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ment experimental data when developing fundamental equations of state. Since
most force fields are optimized to agree with vapor-liquid equilibria (VLE) prop-
erties, however, the reliability of the molecular simulation results depends on the
validity /transferability of the force field at higher temperatures and pressures. As
demonstrated in this study, although state-of-the-art united-atom Mie \-6 poten-
tials for normal and branched alkanes provide accurate estimates for VLE, they
tend to over-predict pressures for dense supercritical fluids and compressed lig-
uids. The physical explanation for this observation is that the repulsive barrier
is too steep for the “optimal” united-atom Mie \-6 potential parameterized with
VLE properties. Bayesian inference confirms that no feasible combination of non-
bonded parameters (¢, o, and ) is capable of simultaneously predicting saturated
vapor pressures, saturated liquid densities, and pressures at high temperatures
and densities. This conclusion has both practical and theoretical ramifications, as
more realistic non-bonded potentials may be required for accurate extrapolation to

high pressures of industrial interest.
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I. INTRODUCTION

An accurate understanding of the relationship between pressure (P), density (p), and
temperature (7") and caloric properties (such as internal energy U) for a given compound
is essential for designing industrial chemical processes. Fundamental equations of state
(FEOS), such as those based on the Helmholtz free energy, are a powerful approach for
estimating PpT" behavior and caloric properties. For example, the National Institute of
Standards and Technology (NIST) Reference Fluid Properties (REFPROP) currently pro-
vides FEOS for approximately one hundred fifty chemical species.! Unfortunately, most
compounds do not have sufficient reliable experimental data covering a wide range of
pressures, densities, and temperatures to develop a highly-accurate FEOS. Since FEOS
are semi-empirical and have 50 to 100 fitting parameters, the FEOS predictions can result
in large errors at temperatures and pressures that are significantly higher than those used
in parameterizing the FEOS, which are typically near or below the critical temperature
and pressure. Therefore, improvement in an FEOS at high temperatures and pressures
necessitates additional data for those conditions.

The lack of experimental data at high temperatures and pressures, especially, is at-
tributed to the inherent safety, cost, and complexity of such experiments. By contrast,
molecular simulation (i.e. Monte Carlo, MC, and molecular dynamics, MD) methods at
high temperatures and pressures do not suffer from any of these limitations. Therefore,
in principle, molecular simulation can aid in developing FEOS.*® Although it is possi-
ble to fit an FEOS to just molecular simulation results, the recommended approach is to
implement hybrid data sets, i.e. from both experiment and molecular simulation.”

For example, several recent studies supplement experimental data with molecular sim-
ulation results at temperatures and pressures beyond the range of available experimental
temperatures and pressures.® ! Specifically, experimental data were available for temper-

atures and pressures up to 580 K and 130 MPa, 590 K and 180 MPa, 450 K and 2 MPa, and
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560 K and 100 MPa for hexamethyldisiloxane,® octamethylcyclotetrasiloxane,” ethylene
oxide,! and 1,2-dichloroethane,' respectively. Molecular simulations were performed
for these compounds at temperatures and pressures up to 1200 K and 600 MPa, 1200 K
and 520 MPa, 1000 K and 700 MPa, 1000 K and 1200 MPa, respectively. The inclusion of
these simulation results improved the performance of the FEOS at extreme temperatures
and pressures.

While previous studies have focused on small/hazardous compounds, the present
study investigates normal and branched alkanes. Hydrocarbons are a fundamental feed-
stock for many petrochemical processes and, therefore, a large body of experimental data
exist covering a wide range of PpT phase space for some alkanes. For these reasons,
REFPROP provides highly-accurate FEOS for several hydrocarbons, most of which are
shorter-chains (less than 20 carbons) with limited branching (i.e. only methyl branches).
The use of hybrid data sets is an appealing approach to develop FEOS for industrially rel-
evant hydrocarbons with minimal experimental data, i.e. those with longer chain-lengths
or a higher degree of branching.

The primary limitation for implementing molecular simulation at extreme tempera-
tures and pressures is whether or not the force field, which is typically parameterized
using VLE data, is reliable at those conditions. For example, it was demonstrated that
VLE-optimized force fields for small compounds, such as noble gases, hydrogen sulfide,
and hydrogen chloride, do adequately represent the homogeneous fluid region.” In this
study, we investigate how well the traditional force fields for predicting VLE of normal
and branched alkanes extrapolate to higher temperatures and pressures, i.e dense super-
critical fluids and compressed liquids. This analysis is performed for four normal and
four branched alkanes by comparing the simulated compressibility factor (Z) with the
REFPROP correlations. Note that the simulation conditions do not go beyond the range
of REFPROP validity for the respective compounds, so that we can assume the REFPROP
correlations are reliable.

The most accurate force fields for estimating hydrocarbon VLE properties, such as
Pt and P52, are the Transferable Potentials for Phase Equilibria (TraPPE)'>!® (and, es-

pecially, the recent TraPPE-2'*), Errington,” fourth generation anisotropic-united-atom
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(AUA4),'e'7 Potoff,'®!” and Transferable anisotropic Mie potential (TAMie).*>*! Note that
each is either an united-atom (UA) or an anisotropic-united-atom (AUA) force field. In
contrast with the more computationally expensive all-atom (AA) approach, both UA and
AUA models group the hydrogen interaction sites with their neighboring carbon atom.
Although an AA force field should, in principle, be able to yield more accurate VLE re-
sults, it is much easier to locate the “true” optimal parameter set for UA and AUA force
fields since fewer (highly correlated) parameters are optimized simultaneously.

In addition to the division between UA and AUA force fields, the existing force fields
differ in the non-bonded functional form and corresponding parameters. The TraPPE,
TraPPE-2, and AUA4 force fields use a Lennard-Jones (L]) 12-6 potential, while the Potoff
and TAMie force fields use the Mie A\-6 (or generalized Lennard-Jones) potential, and the
Errington force field uses the Buckingham exponential-6 (Exp-6) potential. The Mie \-6
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where ©'%v, ¢, and r are the same as in Equation 1, r,, is the distance that corresponds
to the minimum in the potential (i.e ©'%" (ru,) = —¢), @ is a Buckingham exponential-6
parameter, and r,,x is the smallest positive value for which % =0.

The three-parameter Mie -6 and Exp-6 potentials are more flexible than the two-
parameter L] 12-6 potential as an additional adjustable parameter controls the steepness
of the repulsive barrier. Note that the Mie \-6 potential reduces to the L] 12-6 potential
for A = 12. Therefore, the L] 12-6 potential can be considered a special subclass of the Mie
A-6 potential.



Previous work demonstrated that the UA L] 12-6 potential cannot adequately estimate
both pi** and P:* for n-alkanes.”?* For this reason, the TraPPE-UA force field was primar-
ily developed to agree with p{* (and the critical temperature, 7,)."” By contrast, accurate
prediction of both pj** and P* over a wide temperature range is possible by varying the
repulsive exponent of the L] potential (i.e. the Mie -6 potential). Although an attractive
exponent of 6 has a strong theoretical basis, A = 12 (L] 12-6) is a historical artifact that was
chosen primarily for computational purposes (see pages 18, 140 to 143 of Reference 25).

Typically, when parameterized to VLE data, the optimal value of X is greater than 12
with a corresponding increase in the well depth (¢€). Specifically, for most hydrocarbons,
the Potoff UA force field'®'” uses A\ = 16 while the TAMie force field® uses A = 14.
Gordon also demonstrated that reliable viscosities can be obtained from a UA Mie \-6
model for n-alkanes by using A = 14 and A = 20 for the CHj3 and CH, sites, respectively
(note the subtle difference in how Gordon defines the Mie A\-6 potential, a.k.a. “mod-n-
6”).2 However, it is important to note that Gordon and Galliéro et al. report A values of
11 and 10, respectively, for UA methane when optimized with viscosity data.?**

There are some theoretical concerns that increasing the repulsive exponent might have
some undesirable consequences, especially at high pressures, where particles will spend
more time with very short pairwise distances than at VLE conditions. For example, Refer-
ences 28-30 demonstrate that neither an all-atom L] 12-6 or an all-atom L] 9-6 is adequate
to reproduce high-level ab initio calculations of n-alkanes ranging from methane to n-
butane. The studies of Rowley et al. suggest a modified-Morse potential is necessary for
accurate representation of ab initio dimer energies.”>* Hayes et al. confirms these results
while also emphasizing that the short-range repulsive forces, which are most important
when computing high pressures in molecular simulation, are poorly represented with an
AA LJ 12-6 or an AA LJ 9-6 model.*® Specifically, the L] 12-6 potential is too steep, and
only slight improvement in the repulsive region is observed for the L] 9-6 potential. Note
that Hayes et al. also highlights deficiencies in the repulsive region for the Buckingham
exponential-6 potential.

Recently, Kulakova et al. used Bayesian inference to conclude that experimental data

for argon, specifically the liquid and vapor radial distribution functions at varying tem-
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peratures and densities, support A values between 6 and 10, while argon dimer ab initio
energies support A values between 12 and 14.%' They suggest that these larger values of A
should not be used for liquid phase simulations. By contrast, two other studies of noble

gases, including argon, support A > 12.2732

Specifically, Mick et al. reports a 13-6 poten-
tial for argon, while Galliéro et al. states that the 12-6 potential is superior for argon than
the 10-6, 14-6, 16-6, 18-6, and 20-6 potentials. The likely explanation for this discrepancy
is the choice of experimental data. The optimal value of A from Kulakova et al. is based
on the radial distribution function, while Galliéro et al. used viscosity and pressure, and
Mick et al. utilized VLE data.

Structural properties, such as the radial distribution function, and ab initio calculations
provide considerable insight into the true repulsive barrier.”?! However, the “correct”
value of A does not guarantee adequate prediction of VLE and/or PpT behavior. This
is primarily because the Mie \-6 potential is only an approximation to the real potential
and, thus, it is not flexible enough to agree with both the repulsive and attractive regions.
Instead, only the region that is most sensitive to the target experimental data will be ad-
equately represented. For example, high pressure properties are sensitive to extremely
close-range interactions (r < 0.8¢), while such distances are rarely sampled with VLE
simulations and, thus, do not impact VLE properties. Furthermore, the “optimal” A is
an “effective optimal” as it accounts for numerous model assumptions, such as pair-wise
additivity (i.e. excluding three-, four-, etc. body interactions) or the lack of explicit hy-
drogens. For these reasons, despite theoretical evidence that the repulsive barrier should
be softer than A = 12, a UA Mie \-6 potential is simply not capable of predicting VLE
properties of ethane for A < 12 (see Figures 1 and 2 of Reference 18).

The purpose of this study is to determine whether or not the UA Mie \-6 model is
adequate for predicting both VLE and PpT at high temperatures and pressures for alka-
nes. Although the theoretical results discussed previously for noble gases and all-atom
n-alkane models are not necessarily applicable to UA models for normal and branched
alkanes, the working hypothesis based on the literature is that a UA Mie \-6 potential pa-
rameterized with VLE data is too repulsive and, thus, performs poorly at high pressures.

This assessment is of practical engineering importance for deciding whether or not UA
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Mie \-6 force fields should be used when developing fundamental equations of state for
alkanes based on hybrid data sets.

The outline for this study is the following. Section II discusses the simulation and force
tield details. Section III is a case study for normal and branched alkanes using the exist-
ing force fields developed based on VLE properties. Section IV explains how Bayesian
inference is employed to investigate the adequacy of the UA Mie \-6 potential. Section V
presents the results from the Bayesian analysis with recommendations and limitations in

Section VI. Section VII reports the primary conclusions of this study.

II. MOLECULAR DYNAMICS
A. Simulation Details

Four normal and four branched alkanes of varying chain-length and degree of branch-
ing are simulated in this study. Specifically, we simulate ethane, propane, n-butane,
n-octane, isobutane (2-methylpropane), isohexane (2-methylpentane), isooctane (2,2,4-
trimethylpentane), and neopentane (2,2-dimethylpropane). These compounds were cho-
sen to represent a diverse set of the normal and branched alkanes available in REFPROP.!#3-38

Molecular dynamics simulations for this study are performed in the NVT" ensemble
(constant number of molecules, IV, constant volume, V/, and constant temperature, 7') us-
ing GROMACS version 2018.* Each simulation uses the velocity Verlet integrator with
a 2 fs time-step,*® 1.4 nm cut-off for non-bonded interactions with tail corrections for en-
ergy and pressure, Nosé-Hoover thermostat with a thermostat time constant of 1 ps,*! and
tixed bond-lengths constrained using LINear Constraint Solver (LINCS) with a LINCS-
order of eight.**** Note that GROMACS non-bonded tail corrections assume that the long-
range contribution from the r~* term is negligible compared to the 7% term. A compar-
ison between the energies and pressures obtained with GROMACS and other (slower)
simulation packages verified that the small error introduced with this approximation
does not significantly affect our results. For this reason, we do not attempt to modify the

GROMACS default tail correction values to include the r—* contribution. Also, Coulom-
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bic interactions are not computed as none of the force fields require partial charges for the
compounds studied.

The equilibration time is 0.1 ns for ethane and propane, 0.2 ns for n-butane, and 0.5 ns
for all other compounds. The production time is 1 ns for ethane, 2 ns for propane and
n-butane, and 4 ns for all other compounds. Replicate simulations are performed for n-
octane to validate that a single MD run of this length agrees with the average of several
replicates, to within the combined uncertainty. A system size of 400 molecules is used for
ethane, propane, and n-butane, while all other compounds use 800 molecules. Example
input files are provided as Supporting Information.

The specific state points for each compound studied are depicted in Figure 1 (for tab-
ulated values, see Section SI.I of Supporting Information). These state points correspond
to the recommended conditions for the isothermal isochoric integration (ITIC) algorithm

discussed in Section IV.** Simulations are performed along a supercritical isotherm

=L
=T

with a reduced temperature ~ 1.2 (7, where T is the critical temperature) and five
saturated liquid density isochores (p'). Nine densities are simulated along the supercrit-
ical isotherm (7"1). Simulations along each isochore are performed at three temperatures,
namely, 7', the REFPROP saturation temperature (7%*), and 2/(1/T"" + 1/T*). Since
five of the isotherm densities correspond to the five different p'“ values, a total of 19 sim-

ulations are performed for each compound and force field.

B. Force field

A united-atom (UA) or anisotropic-united-atom (AUA) representation is used for each
compound studied. UA models assume that the UA interaction site is that of the carbon
atom, while AUA models assume that the AUA interaction site is displaced from the
carbon atom towards the hydrogen atom(s). Note that TraPPE and Potoff are UA force
tields while the TraPPE-2, Errington, AUA4, and TAMie are AUA force fields.

The UA and AUA groups required for normal and branched alkanes are sp® hy-
bridized CHj, CH,, CH, and C sites. For most literature models, a single (transferable)

parameter set is assigned for each interaction site. However, two exceptions exist for
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FIG. 1. State points simulated for ethane, propane, n-butane, n-octane, isobutane, isohexane, isooc-
tane, and neopentane. A total of 19 simulations are performed: nine densities along the supercrit-
ical isotherm and two temperatures along five liquid density isochores. Filled symbols and solid
lines correspond to n-alkanes, while empty symbols and dashed lines correspond to branched
alkanes. The REFPROP saturation curve for each compound is included as a reference.!3*-38

the force fields studied. First, TAMie implements a different set of CHj3 parameters for
ethane. Second, Potoff reports a “generalized” and “short/long” (S/L) CH and C param-
eter set. The Potoff “generalized” CH and C parameter set is an attempt at a completely
transferable set. However, since the “generalized” parameters performed poorly for
some compounds, the S/L parameter set was proposed, where the “short” and “long”
parameters are implemented when the number of carbons in the backbone is < 4 and
> 4, respectively.

A fixed bond-length is used for each bond between UA or AUA sites. Although TAMie
is an AUA force field, only the terminal CHj sites have a displacement in the interaction
site. For example, Figure 2 depicts both the UA and AUA representations of isooctane
when only terminal CHj interaction sites are displaced from the carbon center. This con-

vention is much simpler to implement than other AUA approaches (such as AUA4) where
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non-terminal (i.e. CH, and CH) interaction sites also have a displacement distance. For
this reason, we do not attempt to simulate the AUA4 force field for any compounds con-
taining CH; and CH interaction sites. For the compounds and force fields simulated, the
anisotropic displacement in a terminal interaction site (i.e. CHj) is treated simply as a
longer effective bond-length (see Table I). The bond-length for all non-terminal sites is
0.154 nm, except for the Errington Exp-6 force field which uses 0.1535 nm for CH,-CHj,
bonds.

CH, @AuA

(OUA
OBoth

CH, CH,  CH;

FIG. 2. Comparison between AUA and UA representations of isooctane. AUA force fields have
the same complexity as UA force fields if only the terminal (CHz) sites have an anisotropic dis-
placement, i.e. a longer effective bond-length. Note that the AUA4 approach requires a more

complicated displacement of CHs and CH sites than that depicted here.!®

The angle and dihedral energies are computed using the same functional forms for

each force field. Angular bending interactions are evaluated using a harmonic potential:

k
uP = 22 (0~ 60)” (3)
where u"™¢ is the bending energy, 0 is the instantaneous bond angle, 6, is the equilibrium

bond angle (see Table II), and ky is the harmonic force constant with &y /kg = 62500 K/ rad?
for all bonding angles, where kg is the Boltzmann constant.

Dihedral torsional interactions are determined using a cosine series:
u' = ¢y + c1[1 + cos @] + o[l — cos 2¢] + e3[1 + cos 34 4)

where ' is the torsional energy, ¢ is the dihedral angle and ¢, are the Fourier constants
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TABLE I. Effective bond-lengths in units of nm for terminal (CHs3) UA or AUA interaction sites.
Empty table entries for Exp-6'° and TraPPE-2'* denote that the force field does not contain the
corresponding interaction site type. Empty table entries in AUA4'® arise because this force field
uses a more complicated construction than the simple effective bond-length approach. Specifically,

AUA4 requires CH; and CH interaction sites that are not along the C-C bond axis.

Bond |TraPPE, Potoff| TAMie| Exp-6 |AUA4 | TraPPE-2
CH3-CH3 0.154 0.194 |0.1839/0.1967| 0.230
CH3-CH» 0.154 0.174 |0.1687| - -
CH3-CH 0.154 0174 | - - -

CH3-C 0.154 0174 | - ]0.1751 -

(see Table III). Note that the Errington ¢, values for CH;-CH,-CH,-CH; are a factor of two
less than those reported in Table IIL."°

TABLE II. Equilibrium bond angles (6).!* CH; and CH; represent CHs, CHs, CH, or C sites.

Bending sites |0y (degrees)

CH,-CHy-CH;|  114.0
CH,;-CH-CH, |  112.0

CH,;-C-CH; | 109.5

Non-bonded interaction energies and forces between sites located in two different
molecules or separated by more than three bonds are calculated using either a Lennard-
Jones 12-6, Mie M\-6, or Buckingham Exponential-6 potential (see Equations 1-2). Figure 3
compares the energy and force of the L] 12-6, Mie 9-6, Mie 16-6, and Exp-6 (for a = 16
and 22) using the same values of € and r;,.

The non-bonded L] 12-6 or Mie \-6 force field parameters for TraPPE, TraPPE-2, Potoff,
AUA4, and TAMie are provided in Table IV. Note that, for computational purposes, a
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TABLE III. Fourier constants (c, /kg) in units of K.> CH; and CH, represent CH3, CH,, CH, or C

sites.
Torsion sites Co/k}B Cl/kB CQ/kB Cg/kB
CH,;-CH,-CH2-CH;| 0.0 {355.03] -68.19 |791.32
CH;-CH»-CH-CH; |-251.06|428.73|-111.85 |441.27
CH;-CH,-C-CH; 0.0 0.0 0.0 |461.29
1.0 ” : ”
a) 10 b) 10
f 1010 1010
w 0.5 E oo 2 “ 10
) [ £
i e 100 x 102
> E 0.2 Lol 0.2
2 13 W
g 0.0f i e g 0
AR N g
g i g-1
: |k 5
€ o5 — U126 E
(i ---- Mie 9-6 -2
'."= ---- Mie 16-6
£ & e Exp-6, a =16
........ Exp-6, a =22 -3 '
~19 12 1.6 2.0 24 08 12 1.6

2.0

Reduced Distance, r* = r/rmin Reduced Distance, r* = r/rmin

2.4

FIG. 3. Comparison between Equations 1 and 2. Short distance forces increase and energy wells
become more narrow with increasing A and a. Panels a) and b) plot the reduced energy (U*) and

force (F*) with respect to the reduced distance (r*), where the energy and distance are scaled by

e and rpin, respectively.

common practice to date is to use integer values of A in Equation 1.

The Errington Exp-6 non-bonded parameters are found in Table V. Note that Errington

reported values for ¢, 0, and a. We compute 7, and 7.« to facilitate compatibility with
Equation 2 and future validation of our results.

Non-bonded interactions between two different site types (i.e. cross-interactions) are
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TABLE IV. Non-bonded (intermolecular) parameters for TraPPE'>!® (and TraPPE-2!%), Potoff,'%'
AUAA4,'%47 and TAMie?*?! force fields. The “short/long” Potoff CH and C parameters are in-

cluded in parentheses. The ethane specific parameters for TAMie are included in parentheses.

TraPPE (TraPPE-2) Potoff (S/L)
United-atom| ¢/kp (K) o (nm) A e/kp (K) o (nm) A
CHs3 98 (134.5)|0.375 (0.352) (12 121.25 0.3783 16
CHy 46 0.395 12 61 0.399 16
CH 10 0.468 12 15 (15/14) 0.46 (0.47/0.47) |16
C 0.5 0.640 12| 1.2(1.45/1.2) | 0.61(0.61/0.62) |16
AUA4 TAMie

CHs3 120.15 0.3607  |12|136.318 (130.780)|0.36034 (0.36463) | 14
CHa 86.29 0.3461 |12 52.9133 0.40400 14
CH 50.98 0.3363 |12 14.5392 0.43656 14
C 15.04 0.244 12 - - —

TABLE V. Non-bonded (intermolecular) parameters for Errington Exp-6 force field.!®

United-atom |e/kp (K)|o (nm)| v |7min (M) [7ax (NM)

CH; 129.6 |0.3679 |16| 0.4094 0.0574
CH, 73.5 ] 0400 |22| 0.436 0.0221

determined using Lorentz-Berthelot combining rules® for € and ¢, an arithmetic mean for
the repulsive exponent A (as recommended in Reference 18), and a geometric mean for o

(as recommended in Reference 15):

€ij = \/€ii€jj )
0y = T (6)



7)
Q5 = £/ Qi Q5 (8)

where the ij subscript refers to cross-interactions and the subscripts ii and j;j refer to

same-site interactions.

III. CASE STUDY

The purpose of this case study is to demonstrate that the existing UA and AUA force
tields for normal and branched alkanes that were parameterized with VLE properties
do not predict the proper PpT" behavior at higher temperatures and pressures (with the
exception of ethane for the TraPPE-2 potential). Figures 4-5 plot the compressibility fac-
tor with respect to inverse temperature for n-alkanes and branched alkanes, respectively.
Note that saturation corresponds to Z ~ 0 for each isochore. The “Potoff” results in Figure
5 are only for the the “short/long” model, since the “short/long” model is more accurate
than the “generalized” model (available in Section SLII of Supporting Information).

Note that Figures 4-5 include a constant 1 % uncertainty in the REFPROP correlations
for all compounds at all state points. This is a conservative estimate as the reported REF-
PROP uncertainty for p is typically only 1 % at 7™ while it decreases near 75" to a value
< 0.2 %. Furthermore, only ethane,® n-butane,® isohexane,” and neopentane® have a
reported uncertainty of 1 % at 7"". REFPROP uncertainties for propane,* isobutane,*
and n-octane® are actually 0.1 %, 0.4 %, and 0.5 %, respectively, while isooctane® does
not have a reported uncertainty.

Figure 4 demonstrates that the existing literature force fields for n-alkanes, while accu-
rate for VLE (Z =~ 0), do not capture the correct PpT behavior at high pressures (P"s),
i.e. Z at the higher temperatures (T' > T°) and highest isochore densities (pi° and p©).
Figure 5 shows the same erroneous trend in Z for branched alkanes. Note that the er-
ror in Z at high temperatures is less obvious because these force fields are typically not
as reliable at predicting VLE for branched alkanes as for n-alkanes, i.e. notice the large

deviations at Z ~ 0. However, it is clear in both Figures 4-5 that none of the force fields
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FIG. 4. Compressibility factor (Z) along isochores for n-alkanes. Most force fields are accurate at
saturation (Z ~ 0) but deviate strongly at higher pressures. Different symbol shapes correspond
to the various force fields, with legend in Panel a). Densities are distinguished by color, increase
vertically, and are labeled such that p{)C < pl¢ < pl¢ < péc < pl€. Panels a) to d) correspond
to ethane, propane, n-butane, and n-octane, respectively. Solid lines represent REFPROP correla-
tions, with dashed lines representing a 1 % uncertainty in REFPROP values.!*3-3¢ Simulation error

bars computed with block averaging are approximately one symbol size.
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FIG. 5. Compressibility factor (Z) along isochores for branched alkanes. Force fields are not as
accurate as normal alkanes at saturation (Z ~ 0) and deviate strongly at higher pressures. Panels
a) to d) correspond to isobutane, isohexane, isooctane, and neopentane, respectively. Symbols,
lines, uncertainties, and formatting are the same as those in Figure 4. The Potoff results for isobu-
tane and neopentane use the “short” parameters, while isohexane and isooctane use the “long”

parameters (see Table V).
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adequately reproduces Z over the entire temperature range, or the slope of Z with respect
to inverse T'.

A surprising trend is that the Errington (AUA Exp-6) model has a positive bias at high
pressures. This appears to suggest that the repulsive barrier is too steep, despite the fact
that the Exp-6 model is typically considered softer than the L] 12-6. However, the Exp-6 is
less repulsive than the L] 12-6 only at very short distances, e.g. r < 0.77,, for o = 16 and
r < 0.37min for a = 22, while it is actually somewhat more repulsive for the closest-range
distances sampled in molecular dynamics at these conditions, i.e. 0.77yin < 1 < Tmin (S€€
inset of Panel b) in Figure 3). More definitive and straight-forward conclusions regarding
the shape of the Mie \-6 repulsive barrier are possible by directly comparing different
values of \.

In general, clear systematic biases are observed for the L] 12-6 potentials and the Mie
A-6 potentials. Specifically, the L] 12-6 (TraPPE-UA and AUA4) and Mie A\-6 (Potoff and
TAMie) potentials under- and over-predict Z at high pressures, respectively. These results
are intuitive as the repulsive barriers are steeper for the respective Mie 16-6 and 14-6
potentials of the Potoff and TAMie force fields.

The one exception to this trend is the TraPPE-2 model for ethane, which has the most
accurate prediction of the entire PpT phase space simulated. Specifically, TraPPE-2 repro-
duces the REFPROP Z to within 1 % for all state points except at P"8", where the average
percent deviation (AD%) relative to the REFPROP correlations is still only 3 %.

The performance of TraPPE-2 is somewhat surprising considering that this force field
has only three fitting parameters (¢, o, and the effective bond-length) while the TAMie
model has these three parameters and an additional fitting parameter (). It is possible
that a four parameter optimization, such as that used by TAMie, is overfit to the VLE data
and would perform better if high pressure PpT data were included in the parameteri-
zation. Furthermore, it is important to note that TraPPE-2 uses a much longer effective
bond-length of 0.230 nm while TAMie did not consider bond-lengths larger than 0.194
nm. Therefore, the fact that the TraPPE-2 force field extrapolates to high pressures better
than TAMie suggests that, at high pressures, it is important to account for hydrogens with
a longer effective bond-length than that typically used for AUA models (see Table I).
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Unfortunately, a direct comparison of the non-bonded interactions for AUA force fields
is difficult because each model has a different anisotropic displacement, i.e. effective
bond-length. By contrast, comparing TraPPE-UA and Potoff is straightforward because
they use the same bond-lengths and the same non-bonded Mie -6 potential (Equation
1). For example, since the TraPPE-UA (L] 12-6) potential under-predicts Z and the Potoff
(UA Mie 16-6) potential over-predicts Z, it seems reasonable that a UA Mie 13-6, 14-6, or
15-6 model could demonstrate the proper trend.

To investigate this hypothesis, the remainder of this document focuses on the UA Mie
-6 potential, where all bond-lengths are 0.154 nm to be consistent with the TraPPE and
Potoff UA models. Specifically, we perform a Bayesian uncertainty quantification analysis
to determine if there exists a set of ¢, o, and ) that reasonably predicts p;**, P52, and Phieh,
The results in Section V demonstrate that the optimal value of A for predicting PpT of
supercritical fluids and compressed liquids is not capable of predicting VLE properties

accurately, and vice-versa.

IV. UNCERTAINTY QUANTIFICATION

The results presented in Section III demonstrate that none of the literature UA or AUA
force fields, parameterized with VLE data, can reproduce the PpT" behavior for super-
critical fluids and compressed liquids. However, there is uncertainty in the non-bonded
parameters inherited from the VLE data. Therefore, by considering the inherent uncer-
tainty, it is possible that a feasible parameter set exists that adequately predicts VLE and
Phigh By contrast, if none of the ¢, o, and ) sets is capable of simultaneously predicting
VLE properties and Z at high pressures, we can conclude that the UA Mie -6 potential
(and Lennard-Jones 12-6 as a special case) is inadequate for this purpose and, therefore,
should not be used when developing FEOS with molecular simulation results.

Bayesian inference is a rigorous approach to determine all feasible ¢, o, and A pa-
rameter sets. We refer the reader to the literature for a thorough discussion of Bayesian
statistics.*'4%°! In Section IV A, we review some basic concepts of Bayes’ theorem, define

the posterior, likelihood, and prior distributions, and discuss the Markov Chain Monte
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Carlo (MCMC) approach for sampling from the posterior joint distribution of the param-
eters. MCMC can be computationally burdensome, especially when molecular simula-
tion is required to compute the likelihood. For this reason, we utilize surrogate models
to reduce the computational cost of MCMC by several orders of magnitude. Section IV B
demonstrates how these surrogate models estimate pi**, P, and Z for a given set of
¢, 0, and \. We implement this analysis for n-alkanes to generate joint distributions of

€cH,-0cH, and ecp,-ocn, for different values of Acy, and Acp,, respectively.

A. Bayesian Inference
1. Theory

Bayes’ theorem states

Pr(D|0, M)Pr(0|M)

PrO|D,M) = —=pr s

©)

where Pr denotes a probability distribution function, ¢ is the parameter set, M is the
model, and D are the data. Pr(6|D, M) is commonly referred to as the “posterior”,
Pr(D|6, M) is the “likelihood” (alternatively expressed as L(0|D,M)), Pr(0|M) is the
“prior”, and Pr(D|M) is a normalization constant which is also the “model evidence”.

The “model evidence” is used in model selection, by computing the probability of
different models given the data:

Pr(D|M)Pr(M)
Pr(D)

Pr(M|D) = (10)

where Pr(M) is the “model prior”, Pr(D) is a normalization constant, and Pr(M|D) is
the “model posterior”. The ratio of Pr(M|D) between two different models (M; and M;),
known as the Bayes factor (k;;), provides the relative probability of models M, and A/},
given the data D.

The parameter uncertainty propagates when estimating another quantity of interest

(QoI), which may or may not be included in D, according to:*'

Pr(Qol|D, M) = /Pr(Qo[\H,M)Pr(6’|D, M)do (11)
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This expression is commonly referred to as “robust posterior prediction.” Note that the
uncertainty in Qol, obtained from Pr(Qol|D, M), does not account for deficiencies in the

model itself, only the uncertainty in the model parameters.

2. Application

Bayesian inference is used to quantify the uncertainty in the non-bonded parameters
(e and o) and to determine the evidence for different values of A based on VLE data. For
clarity, we rewrite Equations 9-10 for the specific case studied by substituting ¢ and o for
6, A for M, and pi** and P for D:
L(e, o|pi*, P2 X)Pr(e,o|)\)

Pr{o, P
Pr(pt, P |\) Pr())
Prlo. Pe)

where in this context pj** and P are arrays of experimental data values. Note that ¢

(12)

Pr(e, o|pi, P2 \) =

Pr(}\‘plsat7psat) —

v

(13)

does not include ), since we use ) to distinguish between models. The “model evidence”,
Pr(pi*, P#*|)\) in Equation 13, for different values of ) is determined by integrating the
numerator of Equation 12 for all values of € and o.

To compute the Bayes factor between two values of X (i.e. between different models,
M, and M;), we assume that the prior evidence is equal for all positive values of ¢, o, and
A (within a feasible range). Specifically, we use bounded uniform prior distributions for
Pr(e, o|\) in Equation 12 and Pr()) in Equation 13, where the lower bound is 0 and the
upper bound is an order of magnitude greater than the literature values for ¢, o, and .
Due to the large amount of information contained in the data, D, the use of a uniform
prior does not impact our results, i.e. the data “overwhelms” the prior. One advantage of
using a uniform prior is that the Bayes factor, K;;, depends completely on the likelihood:

_ Pr(\lpit, Py [ Lie, o|pit, P, ;) dedo
Y Pr(Npet, Pet) [ L(e, o], Pty ;) dedo

(14)

where \; and ); are the different (fixed) values of A being compared.
We utilize robust posterior prediction (Equation 11) to propagate the joint parameter

uncertainty in € and o (for a given \) to three different Qol, specifically, pi*, P5*', and Z.
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For example, the uncertainty in predicting Z is obtained from:
PHZIG PN = [ Pr{Zle, o)) Prie, ol P \dedo (15)

Similar expressions exist for Pr(pf®*|pi*t, P52, \) and Pr(P|pi*t, P, X), where posterior

prediction allows for uncertainty estimates in p{** and P:' at any temperature, not just

those included in D.

3. Implementation

Markov Chain Monte Carlo (MCMC) is the traditional approach for numerically
sampling from the probability distribution Pr(e, o|pi*t, P5** )\). We use the Metropolis-

Hastings algorithm to create a Markov Chain by proposing new e and o sets and accepting
those moves based on the criterion:

o — min (1 Pr(eiy1, 01| o™, P N)Q (€1, 044165, 04, 53733))
7 PT(Q) Ui|plsat7 P‘fat’ A)Q(Eh 0i|€i+17 Oit1, 52 82)

€)= o

(16)

where « is the acceptance probability, ¢; and o; are the previous parameter set, ¢;.; and
oi11 are the proposed parameter set, and () is the proposal distribution from which ;4
and o, are sampled. In this study, () is a bi-variate normal distribution with mean equal
to ¢; and o;, variance of s? and s2, and a covariance of 0.

The amount to which € or ¢ is varied for each MCMC step (the difference between ¢,
and ¢; or between o, and 0;) depends on @), specifically, on s? and s2. These parameters
(s? and s2) are tuned such that approximately 3 of the moves are accepted, i.e. s? and
s2 are decreased if the acceptance rate of MCMC moves is less than £, and vice-versa.
This “tuning” period (also referred to as a “burn-in” period) is followed by a production
period where s? and s2 do not change.

Since €;1; and 0,4, are highly correlated with ¢; and o, it is important to “thin” the
MCMC ¢ and o parameter sets (eyiomc and oyewmc), ie. every j™ parameter set is stored.
The parameter sets sampled from MCMC (fyicnic, or specifically, eyieme and onvemce) pro-
vide a joint distribution for the feasible values of € and o (see Figure 7 and 12 in Section V).

Section SLIII of Supporting Information provides an MCMC example with some details
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(i.e. number of steps for burn-in and production, frequency that s? and s2 are updated,
resulting acceptance rates, etc.).

The integration required for robust posterior prediction (see Equations 11 and 15) is
approximated from the distribution of QoI values evaluated for each MCMC parameter
set, i.e. Qol(Oncmc|D, M) or the more succinct notation Qolycye. From Qolycne, stan-
dard statistical methods are used to approximate the Qo uncertainty at a desired credible
level. For example, the histograms and uncertainties reported in Section V are obtained
from distributions of p{3;cnvc, Piiomer and Zyicmce.

Because MCMC moves are accepted based on Equation 16 and the denominator in
Equation 12 (i.e. Pr(p®*, P5**|)\)) does not depend on € and o, the acceptance probability is
independent of Pr(pj**, P:**|\). Also, as mentioned previously, we use a weakly informa-
tive uniform prior over a larger than feasible range of parameters such that the acceptance
probability is independent of Pr(e,o|)). Furthermore, () is chosen to be symmetric such
that the () terms in the numerator and denominator of Equation 16 cancel. Therefore, the
probability of accepting €;,1 and 0,4 is based completely on the likelihood:

: L(€ig1, oigr| 7™, P, N)
— 1 v 17
oo ( T L, 04| g™, Pt ) 17)

where the likelihood, L(e, o, |pj**, P$*  \), is calculated from a normal distribution:

2
Sa Sa 1 - (piaStM(@ 07 )\’ Tksiat) B pialf)
L(€707 |p1 tapv ta )‘) - H exp ( 2 2 (Tsat)
b /2%5%7SM(T§at) SDsmk
I — (Ptle, o M TE) = Py
H exp ( ’SM(Q 2 T]Zat) 7k) (18)
- /QWS]%,SM(Tifat) SD,SM( 2

where the first and second products are over the experimental pj** and P:** data, respec-
tively, 75 is the saturation temperature that corresponds to the k™ data point, “SM”
refers to the surrogate model (see Section IV B) used to estimate pj** or P for a given
€,0, \,and T5*, and s%’SM is the combined variance of the experimental data and the sur-
rogate model. The variances are independent, meaning that the combined variance is the

sum of the experimental and surrogate model variances, i.e. s3 \; = s3 + &y
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B. Surrogate Model

A typical Markov Chain requires O(10* to 10°) Monte Carlo steps, where the likeli-
hood function must be evaluated at each step. Since L(6|D, M) depends on the force
field parameters (¢, 0, and \), an MCMC approach is computationally infeasible if com-
puting L(0|D, M) requires performing direct molecular simulations for every proposed
parameter set. Furthermore, propagation of uncertainty with robust posterior predic-
tion may require 0(102 to 103) Ovicvc parameter sets for adequate representations of
Pr(Qol|D, M) (see Equations 11 and 15). For these reasons, surrogate models to estimate

v

t t . .
Piziemcer Pedione and Zycuc are essential for this study.

1. Multistate Bennett Acceptance Ratio

We use a configuration-sampling-based surrogate model, where configurations are
sampled using a small group of reference parameter sets (6., consisting of €, oye, and
Aret)-* Specifically, NVT ensemble averages for the MCMC parameter sets (fyicnc) are
estimated by reweighting the sampled reference configurations using Multistate Bennett
Acceptance Ratio (MBAR).”> MBAR is a nearly exact surrogate model when a sulfficient
number of configurations sampled by 6,.; are similar to those that would be sampled with
direct simulation of #, which can be easily verified by statistical measures (see discussion
on number of effective samples in Reference 45). For this purpose, we use a single value

of €, with nine evenly spaced o, values for each fixed value of At = A

2. Isothermal isochoric integration

The properties that are estimated using MBAR are the departure internal energy
(UdP = U — U's, where U is the ideal gas internal energy) and the compressibility
factor (Z = ——, where R, is the universal gas constant). Isothermal isochoric integra-

pitg
tion (ITIC) converts the MBAR estimated UP and Z values at the 19 ITIC state points to

saturation temperatures (7°%), saturated liquid densities (pj*'), saturated vapor densities
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(p%), and saturated vapor pressures (P:*"). This is important since pi** and P:*' are the
data (D) included in L(6|D). Details for the combined implementation of MBAR and
ITIC (MBAR-ITIC) is discussed elsewhere.*

The ITIC equations are:

Adep pIC Z B 1 Tsat 1

= ——dp|r— Uderd | —— ) |- 19
R, Tt /0 P plr—rrr + /TIT (RgT) |p=pic (19)
sat ~_ sat Adep + Zsat —1—92B sat -1 5B ( sat) (20)

pV pl eXp R Tsat 1 p ° pV
Psat (1 4 B2psat 4 B (piat) ) iathTsat (21)

Psat

Zsat — v 22
1 pfathTsat ( )

where A% = A — A'® is the Helmholtz free energy departure from ideal gas for 7' = T
and p = p'© = p*t, Z5t is the saturated liquid compressibility factor, Bs is the second virial
coefficient, Bj is the third virial coefficient, T'" is the isothermal temperature, and p'©
the isochoric density. For details regarding the implementation of ITIC, see References 44—
46. As discussed in our previous work,* the B, and B; values found in Equations 20-21
are calculated using REFPROP correlations.! The use of REFPROP correlations introduces
a small bias in the resulting pi** and P:**, which is accounted for in the surrogate model
uncertainty.

The ITIC analysis provides VLE properties at only 5 saturation temperature values
(T34 ), while the experimental data set may have hundreds of saturation temperatures
(T). Although it is possible for D to consist of computed values from an empirical
correlation fit to experimental data (e.g. REFPROP, ThermoData Engine (TDE)), it is con-
sidered best practice for Bayesian inference that raw experimental data be used for D.
For this reason, we instead use empirical model fits to interpolate the ITIC VLE proper-
ties (T31c, PATric, and Pjic) so that pi** and P5** can be estimated at any value of 7%
Specifically, we fit P{ir and Tify to the Antoine equation:

ai

sat\ __
logyo(F5™) = ag + Tt 1 a,

(23)
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where q; are fitting parameters. We fit pjit; . and T to a combined rectilinear and

density scaling law expression:**
plsat == b() + bl(bg — Tsat) + b3(b2 - Tsat)ﬁ (24)

where b; are fitting parameters, and 5 = 0.326. by and b, only provide rough estimates of
the critical density (p.) and critical temperature (7;.). More reliable estimates of the critical
point require simultaneous fitting of p3*1;¢ to a similar expression, but this is unnecessary
for our purposes since D does not include the critical constants. Note that Equations 23-
24 are only used to interpolate ITIC values, and not to extrapolate to higher or lower 7.
These equations are reliable over the limited temperature range studied (0.45 < 7, <
0.85), whereas a wider temperature range would require more flexible models.”*

In summary, MBAR, ITIC, and Equations 23-24 enable prediction of pj* and P* over a
range of 7% for any ¢, 0, and A by performing a small number of direct NVT simulations
with only a few reference parameter sets. The non-bonded energies and forces, which
are required for MBAR and ITIC, are rapidly recomputed post-simulation with fyicmc for
each reference configuration (for details on so-called “basis functions” see Reference 55
and Section SLIV of Supporting Information in Reference 45). In total, this methodology
reduces the computational cost for computing L(6|D) by several orders of magnitude

compared to direct simulation of VLE, using Gibbs Ensemble Monte Carlo (GEMC) or
Grand Canonical Monte Carlo histogram reweighting (GCMC-HR).

3. Uncertainty model

Quantifying the surrogate model variance (s%y) is essential for evaluating L(6|D).
While only a brief description is provided here, details are found in Section SL.IV of Sup-
porting Information. Rather than performing a rigorous statistical assessment of MBAR,
ITIC, and Equations 23-24, we use an empirical approach for estimating s3,;. Specifi-
cally, we compute the deviation between the surrogate model estimates of pj** and P
for TraPPE-UA and Potoff with those reported in the literature for the respective force
fields obtained using GEMC'? or GCMC-HR."® Although this is a rough approximation
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for estimating s3,;, the benefit of this inter-laboratory comparison is that s, accounts for
“dark uncer’cainty”,56 i.e. uncertainties that arise from unknown sources which can lead to
unresolvable discrepancies between research groups.” These non-statistical uncertainties
are typically associated with different simulation packages, MD instead of MC, finite-size
effects, and post-simulation analysis (e.g. ITIC rather than HR).

As shown in Figure 6, the surrogate model uncertainty (ugy, reported at the 95 % con-
fidence level) for pi** is 0.3 % up to 0.757;. and increases linearly to 1.5 % at the maximum
T, The surrogate model uncertainty for P:*" is 20 % at the minimum 7,, and decreases
linearly to 7 % at 0.67;, where it remains constant for higher temperatures. Note that
these are conservative estimates of ugy, where other studies suggest smaller uncertain-
ties in MBAR and ITIC.* In fact, for the compounds investigated in this study, these
uncertainties are much larger than the experimental uncertainties (up, at the 95 % confi-
dence level)®® and, therefore, the size of the parameter space sampled by MCMC depends
almost entirely on ugy. The use of a conservative ugy model is intentional in this regard,
namely, so that the f\icnvc sampled points represent practically all of the feasible e and o

parameter sets (for a given \) optimized with pj** and P

V. RESULTS

In this section, we use MCMC and the aforementioned surrogate models to determine
the parameter uncertainty in CH; and CH, interaction sites of n-alkanes. As the simula-
tion results of branched alkanes are significantly less accurate than those of n-alkanes for
both VLE and high pressure properties (cf. Figures 4 and 5), we do not investigate the
uncertainties of CH and C interaction sites.

Since the common practice is to limit A to integer values (see Section II B), we perform
several independent MCMC runs using a single, fixed, integer value of A\. The Bayesian
inference analysis for CH; and CH, sites is performed sequentially. Specifically, rather
than sampling from a four-dimensional parameter space (i.e. ecn,, €cn,, 0cn,, and ocmu,
for a given value of Acy, and Acp,), we implement a pair of two-dimensional MCMC runs

by assuming the CHj; parameters from ethane are transferable to propane, n-butane, and

26



23— Experimental uncertainty (TDE)
---- Surrogate model uncertainty 201 «,
2.0} o Ethane, TRC source data . .

§ o Propane, TRC source data S G v
S 151 a n-Butane, TRC source data Ve = Ny

X v n-Octane, TRC source data y X 10 N

(o] N

g 1.0 g .
< 05 j'\;

S s 0

4 g

& 0.0 i
‘(‘;n: ol
w_s fvu|>'

Q Ql .

[ | et
. 0.5 4 —10 o

= (6.> R \4

-1.0 -
-15 -20{ v
0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Reduced Temperature Reduced Temperature

FIG. 6. Uncertainty assessment. Experimental (TDE) uncertainties are negligible compared to sur-
rogate model uncertainties. Panels a) and b) plot the uncertainties for pj** and P** with respect to
reduced temperature (absolute temperature divided by the REFPROP 7). Uncertainties are com-
puted at the 95 % confidence level using the respective s and s2,; values. Also included are per-
cent deviations between the REFPROP values'**~ and the experimental data used in Equation 18

to compute the likelihood for ethane, propane, n-butane, and n-octane (from the Thermodynamics

Research Center, TRC, source data).58

n-octane.

A. Ethane

Figures 7-10 present the MCMC results for ethane with 13 < Acy, < 18. Figure 7
demonstrates that the feasible region of ecy, depends strongly on Acp,, namely, larger
values of \cy, require larger values of ecy,. By contrast, we observe a much smaller shift
towards larger values of ocy, with increasing Acp,. This observation is consistent with

Reference 18.

Figures 8-9 compare the performance of different values of \ for pj*, P5**, and Z. No-
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FIG. 7. MCMC sampled parameter sets for different values of Acn, (ech, Momc and ocn, MoMc)-
ecH, is strongly correlated with Acn, and ocn,, while ocn, and Acn, are only weakly correlated.

The Potoff parameter set is included as a reference for Acp, = 16.'8

tice that the insets in Figure 8 plot the mean absolute percent deviation (MAPD%) to
quantify the goodness of fit to VLE data, while the inset in Figure 9 plots the average de-
viation (AD%) to demonstrate the positive bias in P"¢". Note also that because MAPD%
and AD% are percent deviations they are not directly related to the squared deviations of
the normal distribution used to compute the likelihood. We plot MAPD% and AD% as
these are easier to conceptualize and quantify.

Figure 8 Panel a) with the corresponding inset demonstrates that the best prediction
of pi* is obtained for higher values of Acy,. However, while the pi* MAPD% for Acy, =
15 to 18 are similar, Acy, = 13 and 14 have significantly higher pj** MAPD%. Figure 8
Panel b) demonstrates that Acp, < 14 and Acp, > 17 over- and under-predict P3*" at low
temperatures, respectively, while Acy, = 15 and 16 have the best trend for P;*". The inset
for Panel b) shows that A\cp, = 15 has the lowest MAPD% in P

Finally, Figure 9 demonstrates that all of the sampled ecy, mcmc and ocu, memc pa-

rameter sets for Aoy, > 14 over-predict Z at high temperatures and densities (P™"). As
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FIG. 8. Ethane VLE properties with respect to temperature for Acy, = 13 to 18. Different trends
are observed depending on the value of Acn,. Panels a) and b) plot the percent deviation from
REFPROP values!* for Aifieme and Psyjcye, Tespectively. Robust posterior prediction propa-
gates the joint parameter uncertainties from ecp, and ocp, to pj** and P5**. The upper and lower
lines for each A correspond to the 95 % credible interval obtained from Qolvicmc. Insets of Panels
a) and b) are histograms of the MAPD% in p{§jcye and Pi4cyc, respectively. Experimental data

used to compute the likelihood are included as black dots.?

expected, the larger the value of \cy,, the more the force field over-predicts PMeb.

While Figures 8-9 plot the results for pi**, P*', and Z individually, Figure 10 helps to vi-
sualize the overall performance of different values of Acy, for simultaneously predicting
all three quantities of interest. In Panel a), notice the trade-off between the MAPD% of p;**
and P:**. This compromise between two competing properties included in the objective
function, namely, p{* and P, is known as a Pareto front.>**’ The optimal location for a
Pareto front is the bottom left region of the plot (low MAPD% for both pj** and P:*") while
the worst location is the top right region (high MAPD% for both pj* and P:*"). Note that
the inset of Panel a) includes an approximate “overall” Pareto front that combines the

results for all values of Acp,. Although not depicted for visual clarity, the “L” shaped
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FIG. 9. Ethane isochore results for Acy, = 13 to 18. Inadequacies of the UA Mie \-6 potential are
observed in Z for the two highest isochore densities (p}° and p'°) by propagating the joint uncer-
tainties in ecn, and ocp, for different values of Ach,. The inset plots the distribution of average
deviation (AD%) in P88, ie. Pycmc for p = pi¢ and pi at T = T'". REFPROP uncertainty in

phish js 41 %.133

frontier for different colors/symbols demonstrates that each Acp, value also has its own
Pareto front. Because the overall Pareto front consists of points from the 15 < Acp, < 17
Pareto fronts, the Pareto optimal Acy, value is either 15, 16, or 17, depending on the rela-
tive weight assigned to pi** and P5*'. By contrast, since the Acy, = 13, 14, and 18 Pareto
fronts are completely inside the overall Pareto front, these A\cy, values are not optimal,
regardless of the weighting.

Finally, and most importantly for our purposes, Figure 10 Panels b) and c) demonstrate
the increase in MAPD% for pj** and P$** that accompanies more accurate prediction of
Phieh For example, although Ay, = 15, 16, and 17 are the best values based on VLE data,
they over-predict P"&" by around 10 %, 14 %, and 18 %, respectively. By contrast, while
Ach, = 13 is the most accurate for P82, the MAPD% for pj** and P are 4 and 40 times

larger than the respective minimum MAPD%. These results support the fundamental
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FIG. 10. Overall performance of Acp, = 13 to 18 for ethane. MCMC confirms that accurate
prediction of VLE leads to large deviations in pressures for supercritical fluids and compressed
liquids. Panel a) plots the mean absolute percent deviation (MAPD%) of pfj&[CMC and Pji\t/[CMC.
Panels b) and c) plot the average deviation (Alg;/o) in Phigh with respect to MAPD% of Piemc
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claim of this work, namely, that the UA Mie \-6 potential cannot adequately predict both
VLE and high pressures for supercritical fluids and compressed liquids.

Figure 11 provides statistical evidence for each value of A by comparing their respec-
tive Bayes factors (normalized with respect to A = 14) based solely on pj** and P:**. Bayes
factors from 1 to 3.2, 3.2 to 10, 10 to 32, 32 to 100, and greater than 100 are typically classi-
tied as “not substantial”, “substantial”, “strong”, “very strong”, and “decisive” evidence,
respectively.®' Panel a) shows that, with 25 = 180, there is “decisive” evidence against
the use of A\cy, = 13 for predicting p{* and P5**. As Acu, = 13 is the only value that
predicts Pe! within the REFPROP uncertainty, we conclude that no set of ecp,, ocn,, and

Acn, can predict both VLE and P,

a) CHs 3.6 35 b) CH,
15.8
3 15
— —
8 8
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L L
" L~ 10
(] (]
> >
© ©
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0
15 16 17 18 14
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FIG. 11. Bayes Factor (evidence) for different values of A\cn, (Panel a) and Ach, (Panelb). Evidence
supports A\cu, = 15 or 16 and Ach, = 16 over A\cu, = 14. CHs values depend only on ethane while
CH; values are based on propane, n-butane, and n-octane. Note that all values are normalized

with respect to A = 14.

In addition, there is “very strong” evidence that the 18-6 potential is not justified by

VLE data (2 =36). The evidence in favor of the 15-6 or 16-6 potentials over the 14-

6 and 17-6 potentials is not as definitive, although it is still considered “substantial”

(25,35 35 and 25 > 3.5). By contrast, the evidence for Acy, = 15 instead of Acy, = 16

is “not substantial” (% ~ 1.03).
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It is important to mention that these Bayes factors depend primarily on the VLE data
and the s}, q,; model used to compute L(6|D). We use a very conservative uncertainty
model for pj** and P3*' (see Figure 6) so that our MCMC samples cover a large region of
parameter space. This is done primarily to demonstrate that the UA Mie \-6 is inadequate
for predicting VLE and P"&". However, a less conservative uncertainty model would
provide more convincing evidence regarding the optimal A value based solely on VLE
data.

Also, ITIC is limited to 7% < 0.857T.. Therefore, it is possible that the optimal value
of Acu, could be deduced (i.e. larger Bayes factors) if higher temperature VLE data were
included (say from 260 to 290 K). Based on the observed bias in pj** at higher tempera-
tures (240 to 260 K) for A\cuy, = 14, it appears that higher temperature VLE data would
strengthen the counter evidence against the 14-6 potential. It is unclear whether higher
temperature data would support the 15-6 or 16-6 potential, although the optimal Acy, is
likely a non-integer value between 15 and 16. Implementing MBAR with GCMC may be
necessary to include VLE data from 0.85 < 7' < 0.95.

B. Larger n-alkanes

The conclusions regarding the UA Mie \-6 potential for ethane are generally appli-
cable to larger n-alkanes. Specifically, we observe that improved accuracy in predicting
VLE requires a larger value of A\cy,. However, this improvement comes at the cost of
significantly over-predicting P&, Figure 12 presents the MCMC sampled ecp, and ocp,
parameter sets with Panels a) and b) corresponding to Acu, = 16 and Acn, = 14, respec-
tively. Note that these results were obtained using fixed values of ecy,, ocn,, and Acp,,
where A\cu, = Acn,. The values of ecy, and ocp, are the maximum likelihood parameter
set from ethane for the corresponding Acy, value.

Notice in Figure 12 that the MCMC sampled ecy, and ocpn, parameter sets, for a given
value of A\cy,, overlap considerably for propane, n-butane, and n-octane. These joint dis-
tributions provide statistical evidence in favor of the common assumption that CH, pa-

rameters are transferable between different n-alkanes. To further demonstrate this point,
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FIG. 12. High pressure performance of A\cy, = 16 (Panel a) and 16 (Panel b) for propane, n-
butane, and n-octane. MCMC sampled ecn, and och, parameter sets result in large AD% for
Phigh - Contours are the AD% in P! relative to the REFPROP values, where the “REFPROP
uncertainty” region represents -1 % deviation.!*% Panel a) includes the Potoff parameter set as

a reference for Aoy, = 16.'8

Figure 12 includes the MCMC results when the posterior is based on the combined likeli-
hoods from all three compounds, referred to as “MCMC transferable.”

Panel a) shows that the Potoff CH, parameter set is within the MCMC sample regions
for Acu, = 16. The same result was also observed for ethane (see Figure 7). This suggests
that the Potoff CH; and CH, parameters are supported by the VLE data used in this
study, even though the Potoff force field was parameterized using VLE data in a higher
temperature range (0.6 < 75 < 0.95).

Also, note that the uncertainty in the parameters is largest for propane and smallest for
n-octane. Therefore, the sensitivity of pj** and P:**, with respect to the CH, parameters,
increases with increasing number of CHj; interaction sites. Although this result is fairly
intuitive, it is a valuable insight when selecting a training set of molecules for force field

development. For example, notice that the MCMC transferable region is almost identical
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to that of n-octane, which shows that propane and n-butane data provide relatively little
additional information that is not contained in the n-octane data.

Most importantly, for the purposes of this study, the contours in Figure 12 demon-
strate that the MCMC sampled ecpn, and ocp, parameter sets have a strong positive bias
(i.e. large AD%) in PMsh. Specifically, Acy, = 16 and Acy, = 14 have AD% of approx-
imately 16 % to 21 % and 10 % to 15 %, respectively, much greater than the REFPROP
uncertainty of around 1 %. Furthermore, because the 0 % contour is roughly parallel to
the MCMC region and found at much lower ecy, values, it is necessary to sacrifice consid-
erable accuracy in pj** and P in order to accurately predict P"s". It is interesting that,
for corresponding values of \, the AD% for these larger n-alkanes is higher than that of
ethane. This suggests that longer chain-lengths, with a UA Mie \-6 force field, exacerbate
the erroneous Z trend at high pressures.

Although the AD% in P"e" is slightly lower for Acp, = 14 than for A\cu, = 16, the UA
Mie 14-6 potential is significantly less reliable for VLE. Figure 11 demonstrates that there
is “strong” evidence for A\cpy, = 16 over Acy, = 14, based on VLE data. Note that the
evidence in Figure 11 for the A value of CH, sites is stronger than that for the CHj sites.
This suggests that the ethane pj** and P:*' results are less sensitive to A than the larger
n-alkanes and/or that the ethane VLE data contains less information than the combined
data of propane, n-butane, and n-octane. In conclusion, these results suggest that neither
UA Mie 16-6 or 14-6 force fields are capable of predicting VLE and PpT for supercritical

fluids and compressed liquids of n-alkanes.

VI. DISCUSSION
A. Recommendations

Although the UA Mie \-6 potential is not quantitatively reliable at high pressures, it
may still be of use for FEOS parameterization when considering the insight gained in
this study. For example, since the Potoff force field consistently over-predicts high pres-

sures, a non-linear FEOS optimization could utilize the simulation results as an upper
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constraint for the FEOS pressure.’ Furthermore, the primary purpose to include molecu-
lar simulation data for FEOS development is to increase the range of validity by ensuring
good behavior of the FEOS at high temperatures and pressures. As FEOS are based on
empirical equations with 50 to 100 fitting parameters, even an inaccurate force field has
a more sound theoretical basis. Therefore, the UA Mie \-6 simulation output for a given
property should not demonstrate non-physical oscillations, inflection points, derivative
sign-changes, etc., which can plague a poorly-fit FEOS.

Essentially, whether or not a FEOS should be developed using a hybrid data set con-
sisting of UA Mie \-6 simulation results depends on the quality and quantity of available
experimental data. If the data cover a wide range of state points and properties, it is
possible that the UA Mie \-6 potential may still be useful, despite the systematic devi-
ations at high pressures. By contrast, if the experimental data are limited such that the
FEOS depends almost entirely on the molecular simulation results, the UA Mie \-6 force
tield will lead to large deviations at high pressures. Therefore, in this scenario, we ad-
vise against the use of UA Mie \-6 force fields when developing a FEOS for normal and
branched alkanes. For this purpose, we recommend further investigation of alternative

potentials with a softer repulsive barrier and a more sound theoretical basis, e.g. Buck-

28-30 44,62,63

ingham exponential-6, modified-Morse,”~" or an extended Lennard-Jones.

B. Limitations

There are some caveats to the primary conclusion from this study that UA Mie \-6
force fields parameterized with VLE data should not be used to develop fundamental
equations of state for normal and branched alkanes. The main limitation is that the poor
extrapolation at high pressures is based solely on the trend of Z with respect to inverse
temperature. By contrast, the simulation values that are typically included in hybrid data
sets used to generate FEOS are derivatives of the departure (or residual) Helmholtz free

energy with respect to inverse temperature and /or density:" !

Aderp P — (1/T)z yw (25)
my et = P o) T)=ap
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where 2 and y are integer values and the derivative is of order 2 +y. There are advantages
of using AJ for developing FEOS, as this approach eliminates redundant information
found in traditional macroscopic properties.**” For example, the following expressions
demonstrate the interdependency of the properties we computed, namely, Z and U9°P

with their derivatives along isochores and isotherms:®

Z =1+ A" (26)
1 ( -0z . .
- (—a a /T)) =1+ ApP — AP (27)
P
Udep .
g
1 (aUdep> d
— = — A (29)
R, \ 0T ), 20
p (g—f) = 14 245 + AP (30)
T

However, at least two reasons exist as for why the conclusions of this study are not
based on AJ. First, with the exception of ms2,°* we are not aware of any open-source
simulation package that readily provides AJP. As ms2 is currently limited to small rigid
molecules it is not amenable to the systems of interest. In addition, macroscopic proper-
ties, such as Z and UY°P (with their respective derivatives), are more readily understood
and visualized than AJ. It is also easier to quantify the impact of Z and U on process
design than AJ®. For example, as demonstrated in Reference 8, an inaccurate predic-
tion of some AP does not necessarily result in poor prediction of PpT" behavior or heat
capacities.

Although we do not perform a detailed investigation of AJ*, we have indirectly in-
vestigated each of the A terms in Equations 26-30. For example, Sections III and V
present Z and, by inspection, the slope of Z with respect to 1/T" at constant p. Since
these properties are equivalent to Equations 26 and 27, respectively, Sections III and V
indirectly focus on two of the Helmholtz derivatives, namely, A3 and AS. Section SL.V
of Supporting Information also demonstrates some deviations in U9P, the slope of Ud°P

with respect to 1" at constant p, and the slope of Z with respect to p at constant 7', which
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are equivalent to Equations 28-30. Although these additional properties provide insight
regarding A, A3, AS?, and ASSP, unfortunately, the results are less conclusive due to

the relatively large uncertainties in the REFPROP values, ca. 5 % and 10 % for U%P and

<%Ug;)> , respectively. Furthermore, the relationship between Equations 28-30 and the
& p

repulsive barrier, ), is not obvious from these results. Future work should investigate
more thoroughly the adequacy of UA Mie -6 (or other) force fields to predict U%°P and
isochoric/isobaric heat capacities at high temperatures and pressures.

Another potential limitation is that we utilize a single layer Bayes model as opposed to
a hierarchical model, where the posterior is proportional to multiple priors that depend
on the parameters from different levels of the hierarchy (for a more detailed discussion
see References 31 and 51). Wu et al. demonstrate the need for hierarchical models when
the data set, D, contains discrepancies, i.e. internal inconsistencies. However, since we
use a conservative estimate for the surrogate model uncertainty, i.e. ugy > up, any dis-
crepancies in the VLE data should not affect the parameter uncertainties. A hierarchical
approach is also useful when accounting for model inadequacies, i.e. when the force field
is not capable of representing multiple data types. A hierarchical method should thus
be favored if determining the parameter uncertainty when simultaneously considering
p;?t, Psat and Phieh. Furthermore, a hierarchical model should be used if the parameters
are not transferable between molecules, e.g. the Potoff CH and C parameters for “short”
and “long” branched alkanes. However, such a hierarchical approach is unnecessary for
our purposes, since the transferable UA Mie -6 force field for n-alkanes is capable of

reproducing pi** and P**, which are the only properties included in D.

VII. CONCLUSIONS

Recently, molecular simulation results at extreme temperatures and pressures have
supplemented experimental data when developing fundamental equations of state for
compounds with limited experimental data. For this hybrid data set approach to be use-
ful, it is imperative that the force field be reliable and transferable over different PpT

conditions. Unfortunately, literature united-atom force fields that are highly accurate for
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estimating VLE properties of normal and branched alkanes have systematic deviations
in Z at non-VLE conditions. Bayesian inference suggests that the UA Mie A\-6 model
type is not adequate for simultaneously predicting pi*, P5*, and P"s". In the case of
ethane, evidence from VLE data supports A = 15 or 16, while Z at high pressures re-
quires A = 13. A similar trend is observed for larger n-alkanes. Specifically, evidence
from VLE data supports A = 16, while we observe only slight improvement in Z at high
pressures for A = 14. Therefore, while considerable improvement in VLE is observed for
the Mie \-6 potential over the traditional Lennard-Jones 12-6, the use of A > 12 does not
appear to have physical/theoretical justification but, rather, is simply an empirical rem-
edy that performs well for VLE. For these reasons, we recommend that alternative force
tields be considered for developing FEOS of normal and branched alkanes, which utilize
anisotropic-united-atom/all-atom models and/or more physically realistic non-bonded

potentials.
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