techniques. All reported results are aver-
age performance over 5 independent trials alongside with their
standard deviation. The results are separated and compared
on the basis of the class of the regularization technique. It
can be observed that Dropout outperforms L; in terms of
test error and also in terms of generalization (as measured
by the test-train error gap). The performance improvement
of Dropout technique in terms of generalization over L is
statistically significant as shown by the p-value. Similarly, the
performance of divReg is better than both Ly and OrthoReg
with respect to test error and generalization. Another keen
observation is that the test-train error gap for divReg and Lo
regularization is very similar as inferred by the p-value, but
the improvement in absolute test performance does seem to
be statistically significant.

For qualitative comparison, an autoencoder (AE) with 256

Regularization | train (%) test (%) test-train (%) p-value
Ly 0.8791 + 0.0947 1.9367 + 0.0666 1.0575 + 0.1411 0.0331
Dropout (« = 0.5) [1] | 0.4875 £ 0.0530 1.2250 + 0.0071 0.7375 + 0.0460 -
Lo 0.4550 + 0.2280 1.7375 £ 0.1115 1.2825 £ 0.1505 0.0812
OrthoReg [3] 0.0167 & 0.0212 1.6950 £ 0.0495 1.6783 4 0.0283 0.0176
divReg 0.0535 + 0.0658 1.3150 + 0.0212 1.2615 + 0.0445 -

TABLE I: Test-train error gap on MNIST

' = ” - | .a fa o - - . p f
. i . . T - \ . : =~ . Zle i -~
- -
v
. ~ - S
s =
- - ' - = 3 . —" R - i . o R . ,
- . N = | ' . L 7| = | - " A - . . : - -

(c) OrthoReg

(d) divReg

Fig. 5: First 150 encoding features (left) learned from MNIST digit data set using (a) L, (b) Dropout (c) orthoReg, and (d)
divReg. The range of weights are scaled and mapped to the graycolor map (right).

ReLU-activated encoding units and 784 sigmoid-activated
decoding units was trained on raw pixels of MNIST digits. The
weights were initialized randomly by sampling from Gaussian
distribution with zero mean and standard deviation of 0.003
based on [12]. The AE model was regularized with L; (using
decay parameter 10~%), dropout (a = 0.5), OrthoReg (using
angle-of-influence of 10), and divReg (7=0.4) regularization
techniques and compared in terms of quality of the features
learned. The features learned using each of the regularization
method are shown in Fig. 5. One key observation is that I
and dropout regularization resulted in some dead filters as
highlighted in Figs. 5a and b. Whereas, the representations
learned with OrthoReg looks noisy compared to those learned
with divReg regularization.

In a similar vein, we trained multilayer perceptron on
MNIST with two ReLU-activated hidden layers and regular-
ized by divReg-1. Number of hidden units per layer was set
1024 and parameters of the model was again optimized using

Adam. As observed in Fig 6a, increasing 7* yields increased
number of dissimilar features because more and more features
are considered occupying distinct clusters. Another interesting
observation from this result is that earlier layers are generally
prone to extracting more distinct features than latter layers
with the same value of 7*. Fig 6b is averaged over ten
experiments to show the statistical significance. The error
curves shown in Figs 6b reveal that networks trained using
divReg-1 with 7* 0.3 resulted in the lowest test-train error
gap.

As mentioned earlier, a crucial step in achieving good
performance with divReg-2 is not only in the choice of 7* but
also in the initialization of adaptive dropout fraction «. Figs. 7a
and b show the evolution of dropout fraction for four different
« initializations (0.0, 0.25, 0.50, 0.75) as training progresses
for first and second layers, respectively. For MNIST dataset, o
initialized to 0.75 generalizes better than other initializations
as shown in Fig. 8 by the test-train classification error gap.

1200

1000f

800

600

400}

Number of nonredundant features

- - initial number of features ||
e e |ayerl
*—e |ayer 2

200

1 1 N N
0.0 0.2 0.4 0.6 0.8 1.0
-

(a)

1.3

;
e - train

al \'/o/\'/‘\ oo test]

11p

Classification error (%)

K it

0.0 0.2 0.4 0.6 0.8 1.0

(b)

Fig. 6: Performance of Multilayer Perceptron (with architecture 784-1024-1024-10) regularized using divReg-1 and trained on
the MNIST dataset vs. threshold 7*. (a) Number of nonredundant features for 1024 initial features. (b) percentage classification

error

Layer 1

e
©

— 0.00
0.25 |4
0.50
0.75]

o
~
|
I

e
o
—

Dropout Fraction
o o
> n
T

o
w

e
N

e
o

e
o

. . . .
10 20 30 40 50
epoch

o

(@)

Layer 2

Dropout Fraction

-- 025
0.1 -+- 0.50 |
0.75

. . . n
0 10 20 30 40 50
epoch

(b)

Fig. 7: Evolution of dropout fraction (o)) with divReg-2 using the MNIST dataset for four different initializations of a in (a)

layer 1 and (b) layer 2

Model | #layers size test (%)
Unregularized [16] 2 800 1.40
DropConnect [16] 2 800 1.20
Dropout [1] 2 1024 1.28 £ 0.06
Dropout [1] 3 1024 1.25 + 0.04
OrthoReg [3] (+ Dropout) 2 1024 1.38 4+ 0.03
Label Smoothing [20] (+ Dropout) 2 1024 1.21 £ 0.06
Confidence Penalty [23] (+ Dropout) 2 1024 1.17 4+ 0.06
DivReg-2 2 1024 1.15 + 0.03
DivReg-1 2 1024 1.10 £ 0.02

TABLE II: Test error(%) on MNIST

However, both the test and train accuracies are not as good as
that initialized to 0.5, which has the best train and test error
trade-off.

B. Image Classification

In the first set of experiments, multilayer perceptron with
two ReLU-activated hidden layers and a softmax layer for
classification is again tested to ascertain if the enhanced ability
to extract dissimilar features would lead to improved classifica-
tion accuracy using MNIST dataset. 9000 images from MNIST
data were randomly sampled from the training set as a held-out
validation set for hyperparameter tuning and the network was
retrained on the entire dataset using the best hyperparameter
configuration. Adam optimizer with batch size of 128 was used
for training the model for 300 epochs; 7 and T were set to 0.3
and 0.05 in divRegl and divReg2, respectively. The dropout
fraction o in divReg2 was initialized to 0.5. Every run of
the experiment is repeated five times and averaged to combat
the effect of random initialization. The classification errors of
model trained with divReg were compared with state-of-the-art
regularization techniques as detailed in Table II. It is observed

Model \ # layers # parameters test (%) # epochs
Residual CNN [5] 110 1.7M 13.63 300
Stochastic Depth Residual CNN [40] 110 1.7M 11.66 500
Densely Connected CNN (with Dropout) [39] 40 1.0M 7.00 300
Densely Connected CNN (with Label Smoothing [20] + Dropout) 40 1.0M 6.89 300
Densely Connected CNN (with Confidence Penalty [23] + Dropout) 40 1.0M 6.77 300
Densely Connected CNN-BC (with Dropout) [39] 100 0.8M 6.8 (£0.057) 150
Densely Connected CNN-BC (with OrthoReg [3] + Dropout) 100 0.8M 11.2 (£0.125) 150
Densely Connected CNN-BC (with DivReg-2) 100 0.8M 6.3 (+0.083) 150
TABLE III: Test error(%) on CIFAR-10 without data augmentation
Algorithm 2 Online Redundancy-dependent Dropout (divReg- Model | Top-1 (%) Top-5(%) # Epochs
2) ResNet-34 [5] 26.77 8.56 90
. . _ ; _ ; ResNet-34 + OrthoReg 33.21 12.42 90
1: {The parameters are: B - the batch size, £ - learning rate, ResNet.34 + divReg 26.33 50 %0

n' - number of filters, o - dropout fraction, N, - number
of redundant filters, 7 - diversity regularization correlation
threshold, and T }

2: {0 is the vector of concatenated weights (W(Z)) and biases
(b"). Initialize # from a normal distribution as proposed
in [2].

3: 0 « 6y {Initial weight and biases}

4: { Initialize « - dropout fraction}

5: for prescribed number of epochs (nbepoch) do

6: permute training samples

7. N, < 0 {Initial number of redundant features}

8 for all batches of Bg train samples do

9: Jnet <— loss on samples in the batch b from eq. (6)

10 A6 < compute gradient using eq. (7) and (8)

11 {Make a step along the gradient}

12: 0+ 60—¢cAP

13: end for o
14: {Compute the binary mask M in (13) for every layer}
15 {Compute and update « in (12) for every layer [}

16: end for

from the result that the model trained using divReg-1 and
divReg-2 outperforms all other benchmark regularizers. The
results also show that dropping the maps of redundancy filters
in divReg-1 leads to a better generalization but introduces
computational overhead comparable to divReg-2 with similar
performance.

In the second set of large scale image classification ex-
periments, we trained the current state-of-the-art densely
connected convolutional neural network (DenseNet) [39] on
CIFAR-10 dataset to see effect of extracting dissimilar features
on classification performance. The dataset contains a labeled
set of 60,000 32x32 color images belonging to 10 classes:
airplanes, automobiles, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. The dataset is split into 50000 and 10000
training and testing sets, respectively. Again, 6000 images
were randomly sampled from the training set as a held-out
validation set for hyperparameter tuning and the network was
retrained on the entire dataset using the best hyperparameter
configuration. Due to GPU memory constraints, we used 100-
layer DenseNet with a growth rate of 12. The model was
trained with stochastic gradient descent (SGD) with batch-size

TABLE IV: Validation error on ImageNet

of 64 for 150 epochs and ¢ initialized to 0.1 and scheduled
to 0.01, 0.1, 0.01, 0.001, 0.01, 0.001, and 0.0001 in epochs
20, 24, 44, 84, 104, 114, and 130, respectively as shown
in Fig. 9. For a fair comparison, the results presented in
Table III are for models trained without data augmentation.
Hyperparameters 7 and 7 in divReg2 was also set to 0.5 and
0.2, respectively. The dropout fraction a was initialized to
0.1. We limit our implementation to DenseNet with bottleneck
(BC) with approximately 0.8M trainable parameters due to
memory constraints. The classification performance of the
deep networks regularized with Dropout [1], Label smoothing
[20], confidence penalty [23], and OrthoReg [3] were used
as benchmark. The experiments were repeated five times
and averaged. It can be observed in Table III that divReg-2
outperforms all other regularizations considered - an indication
that extraction of dissimilar features and redundancy-based
adaptive dropout improve generalization of very deep neural
network models. In the third set of experiments involving

o
©

Classification error (%)
"
o

0.4l e e - train |
+—+ test
b.-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
«a (initialization)

Fig. 8: Performance evaluation using divReg-2 on MNIST
dataset for four different initializations of a.

large-scale image classification, experiments were performed
on the 1000-class ImageNet 2012 dataset [41] which contains
about 1.2 million training images, 50,000 validation images,
and 100,000 test images (with no published labels). The results
are measured by top1/top-5 error rates [41]. ImageNet dataset
was used to train a residual network known as ResNet-34

0.12

0.08 -

w 0.06

0.04 -

0.02 -

. . . .
20 40 60 80 100 120 140 160
epoch

0.00
0

Fig. 9: Learning rate (£) schedule for experiments on CIFAR-
10 dataset.

[5], which has four stages of residual blocks and uses the
projection shortcut when the feature maps are down-sampled.
The model was trained for 90 epochs, with a batch-size of 200
and a learning rate 0.1. Each layer of the model is regularized
using divReg with 7 = 0.4. It can be observed in Table IV that
divReg also outperforms both OrthoReg regularization method
and unregularized counterpart.

C. Natural Language Inference

In the last set of experiments, we demonstrated the effi-
cacy of diversity regularization in enhancing the efficiency of
models used for understanding semantic relationship between
two sentences and recognizing textual entailment. This task
involves determining whether two observed sentences, first
one is known as the premise and the other referred to as the
hypothesis, are contradictory, not related (neutral) or entailing.
In this series of experiments, models are evaluated on textual
entailment recognition task using Stanford Natural Language
Inference (SNLI) dataset [36]. The original dataset contains
550, 152 duos of premise-hypothesis sentences and their cor-
responding labels as training set, 10, 000 as validation set, and
10,000 as testing set. After the removal of sentence-pair with
unknown labels, we obtained 549, 367 pairs for training, 9, 842
for validation and 9,824 for testing. Select examples from
SNLI dataset are shown in Table V.

Our implementation is based on baseline Keras SNLI
models repository 2. From SNLI dataset, we extracted 300-
dimensional word embeddings from the pretrained 300D
Glove 840B vocabulary [42], each for both the premise and
hypothesis sentences and fed them through a ReLU trans-
lation” layer. The maximum sequence length was chosen to
be 42 and the embeddings of words not in the vocabulary
are set to zero in accordance with [43]. The pretrained Glove
embedding layer contains more than 12 million parameters,
which we fixed during training to avoid overfitting [44] and
computational overhead. We used the LSTM model with 300
hidden units to encode the premise and hypothesis sentences

2https://githubAc0m/Smerity/keras_snli

and the resulting two 300D embeddings are concatenated
and fed into three layers of fully-connected units with ReLU
activations. The output of the last layer is fed into Softmax
layer for classification.

The overall model was trained using Adam optimizer with
batch-size of 512 for 100 epochs while 7 and 7 in divReg2
was also set to 0.5 and 0.2, respectively. The dropout fraction
« for both recurrent (LSTM) and fully-connected layers was
initialized to 0.2. The experiment was also performed by
replacing LSTM with a GRU. We benchmark our results
with recent sentence encoding-based models and experimental
results were illustrated in Table VI. It is remarked that the
parameters of the Glove embedding layer were not included
in the number of parameters computed in Table VI. As can be
observed from the results, diversity regularization and adaptive
dropout significantly improved the performance of both the
baseline LSTM and GRU models. By initializing dropout
fraction of both recurrent and fully-connected units to 0.2, the
model was able to figure out the suitable dropout fraction in
accordance with differentiation of features. In addition, setting
7 to 0.5 ensures no feature pair have cosine similarity greater
than 0.5. Another important observation is that OrthoReg
sometimes extracts noisy features in an attempt to decorrelate
features, which explains why the performance of some models
deteriorates. Deep Gated Attn BiLSTM (D-GAB) encoders
[45] is the state-of-the-art sentence encoding-based model for
SNLI dataset with test accuracy of 85.5%. However, we did
not regularize D-GAB using diversity regularization because it
has more than 11 million parameters requiring larger memory
than those compared in Table VL.

V. CONCLUSION

This paper addresses the concept and properties of special
regularization of deep neural network models that take advan-
tage of extracting diversified features and dropping features
based on select redundancy measures. The performance of
the proposed regularization in terms of extracting diverse
features and improving generalization was compared with
recent regularization techniques on select tasks using state-
of-the-art deep learning models. The results show that if not
properly constrained, deep neural network models are capable
of extracting very similar features thereby creating unneces-
sary amount of filtering redundancy. By using the proposed
methods, such redundancy can be controlled, eliminated and
networks are enabled to extract more distinctive features.
It has also been shown on select examples that concurrent
extraction of diverse features and redundant feature dropout
improve model generalization. These concepts are illustrated
using MNIST handwritten digits, CIFAR-10, ImageNet, and
Stanford Natural Language Inference Dataset.

REFERENCES

[1] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1,
pp- 1929-1958, 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. of the IEEE International Conference on Computer Vision and
Pattern Recognition, 2015, pp. 1026-1034.

[3]

[4

=

[5]

[6

=

[7]

[9

—

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

Premise

A soccer game with multiple
males playing

A man inspects the uniform of a
figure in some East Asian country

Hypothesis label
Some men are playing a E
sport

The man is sleeping C

A smiling costumed woman is
holding an umbrella

A happy woman in a fairy N
costume holds an umbrella

TABLE V: A select examples from SNLI dataset where E, C, and N represent Entailment,
Contradiction, and Neutral, respectively.

Model \ # parameters test (%)
300D LSTM (recurrent dropout) + 3 x 600D ReLU + OrthoReg 1.9 M 77.4
300D LSTM encoders [46] 3.0M 80.60
300D LSTM (recurrent dropout) + 3 x 600D ReLU 1.9M 82.7
300D SPINN-PI encoders [46] 37TM 83.2
600D (300+300) BiLSTM encoders [44] 2.0M 83.3
300D NTI-SLSTM-LSTM encoders [43] 40M 83.4
300D LSTM (recurrent dropout) + 3 x 600D ReLU + divReg2 1.9 M 83.9
300D GRU (recurrent dropout) + 3 x 600D ReLU 1.7 M 83.0
300D GRU (recurrent dropout) + 3 x 600D ReLU + OrthoReg 1.7 M 80.8
300D GRU (recurrent dropout) + 3 x 600D ReLU + divReg2 1.7 M 84.3

TABLE VI: Test accuracy (%) on SNLI dataset.

P. Rodriguez, J. Gonzalez, G. Cucurull, J. M. Gonfaus, and X. Roca,
“Regularizing cnns with locally constrained decorrelations,” arXiv
preprint arXiv:1611.01967, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770-778.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Explor-
ing the limits of language modeling,” arXiv preprint arXiv:1602.02410,
2016.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, pp. 6645-6649.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proc. of the 31st International Conference
on Machine Learning, 2014, pp. 1764-1772.

A.v.d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448-456.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. of the Thirteenth International
Conference on Artificial Intelligence and Statistics, 2010, pp. 249-256.
D. Mishkin and J. Matas, “All you need is a good init,” International
Conference on Learning Representations, 2016.

S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft
weight-sharing,” Neural Computation, vol. 4, no. 4, pp. 473-493, 1992.
B. O. Ayinde and J. M. Zurada, “Deep learning of con-
strained autoencoders for enhanced understanding of data,” IEEE
Transactions on Neural Networks and Learning Systems, 2017,
https://doi.org/10.1109/TNNLS.2017.2747861.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proc. of the 30th International
Conference on Machine Learning, 2013, pp. 1058-1066.

Y. Bengio and J. S. Bergstra, “Slow, decorrelated features for pretraining
complex cell-like networks,” in Advances in Neural Information Pro-
cessing Systems, 2009, pp. 99-107.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

Y. Bao, H. Jiang, L. Dai, and C. Liu, “Incoherent training of deep neural
networks to de-correlate bottleneck features for speech recognition,”
in [EEE International Conference on Acoustics, Speech and Signal
Processing, 2013, pp. 6980-6984.

D. Miller, A. V. Rao, K. Rose, and A. Gersho, “A global optimization
technique for statistical classifier design,” IEEE Transactions on Signal
Processing, vol. 44, no. 12, pp. 3108-3122, 1996.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
2818-2826.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “Disturblabel:
Regularizing cnn on the loss layer,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4753-4762.

G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. Hinton, “Reg-
ularizing neural networks by penalizing confident output distributions,”
arXiv preprint arXiv:1701.06548, 2017.

A. Dundar, J. Jin, and E. Culurciello, “Convolutional clustering for
unsupervised learning,” arXiv preprint arXiv:1511.06241, 2015.

B. O. Ayinde and J. M. Zurada, “Nonredundant sparse feature extraction
using autoencoders with receptive fields clustering,” Neural Networks,
vol. 93, pp. 99-109, 2017.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097-1105.

M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European Conference on Computer Vision.
Springer, 2014, pp. 818-833.

S. Belharbi, C. Chatelain, R. Herault, and S. Adam, “Neural net-
works regularization through invariant features learning,” arXiv preprint
arXiv:1709.01867, 2017.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Technical report, University of Toronto, 2009.

B. Walter, K. Bala, M. Kulkarni, and K. Pingali, “Fast agglomerative
clustering for rendering,” in IEEE Symposium on Interactive Ray Trac-
ing, 2008, pp. 81-86.

C. Ding and X. He, “Cluster merging and splitting in hierarchical
clustering algorithms,” in Proc. of the IEEE International Conference
on Data Mining, 2002, pp. 139-146.

B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization
and segmentation with an implicit shape model,” in Workshop on
Statistical Learning in Computer Vision, vol. 2, no. 5, 2004, p. 7.

S. Manickam, S. D. Roth, and T. Bushman, “Intelligent and optimal

normalized correlation for high-speed pattern matching,” Datacube
Technical Paper, 2000.

S. Zhou, Z. Xu, and F. Liu, “Method for determining the optimal
number of clusters based on agglomerative hierarchical clustering,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 28, no. 12,
pp. 3007-3017, Dec 2017.

Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large
annotated corpus for learning natural language inference,” arXiv preprint
arXiv:1508.05326, 2015.

M. Abadi, A. Agarwal, P. Barham, and et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/
D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” arXiv preprint arXiv:1608.06993,
2016.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646-661.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, 2015.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. of the 2014 Conference on Empirical
Methods in Natural Language Processing, 2014, pp. 1532-1543.

T. Munkhdalai and H. Yu, “Neural semantic encoders,” arXiv preprint
arXiv:1607.04315, 2016.

Y. Liu, C. Sun, L. Lin, and X. Wang, “Learning natural language
inference using bidirectional Istm model and inner-attention,” arXiv
preprint arXiv:1605.09090, 2016.

Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen,
“Recurrent neural network-based sentence encoder with gated attention
for natural language inference,” arXiv preprint arXiv:1708.01353, 2017.
S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and
C. Potts, “A fast unified model for parsing and sentence understanding,”
arXiv preprint arXiv:1603.06021, 2016.

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Babajide Ayinde (S’09) received the M.Sc. de-
gree in Engineering Systems and Control from the
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia. He is currently a Ph.D.
candidate at the University of Louisville, Kentucky,
USA and a recipient of University of Louisville
Grosscurth Fellowship. His current research inter-
ests include unsupervised feature learning and deep
learning techniques and applications.

Tamer Inanc received a B.S. degree in Electrical
Engineering from the Dokuz Eylul University, Izmir,
Turkiye, in 1991. He received his M.S. and Ph.D.
degrees in Electrical Engineering from the Pennsyl-
vania State University, State College, PA in 1996 and
2002, respectively, under supervision of Prof. Mario
Sznaier. After receiving his Ph.D., Dr. Inanc did a
postdoctoral scholarship at the California Institute
of Technology, Pasadena, CA between 2002 and
2004. He started working as an Assistant Professor
in 2004 at the Electrical and Computer Engineer-
ing Department at University of Louisville, Louisville, KY. He has been
working as an Associate Professor at the same department since 2010. He
received the 2008 Delphi Center, UofL, “Innovations in Technology Award for
Teaching and Learning” and the 2006 Kentuckiana Metroversity Instructional
Development Award for "Fundamentals of Autonomous Robots”. His research
interests center on control systems, model identification, autonomous robotics,
biometrics and applications of control systems and identification to biomedical
problems.

Jacek M. Zurada (M’82-SM’83-F’96-LF’14) re-
ceived the Ph.D. degree from the Gdansk Institute
of Technology, Gdansk, Poland. He currently serves
as a Professor of electrical and computer engineering
with the University of Louisville, Louisville, KY,
USA. He has authored or co-authored several books
and over 420 papers in computational intelligence,
neural networks, machine learning, logic rule extrac-
tion, and bioinformatics cited 11,900 times, and de-
livered over 120 presentations throughout the world.

Dr. Zurada has been a Board Member of the
IEEE, IEEE CIS and IJCNN. He was a recipient of the 2013 Joe Desch
Innovation Award, the 2015 Distinguished Presidential Service Award, and
five honorary professorships. He served as the IEEE V-President and the
Technical Activities Board (TAB) Chair in 2014. In 2010-13 he was the Chair
of the IEEE TAB Periodicals Committee and the TAB Periodicals Review and
Advisory Committee. From 2004 to 2005, he was the President of the IEEE
Computational Intelligence Society. He was the Editor-in-Chief of the IEEE
Transactions on Neural Networks (1997-2003) and an Associate Editor of
the IEEE Transactions on Circuits and Systems, Neural Networks NEURAL
and the Proceedings of the IEEE. He is currently a Candidate for 2019 IEEE
President-Elect.

https://www.tensorflow.org/

	Introduction
	Enhancing Feature Diversity by enforcing Dissimilar Feature Extraction
	Diversity Regularization
	Implications of imposing feature diversity

	Online Redundant Filter Detection and Dropout
	Online Filtering Redundancy Dropout
	Online Redundancy-based Dropout

	Experiments
	Feature Evolution during Training
	Image Classification
	Natural Language Inference

	Conclusion
	References
	Biographies
	Babajide Ayinde
	Tamer Inanc
	Jacek M. Zurada

