Redundant Feature Pruning for Accelerated Inference in Deep
Neural Networks

Email addresses: babajide.ayinde@louisville.edu (Babajide O. Ayinde), t.inanc@louisville.edu
(Tamer Inanc), jacek.zurada@louisville.edu (Jacek M. Zurada)

Preprint submitted to Neural Networks February 24, 2019

Redundant Feature Pruning for Accelerated Inference in Deep
Neural Networks

Babajide O. Ayinde®*, Tamer Inanc?, Jacek M. Zurada®P**

“Electrical and Computer Engineering, University of Louisville, Louisville, KY, 40292 USA.
YInformation Technology Institute, University of Social Science,Eédz 90-113, Poland

Abstract

This paper presents an efficient technique to reduce the inference cost of deep and/or wide con-
volutional neural network models by pruning redundant features (or filters). Previous studies
have shown that over-sized deep neural network models tend to produce a lot of redundant
features that are either shifted version of one another or are very similar and show little or no
variations; thus resulting in filtering redundancy. We propose to prune these redundant fea-
tures along with their related feature maps according to their relative cosine distances in the
teature space, thus leading to smaller networks with reduced post-training inference compu-
tational costs and competitive performance. We empirically show on select models (VGG-16,
ResNet-56, ResNet-110, and ResNet-34) and dataset (MNIST Handwritten digits, CIFAR-10,
and ImageNet) that inference costs (in FLOPS) can be significantly reduced while overall per-
formance is still competitive with the state-of-the-art.

Keywords: Deep learning, feature correlation, filter pruning, cosine similarity, redundancy
reduction, deep neural networks.

1. Introduction

Efficient architectural design of deep neural networks (DNNs) has shown superior perfor-
mance in many supervised learning tasks ranging from computer vision (Simonyan and Zis-

serman, 2015; Krizhevsky et al., 2012; He et al., 2016) to speech recognition (Graves et al., 2013;

*Corresponding author
**Principal corresponding author
Email addresses: babajide.ayinde@louisville.edu (Babajide O. Ayinde), t.inanc@louisville.edu
(Tamer Inanc), jacek.zurada@louisville.edu (Jacek M. Zurada)

Preprint submitted to Neural Networks February 24, 2019

Graves and Jaitly, 2014; Oord et al., 2016) and natural language processing (Jozefowicz et al.,
2016; Shazeer et al., 2017). Over the past few years, the general trend has been that DNNs
have grown deeper and wider, amounting to huge number of final parameters. Their flexibility
and performance usually come with high computational and memory demands both during
training and inference. However, a number of recent studies have shown that over-sized deep
learning models typically result in largely over-determined (or over-complete) systems (Denil
et al., 2013; Bengio and Bergstra, 2009; Changpinyo et al., 2017; Ayinde and Zurada, 2017; Han
et al., 2015, 2017). For instance, such over-complete representation is evidently pronounced in
features learned by the popular DNN of AlexNet (Krizhevsky et al., 2012) as emphasized by
Rodriguez et al. (2016); Zeiler and Fergus (2014).

The resulting oversized architectures are by nature less computationally efficient due to
their size, over-parameterization and their higher inference cost. To account for the scale, di-
versity and the difficulty of data these models learn from, the architectural complexity and
the excessive number of weights are often deliberately built in into the initial design of DNNs
(Bengio et al., 2007; Changpinyo et al., 2017). These over-sized models have expensive train-
ing and inference costs especially for applications with constrained computational and power
resources such as web services, mobile and embedded devices. In addition to good accuracy,
many resource-limited applications would greatly benefit from lower post-training inference
cost (Lietal., 2017; Szegedy et al., 2016). While the demand for high computational inefficiency
in the training phase has been alleviated with general-purpose computing engines otherwise
known as Graphics Processing Units (GPUs) to accelerate computations but powerful GPUs are
still unavailable in hand-held and wearable devices.

Additionally, flexibility of DNN models may hinder their scalability and practicality, and
may result in extracting highly redundant parameters with risk of over-fitting (Yoon and Hwang,
2017). A symptom of learning replicated or similar features is that two or more processing units
extract very similar and correlated information. From an information value standpoint, similar
or shifted versions of features do not add extra information to the feature set, and could be
possibly suppressed. In other words, the activation of one unit should not be predictable based

on the activations of other units of the same layer. However, enforcing dissimilarity of features

in a traditional way can be generally involved, requiring computation of intractable joint prob-
ability table and batch statistics. To address this problem of over-representation, layers of deep
and/or wide architectures have to be examined for possible redundancy and possible filter re-
duction after training.

Knowing the level of redundancy in models is useful mainly for two reasons: First, infor-
mation about the level of redundancy in models can be used for feature diversification and
improved performance (Ayinde et al., 2019; Rodriguez et al., 2016; Yoon and Hwang, 2017;
Cogswell et al., 2016). Secondly, it can be used to build accurate inference-cost-efficient mod-
els via pruning for resource-limited applications that require lower inference cost and high
accuracy (Li et al., 2017; Szegedy et al., 2016). This is important in practice because optimal
architectures are unknown. However, pruning enables smaller model to preserve knowledge
from a larger model. Since learning a complex function starting with a small initial architecture
might result in low accuracy, it is therefore necessary to first learn a task with larger architecture
and many parameters and later follow by pruning redundant and less important features (An-
war et al.,, 2017). In particular, model compression via pruning is important when transferring
DNNs to resource-limited portable devices.

The contributions of this paper are:

* proposes a simple, intuitive, and optimized algorithms to localize and eliminate redun-
dancy in DNNs without undermining their efficiency or introducing sparsity that would

require specialized library and/or hardware

* leverages on redundant features of well-trained deep learning models for controlled net-
work size reduction using feature agglomeration followed by one-shot redundant feature

elimination and retraining

¢ in-depth layer-wise analysis of large-capacity DNNs for redundancy and pruning sensi-

tivity

¢ empirically shows that proposed pruning technique improves inference cost over recently

proposed techniques across a number of benchmark models and dataset without signifi-

cantly deteriorating the output performance or modifying existing hyperparameters.

The rest of the paper is structured as follows: Section 2 discusses the state-of-the-art. The pro-
posed novel redundant feature detection and pruning using agglomerative hierarchical clus-
tering is introduced in Section 3. Section 4 discusses the experimental designs and presents the

results. Finally, conclusions are drawn in Section 5.

2. Related Work

Storage and computational cost reductions via model pruning techniques have a long his-
tory (LeCun et al., 1990; Hassibi and Stork, 1993; Mariet and Sra, 2016; Ioannou et al., 2016;
Polyak and Wolf, 2015; Molchanov et al., 2017). For instance, Optimal Brain Damage (LeCun
et al., 1990) and Optimal Brain Surgeon (Hassibi and Stork, 1993) use second-order derivative
information of the loss function to prune redundant network parameters. Other related work
include but not limited to Anwar et al. (2017) which prunes based on particle filtering, Mathieu
et al. (2013) uses FFT to avoid overhead due to convolution operation, and Howard et al. (2017)
uses depth multiplier method to scale down the number of filters in each convolutional layer.
Taylor expansion of the network function with respect to activations was used in Molchanov
et al. (2017) to remove both low-activation and low-gradient neurons.

Feature redundancy has also been explored to construct a low rank basis of features that
are rank-1 in the spatial domain. However, this method involves additional cumbersome op-
timization procedures. As demonstrated in Denil et al. (2013), a fraction of the parameters is
sufficient to reconstruct the entire network by simply training on low-rank decompositions of
the weight matrices. HashedNets use a hash function to randomly group weights into hash
buckets, so that all weights within the same hash bucket share a single parameter value for
pruning purposes (Chen et al., 2015). Redundant feature maps are removed from a well trained
network using particle filtering to select the best combination from a number of randomly gen-
erated masks (Anwar et al., 2017). With the assumptions that features are co-dependent within
each layer, Ioannou et al. (2016) groups features in hierarchical order. Driven by feature map

redundancy, Zhang et al. (2016) factorizes a layer into 3 x 3 and 1 x 1 combinations and prunes

5

redundant feature maps.

Another important and popular paradigm is network compression via knowledge distilla-
tion (KD) originally introduced in Bucilua et al. (2006) and formalized in Hinton et al. (2015).
The main idea in KD is the transferability of "knowledge" from a model known as the teacher
(usually of high capacity and performance) to another compact model known as the student
(Ba and Caruana, 2014; Urban et al., 2017; Rusu et al., 2015). A standard practice to perform
knowledge distillation is to make the student model reproduce the outputs of a trained teacher
model, which is a two-stage training procedures containing pre-training stage on teacher and
distilling stage on student. A key assumption is that the performance of the student cannot
rival that of the teacher when trained directly on the data, but with KD the student is pushed
closer to matching the predictive power of the teacher (Furlanello et al., 2018). In other words,
the large-scale teacher trained on a certain task teaches a shallower student network to enhance
its learning capability on identical task. In Bucilua et al. (2006), the information in an ensemble
of neural networks is compressed into a single model and (Ba and Caruana, 2014) improves the
performance of compact network by training it to mimic a larger teacher model and penalizing
its cost function with the L2 norm of the difference between the student’s and teacher’s logits.
A method called dark knowledge was demonstrated in Hinton et al. (2015), where the student
model was trained with the objective of matching the full softmax distribution of the teacher
model.

More recently, Huang et al. (2018) trains another neural network as pruning agent which
takes filter weights of the model to be pruned as input and outputs binary decisions to re-
move or keep filters. Using the concept of tensor factorization and reconstruction, He et al.
(2017) eliminates redundancy by pruning the feature maps instead of filter weights. The com-
putational complexity of convolutional networks has been reduced by filter-group convolution
with tiny accuracy loss while mostly preserving diversity in feature representation. Network
reduction problem has also been formulated as a binary integer optimization with a closed-
form solution based on final response importance Yu et al. (2018). Instead of localizing the
redundant neurons in a fully-connected network, Mariet and Sra (2016) compresses a trained

model by identifying a subset of diverse neurons using a determinantal point process.

The advantages of structured pruning of network parameters have been highlighted in Li
et al. (2017), where filters are sorted and pruned based on the sum of their absolute weights. In
their method, Li et al. (2017) uses a simple thresholding to prune all filters with low L1-norm,
while our method prunes filters based on relative cosine similarity measure. We remark that
using the approach in Li et al. (2017), all similar/identical filters with relatively high L1-norm
will likely go unpruned. Closely related to our work, Han et al. (2015) prunes weights with
magnitude below a set threshold. Since pruning is performed at weight level, this limits the
number of computation that can be saved. Our method, on the other hand, performs filter-
level pruning and thus leverage on eliminating many weights at once. In similar spirit with
Han et al. (2015), the notion of pruning filters using similarity has been previously explored in
RoyChowdhury et al. (2017), where a naive and suboptimal threshold of similarity is used to
determine if filters are duplicates. On the flip side, our method use hierarchical clustering to
minimize the average distance among intra-cluster filters and maximize inter-cluster distance;
thus localizing redundancy better. However, the approach in RoyChowdhury et al. (2017) is

faster because it does not go through many iterations of clustering.

3. Convolutional Feature Clustering and Pruning

Before Pruning After Pruning
,
n) vl niy w(+1) n) i} W ng "i+2
W Wruned wi+D)
]
S e) : g~
: oy]
" n! "i42
Z1 Z141 2 242 “ fi Zit2

(a) (b)

Figure 1: Pruning schema of [th layer. (a) Assume filters red, blue, and green in the first, third, and fifth columns of
W), respectively, are very similar and are located in the same cluster (b) If filter red is sampled as the representa-
tive of the cluster, filters blue and green are redundant and their corresponding feature maps in Z;; and related
weights in the next layer (third and fifth rows of WD) are all pruned. Figure is best viewed in color.

Typically, DNNs consist of input, output, and many intermediate processing layers. By let-

ting the number of channels, height and width of input to the [*

layer be denoted as 1, I;, and
v}, respectively. A layer (convolutional or fully-connected) in the network transforms input

Z; € R? into output Z; 1 € R7, where Z;, 1 serves as the input in layer / + 1. For convolutional

7

neural network (CNN), p and g are given as n; x hj x vy and nj_; X hj 1 X v14q, respectively.
Whereas for a fully-connected network (FCN), p and g denote njhjv; x 1 and n) 41 X 1, respec-
tively. A convolutional layer convolves Z; with n; , 3D filters x € R"<Hkxk, resulting in 1,
output feature maps (Z;11). Each 3D filter consists of 1 2D kernels { € k x k. Unrolling and
combining all features (or filters) in a single matrix results in kernel matrix W) € R"*"i1

where m = k*nj. In FCN, however, a layer operation involves only vector-matrix multipli-

()

cation with kernel matrix W € R"*"+1, where m = nihyv;. Additionally, w;

()

i

,i=1,..n;, de-
notes ith feature in layer /, each w
I I !
wl) = [wg), ...wif)] € R™ M,
In this section, two heuristics that aim at agglomerating and pruning convolutional features

€ R™ corresponds to the i-th column of the kernel matrix

are introduced. The objective is to discover 7 features that are representative of 1; original fea-
tures using agglomerative hierarchical clustering approach. Achieving effective clustering of
features requires choosing suitable similarity measures that express the inter-feature distances
between features w; that connect the feature map Z;_; to feature maps of layer I. A number
of suitable agglomerative similarity testing/clustering algorithms can be applied for localizing
redundant features. Based on a comparative review, a clustering approach from Walter et al.
(2008); Ding and He (2002) has been adapted and reformulated for this purpose.

By starting with each feature vector w; as a potential cluster, agglomerative clustering is
performed by merging the two most similar clusters C, and Cj, as long as the average similarity
between their constituent feature vectors is above a chosen cluster similarity threshold denoted
as T Leibe et al. (2004); Manickam et al. (2000). The pair of clusters C, and C;, exhibits average

mutual similarities as follows:

. LppeCopieCy, STMc (i, 97)
SIMC(Caz Cb) = |]Ca|b>< |Cb|
_ .. L . 1)
a,b=1,.n; a#b;, i=1,.|Cl;

j=1,..|C|; and i#j

where ¢; = wi/\/[[wi[?, SIMc($1,) = % is the cosine similarity between two features and

< ¢1,¢2 > is the inner product of arbitrary feature vectors ¢; and ¢, and 7 is a set similarity

threshold.

It is remarked that the above similarity definition uses the graph-based-group-average tech-
nique, which defines cluster proximity/similarity as the average of pairwise similarities (that
is, the average length of edges of the graph) of all pairs of features from different clusters. In
this work, other similarity definitions such as the single-link and complete-link were also ex-
perimented with. Single-link approach defines cluster similarity as the similarity between the
two closest feature vectors that are in different clusters. On the other hand, complete-link as-
sumes that cluster distance is the distance between the two farthest feature vectors of different
clusters. Group average similarity definition empirically yielded better performance compared
to the other two definitions and thus, we report experimental results using average similarity
approach.

It is also important to note the importance of 7 in (1). As an example, if we consider a model
trained on CIAFR-10 dataset that has "automobiles" and "trucks" as two of its ten categories.
If a particular lower-level feature describes the "wheel", then, it will not be out of place if two
higher-level features describing automobile and truck share common feature that describes the
wheel. The choice of T determines the level of sharing allowed, that is, the degree of feature
sharing across features of a particular layer. In other words, T serves as a trade-off parameter
that ensures a degree of feature sharing across multiple high-level features and at the same time
ensuring features that are highly correlated are eliminated. Our core assumption rests on the
premise that if two or more filters are similar and above allowable threshold 7, they extract fea-
ture maps that are nearly the same and can be eliminated with no significant information loss.
From information theory standpoint, near-identical feature maps extracted by similar filters are

not adding extra useful information to the following layer.

3.1. Method A: Pruning of Redundant Filters

The redundant convolutional feature-based pruning is detailed in Algorithm 1 with the ob-
jective of grouping filter vectors that are nearly identical in the weight space. The algorithm
also aims at removing filters that are nearly identical to eliminate duplicative retrieval of fea-
ture maps. The detection and removal of redundant filters is generally tractable especially from
practical standpoint since the pruning heuristic uses one-shot pruning and retraining mecha-

nism. As highlighted in Algorithm 1, the proposed pruning heuristic assumes a fully-trained

9

model as input and filter grouping is performed at every layer of the model.

For a particular layer of the DNN model as in Figure 1, Algorithm 1 uses Algorithm 2

Algorithm 1 : Redundant Filter-based Pruning

1: for layer [in the trained model do

2: get: convolutional filters of I'" layer W(!)
3: set: T
4: Extract: distinct filters in W)
5. Lg, ny=FILTERCLUSTERING (W), 1)
6: initialize: W;lr)u 104 Of the pruned model
7: k<0
8: foriin Ly do
9: copy: i" column of W) into k* column of W;lr)u ed
10: k—k+1
11: end for
12: end for

13: Construct the pruned model
(0

pruned

14: Initialize the weights of I" layer with W
15: set: T, retrain_epoch

16: for prescribed number of retrain_epoch do
17: fine-tune the pruned model

18: end for

to group all the filters ¢; (columns of the kernel matrix W)} into n f clusters whose average
similarity among cluster members is above a set threshold T while ensuring n¢ < n'. One rep-
resentative filter is randomly sampled from each of the 1 clusters. The output of Algorithm 2 is

the list L of indices of clusters’ representatives, which is equivalent to a subset of the indices of

()

columns of W), Algorithm 1 uses L¢ to subset W) and creates a smaller kernel matrix W pruned”

(1)

After obtaining all the new kernel matrices W pruned”

Algorithm 1 constructs a smaller model ini-
tialized with W()pruned_ For instance in Figure 1a, there are five filters 1,2,3,4,5 (n'=5) with color
codes: red, yellow, blue, grey, and green. Each color code corresponds to a column of kernel
matrix W), The convolution of these filters with 3D input image Z; yields five feature maps
Z;4+1. Similarly, feature maps Z; 1 are connected to those in layer [+ 2 by kernel matrix w1,
Assume the clustering of columns of WO resulted in three clusters with members {1,3,5}, {2},
and {4}, resulting from the fact that filters 1, 3, and 5 have average pairwise similarity greater

than 7. Thus they are grouped into the same cluster, in this case, cluster 1. Using algorithm 2

10

and assuming that filter 1 is the representative of cluster 1, the number of nonredundant filters
ng = 3 (corresponding to the number of clusters) and the list of indices of distinct filters Ly is
then given as {1,2,4}. As a result, filters 3 (blue) and 4 (green) are automatically tagged as being
redundant. Figure 1b depicts a compressed network where filters 3, 4, and their corresponding
feature maps in Z;,1 have been pruned. The weights of the pruned feature maps in the next

1+1)) are also removed.

convolutional layer (W(

In general, pruning a large fraction of filters generally results in performance deterioration.
In fact, it is observed that some convolutional layers are extremely sensitive to pruning than
others and this must be taken into consideration when pruning such layers and/or models. In
most cases, restoring the performance after pruning, the pruned model is fine-tuned for pre-
scribed number of epochs. It must be noted that if two or more filters are grouped into the
same cluster because they have cosine similarity (1) above T, our approach in Algorithm 2 ran-
domly chooses one out of them as the cluster representative. Another approach considered in
this work uses cluster centroid to represent the cluster. However, it has been observed that the
performance of this approach is similar to the random sampling of representative within each
cluster as in Algorithm 2. This further suggests that the cluster centroid is very close to all filters

in the cluster. In this paper, random selection is used in Algorithm 2 to inject some stochasticity

in the selection process.

Algorithm 2 : Localization and Pruning of Redundant Filters (Method A)

1: function FILTERCLUSTERING():
2: Input: {W, 7}

3: Scan for: cluster(s) of vectors in W with similarity > T

4: Randomly sample and tag one representative filter from each of the n; clusters as
nonredundant

5: Outputs: List of Indices Ly of distinct filters and ny in W;

6: return L Fr1y,

7. end function

3.2. Method B: Pruning of Random n ¢ Filters

Here, Algorithm 3 is used to detect the number of n ¥ distinct filters in kernel matrix W()

of a given layer I. It then randomly samples 7 out of #; filters to construct the kernel matrix

11

Random sampling of
one representative from
each cluster

Original n’ filters in layer | Detect community of) e
n; clusters -.

Random sampling of
n; filters from all
clusters

Figure 2: Illustration of how Algorithms 2 and 3 are independently used by Algorithm 1

W;lr)u 1eq Of the pruned model. It is worth mentioning that Algorithms 2 and 3 are alternative

approaches used by Algorithm 1. As shown in Figure 2, the main difference is that Algorithm 2

Algorithm 3 Estimation and Random Pruning of 7 filters (Method B)

1: function FILTERCLUSTERING():

2 Input: {W, 7}

3 Scan for: cluster(s) of vectors in W with similarity > 7 to estimate ny
4: Randomly sample n; filters
5

6
7

Outputs: List of Indices L of randomly sampled filters and n; in W;
return L Fo1f,
end function

randomly samples one filter out of every cluster of filters and prunes the remaining filters in
all ny clusters. Note that ny <= n;, where #, is the total number of filters in layer I. Algorithm
3 on the other hand uses filter clustering algorithm only to estimate 7 (the number of distinct
filter clusters) and randomly prunes 7y out of n; filters. In other words, Algorithm 2 localizes
and prunes precisely the redundant filters, while Algorithm 3 just estimates how many filters

to randomly prune. As illustrated in Figure 2, Algorithm 2 is expected to be performing better

12

than Algorithm 3 because of its ability to sample from each distinct cluster and eliminate redun-
dancy. Whereas in Algorithm 3, the probability of either sampling more than one filter from the
same cluster or not sampling filters at all from some other clusters is higher. This phenomenon
of over-representation of some clusters and non-representation of other clusters in Algorithm 3
could lead to redundancy, loss of vital information, and deterioration of post-pruning perfor-

mance.

4. Experiments

200 One hidden layer 1000 Three hidden layers 1000 Four hidden layers
N o 1)=100 P o n\=nh=nh= "’*~—*_* * e nfi=nh=n4=n=100
8001 -~y oA 0, =200 [] ** A4 7 ~ =200
N , . .
700 AN * ¢ 2/, =300 800} NN > 800} =300 |{
'\\ =& =500 N n'y =n’; =500
= A n'y =n'y =700
600 ; A ¥ ¥ ny=700 B Fomve 3=ny
< N * =+ 0y =1000 600} V- * % nh=nb i 6001 "' ¥ o+ ni=nh=nb=n'=1000|]
S Yo % *
_ 500t NN \\ 4 ~_ v -, \
= AN x 'S [S A \ = b--a-_ g __ AN
400 _ N N — e N \ - AN
S . AN N 400} - DTN 1 400 - -m S
~ N =~ N ~m_ \,
300} . AN] -\\‘\ “x S
NN o x b e . b o N
2008 ~ - = NN 1 M RN oeie -
- N s . 200 - e ' 1 200f _ ~-e__
S ~e Ad il S e e - _
to0f TTA-L o ™. . TR 0 R S
Sh - ~ N ~ | S, _ T e F--0-— o __¢__o_ = -A
F-- ~ ~ L] LN - - e _ e __, - - --0--o-_
.- _ - - ~ ~ 2 > - —g- - o_ A -
0 i ST ST St S 20 0 L, TTyme--e--% o R S S S il 4
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10
T T T
(a) (b) (c)

Figure 3: Average number of redundant features across all layers (7i;) against threshold T with (a) one (b) three,
and (c) four hidden layers using MNIST dataset. Network width corresponds to the number of hidden units per
layer and network depth corresponds to number of hidden layers. Networks with more than one hidden layer
have equal number of hidden units in all layers.

All experiments were performed on Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz and a 64GB
of RAM running a 64-bit Ubuntu 14.04 edition. The software implementation has been in Py-
torch library ! on two Titan X 12GB GPUs and the filter clustering was implemented in SciPy
ecosystem (Jones, Oliphant, Peterson, et al., Jones et al.). The agglomeration of filters using hi-
erarchical clustering is practical for very wide and deep networks even though the complexity
of the agglomerative clustering algorithm itself is O((1])log(#/)). In most network,] < 1000
and number of layers is often less than 200. For instance, clustering VGG-16 feature vectors em-

pirically takes 14.1 milliseconds and this is executed only once during training. This amounts

Ihttp://pytorch.org/

13

http://pytorch.org/

(a) (b)

Figure 4: t-SNE projection (Maaten and Hinton, 2008) of the activation of last layer of network with (a) one and (b)
four hidden layers using 5000 MNIST handwritten digits test samples. All networks have 1000 hidden units in all
layers and use sigmoid activation function.

to a negligible computational overhead for most deep architectures.

The implementation of our filter pruning strategy is similar to that in Li et al. (2017) in the
sense that when a particular filter of a convolutional layer is pruned, its corresponding feature
map is also pruned and the weights of the pruned feature map in the filter of the next convo-
lutional layer are equally pruned. It must be emphasized that after pruning the feature maps
of last convolutional layer, the input to the fully-connected layer has changed and its weight
matrix must be pruned accordingly.

In the preliminary experiment, a multilayer perceptron was trained using MNIST digits (Le-
Cun, 1998). The standard MNIST dataset has 60000 training and 10000 testing examples. Each
example is a grayscale image of an handwritten digit scaled and centered in a 28 x 28 pixel box.
Adam optimizer (Kingma and Ba, 2014) with batch size of 128 was used to train the model for
400 epochs. The number of redundant feature was computed as 1, = n; — ny after the models
have been fully trained. Figures 3 a,b, and c show the performance of multilayer perceptron
with one, two, and four hidden layer(s), respectively. The average number of redundant fea-
tures across all layers of the network is denoted as 7i,. It can be observed in Figure 3 that both
width (number of hidden units per layer) and depth (number of layers in the network) increase
fi;. As the number of hidden units per layer increases, 71, grows almost linearly. Also, the higher

the number of hidden layers in a network, the higher the average number of redundant features

14

extracted and the higher the average feature pairwise correlations.

For instance, the network with one hidden layer and 100 hidden units does not have any
feature pair with similarity above 0.4. However, as the depth increases (for two or more hid-
den layers) more feature pairs have similarity above 0.4. This observation is similar for other
hidden layer sizes (200, 300, 500, 700, and 1000) and depth. In particular, as can be observed in
Figure 3¢ that many feature pairs in deep multilayer network (with four hidden layers) are al-
most perfectly correlated with cosine similarity of 0.9 even with just 100 hidden units per layer.
Deep multilayer network was also evaluated based on the distribution of data in high level
feature space. In this regard, t-distributed stochastic neighbor embedding (t-SNE) (Maaten and
Hinton, 2008) was used to project the last hidden activations of a four-layer network and that
of a single layer as shown in Figures 4a and b, respectively. The t-SNE projections show that
network with four hidden layers has clustered activations compared to that of a single layer
resulting in within class holes. This is observation is pronounced for activations of digit 7.

CIFAR-10 dataset (Krizhevsky and Hinton, 2009) was used in the second set of large-scale
experiments to validate and retrain pruned models. The dataset contains a labeled set of 60,000
32x32 color images belonging to 10 classes: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. The dataset is split into 50000 and 10000 training and testing exam-
ples, respectively. FLOP was used to compare the computational efficiency of the models be-
cause its evaluation is independent of any underlying software and hardware. In order to fairly
compare our method with state-of-the-art, we also calculated the FLOP only for the convolu-
tion and fully connected layers. For CIFAR-10 dataset, we evaluated the proposed redundant-
feature-based pruning on three deep networks, namely: VGG-16 (Simonyan and Zisserman,
2015) and two residual networks ResNet-56 and 110 (He et al., 2016). The baseline accuracy for
residual networks were obtained by following the procedures highlighted in He et al. (2016).

We have shared our pruning implementation and trained model for reproducibility of results 2.

Zhttps://github.com/babajide07/Redundant-Feature-Pruning-Pytorch-Implementation

15

https://github.com/babajide07/Redundant-Feature-Pruning-Pytorch-Implementation

4.1. VGG-16 on CIFAR-10

In this set of experiments, we used a modified version of the popular convolutional neural
network known as the VGG-16 (Simonyan and Zisserman, 2015), which has 13 convolutional
layers and 2 fully connected layers. In the modified version of VGG-16, each layer of convolu-
tion is followed by a Batch Normalization layer (Ioffe and Szegedy, 2015). Our base model was
trained for 350 epochs, with a batch-size of 128 and a learning rate 0.1. The learning rate was
reduced by a factor of 10 at 150 and 250 epochs. After pruning we finetuned the pruned model
with learning rate of 0.001 for 80 epochs to adjust the weights of the remaining connections to
regain the accuracy.

Figure 5 shows the number of nonredundant filters per layer for different T values. As

CIFAR10 VGG-16 prune redundant filters 600 CIFAR10 VGG-16 prune redundant filters

® @ Conv_164 e e Conv_8512

e—e Conv_264 e—e Conv_ 9512
oo Conv_3128| 50011 e—s Conv_10512 L

oo Conv 4128 >
e Conv_5256 e -e Conv_11512 .
® @ Conv_6256 a00L|®® Conv_12 512 s

e e Conv_13512

oo Conv_7256

'lf 300

0
01 02 03 04 05 06 07 08 09 10 % 1 02 03 04 05 06 07 08 09 10
T T

Figure 5: Number of nonredundant filters (11¢) vs. cluster similarity threshold (7) for VGG-16 trained on the
CIFAR-10 dataset. Initial number of filters for each layer is shown in the legend.

can be seen that some convolutional layers in VGG are prone to extracting features with very
high correlation; examples of such as layer are layers 1, 11, 12, and 13. Another very important
observation is that later layers of VGG are more susceptible to extracting redundant filters than
earlier layers and can be heavily pruned. Figure 6(a) shows the sensitivity of VGG-16 layers to
pruning and it can be observed that layers such as Conv 1, 3, 4, 9, 11, and 12 are very sensitive.
However, as can be observed in Figure 6(c), accuracy can be restored after pruning filters in
later layers (Conv 9, 11, and 12) compared to early ones (Conv 1, 3, and 4).

For our final test score, the pruned model is finetuned on the entire training set. In the prun-
ing stage, we performed a grid search over T values within 0.1 and 1.0, and found 0.54 gave

the least test error. Table 1 reports the pruning performance for T = 0.54 and it can be easily

16

5.0CIFARLO VGG-16 prune redundant filters and retrain

o Conv_164
® e Conv264
oo Conv_3128

CIFAR10 VGG-16 prune redundant filters CIFAR10 VGG-16 prune random redundant filters
- e Conv_164 .

test error

test error
test error

00 Conv13512

01 02 03 04 05 06 07 08 09 10
.

T T (c) Prune redundant filters and
(a) Prune n’ — ns redundant filters (b) Prune n’ — 1y random filters retrain

Figure 6: Sensitivity to pruning (a) redundant filters (b) random n’ — ny filters, and (c) redundant filters and
retraining for 30 epochs for VGG-16.

observed that more than 90% of most of the latter layer filters have been pruned and most of
the sensitive earlier layers are minimally pruned. Figure 6(b) depicts the sensitivity of trained
VGG-16 model to pruning using heuristic in Algorithm 3 that calculates the number of redun-
dant filters (n’ — n) and randomly prunes them.

As seen in Table 2, for T = 0.54 our approach in Algorithm 2 outperforms that Absolute

layer | vy xhy #Maps FLOP #Params | #Maps FLOP%
Conv_1 |32x32 64 1.8E+06 1.7E+03 | 32 50.0%
Conv_2 |32x32 64 3.8E+07 3.7E+04 | 58 54.7%

Conv_3 |16 x16 128 1.9E+07 7.4E+04 | 125 11.5%
Conv_4 |16 x16 128 3.8E+07 1.5E+05 | 128 2.3%
Conv_5 |8x8 256 1.9E+07 2.9E+05 | 256 0%
Conv_6 |8x8 256 3.8E+07 59E+05 | 254 0.8%
Conv_7 |8x8 256 3.8E+07 5.9E+05 | 252 2.3%
Conv_8 |4x4 512 1.9E+07 1.2E+06 | 299 42.5%
Conv 9 |4x4 512 3.8E+07 24E+06 | 164 81.3%
Conv_10 | 4 x 4 512 3.8E+07 24E+06 | 121 92.4%
Conv_11 | 2x2 512 9.4E+06 24E+06 |59 97.3%
Conv_12 | 2 x2 512 94E+06 24E+06 | 104 97.7%
Conv_13 | 2 x2 512 9.4E+06 24E+06 | 129 94.9 %

Table 1: Pruning performance on CIFAR dataset using VGG-16 model at T = 0.54

filter sum approach (Li et al., 2017), Network Sliming (Liu et al., 2017), Try-and-learn (Huang
et al., 2018) and are able to prune more than 78% of the parameters resulting in 40% FLOP re-
duction and a competitive classification accuracy. In addition, when T was tuned to 0.46 we
are able to achieve more than 65% FLOP reduction and outperform Variational method (Dai
et al., 2018), which is one of the state-of-the-art. We suspect that our pruning approach outper-

forms other methods because it localizes and prunes similar or shifted versions of filters that do

17

% Accuracy % FLOP % Parameters

VEG1oModel drop Pruned Pruned
Methods

Li et al. (2017) 0.40 34.2 64.0
Liu et al. (2017) -0.17 38.6 -
Huang et al. (2018) 0.60 34.2 -
Dai et al. (2018) 0.81 62.9 -
Ours-A (t = 0.54) 0.13 40.5 781
Ours-B (1 = 0.54) 0.50 40.5 78.1
Ours-A (T = 0.46) 0.72 65.1 89.5

Table 2: Performance evaluation for three pruning techniques on CIFAR-10 dataset. Performance with the lowest
test error is reported.

not add extra information to the feature hierarchy. This notion is reinforced from information
theory standpoint that the activation of one unit should not be predictable based on the acti-
vations of other units of the same layer (Rodriguez et al., 2017). Another crucial observation is
that heuristic A achieves a better accuracy than B because we suspect random pruning might
remove dissimilar filters. We strongly believe that Algorithm 2 performs better than 3 because
of its precise ability to remove redundancy. However, Algorithm 2 is a bit slower than 3 and

that is the trade-off.

4.2. RESNET-56/110 on CIFAR-10

The architecture of residual networks is more complex than VGG and also the number of pa-
rameters in the fully connected layer is relatively smaller and this makes it a bit challenging to
prune a large proportion of the parameters. Both ResNet-56 and ResNet-110 have three stages
of residual blocks for feature maps of differing sizes. The size (v; x h;) of feature maps in stages
1,2,and 3 are 32 x 32,16 x 16, and 8 x 8, respectively. Each stage has 9 and 18 residual blocks for
ResNet-56 and ResNet-110, respectively. A residual block consists of two convolutional layers
each followed by a Batch Normalization layer. Preceding the first stage is a convolutional layer
followed by a Batch Normalization layer®. Only the redundant filters in first convolution layer

of each block are pruned since the mapping for selecting identity feature maps is unavailable.

3We used the Pytorch implementation of ResNet56/110 in https://github.com/D-X-Y/ResNeXt-DenseNet as
baseline models

18

https://github.com/D-X-Y/ResNeXt-DenseNet

As can be observed in Figures 7 and 8 that convolutional layers in first stage are prone to

CIFAR10 ResNet-56 prune redundant filters CIFAR10 ResNet-56 prune redundant filters

CIFAR10 ResNet-56 prune redundant filters

/o= Conv216 nf
,/ e conv_4ie
v e - - e—o Conv_616 20

o Conv.816
e Conv_1016
e Conv_1216
¥ o -6 ©—o Conv_1416
© o Conv_16 16

onv_20 32
e Conv2232
oo Conv_2432
e e Conv_2632 aor a4/
oo Conv_2832 ¥
e e Conv_3032 e
®-o Conv_3232 q
o e Conv_3432 30

o—e Conv_3864
o e Conv 4064
o—e Conv 4264
o e Conv 4464
e—e Conv_46 64
o e Conv 4864
oo Conv_50 64
oo Conv 5264
o—e Conv_5464

" s

o—o Conv_1816 o—e Conv_3632

4 10 25
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10
T T T

Figure 7: Number of nonredundant filters (15) vs. cluster similarity threshold () for ResNet-56 trained on the
CIFAR-10 dataset. Initial number of filters for each layer is shown in the legend.

Model Error % FLOP Pruned % # Parameters Pruned %
ResNet-56 6.61 1.25 x108 8.5 x10°

Lietal. (2017) 6.94 9.09 x107 27.6% 7.3 x10° 13.7%
Ours-A 6.88 9.07 x107 27.9% 6.5 x10° 23.7%
Ours-B 6.94 9.07 x107 27.9% 6.5 x10° 23.7 %
ResNet-110 6.35 2.53 x108 1.72 x10°

Lietal. (2017) 6.70 1.55 x10% 38.6% 1.16 x10° 32.4%
Ours-A 6.73 1.54 x10%8 39.1% 1.13 x10° 34.2%
Ours-B 741 1.54 x10% 39.1% 1.13 x10° 34.2%

Table 3: Performance evaluation of three pruning techniques for ResNet 56/110 trained on CIFAR-10 dataset.
Performance with the lowest test error is reported.

extracting more redundant features than those of second stage, and the convolutional layers
in the second stage are susceptible to extracting redundant filters than those of third block,
which is contrary to the observations in experiments with VGG-16. In effect, more filters could
be pruned from layers in first stage than latter stages without losing much to accuracy. More
specifically, many layers in first stage of ResNet-56, such as Conv 2,8,10, and 26, have filters that
are more than 80% correlated and could be easily pruned. Similarly, convolutional layers in the
first stage of ResNet-110 exhibit similar tendency to produce more filters that are redundant.
Due to differing redundancy tendencies at each stage, T is customized for each of the stages. In
pruning ResNet-56, we set T to 0.253, 0.223, 0.20 as thresholds for stages 1,2, and 3, respectively.
Similarly for ResNet-110 we used 0.18, 0.12, and 0.17.

Figure 9 shows the sensitivity of ResNet-56 layers to pruning and it can be observed that

19

16

CIFAR10 ResNet-110 prune redundant filters

o Conv.216
‘o @ cony_:
w.

35

CIFAR10 ResNet-110 prune redundant filters
nv_

il

30

il

25

:

ny

O
°

©-0 Conv_10264
© o Conv_104 64
®-e Conv_106 64
® o Conv_108 64

o3l
lesdlll

Conv.
Conv_
Conv.
Conv_30 16
Conv.
Conv_
Conv_

O
°
O
°

6 10 0
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10
T T T

Figure 8: Number of nonredundant filters (1) vs. cluster similarity threshold (7) for ResNet-110 trained on the
CIFAR-10 dataset. Initial number of filters for each layer is shown in the legend.

layers such as Conv 10, 14, 16, 18, 20, 34, 36, 38, 52 and 54 are more sensitive to filter pruning
than other convolutional layers. Likewise for ResNet-110, the layer sensitivity to pruning is
depicted in Figure 10 and it can be observed that Conv 1, 2, 38, 78, and 108 are sensitive to
pruning. In order to regain the accuracy by retraining the pruned model, we skip these sensi-
tive layers while pruning.

As seen in Table 3 for ResNet-56, redundant-feature-based pruning methods A and B have

CIFAR10 ResNet-56 prune redundant filters

CIFAR10 ResNet-56 prune redundant filters CIFAR10 ResNet-56 prune redundant filters

e Conv_3864
* @ Conv_40 64
16 oo Conv 4264
o @ Conv_44 64
oo Conv_46 64
14 * @ Conv 4864
©-0 Conv_5064

o o Conv_5264
oo Conv_5464

test error
test error
test error

EE EEF

[6
01 02 03 04 05 06 07 08 09 10 1 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10
T T T

Figure 9: Sensitivity to pruning n’ — n¢ redundant convolutional filters in ResNet-56

competitive performance in terms of FLOP reduction and outperform that in Li et al. (2017).
Our approach reduces the number of effective parameters by 10% with relatively better clas-
sification accuracy after retraining. However, we marginally increase the effective number of
parameters pruned in ResNet-110 from 38.6% to 39.1%, resulting in approximately 2% increase.

The inference times for original and pruned models are reported in Table 4. 10,000 test im-
ages of CIFAR-10 dataset used for the timing evaluation conducted in Pytorch version 0.2.0_3
with Titan X (Pascal) GPU and cuDNN v8.0.44, using a mini-batch of size 100. It can be ob-

served that %FLOP reduction also translates almost directly into inference time savings.

20

CIFAR10 ResNet-110 prune redundant filters CIFAR10 ResNet-110 prune redundant filters

e Conv_3832

CIFAR10 ResNet-110 prune redundant filters

©
°

©
o

I
°

test error
test error
test error

~

&

.

>

el

28898
g
B

57'
n
°
°

®91 02z 03 04 05 06 07 08 09 Lo 891 02 03 04 05 06 07 08 09 1o T 07 03 04 05 08 07 08 09 1o
T T T

Figure 10: Sensitivity to pruning n’ — 1, redundant convolutional filters in ResNet-110

Model FLOP Pruned % Time(s) Saved %
VGG-16 3.13 x 108 1.47

Ours-A 1.86 x10% 40.5% 0.94 34.01%
ResNet-56 1.25 x10% 1.16

Ours-A 9.07 x107 27.9% 0.96 17.2%
ResNet-110 2.53 x108 2.22

Ours-A 1.54 x108 39.1% 1.80 18.9%

Table 4: FLOP and wall-clock time reduction for inference. Operations in convolutional and fully connected layer
are considered for computing FLOP

4.3. ResNet-34 on ImageNet

% Accuracy % FLOP % Parameters
ResNet-34 Model

drop Pruned Pruned
Methods
Lietal. (2017) 1.06 24.20 10.80
Yu et al. (2018) 0.28 27.32 27.14
Ours-A (T = 0.29) 0.31 28.12 26.53

Table 5: Performance evaluation for three pruning techniques on ImageNet dataset. Performance with the lowest
test error is reported.

The last set of large-scale experiments were performed on the 1000-class ImageNet 2012
dataset Russakovsky et al. (2015) which contains about 1.2 million training images, 50,000 val-
idation images, and 100,000 test images (with no published labels). The results are measured
by top-1 error rates Russakovsky et al. (2015). ImageNet dataset was used to train a residual
network known as ResNet-34 He et al. (2016), which has four stages of residual blocks and uses
the projection shortcut when the feature maps are down-sampled. The model was trained for
90 epochs, with a batch-size of 200 and a learning rate 0.1. It can be observed in Table 5 that our

approach outperforms that in Li et al. (2017) and it is competitive with the state-of-the-art Yu

21

et al. (2018).

4.4. Prune and Train from Scratch

In order to see the effect of copying weights from the original (larger) model to a pruned
(smaller) model, we pruned two models (VGG-16 and ResNet-56) as described above, re-initialized
their weights, and trained them from scratch. Table 6 shows that fine-tuning a pruned model is
almost always better than re-initializing and training a pruned model from scratch. We believe
that already-trained filters may serve as good initialization for a smaller network which might
on its own be difficult to train. Other observation from Table 6 is that redundant-feature-based
pruning results in an architecture that attains a better performance than its counterpart in Li
et al. (2017). This suggests that redundant-feature-based pruning has the potential to deter-
mine the architectural width of DNNS.

Model Error %
VGG-16

Pruned (Li et al., 2017) 6.60
Pruned (Ours-A) 6.33

Pruned-scratch-train (Li et al., 2017) 6.88
Pruned-A-scratch-train (Ours-A) 6.79

ResNet-56

Pruned (Li et al., 2017) 6.94
Pruned (Ours-A) 6.88
Pruned-scratch-train (Li et al., 2017) 8.69
Pruned-scratch-train (Ours-A) 7.66

Table 6: Performance on CIFAR dataset

5. Conclusion

This work was motivated by the observations that widely and successfully used DNNs often
have large number of overlapping features amounting to unnecessary filtering redundancy and
high post-training inference cost. By grouping features at each layer according to a predefined
measure in parameter space using agglomerative hierarchical clustering, we show that when
redundancy can be reduced, inference cost (FLOPS) is reduced by 40% for VGG-16, 28%/39%
for ResNet-56/110 trained on CIFAR-10, and 28% for ResNet-34 trained on ImageNet database

22

with minor loss of accuracy. To recover the accuracy after pruning, models were finetuned for

a few iterations without the need to modify hyper-parameters.

Acknowledgement

This work was sponsored by the National Science Foundation under Grant 1641042.

References

Anwar, S., K. Hwang, and W. Sung (2017). Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC) 13(3), pp. 32-42,
DOI:10.1145/3005348.

Ayinde, B. O,, T. Inanc, and]. M. Zurada (2019). Regularizing deep neural networks by enhanc-
ing diversity in feature extraction. IEEE Transactions on Neural Networks and Learning Systems,

pp- 1-12, DOI:10.1109/TNNLS.2018.2885972.

Ayinde, B. O. and J. M. Zurada (2017). Nonredundant sparse feature extraction using autoen-

coders with receptive fields clustering. Neural Networks 93, pp. 99-109.

Ba, J. and R. Caruana (2014). Do deep nets really need to be deep? In Proc. of the Advances in
Neural Information Processing Systems, pp. 2654-2662.

Bengio, Y. and J. S. Bergstra (2009). Slow, decorrelated features for pretraining complex cell-like

networks. In Proc. of the Advances in Neural Information Processing Systems (NIPS), pp. 99-107.

Bengio, Y., Y. LeCun, et al. (2007). Scaling learning algorithms towards ai. Large-scale Kernel
Machines 34(5), pp. 1-41.

Bucilua, C., R. Caruana, and A. Niculescu-Mizil (2006). Model compression. In Proc. of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535-541.
ACM.

Changpinyo, S., M. Sandler, and A. Zhmoginov (2017). The power of sparsity in convolutional
neural networks. arXiv preprint arXiv:1702.06257.

23

Chen, W.,]. Wilson, S. Tyree, K. Weinberger, and Y. Chen (2015). Compressing neural networks
with the hashing trick. In Proc. of the International Conference on Machine Learning, pp. 2285—
2294. PMLR.

Cogswell, M., F. Ahmed, R. Girshick, L. Zitnick, and D. Batra (2016). Reducing overfitting
in deep networks by decorrelating representations. In Proc. of the International Conference on

Learning Representations, pp. 1-12.

Dai, B., C. Zhu, B. Guo, and D. Wipf (2018). Compressing neural networks using the variational
information bottleneck. In Proc. of the 35th International Conference on Machine Learning, pp.

1135-1144. PMLR.

Denil, M., B. Shakibi, L. Dinh, N. de Freitas, et al. (2013). Predicting parameters in deep learning.
In Proc. of the Advances in Neural Information Processing Systems, pp. 2148-2156.

Ding, C. and X. He (2002). Cluster merging and splitting in hierarchical clustering algorithms.
In Proc. of the IEEE International Conference on Data Mining, pp. 139-146. IEEE.

Furlanello, T., Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar (2018). Born again neural
networks. arXiv preprint arXiv:1805.04770.

Graves, A. and N. Jaitly (2014). Towards end-to-end speech recognition with recurrent neural

networks. In Proc. of the 31st International Conference on Machine Learning, pp. 1764-1772.

Graves, A., A.-r. Mohamed, and G. Hinton (2013). Speech recognition with deep recurrent neu-
ral networks. In Proc. of the International Conference on Acoustics, Speech and Signal Processing,

pp. 6645-6649. IEEE.

Han, S., H. Mao, and W. J. Dally (2015). Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

Han, S, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda, M. Paluri, J. Tran,
et al. (2017). Dsd: Dense-sparse-dense training for deep neural networks. In Proc. of the

International Conference on Learning Representations, pp. 1-13.

24

Han, S., J. Pool, J. Tran, and W. Dally (2015). Learning both weights and connections for efficient
neural network. In Proc. of the Advances in Neural Information Processing Systems, pp. 1135-

1143.

Hassibi, B. and D. G. Stork (1993). Second order derivatives for network pruning: Optimal

brain surgeon. In Proc. of the Advances in Neural Information Processing Systems, pp. 164-171.

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition. In
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778. IEEE.

He, Y., X. Zhang, and J. Sun (2017). Channel pruning for accelerating very deep neural net-
works. In Proc. of the IEEE International Conference on Computer Vision, pp. 1389-1397. Springer.

Hinton, G., O. Vinyals, and J. Dean (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam (2017). Mobilenets: Efficient convolutional neural networks for mobile vision ap-

plications. arXiv preprint arXiv:1704.04861.

Huang, Q., K. Zhou, S. You, and U. Neumann (2018). Learning to prune filters in convolutional
neural networks. In Proc. of the IEEE Winter Conference on Applications of Computer Vision

(WACV), pp. 709-718. IEEE.

Ioannou, Y., D. Robertson, R. Cipolla, and A. Criminisi (2016). Deep roots: Improving cnn

efficiency with hierarchical filter groups. arXiv preprint arXiv:1605.06489.

Ioannou, Y., D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi (2016). Training cnns with
low-rank filters for efficient image classification. In Proc. of the International Conference on

Learning Representations, pp. 1-17.

Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proc. of the International Conference on Machine Learning,

pp. 448-456. PMLR.

25

Jones, E., T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python. Online
accessed: 01-04-2018.

Jozefowicz, R., O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu (2016). Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410.

Kingma, D. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Krizhevsky, A. and G. Hinton (2009). Learning multiple layers of features from tiny images.
Technical report, http:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep convo-
lutional neural networks. In Proc. of the Advances in Neural Information Processing Systems, pp.

1097-1105.
LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/.

LeCun, Y, J. S. Denker, and S. A. Solla (1990). Optimal brain damage. In D. S. Touretzky
(Ed.), Proc. of the Advances in Neural Information Processing Systems 2, pp. 598-605. Morgan-

Kaufmann.

Leibe, B., A. Leonardis, and B. Schiele (2004). Combined object categorization and segmentation
with an implicit shape model. In ECCV Workshop on Statistical Learning in Computer Vision,
pp- 1-16.

Li, H., A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf (2017). Pruning filters for efficient

convnets. In Proc. of the International Conference on Learning Representations, pp. 1-12.

Liu, Z., J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang (2017). Learning efficient convolutional

networks through network slimming. In Proc. of the International Conference on Computer Vision

(ICCV), pp. 2755-2763. IEEE.

Maaten, L. v. d. and G. Hinton (2008). Visualizing data using t-sne. Journal of Machine Learning
Research 9(Nov), pp. 2579-2605.

26

Manickam, S., S. D. Roth, and T. Bushman (2000). Intelligent and optimal nor-
malized correlation for high-speed pattern matching. Datacube Technical Paper, link:

http://locateobjects.com/vsfind-paper].pdf .

Mariet, Z. and S. Sra (2016). Diversity networks. In Proc. of the International Conference on Learn-

ing Representations, pp. 1-12.

Mathieu, M., M. Henaff, and Y. LeCun (2013). Fast training of convolutional networks through
tfts. arXiv preprint arXiv:1312.5851.

Molchanov, P, S. Tyree, T. Karras, T. Aila, and J. Kautz (2017). Pruning convolutional neural
networks for resource efficient transfer learning. In Proc. of the International Conference on

Learning Representations, pp. 1-13.

Oord, A. v. d., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu (2016). Wavenet: A generative model for raw audio. arXiv

preprint arXiv:1609.03499.

Polyak, A. and L. Wolf (2015). Channel-level acceleration of deep face representations. IEEE
Access 3, pp. 2163-2175.

Rodriguez, P, J. Gonzalez, G. Cucurull, J. M. Gonfaus, and X. Roca (2016). Regularizing cnns

with locally constrained decorrelations. arXiv preprint arXiv:1611.01967.

Rodriguez, P, J. Gonzalez, G. Cucurull, J. M. Gonfaus, and X. Roca (2017). Regularizing cnns
with locally constrained decorrelations. In Proc. of the International Conference on Learning

Representations, pp. 1-11.

RoyChowdhury, A., P. Sharma, E. Learned-Miller, and A. Roy (2017). Reducing duplicate filters
in deep neural networks. In NIPS workshop on Deep Learning: Bridging Theory and Practice, pp.
1-7.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

27

M. Bernstein, et al. (2015). Imagenet large scale visual recognition challenge. International

Journal of Computer Vision 115(3), pp. 211-252.

Rusu, A. A,, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell (2015). Policy distillation. arXiv preprint arXiv:1511.06295.

Shazeer, N., A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean (2017). Out-
rageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint

arXiv:1701.06538.

Simonyan, K. and A. Zisserman (2015). Very deep convolutional networks for large-scale image

recognition. In Proc. of the International Conference on Learning Representations, pp. 1-11.

Szegedy, C., V. Vanhoucke, S. Ioffe,]. Shlens, and Z. Wojna (2016). Rethinking the inception
architecture for computer vision. In Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2818-2826. IEEE.

Urban, G., K. J. Geras, S. E. Kahou, O. Aslan, S. Wang, R. Caruana, A. Mohamed, M. Philipose,
and M. Richardson (2017). Do deep convolutional nets really need to be deep and convolu-

tional? In Proc. of the International Conference on Learning Representations, pp. 1-13.

Walter, B., K. Bala, M. Kulkarni, and K. Pingali (2008). Fast agglomerative clustering for ren-
dering. In IEEE Symposium on Interactive Ray Tracing, pp. 81-86. IEEE.

Yoon, J. and S. J. Hwang (2017). Combined group and exclusive sparsity for deep neural net-

works. In Proc. of the International Conference on Machine Learning, pp. 3958-3966. PMLR.

Yu, R, A. Li, C.-E. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and L. S. Davis
(2018). Nisp: Pruning networks using neuron importance score propagation. In Proc. of the

Computer Vision and Pattern Recognition, pp. 1-10. IEEE.

Zeiler, M. D. and R. Fergus (2014). Visualizing and understanding convolutional networks. In

Proc. of the European Conference on Computer Vision, pp. 818-833. Springer.

28

Zhang, X., J. Zou, K. He, and J. Sun (2016). Accelerating very deep convolutional networks
for classification and detection. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 38(10), pp. 1943-1955.

29

	1 Introduction
	2 Related Work
	3 Convolutional Feature Clustering and Pruning
	3.1 Method A: Pruning of Redundant Filters
	3.2 Method B: Pruning of Random nf Filters

	4 Experiments
	4.1 VGG-16 on CIFAR-10
	4.2 RESNET-56/110 on CIFAR-10
	4.3 ResNet-34 on ImageNet
	4.4 Prune and Train from Scratch

	5 Conclusion

