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Molecular simulation results at extreme temperatures and pressures can supple-

ment experimental data when developing fundamental equations of state. Since

most force fields are optimized to agree with vapor-liquid equilibria (VLE) prop-

erties, however, the reliability of the molecular simulation results depends on the

validity/transferability of the force field at higher temperatures and pressures. As

demonstrated in this study, although state-of-the-art united-atom Mie λ-6 poten-

tials for normal and branched alkanes provide accurate estimates for VLE, they

tend to over-predict pressures for dense supercritical fluids and compressed liq-

uids. The physical explanation for this observation is that the repulsive barrier

is too steep for the “optimal” united-atom Mie λ-6 potential parameterized with

VLE properties. Bayesian inference confirms that no feasible combination of non-

bonded parameters (ε, σ, and λ) is capable of simultaneously predicting saturated

vapor pressures, saturated liquid densities, and pressures at high temperatures

and densities. This conclusion has both practical and theoretical ramifications, as

more realistic non-bonded potentials may be required for accurate extrapolation to

high pressures of industrial interest.
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I. INTRODUCTION

An accurate understanding of the relationship between pressure (P ), density (ρ), and

temperature (T ) and caloric properties (such as internal energy U ) for a given compound

is essential for designing industrial chemical processes. Fundamental equations of state

(FEOS), such as those based on the Helmholtz free energy, are a powerful approach for

estimating PρT behavior and caloric properties. For example, the National Institute of

Standards and Technology (NIST) Reference Fluid Properties (REFPROP) currently pro-

vides FEOS for approximately one hundred fifty chemical species.1 Unfortunately, most

compounds do not have sufficient reliable experimental data covering a wide range of

pressures, densities, and temperatures to develop a highly-accurate FEOS. Since FEOS

are semi-empirical and have 50 to 100 fitting parameters, the FEOS predictions can result

in large errors at temperatures and pressures that are significantly higher than those used

in parameterizing the FEOS, which are typically near or below the critical temperature

and pressure. Therefore, improvement in an FEOS at high temperatures and pressures

necessitates additional data for those conditions.

The lack of experimental data at high temperatures and pressures, especially, is at-

tributed to the inherent safety, cost, and complexity of such experiments. By contrast,

molecular simulation (i.e. Monte Carlo, MC, and molecular dynamics, MD) methods at

high temperatures and pressures do not suffer from any of these limitations. Therefore,

in principle, molecular simulation can aid in developing FEOS.2–6 Although it is possi-

ble to fit an FEOS to just molecular simulation results, the recommended approach is to

implement hybrid data sets, i.e. from both experiment and molecular simulation.7

For example, several recent studies supplement experimental data with molecular sim-

ulation results at temperatures and pressures beyond the range of available experimental

temperatures and pressures.8–11 Specifically, experimental data were available for temper-

atures and pressures up to 580 K and 130 MPa, 590 K and 180 MPa, 450 K and 2 MPa, and
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560 K and 100 MPa for hexamethyldisiloxane,8 octamethylcyclotetrasiloxane,9 ethylene

oxide,11 and 1,2-dichloroethane,10 respectively. Molecular simulations were performed

for these compounds at temperatures and pressures up to 1200 K and 600 MPa, 1200 K

and 520 MPa, 1000 K and 700 MPa, 1000 K and 1200 MPa, respectively. The inclusion of

these simulation results improved the performance of the FEOS at extreme temperatures

and pressures.

While previous studies have focused on small/hazardous compounds, the present

study investigates normal and branched alkanes. Hydrocarbons are a fundamental feed-

stock for many petrochemical processes and, therefore, a large body of experimental data

exist covering a wide range of PρT phase space for some alkanes. For these reasons,

REFPROP provides highly-accurate FEOS for several hydrocarbons, most of which are

shorter-chains (less than 20 carbons) with limited branching (i.e. only methyl branches).

The use of hybrid data sets is an appealing approach to develop FEOS for industrially rel-

evant hydrocarbons with minimal experimental data, i.e. those with longer chain-lengths

or a higher degree of branching.

The primary limitation for implementing molecular simulation at extreme tempera-

tures and pressures is whether or not the force field, which is typically parameterized

using VLE data, is reliable at those conditions. For example, it was demonstrated that

VLE-optimized force fields for small compounds, such as noble gases, hydrogen sulfide,

and hydrogen chloride, do adequately represent the homogeneous fluid region.7 In this

study, we investigate how well the traditional force fields for predicting VLE of normal

and branched alkanes extrapolate to higher temperatures and pressures, i.e dense super-

critical fluids and compressed liquids. This analysis is performed for four normal and

four branched alkanes by comparing the simulated compressibility factor (Z) with the

REFPROP correlations. Note that the simulation conditions do not go beyond the range

of REFPROP validity for the respective compounds, so that we can assume the REFPROP

correlations are reliable.

The most accurate force fields for estimating hydrocarbon VLE properties, such as

ρsatl and P sat
v , are the Transferable Potentials for Phase Equilibria (TraPPE)12,13 (and, es-

pecially, the recent TraPPE-214), Errington,15 fourth generation anisotropic-united-atom
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(AUA4),16,17 Potoff,18,19 and Transferable anisotropic Mie potential (TAMie).20,21 Note that

each is either an united-atom (UA) or an anisotropic-united-atom (AUA) force field. In

contrast with the more computationally expensive all-atom (AA) approach, both UA and

AUA models group the hydrogen interaction sites with their neighboring carbon atom.

Although an AA force field should, in principle, be able to yield more accurate VLE re-

sults, it is much easier to locate the “true” optimal parameter set for UA and AUA force

fields since fewer (highly correlated) parameters are optimized simultaneously.

In addition to the division between UA and AUA force fields, the existing force fields

differ in the non-bonded functional form and corresponding parameters. The TraPPE,

TraPPE-2, and AUA4 force fields use a Lennard-Jones (LJ) 12-6 potential, while the Potoff

and TAMie force fields use the Mie λ-6 (or generalized Lennard-Jones) potential, and the

Errington force field uses the Buckingham exponential-6 (Exp-6) potential. The Mie λ-6

potential is:22

uvdw(ε, σ, λ; r) =
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energy of the potential at the minimum
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where uvdw, ε, and r are the same as in Equation 1, rmin is the distance that corresponds

to the minimum in the potential (i.e uvdw(rmin) = −ε), α is a Buckingham exponential-6

parameter, and rmax is the smallest positive value for which duvdw

dr
= 0.

The three-parameter Mie λ-6 and Exp-6 potentials are more flexible than the two-

parameter LJ 12-6 potential as an additional adjustable parameter controls the steepness

of the repulsive barrier. Note that the Mie λ-6 potential reduces to the LJ 12-6 potential

for λ = 12. Therefore, the LJ 12-6 potential can be considered a special subclass of the Mie

λ-6 potential.
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Previous work demonstrated that the UA LJ 12-6 potential cannot adequately estimate

both ρsatl and P sat
v for n-alkanes.23,24 For this reason, the TraPPE-UA force field was primar-

ily developed to agree with ρsatl (and the critical temperature, Tc).12 By contrast, accurate

prediction of both ρsatl and P sat
v over a wide temperature range is possible by varying the

repulsive exponent of the LJ potential (i.e. the Mie λ-6 potential). Although an attractive

exponent of 6 has a strong theoretical basis, λ = 12 (LJ 12-6) is a historical artifact that was

chosen primarily for computational purposes (see pages 18, 140 to 143 of Reference 25).

Typically, when parameterized to VLE data, the optimal value of λ is greater than 12

with a corresponding increase in the well depth (ε). Specifically, for most hydrocarbons,

the Potoff UA force field18,19 uses λ = 16 while the TAMie force field20 uses λ = 14.

Gordon also demonstrated that reliable viscosities can be obtained from a UA Mie λ-6

model for n-alkanes by using λ = 14 and λ = 20 for the CH3 and CH2 sites, respectively

(note the subtle difference in how Gordon defines the Mie λ-6 potential, a.k.a. “mod-n-

6”).26 However, it is important to note that Gordon and Galliéro et al. report λ values of

11 and 10, respectively, for UA methane when optimized with viscosity data.26,27

There are some theoretical concerns that increasing the repulsive exponent might have

some undesirable consequences, especially at high pressures, where particles will spend

more time with very short pairwise distances than at VLE conditions. For example, Refer-

ences 28–30 demonstrate that neither an all-atom LJ 12-6 or an all-atom LJ 9-6 is adequate

to reproduce high-level ab initio calculations of n-alkanes ranging from methane to n-

butane. The studies of Rowley et al. suggest a modified-Morse potential is necessary for

accurate representation of ab initio dimer energies.28,29 Hayes et al. confirms these results

while also emphasizing that the short-range repulsive forces, which are most important

when computing high pressures in molecular simulation, are poorly represented with an

AA LJ 12-6 or an AA LJ 9-6 model.30 Specifically, the LJ 12-6 potential is too steep, and

only slight improvement in the repulsive region is observed for the LJ 9-6 potential. Note

that Hayes et al. also highlights deficiencies in the repulsive region for the Buckingham

exponential-6 potential.

Recently, Kulakova et al. used Bayesian inference to conclude that experimental data

for argon, specifically the liquid and vapor radial distribution functions at varying tem-
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peratures and densities, support λ values between 6 and 10, while argon dimer ab initio

energies support λ values between 12 and 14.31 They suggest that these larger values of λ

should not be used for liquid phase simulations. By contrast, two other studies of noble

gases, including argon, support λ ≥ 12.27,32 Specifically, Mick et al. reports a 13-6 poten-

tial for argon, while Galliéro et al. states that the 12-6 potential is superior for argon than

the 10-6, 14-6, 16-6, 18-6, and 20-6 potentials. The likely explanation for this discrepancy

is the choice of experimental data. The optimal value of λ from Kulakova et al. is based

on the radial distribution function, while Galliéro et al. used viscosity and pressure, and

Mick et al. utilized VLE data.

Structural properties, such as the radial distribution function, and ab initio calculations

provide considerable insight into the true repulsive barrier.27,31 However, the “correct”

value of λ does not guarantee adequate prediction of VLE and/or PρT behavior. This

is primarily because the Mie λ-6 potential is only an approximation to the real potential

and, thus, it is not flexible enough to agree with both the repulsive and attractive regions.

Instead, only the region that is most sensitive to the target experimental data will be ad-

equately represented. For example, high pressure properties are sensitive to extremely

close-range interactions (r < 0.8σ), while such distances are rarely sampled with VLE

simulations and, thus, do not impact VLE properties. Furthermore, the “optimal” λ is

an “effective optimal” as it accounts for numerous model assumptions, such as pair-wise

additivity (i.e. excluding three-, four-, etc. body interactions) or the lack of explicit hy-

drogens. For these reasons, despite theoretical evidence that the repulsive barrier should

be softer than λ = 12, a UA Mie λ-6 potential is simply not capable of predicting VLE

properties of ethane for λ < 12 (see Figures 1 and 2 of Reference 18).

The purpose of this study is to determine whether or not the UA Mie λ-6 model is

adequate for predicting both VLE and PρT at high temperatures and pressures for alka-

nes. Although the theoretical results discussed previously for noble gases and all-atom

n-alkane models are not necessarily applicable to UA models for normal and branched

alkanes, the working hypothesis based on the literature is that a UA Mie λ-6 potential pa-

rameterized with VLE data is too repulsive and, thus, performs poorly at high pressures.

This assessment is of practical engineering importance for deciding whether or not UA
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Mie λ-6 force fields should be used when developing fundamental equations of state for

alkanes based on hybrid data sets.

The outline for this study is the following. Section II discusses the simulation and force

field details. Section III is a case study for normal and branched alkanes using the exist-

ing force fields developed based on VLE properties. Section IV explains how Bayesian

inference is employed to investigate the adequacy of the UA Mie λ-6 potential. Section V

presents the results from the Bayesian analysis with recommendations and limitations in

Section VI. Section VII reports the primary conclusions of this study.

II. MOLECULAR DYNAMICS

A. Simulation Details

Four normal and four branched alkanes of varying chain-length and degree of branch-

ing are simulated in this study. Specifically, we simulate ethane, propane, n-butane,

n-octane, isobutane (2-methylpropane), isohexane (2-methylpentane), isooctane (2,2,4-

trimethylpentane), and neopentane (2,2-dimethylpropane). These compounds were cho-

sen to represent a diverse set of the normal and branched alkanes available in REFPROP.1,33–38

Molecular dynamics simulations for this study are performed in the NV T ensemble

(constant number of molecules, N , constant volume, V , and constant temperature, T ) us-

ing GROMACS version 2018.39 Each simulation uses the velocity Verlet integrator with

a 2 fs time-step,40 1.4 nm cut-off for non-bonded interactions with tail corrections for en-

ergy and pressure, Nosé-Hoover thermostat with a thermostat time constant of 1 ps,41 and

fixed bond-lengths constrained using LINear Constraint Solver (LINCS) with a LINCS-

order of eight.42,43 Note that GROMACS non-bonded tail corrections assume that the long-

range contribution from the r−λ term is negligible compared to the r−6 term. A compar-

ison between the energies and pressures obtained with GROMACS and other (slower)

simulation packages verified that the small error introduced with this approximation

does not significantly affect our results. For this reason, we do not attempt to modify the

GROMACS default tail correction values to include the r−λ contribution. Also, Coulom-
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bic interactions are not computed as none of the force fields require partial charges for the

compounds studied.

The equilibration time is 0.1 ns for ethane and propane, 0.2 ns for n-butane, and 0.5 ns

for all other compounds. The production time is 1 ns for ethane, 2 ns for propane and

n-butane, and 4 ns for all other compounds. Replicate simulations are performed for n-

octane to validate that a single MD run of this length agrees with the average of several

replicates, to within the combined uncertainty. A system size of 400 molecules is used for

ethane, propane, and n-butane, while all other compounds use 800 molecules. Example

input files are provided as Supporting Information.

The specific state points for each compound studied are depicted in Figure 1 (for tab-

ulated values, see Section SI.I of Supporting Information). These state points correspond

to the recommended conditions for the isothermal isochoric integration (ITIC) algorithm

discussed in Section IV.44–46 Simulations are performed along a supercritical isotherm

with a reduced temperature ≈ 1.2 (Tr ≡ T
Tc

, where Tc is the critical temperature) and five

saturated liquid density isochores (ρIC). Nine densities are simulated along the supercrit-

ical isotherm (T IT). Simulations along each isochore are performed at three temperatures,

namely, T IT, the REFPROP saturation temperature (T sat), and 2/(1/T IT + 1/T sat). Since

five of the isotherm densities correspond to the five different ρIC values, a total of 19 sim-

ulations are performed for each compound and force field.

B. Force field

A united-atom (UA) or anisotropic-united-atom (AUA) representation is used for each

compound studied. UA models assume that the UA interaction site is that of the carbon

atom, while AUA models assume that the AUA interaction site is displaced from the

carbon atom towards the hydrogen atom(s). Note that TraPPE and Potoff are UA force

fields while the TraPPE-2, Errington, AUA4, and TAMie are AUA force fields.

The UA and AUA groups required for normal and branched alkanes are sp3 hy-

bridized CH3, CH2, CH, and C sites. For most literature models, a single (transferable)

parameter set is assigned for each interaction site. However, two exceptions exist for
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FIG. 1. State points simulated for ethane, propane, n-butane, n-octane, isobutane, isohexane, isooc-

tane, and neopentane. A total of 19 simulations are performed: nine densities along the supercrit-

ical isotherm and two temperatures along five liquid density isochores. Filled symbols and solid

lines correspond to n-alkanes, while empty symbols and dashed lines correspond to branched

alkanes. The REFPROP saturation curve for each compound is included as a reference.1,33–38

the force fields studied. First, TAMie implements a different set of CH3 parameters for

ethane. Second, Potoff reports a “generalized” and “short/long” (S/L) CH and C param-

eter set. The Potoff “generalized” CH and C parameter set is an attempt at a completely

transferable set. However, since the “generalized” parameters performed poorly for

some compounds, the S/L parameter set was proposed, where the “short” and “long”

parameters are implemented when the number of carbons in the backbone is ≤ 4 and

> 4, respectively.

A fixed bond-length is used for each bond between UA or AUA sites. Although TAMie

is an AUA force field, only the terminal CH3 sites have a displacement in the interaction

site. For example, Figure 2 depicts both the UA and AUA representations of isooctane

when only terminal CH3 interaction sites are displaced from the carbon center. This con-

vention is much simpler to implement than other AUA approaches (such as AUA4) where
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non-terminal (i.e. CH2 and CH) interaction sites also have a displacement distance. For

this reason, we do not attempt to simulate the AUA4 force field for any compounds con-

taining CH2 and CH interaction sites. For the compounds and force fields simulated, the

anisotropic displacement in a terminal interaction site (i.e. CH3) is treated simply as a

longer effective bond-length (see Table I). The bond-length for all non-terminal sites is

0.154 nm, except for the Errington Exp-6 force field which uses 0.1535 nm for CH2-CH2

bonds.

CH

C
CH2

CH3

CH3

CH3 CH3

CH3

AUA
UA
Both

FIG. 2. Comparison between AUA and UA representations of isooctane. AUA force fields have

the same complexity as UA force fields if only the terminal (CH3) sites have an anisotropic dis-

placement, i.e. a longer effective bond-length. Note that the AUA4 approach requires a more

complicated displacement of CH2 and CH sites than that depicted here.16

The angle and dihedral energies are computed using the same functional forms for

each force field. Angular bending interactions are evaluated using a harmonic potential:

ubend =
kθ
2
(θ − θ0)2 (3)

where ubend is the bending energy, θ is the instantaneous bond angle, θ0 is the equilibrium

bond angle (see Table II), and kθ is the harmonic force constant with kθ/kB = 62500 K/rad2

for all bonding angles, where kB is the Boltzmann constant.

Dihedral torsional interactions are determined using a cosine series:

utors = c0 + c1[1 + cosφ] + c2[1− cos 2φ] + c3[1 + cos 3φ] (4)

where utors is the torsional energy, φ is the dihedral angle and cn are the Fourier constants
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TABLE I. Effective bond-lengths in units of nm for terminal (CH3) UA or AUA interaction sites.

Empty table entries for Exp-615 and TraPPE-214 denote that the force field does not contain the

corresponding interaction site type. Empty table entries in AUA416 arise because this force field

uses a more complicated construction than the simple effective bond-length approach. Specifically,

AUA4 requires CH2 and CH interaction sites that are not along the C-C bond axis.

Bond TraPPE, Potoff TAMie Exp-6 AUA4 TraPPE-2

CH3-CH3 0.154 0.194 0.1839 0.1967 0.230

CH3-CH2 0.154 0.174 0.1687 – –

CH3-CH 0.154 0.174 – – –

CH3-C 0.154 0.174 – 0.1751 –

(see Table III). Note that the Errington cn values for CHi-CH2-CH2-CHj are a factor of two

less than those reported in Table III.15

TABLE II. Equilibrium bond angles (θ0).13 CHi and CHj represent CH3, CH2, CH, or C sites.

Bending sites θ0 (degrees)

CHi-CH2-CHj 114.0

CHi-CH-CHj 112.0

CHi-C-CHj 109.5

Non-bonded interaction energies and forces between sites located in two different

molecules or separated by more than three bonds are calculated using either a Lennard-

Jones 12-6, Mie λ-6, or Buckingham Exponential-6 potential (see Equations 1-2). Figure 3

compares the energy and force of the LJ 12-6, Mie 9-6, Mie 16-6, and Exp-6 (for α = 16

and 22) using the same values of ε and rmin.

The non-bonded LJ 12-6 or Mie λ-6 force field parameters for TraPPE, TraPPE-2, Potoff,

AUA4, and TAMie are provided in Table IV. Note that, for computational purposes, a
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TABLE III. Fourier constants (cn/kB) in units of K.13 CHi and CHj represent CH3, CH2, CH, or C

sites.

Torsion sites c0/kB c1/kB c2/kB c3/kB

CHi-CH2-CH2-CHj 0.0 355.03 -68.19 791.32

CHi-CH2-CH-CHj -251.06 428.73 -111.85 441.27

CHi-CH2-C-CHj 0.0 0.0 0.0 461.29
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FIG. 3. Comparison between Equations 1 and 2. Short distance forces increase and energy wells

become more narrow with increasing λ and α. Panels a) and b) plot the reduced energy (U?) and

force (F ?) with respect to the reduced distance (r?), where the energy and distance are scaled by

ε and rmin, respectively.

common practice to date is to use integer values of λ in Equation 1.

The Errington Exp-6 non-bonded parameters are found in Table V. Note that Errington

reported values for ε, σ, and α. We compute rmin and rmax to facilitate compatibility with

Equation 2 and future validation of our results.

Non-bonded interactions between two different site types (i.e. cross-interactions) are
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TABLE IV. Non-bonded (intermolecular) parameters for TraPPE12,13 (and TraPPE-214), Potoff,18,19

AUA4,16,47 and TAMie20,21 force fields. The “short/long” Potoff CH and C parameters are in-

cluded in parentheses. The ethane specific parameters for TAMie are included in parentheses.

TraPPE (TraPPE-2) Potoff (S/L)

United-atom ε/kB (K) σ (nm) λ ε/kB (K) σ (nm) λ

CH3 98 (134.5) 0.375 (0.352) 12 121.25 0.3783 16

CH2 46 0.395 12 61 0.399 16

CH 10 0.468 12 15 (15/14) 0.46 (0.47/0.47) 16

C 0.5 0.640 12 1.2 (1.45/1.2) 0.61 (0.61/0.62) 16

AUA4 TAMie

CH3 120.15 0.3607 12 136.318 (130.780) 0.36034 (0.36463) 14

CH2 86.29 0.3461 12 52.9133 0.40400 14

CH 50.98 0.3363 12 14.5392 0.43656 14

C 15.04 0.244 12 – – –

TABLE V. Non-bonded (intermolecular) parameters for Errington Exp-6 force field.15

United-atom ε/kB (K) σ (nm) α rmin (nm) rmax (nm)

CH3 129.6 0.3679 16 0.4094 0.0574

CH2 73.5 0.400 22 0.436 0.0221

determined using Lorentz-Berthelot combining rules25 for ε and σ, an arithmetic mean for

the repulsive exponent λ (as recommended in Reference 18), and a geometric mean for α

(as recommended in Reference 15):

εij =
√
εiiεjj (5)

σij =
σii + σjj

2
(6)
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λij =
λii + λjj

2
(7)

αij =
√
αiiαjj (8)

where the ij subscript refers to cross-interactions and the subscripts ii and jj refer to

same-site interactions.

III. CASE STUDY

The purpose of this case study is to demonstrate that the existing UA and AUA force

fields for normal and branched alkanes that were parameterized with VLE properties

do not predict the proper PρT behavior at higher temperatures and pressures (with the

exception of ethane for the TraPPE-2 potential). Figures 4–5 plot the compressibility fac-

tor with respect to inverse temperature for n-alkanes and branched alkanes, respectively.

Note that saturation corresponds toZ ≈ 0 for each isochore. The “Potoff” results in Figure

5 are only for the the “short/long” model, since the “short/long” model is more accurate

than the “generalized” model (available in Section SI.II of Supporting Information).

Note that Figures 4-5 include a constant 1 % uncertainty in the REFPROP correlations

for all compounds at all state points. This is a conservative estimate as the reported REF-

PROP uncertainty for ρ is typically only 1 % at T IT while it decreases near T sat to a value

≤ 0.2 %. Furthermore, only ethane,33 n-butane,35 isohexane,37 and neopentane37 have a

reported uncertainty of 1 % at T IT. REFPROP uncertainties for propane,34 isobutane,35

and n-octane36 are actually 0.1 %, 0.4 %, and 0.5 %, respectively, while isooctane37 does

not have a reported uncertainty.

Figure 4 demonstrates that the existing literature force fields for n-alkanes, while accu-

rate for VLE (Z ≈ 0), do not capture the correct PρT behavior at high pressures (P high),

i.e. Z at the higher temperatures (T > T sat) and highest isochore densities (ρIC3 and ρIC4 ).

Figure 5 shows the same erroneous trend in Z for branched alkanes. Note that the er-

ror in Z at high temperatures is less obvious because these force fields are typically not

as reliable at predicting VLE for branched alkanes as for n-alkanes, i.e. notice the large

deviations at Z ≈ 0. However, it is clear in both Figures 4-5 that none of the force fields
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FIG. 4. Compressibility factor (Z) along isochores for n-alkanes. Most force fields are accurate at

saturation (Z ≈ 0) but deviate strongly at higher pressures. Different symbol shapes correspond

to the various force fields, with legend in Panel a). Densities are distinguished by color, increase

vertically, and are labeled such that ρIC0 < ρIC1 < ρIC2 < ρIC3 < ρIC4 . Panels a) to d) correspond

to ethane, propane, n-butane, and n-octane, respectively. Solid lines represent REFPROP correla-

tions, with dashed lines representing a 1 % uncertainty in REFPROP values.1,33–36 Simulation error

bars computed with block averaging are approximately one symbol size.
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FIG. 5. Compressibility factor (Z) along isochores for branched alkanes. Force fields are not as

accurate as normal alkanes at saturation (Z ≈ 0) and deviate strongly at higher pressures. Panels

a) to d) correspond to isobutane, isohexane, isooctane, and neopentane, respectively. Symbols,

lines, uncertainties, and formatting are the same as those in Figure 4. The Potoff results for isobu-

tane and neopentane use the “short” parameters, while isohexane and isooctane use the “long”

parameters (see Table IV).19
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adequately reproduces Z over the entire temperature range, or the slope of Z with respect

to inverse T .

A surprising trend is that the Errington (AUA Exp-6) model has a positive bias at high

pressures. This appears to suggest that the repulsive barrier is too steep, despite the fact

that the Exp-6 model is typically considered softer than the LJ 12-6. However, the Exp-6 is

less repulsive than the LJ 12-6 only at very short distances, e.g. r < 0.7rmin for α = 16 and

r < 0.3rmin for α = 22, while it is actually somewhat more repulsive for the closest-range

distances sampled in molecular dynamics at these conditions, i.e. 0.7rmin < r < rmin (see

inset of Panel b) in Figure 3). More definitive and straight-forward conclusions regarding

the shape of the Mie λ-6 repulsive barrier are possible by directly comparing different

values of λ.

In general, clear systematic biases are observed for the LJ 12-6 potentials and the Mie

λ-6 potentials. Specifically, the LJ 12-6 (TraPPE-UA and AUA4) and Mie λ-6 (Potoff and

TAMie) potentials under- and over-predict Z at high pressures, respectively. These results

are intuitive as the repulsive barriers are steeper for the respective Mie 16-6 and 14-6

potentials of the Potoff and TAMie force fields.

The one exception to this trend is the TraPPE-2 model for ethane, which has the most

accurate prediction of the entire PρT phase space simulated. Specifically, TraPPE-2 repro-

duces the REFPROP Z to within 1 % for all state points except at P high, where the average

percent deviation (AD%) relative to the REFPROP correlations is still only 3 %.

The performance of TraPPE-2 is somewhat surprising considering that this force field

has only three fitting parameters (ε, σ, and the effective bond-length) while the TAMie

model has these three parameters and an additional fitting parameter (λ). It is possible

that a four parameter optimization, such as that used by TAMie, is overfit to the VLE data

and would perform better if high pressure PρT data were included in the parameteri-

zation. Furthermore, it is important to note that TraPPE-2 uses a much longer effective

bond-length of 0.230 nm while TAMie did not consider bond-lengths larger than 0.194

nm. Therefore, the fact that the TraPPE-2 force field extrapolates to high pressures better

than TAMie suggests that, at high pressures, it is important to account for hydrogens with

a longer effective bond-length than that typically used for AUA models (see Table I).
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Unfortunately, a direct comparison of the non-bonded interactions for AUA force fields

is difficult because each model has a different anisotropic displacement, i.e. effective

bond-length. By contrast, comparing TraPPE-UA and Potoff is straightforward because

they use the same bond-lengths and the same non-bonded Mie λ-6 potential (Equation

1). For example, since the TraPPE-UA (LJ 12-6) potential under-predicts Z and the Potoff

(UA Mie 16-6) potential over-predicts Z, it seems reasonable that a UA Mie 13-6, 14-6, or

15-6 model could demonstrate the proper trend.

To investigate this hypothesis, the remainder of this document focuses on the UA Mie

λ-6 potential, where all bond-lengths are 0.154 nm to be consistent with the TraPPE and

Potoff UA models. Specifically, we perform a Bayesian uncertainty quantification analysis

to determine if there exists a set of ε, σ, and λ that reasonably predicts ρsatl , P sat
v , and P high.

The results in Section V demonstrate that the optimal value of λ for predicting PρT of

supercritical fluids and compressed liquids is not capable of predicting VLE properties

accurately, and vice-versa.

IV. UNCERTAINTY QUANTIFICATION

The results presented in Section III demonstrate that none of the literature UA or AUA

force fields, parameterized with VLE data, can reproduce the PρT behavior for super-

critical fluids and compressed liquids. However, there is uncertainty in the non-bonded

parameters inherited from the VLE data. Therefore, by considering the inherent uncer-

tainty, it is possible that a feasible parameter set exists that adequately predicts VLE and

P high. By contrast, if none of the ε, σ, and λ sets is capable of simultaneously predicting

VLE properties and Z at high pressures, we can conclude that the UA Mie λ-6 potential

(and Lennard-Jones 12-6 as a special case) is inadequate for this purpose and, therefore,

should not be used when developing FEOS with molecular simulation results.

Bayesian inference is a rigorous approach to determine all feasible ε, σ, and λ pa-

rameter sets. We refer the reader to the literature for a thorough discussion of Bayesian

statistics.31,48–51 In Section IV A, we review some basic concepts of Bayes’ theorem, define

the posterior, likelihood, and prior distributions, and discuss the Markov Chain Monte
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Carlo (MCMC) approach for sampling from the posterior joint distribution of the param-

eters. MCMC can be computationally burdensome, especially when molecular simula-

tion is required to compute the likelihood. For this reason, we utilize surrogate models

to reduce the computational cost of MCMC by several orders of magnitude. Section IV B

demonstrates how these surrogate models estimate ρsatl , P sat
v , and Z for a given set of

ε, σ, and λ. We implement this analysis for n-alkanes to generate joint distributions of

εCH3-σCH3 and εCH2-σCH2 for different values of λCH3 and λCH2 , respectively.

A. Bayesian Inference

1. Theory

Bayes’ theorem states

Pr(θ|D,M) =
Pr(D|θ,M)Pr(θ|M)

Pr(D|M)
(9)

where Pr denotes a probability distribution function, θ is the parameter set, M is the

model, and D are the data. Pr(θ|D,M) is commonly referred to as the “posterior”,

Pr(D|θ,M) is the “likelihood” (alternatively expressed as L(θ|D,M)), Pr(θ|M) is the

“prior”, and Pr(D|M) is a normalization constant which is also the “model evidence”.

The “model evidence” is used in model selection, by computing the probability of

different models given the data:

Pr(M |D) =
Pr(D|M)Pr(M)

Pr(D)
(10)

where Pr(M) is the “model prior”, Pr(D) is a normalization constant, and Pr(M |D) is

the “model posterior”. The ratio of Pr(M |D) between two different models (Mi and Mj),

known as the Bayes factor (Kij), provides the relative probability of models Mi and Mj ,

given the data D.

The parameter uncertainty propagates when estimating another quantity of interest

(QoI), which may or may not be included in D, according to:31

Pr(QoI|D,M) =

∫
Pr(QoI|θ,M)Pr(θ|D,M)dθ (11)
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This expression is commonly referred to as “robust posterior prediction.” Note that the

uncertainty in QoI , obtained from Pr(QoI|D,M), does not account for deficiencies in the

model itself, only the uncertainty in the model parameters.

2. Application

Bayesian inference is used to quantify the uncertainty in the non-bonded parameters

(ε and σ) and to determine the evidence for different values of λ based on VLE data. For

clarity, we rewrite Equations 9-10 for the specific case studied by substituting ε and σ for

θ, λ for M , and ρsatl and P sat
v for D:

Pr(ε, σ|ρsatl , P sat
v , λ) =

L(ε, σ|ρsatl , P sat
v , λ)Pr(ε, σ|λ)

Pr(ρsatl , P sat
v |λ)

(12)

Pr(λ|ρsatl , P sat
v ) =

Pr(ρsatl , P sat
v |λ)Pr(λ)

Pr(ρsatl , P sat
v )

(13)

where in this context ρsatl and P sat
v are arrays of experimental data values. Note that θ

does not include λ, since we use λ to distinguish between models. The “model evidence”,

Pr(ρsatl , P sat
v |λ) in Equation 13, for different values of λ is determined by integrating the

numerator of Equation 12 for all values of ε and σ.

To compute the Bayes factor between two values of λ (i.e. between different models,

Mi and Mj), we assume that the prior evidence is equal for all positive values of ε, σ, and

λ (within a feasible range). Specifically, we use bounded uniform prior distributions for

Pr(ε, σ|λ) in Equation 12 and Pr(λ) in Equation 13, where the lower bound is 0 and the

upper bound is an order of magnitude greater than the literature values for ε, σ, and λ.

Due to the large amount of information contained in the data, D, the use of a uniform

prior does not impact our results, i.e. the data “overwhelms” the prior. One advantage of

using a uniform prior is that the Bayes factor, Kij , depends completely on the likelihood:

Kij =
Pr(λj|ρsatl , P sat

v )

Pr(λi|ρsatl , P sat
v )

=

∫
L(ε, σ|ρsatl , P sat

v , λj)dεdσ∫
L(ε, σ|ρsatl , P sat

v , λi)dεdσ
(14)

where λi and λj are the different (fixed) values of λ being compared.

We utilize robust posterior prediction (Equation 11) to propagate the joint parameter

uncertainty in ε and σ (for a given λ) to three different QoI , specifically, ρsatl , P sat
v , and Z.
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For example, the uncertainty in predicting Z is obtained from:

Pr(Z|ρsatl , P sat
v , λ) =

∫
Pr(Z|ε, σ, λ)Pr(ε, σ|ρsatl , P sat

v , λ)dεdσ (15)

Similar expressions exist for Pr(ρsatl |ρsatl , P sat
v , λ) and Pr(P sat

v |ρsatl , P sat
v , λ), where posterior

prediction allows for uncertainty estimates in ρsatl and P sat
v at any temperature, not just

those included in D.

3. Implementation

Markov Chain Monte Carlo (MCMC) is the traditional approach for numerically

sampling from the probability distribution Pr(ε, σ|ρsatl , P sat
v , λ). We use the Metropolis-

Hastings algorithm to create a Markov Chain by proposing new ε and σ sets and accepting

those moves based on the criterion:

α = min

(
1,
P r(εi+1, σi+1|ρsatl , P sat

v , λ)Q(εi+1, σi+1|εi, σi, s2ε , s2σ)
Pr(εi, σi|ρsatl , P sat

v , λ)Q(εi, σi|εi+1, σi+1, s2ε , s
2
σ)

)
(16)

where α is the acceptance probability, εi and σi are the previous parameter set, εi+1 and

σi+1 are the proposed parameter set, and Q is the proposal distribution from which εi+1

and σi+1 are sampled. In this study, Q is a bi-variate normal distribution with mean equal

to εi and σi, variance of s2ε and s2σ, and a covariance of 0.

The amount to which ε or σ is varied for each MCMC step (the difference between εi+1

and εi or between σi+1 and σi) depends on Q, specifically, on s2ε and s2σ. These parameters

(s2ε and s2σ) are tuned such that approximately 1
3

of the moves are accepted, i.e. s2ε and

s2σ are decreased if the acceptance rate of MCMC moves is less than 1
3
, and vice-versa.

This “tuning” period (also referred to as a “burn-in” period) is followed by a production

period where s2ε and s2σ do not change.

Since εi+1 and σi+1 are highly correlated with εi and σi, it is important to “thin” the

MCMC ε and σ parameter sets (εMCMC and σMCMC), i.e. every jth parameter set is stored.

The parameter sets sampled from MCMC (θMCMC, or specifically, εMCMC and σMCMC) pro-

vide a joint distribution for the feasible values of ε and σ (see Figure 7 and 12 in Section V).

Section SI.III of Supporting Information provides an MCMC example with some details
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(i.e. number of steps for burn-in and production, frequency that s2ε and s2σ are updated,

resulting acceptance rates, etc.).

The integration required for robust posterior prediction (see Equations 11 and 15) is

approximated from the distribution of QoI values evaluated for each MCMC parameter

set, i.e. QoI(θMCMC|D,M) or the more succinct notation QoIMCMC. From QoIMCMC, stan-

dard statistical methods are used to approximate theQoI uncertainty at a desired credible

level. For example, the histograms and uncertainties reported in Section V are obtained

from distributions of ρsatl,MCMC, P sat
v,MCMC, and ZMCMC.

Because MCMC moves are accepted based on Equation 16 and the denominator in

Equation 12 (i.e. Pr(ρsatl , P sat
v |λ)) does not depend on ε and σ, the acceptance probability is

independent of Pr(ρsatl , P sat
v |λ). Also, as mentioned previously, we use a weakly informa-

tive uniform prior over a larger than feasible range of parameters such that the acceptance

probability is independent of Pr(ε, σ|λ). Furthermore, Q is chosen to be symmetric such

that the Q terms in the numerator and denominator of Equation 16 cancel. Therefore, the

probability of accepting εi+1 and σi+1 is based completely on the likelihood:

α = min

(
1,
L(εi+1, σi+1|ρsatl , P sat

v , λ)

L(εi, σi|ρsatl , P sat
v , λ)

)
(17)

where the likelihood, L(ε, σ, |ρsatl , P sat
v , λ), is calculated from a normal distribution:

L(ε, σ, |ρsatl , P sat
v , λ) =

∏
k

1√
2πs2D,SM(T

sat
k )

exp

(
−
(
ρsatl,SM(ε, σ, λ;T

sat
k )− ρsatl,k

)2
2s2D,SM(T

sat
k )

)
∏
k

1√
2πs2D,SM(T

sat
k )

exp

(
−
(
P sat
v,SM(ε, σ, λ;T

sat
k )− P sat

v,k

)2
2s2D,SM(T

sat
k )

)
(18)

where the first and second products are over the experimental ρsatl and P sat
v data, respec-

tively, T sat
k is the saturation temperature that corresponds to the kth data point, “SM”

refers to the surrogate model (see Section IV B) used to estimate ρsatl or P sat
v for a given

ε, σ, λ, and T sat, and s2D,SM is the combined variance of the experimental data and the sur-

rogate model. The variances are independent, meaning that the combined variance is the

sum of the experimental and surrogate model variances, i.e. s2D,SM = s2D + s2SM.49
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B. Surrogate Model

A typical Markov Chain requires O(104 to 105) Monte Carlo steps, where the likeli-

hood function must be evaluated at each step. Since L(θ|D,M) depends on the force

field parameters (ε, σ, and λ), an MCMC approach is computationally infeasible if com-

puting L(θ|D,M) requires performing direct molecular simulations for every proposed

parameter set. Furthermore, propagation of uncertainty with robust posterior predic-

tion may require O(102 to 103) θMCMC parameter sets for adequate representations of

Pr(QoI|D,M) (see Equations 11 and 15). For these reasons, surrogate models to estimate

ρsatl,MCMC, P sat
v,MCMC and ZMCMC are essential for this study.

1. Multistate Bennett Acceptance Ratio

We use a configuration-sampling-based surrogate model, where configurations are

sampled using a small group of reference parameter sets (θref , consisting of εref , σref , and

λref).45 Specifically, NV T ensemble averages for the MCMC parameter sets (θMCMC) are

estimated by reweighting the sampled reference configurations using Multistate Bennett

Acceptance Ratio (MBAR).52 MBAR is a nearly exact surrogate model when a sufficient

number of configurations sampled by θref are similar to those that would be sampled with

direct simulation of θ, which can be easily verified by statistical measures (see discussion

on number of effective samples in Reference 45). For this purpose, we use a single value

of εref with nine evenly spaced σref values for each fixed value of λref = λ.45

2. Isothermal isochoric integration

The properties that are estimated using MBAR are the departure internal energy

(Udep ≡ U − U ig, where U ig is the ideal gas internal energy) and the compressibility

factor (Z ≡ P
ρRgT

, where Rg is the universal gas constant). Isothermal isochoric integra-

tion (ITIC) converts the MBAR estimated Udep and Z values at the 19 ITIC state points to

saturation temperatures (T sat), saturated liquid densities (ρsatl ), saturated vapor densities
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(ρsatv ), and saturated vapor pressures (P sat
v ). This is important since ρsatl and P sat

v are the

data (D) included in L(θ|D). Details for the combined implementation of MBAR and

ITIC (MBAR-ITIC) is discussed elsewhere.45

The ITIC equations are:

Adep

RgT sat
=

∫ ρIC

0

Z − 1

ρ
dρ|T=T IT +

∫ T sat

T IT

Udepd

(
1

RgT

)
|ρ=ρIC (19)

ρsatv ≈ ρsatl exp

(
Adep

RgT sat
+ Zsat

l − 1− 2B2ρ
sat
v − 1.5B3(ρ

sat
v )2

)
(20)

P sat
v ≈

(
1 + B2ρ

sat
v +B3(ρ

sat
v )2

)
ρsatv RgT

sat (21)

Zsat
l =

P sat
v

ρsatl RgT sat
(22)

where Adep ≡ A− Aig is the Helmholtz free energy departure from ideal gas for T = T sat

and ρ = ρIC = ρsatl , Zsat
l is the saturated liquid compressibility factor,B2 is the second virial

coefficient, B3 is the third virial coefficient, T IT is the isothermal temperature, and ρIC is

the isochoric density. For details regarding the implementation of ITIC, see References 44–

46. As discussed in our previous work,45 the B2 and B3 values found in Equations 20-21

are calculated using REFPROP correlations.1 The use of REFPROP correlations introduces

a small bias in the resulting ρsatl and P sat
v , which is accounted for in the surrogate model

uncertainty.

The ITIC analysis provides VLE properties at only 5 saturation temperature values

(T sat
ITIC), while the experimental data set may have hundreds of saturation temperatures

(T sat
D ). Although it is possible for D to consist of computed values from an empirical

correlation fit to experimental data (e.g. REFPROP, ThermoData Engine (TDE)), it is con-

sidered best practice for Bayesian inference that raw experimental data be used for D.

For this reason, we instead use empirical model fits to interpolate the ITIC VLE proper-

ties (T sat
ITIC, ρsatl,ITIC, and P sat

v,ITIC) so that ρsatl and P sat
v can be estimated at any value of T sat.

Specifically, we fit P sat
v,ITIC and T sat

ITIC to the Antoine equation:

log10(P
sat
v ) = a0 +

a1
T sat + a2

(23)
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where ai are fitting parameters. We fit ρsatl,ITIC and T sat
ITIC to a combined rectilinear and

density scaling law expression:24

ρsatl = b0 + b1(b2 − T sat) + b3(b2 − T sat)β (24)

where bi are fitting parameters, and β = 0.326. b0 and b2 only provide rough estimates of

the critical density (ρc) and critical temperature (Tc). More reliable estimates of the critical

point require simultaneous fitting of ρsatv,ITIC to a similar expression, but this is unnecessary

for our purposes since D does not include the critical constants. Note that Equations 23-

24 are only used to interpolate ITIC values, and not to extrapolate to higher or lower T sat.

These equations are reliable over the limited temperature range studied (0.45 < Tr <

0.85), whereas a wider temperature range would require more flexible models.53,54

In summary, MBAR, ITIC, and Equations 23-24 enable prediction of ρsatl and P sat
v over a

range of T sat for any ε, σ, and λ by performing a small number of direct NV T simulations

with only a few reference parameter sets. The non-bonded energies and forces, which

are required for MBAR and ITIC, are rapidly recomputed post-simulation with θMCMC for

each reference configuration (for details on so-called “basis functions” see Reference 55

and Section SI.IV of Supporting Information in Reference 45). In total, this methodology

reduces the computational cost for computing L(θ|D) by several orders of magnitude

compared to direct simulation of VLE, using Gibbs Ensemble Monte Carlo (GEMC) or

Grand Canonical Monte Carlo histogram reweighting (GCMC-HR).

3. Uncertainty model

Quantifying the surrogate model variance (s2SM) is essential for evaluating L(θ|D).

While only a brief description is provided here, details are found in Section SI.IV of Sup-

porting Information. Rather than performing a rigorous statistical assessment of MBAR,

ITIC, and Equations 23-24, we use an empirical approach for estimating s2SM. Specifi-

cally, we compute the deviation between the surrogate model estimates of ρsatl and P sat
v

for TraPPE-UA and Potoff with those reported in the literature for the respective force

fields obtained using GEMC12 or GCMC-HR.18 Although this is a rough approximation
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for estimating s2SM, the benefit of this inter-laboratory comparison is that s2SM accounts for

“dark uncertainty”,56 i.e. uncertainties that arise from unknown sources which can lead to

unresolvable discrepancies between research groups.57 These non-statistical uncertainties

are typically associated with different simulation packages, MD instead of MC, finite-size

effects, and post-simulation analysis (e.g. ITIC rather than HR).

As shown in Figure 6, the surrogate model uncertainty (uSM, reported at the 95 % con-

fidence level) for ρsatl is 0.3 % up to 0.75Tc and increases linearly to 1.5 % at the maximum

T sat. The surrogate model uncertainty for P sat
v is 20 % at the minimum Tsat and decreases

linearly to 7 % at 0.6Tc, where it remains constant for higher temperatures. Note that

these are conservative estimates of uSM, where other studies suggest smaller uncertain-

ties in MBAR and ITIC.44–46 In fact, for the compounds investigated in this study, these

uncertainties are much larger than the experimental uncertainties (uD, at the 95 % confi-

dence level)58 and, therefore, the size of the parameter space sampled by MCMC depends

almost entirely on uSM. The use of a conservative uSM model is intentional in this regard,

namely, so that the θMCMC sampled points represent practically all of the feasible ε and σ

parameter sets (for a given λ) optimized with ρsatl and P sat
v .

V. RESULTS

In this section, we use MCMC and the aforementioned surrogate models to determine

the parameter uncertainty in CH3 and CH2 interaction sites of n-alkanes. As the simula-

tion results of branched alkanes are significantly less accurate than those of n-alkanes for

both VLE and high pressure properties (cf. Figures 4 and 5), we do not investigate the

uncertainties of CH and C interaction sites.

Since the common practice is to limit λ to integer values (see Section II B), we perform

several independent MCMC runs using a single, fixed, integer value of λ. The Bayesian

inference analysis for CH3 and CH2 sites is performed sequentially. Specifically, rather

than sampling from a four-dimensional parameter space (i.e. εCH3 , εCH2 , σCH3 , and σCH2

for a given value of λCH3 and λCH2), we implement a pair of two-dimensional MCMC runs

by assuming the CH3 parameters from ethane are transferable to propane, n-butane, and
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FIG. 6. Uncertainty assessment. Experimental (TDE) uncertainties are negligible compared to sur-

rogate model uncertainties. Panels a) and b) plot the uncertainties for ρsatl and P sat
v with respect to

reduced temperature (absolute temperature divided by the REFPROP Tc). Uncertainties are com-

puted at the 95 % confidence level using the respective s2D and s2SM values. Also included are per-

cent deviations between the REFPROP values1,33–36 and the experimental data used in Equation 18

to compute the likelihood for ethane, propane, n-butane, and n-octane (from the Thermodynamics

Research Center, TRC, source data).58

n-octane.

A. Ethane

Figures 7-10 present the MCMC results for ethane with 13 ≤ λCH3 ≤ 18. Figure 7

demonstrates that the feasible region of εCH3 depends strongly on λCH3 , namely, larger

values of λCH3 require larger values of εCH3 . By contrast, we observe a much smaller shift

towards larger values of σCH3 with increasing λCH3 . This observation is consistent with

Reference 18.

Figures 8-9 compare the performance of different values of λ for ρsatl , P sat
v , and Z. No-
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FIG. 7. MCMC sampled parameter sets for different values of λCH3 (εCH3,MCMC and σCH3,MCMC).

εCH3 is strongly correlated with λCH3 and σCH3 , while σCH3 and λCH3 are only weakly correlated.

The Potoff parameter set is included as a reference for λCH3 = 16.18

tice that the insets in Figure 8 plot the mean absolute percent deviation (MAPD%) to

quantify the goodness of fit to VLE data, while the inset in Figure 9 plots the average de-

viation (AD%) to demonstrate the positive bias in P high. Note also that because MAPD%

and AD% are percent deviations they are not directly related to the squared deviations of

the normal distribution used to compute the likelihood. We plot MAPD% and AD% as

these are easier to conceptualize and quantify.

Figure 8 Panel a) with the corresponding inset demonstrates that the best prediction

of ρsatl is obtained for higher values of λCH3 . However, while the ρsatl MAPD% for λCH3 =

15 to 18 are similar, λCH3 = 13 and 14 have significantly higher ρsatl MAPD%. Figure 8

Panel b) demonstrates that λCH3 ≤ 14 and λCH3 ≥ 17 over- and under-predict P sat
v at low

temperatures, respectively, while λCH3 = 15 and 16 have the best trend for P sat
v . The inset

for Panel b) shows that λCH3 = 15 has the lowest MAPD% in P sat
v .

Finally, Figure 9 demonstrates that all of the sampled εCH3,MCMC and σCH3,MCMC pa-

rameter sets for λCH3 ≥ 14 over-predict Z at high temperatures and densities (P high). As
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FIG. 8. Ethane VLE properties with respect to temperature for λCH3 = 13 to 18. Different trends

are observed depending on the value of λCH3 . Panels a) and b) plot the percent deviation from

REFPROP values1,33 for ρsatl,MCMC and P sat
v,MCMC, respectively. Robust posterior prediction propa-

gates the joint parameter uncertainties from εCH3 and σCH3 to ρsatl and P sat
v . The upper and lower

lines for each λ correspond to the 95 % credible interval obtained from QoIMCMC. Insets of Panels

a) and b) are histograms of the MAPD% in ρsatl,MCMC and P sat
v,MCMC, respectively. Experimental data

used to compute the likelihood are included as black dots.58

expected, the larger the value of λCH3 , the more the force field over-predicts P high.

While Figures 8-9 plot the results for ρsatl , P sat
v , and Z individually, Figure 10 helps to vi-

sualize the overall performance of different values of λCH3 for simultaneously predicting

all three quantities of interest. In Panel a), notice the trade-off between the MAPD% of ρsatl

and P sat
v . This compromise between two competing properties included in the objective

function, namely, ρsatl and P sat
v , is known as a Pareto front.23,59,60 The optimal location for a

Pareto front is the bottom left region of the plot (low MAPD% for both ρsatl and P sat
v ) while

the worst location is the top right region (high MAPD% for both ρsatl and P sat
v ). Note that

the inset of Panel a) includes an approximate “overall” Pareto front that combines the

results for all values of λCH3 . Although not depicted for visual clarity, the “L” shaped
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FIG. 9. Ethane isochore results for λCH3 = 13 to 18. Inadequacies of the UA Mie λ-6 potential are

observed in Z for the two highest isochore densities (ρIC3 and ρIC4 ) by propagating the joint uncer-

tainties in εCH3 and σCH3 for different values of λCH3 . The inset plots the distribution of average

deviation (AD%) in P high, i.e. PMCMC for ρ = ρIC3 and ρIC4 at T = T IT. REFPROP uncertainty in

P high is ±1 %.1,33

frontier for different colors/symbols demonstrates that each λCH3 value also has its own

Pareto front. Because the overall Pareto front consists of points from the 15 ≤ λCH3 ≤ 17

Pareto fronts, the Pareto optimal λCH3 value is either 15, 16, or 17, depending on the rela-

tive weight assigned to ρsatl and P sat
v . By contrast, since the λCH3 = 13, 14, and 18 Pareto

fronts are completely inside the overall Pareto front, these λCH3 values are not optimal,

regardless of the weighting.

Finally, and most importantly for our purposes, Figure 10 Panels b) and c) demonstrate

the increase in MAPD% for ρsatl and P sat
v that accompanies more accurate prediction of

P high. For example, although λCH3 = 15, 16, and 17 are the best values based on VLE data,

they over-predict P high by around 10 %, 14 %, and 18 %, respectively. By contrast, while

λCH3 = 13 is the most accurate for P high, the MAPD% for ρsatl and P sat
v are 4 and 40 times

larger than the respective minimum MAPD%. These results support the fundamental
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FIG. 10. Overall performance of λCH3 = 13 to 18 for ethane. MCMC confirms that accurate

prediction of VLE leads to large deviations in pressures for supercritical fluids and compressed

liquids. Panel a) plots the mean absolute percent deviation (MAPD%) of ρsatl,MCMC and P sat
v,MCMC.

Panels b) and c) plot the average deviation (AD%) in P high with respect to MAPD% of ρsatl,MCMC

and P sat
v,MCMC, respectively.

31



claim of this work, namely, that the UA Mie λ-6 potential cannot adequately predict both

VLE and high pressures for supercritical fluids and compressed liquids.

Figure 11 provides statistical evidence for each value of λ by comparing their respec-

tive Bayes factors (normalized with respect to λ = 14) based solely on ρsatl and P sat
v . Bayes

factors from 1 to 3.2, 3.2 to 10, 10 to 32, 32 to 100, and greater than 100 are typically classi-

fied as “not substantial”, “substantial”, “strong”, “very strong”, and “decisive” evidence,

respectively.61 Panel a) shows that, with 3.6
0.02

= 180, there is “decisive” evidence against

the use of λCH3 = 13 for predicting ρsatl and P sat
v . As λCH3 = 13 is the only value that

predicts P high within the REFPROP uncertainty, we conclude that no set of εCH3 , σCH3 , and

λCH3 can predict both VLE and P high.
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FIG. 11. Bayes Factor (evidence) for different values of λCH3 (Panel a) and λCH2 (Panel b). Evidence

supports λCH3 = 15 or 16 and λCH2 = 16 over λCH2 = 14. CH3 values depend only on ethane while

CH2 values are based on propane, n-butane, and n-octane. Note that all values are normalized

with respect to λ = 14.

In addition, there is “very strong” evidence that the 18-6 potential is not justified by

VLE data
(
3.6
0.1

= 36
)
. The evidence in favor of the 15-6 or 16-6 potentials over the 14-

6 and 17-6 potentials is not as definitive, although it is still considered “substantial”(
3.6
1.0

,3.6
0.8

,3.5
1.0

, and 3.5
0.8

> 3.5
)
. By contrast, the evidence for λCH3 = 15 instead of λCH3 = 16

is “not substantial”
(
3.6
3.5
≈ 1.03

)
.
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It is important to mention that these Bayes factors depend primarily on the VLE data

and the s2D,SM model used to compute L(θ|D). We use a very conservative uncertainty

model for ρsatl and P sat
v (see Figure 6) so that our MCMC samples cover a large region of

parameter space. This is done primarily to demonstrate that the UA Mie λ-6 is inadequate

for predicting VLE and P high. However, a less conservative uncertainty model would

provide more convincing evidence regarding the optimal λ value based solely on VLE

data.

Also, ITIC is limited to T sat < 0.85Tc. Therefore, it is possible that the optimal value

of λCH3 could be deduced (i.e. larger Bayes factors) if higher temperature VLE data were

included (say from 260 to 290 K). Based on the observed bias in ρsatl at higher tempera-

tures (240 to 260 K) for λCH3 = 14, it appears that higher temperature VLE data would

strengthen the counter evidence against the 14-6 potential. It is unclear whether higher

temperature data would support the 15-6 or 16-6 potential, although the optimal λCH3 is

likely a non-integer value between 15 and 16. Implementing MBAR with GCMC may be

necessary to include VLE data from 0.85 < T sat
r < 0.95.

B. Larger n-alkanes

The conclusions regarding the UA Mie λ-6 potential for ethane are generally appli-

cable to larger n-alkanes. Specifically, we observe that improved accuracy in predicting

VLE requires a larger value of λCH2 . However, this improvement comes at the cost of

significantly over-predicting P high. Figure 12 presents the MCMC sampled εCH2 and σCH2

parameter sets with Panels a) and b) corresponding to λCH2 = 16 and λCH2 = 14, respec-

tively. Note that these results were obtained using fixed values of εCH3 , σCH3 , and λCH3 ,

where λCH3 = λCH2 . The values of εCH3 and σCH3 are the maximum likelihood parameter

set from ethane for the corresponding λCH3 value.

Notice in Figure 12 that the MCMC sampled εCH2 and σCH2 parameter sets, for a given

value of λCH2 , overlap considerably for propane, n-butane, and n-octane. These joint dis-

tributions provide statistical evidence in favor of the common assumption that CH2 pa-

rameters are transferable between different n-alkanes. To further demonstrate this point,
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FIG. 12. High pressure performance of λCH2 = 16 (Panel a) and 16 (Panel b) for propane, n-

butane, and n-octane. MCMC sampled εCH2 and σCH2 parameter sets result in large AD% for

P high. Contours are the AD% in P high relative to the REFPROP values, where the “REFPROP

uncertainty” region represents ±1 % deviation.1,34–36 Panel a) includes the Potoff parameter set as

a reference for λCH2 = 16.18

Figure 12 includes the MCMC results when the posterior is based on the combined likeli-

hoods from all three compounds, referred to as “MCMC transferable.”

Panel a) shows that the Potoff CH2 parameter set is within the MCMC sample regions

for λCH2 = 16. The same result was also observed for ethane (see Figure 7). This suggests

that the Potoff CH3 and CH2 parameters are supported by the VLE data used in this

study, even though the Potoff force field was parameterized using VLE data in a higher

temperature range (0.6 < T sat
r < 0.95).

Also, note that the uncertainty in the parameters is largest for propane and smallest for

n-octane. Therefore, the sensitivity of ρsatl and P sat
v , with respect to the CH2 parameters,

increases with increasing number of CH2 interaction sites. Although this result is fairly

intuitive, it is a valuable insight when selecting a training set of molecules for force field

development. For example, notice that the MCMC transferable region is almost identical
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to that of n-octane, which shows that propane and n-butane data provide relatively little

additional information that is not contained in the n-octane data.

Most importantly, for the purposes of this study, the contours in Figure 12 demon-

strate that the MCMC sampled εCH2 and σCH2 parameter sets have a strong positive bias

(i.e. large AD%) in P high. Specifically, λCH2 = 16 and λCH2 = 14 have AD% of approx-

imately 16 % to 21 % and 10 % to 15 %, respectively, much greater than the REFPROP

uncertainty of around 1 %. Furthermore, because the 0 % contour is roughly parallel to

the MCMC region and found at much lower εCH2 values, it is necessary to sacrifice consid-

erable accuracy in ρsatl and P sat
v in order to accurately predict P high. It is interesting that,

for corresponding values of λ, the AD% for these larger n-alkanes is higher than that of

ethane. This suggests that longer chain-lengths, with a UA Mie λ-6 force field, exacerbate

the erroneous Z trend at high pressures.

Although the AD% in P high is slightly lower for λCH2 = 14 than for λCH2 = 16, the UA

Mie 14-6 potential is significantly less reliable for VLE. Figure 11 demonstrates that there

is “strong” evidence for λCH2 = 16 over λCH2 = 14, based on VLE data. Note that the

evidence in Figure 11 for the λ value of CH2 sites is stronger than that for the CH3 sites.

This suggests that the ethane ρsatl and P sat
v results are less sensitive to λ than the larger

n-alkanes and/or that the ethane VLE data contains less information than the combined

data of propane, n-butane, and n-octane. In conclusion, these results suggest that neither

UA Mie 16-6 or 14-6 force fields are capable of predicting VLE and PρT for supercritical

fluids and compressed liquids of n-alkanes.

VI. DISCUSSION

A. Recommendations

Although the UA Mie λ-6 potential is not quantitatively reliable at high pressures, it

may still be of use for FEOS parameterization when considering the insight gained in

this study. For example, since the Potoff force field consistently over-predicts high pres-

sures, a non-linear FEOS optimization could utilize the simulation results as an upper
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constraint for the FEOS pressure.3 Furthermore, the primary purpose to include molecu-

lar simulation data for FEOS development is to increase the range of validity by ensuring

good behavior of the FEOS at high temperatures and pressures. As FEOS are based on

empirical equations with 50 to 100 fitting parameters, even an inaccurate force field has

a more sound theoretical basis. Therefore, the UA Mie λ-6 simulation output for a given

property should not demonstrate non-physical oscillations, inflection points, derivative

sign-changes, etc., which can plague a poorly-fit FEOS.

Essentially, whether or not a FEOS should be developed using a hybrid data set con-

sisting of UA Mie λ-6 simulation results depends on the quality and quantity of available

experimental data. If the data cover a wide range of state points and properties, it is

possible that the UA Mie λ-6 potential may still be useful, despite the systematic devi-

ations at high pressures. By contrast, if the experimental data are limited such that the

FEOS depends almost entirely on the molecular simulation results, the UA Mie λ-6 force

field will lead to large deviations at high pressures. Therefore, in this scenario, we ad-

vise against the use of UA Mie λ-6 force fields when developing a FEOS for normal and

branched alkanes. For this purpose, we recommend further investigation of alternative

potentials with a softer repulsive barrier and a more sound theoretical basis, e.g. Buck-

ingham exponential-6, modified-Morse,28–30 or an extended Lennard-Jones.44,62,63

B. Limitations

There are some caveats to the primary conclusion from this study that UA Mie λ-6

force fields parameterized with VLE data should not be used to develop fundamental

equations of state for normal and branched alkanes. The main limitation is that the poor

extrapolation at high pressures is based solely on the trend of Z with respect to inverse

temperature. By contrast, the simulation values that are typically included in hybrid data

sets used to generate FEOS are derivatives of the departure (or residual) Helmholtz free

energy with respect to inverse temperature and/or density:7–11

Adep
xy RgT ≡ (1/T )xρy

∂x+yAdep

∂(1/T )x∂ρy
(25)
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where x and y are integer values and the derivative is of order x+y. There are advantages

of using Adep
xy for developing FEOS, as this approach eliminates redundant information

found in traditional macroscopic properties.2,4–7 For example, the following expressions

demonstrate the interdependency of the properties we computed, namely, Z and Udep

with their derivatives along isochores and isotherms:6

Z = 1 + Adep
01 (26)

1

T

(
−∂Z
∂(1/T )

)
ρ

= 1 + Adep
01 − A

dep
11 (27)

Udep

RgT
= Adep

10 (28)

1

Rg

(
∂Udep

∂T

)
ρ

= −Adep
20 (29)

ρ

(
∂Z

∂ρ

)
T

= 1 + 2Adep
01 + Adep

02 (30)

However, at least two reasons exist as for why the conclusions of this study are not

based on Adep
xy . First, with the exception of ms2,64 we are not aware of any open-source

simulation package that readily provides Adep
xy . As ms2 is currently limited to small rigid

molecules it is not amenable to the systems of interest. In addition, macroscopic proper-

ties, such as Z and Udep (with their respective derivatives), are more readily understood

and visualized than Adep
xy . It is also easier to quantify the impact of Z and Udep on process

design than Adep
xy . For example, as demonstrated in Reference 8, an inaccurate predic-

tion of some Adep
xy does not necessarily result in poor prediction of PρT behavior or heat

capacities.

Although we do not perform a detailed investigation of Adep
xy , we have indirectly in-

vestigated each of the Adep
xy terms in Equations 26-30. For example, Sections III and V

present Z and, by inspection, the slope of Z with respect to 1/T at constant ρ. Since

these properties are equivalent to Equations 26 and 27, respectively, Sections III and V

indirectly focus on two of the Helmholtz derivatives, namely, Adep
01 and Adep

11 . Section SI.V

of Supporting Information also demonstrates some deviations in Udep, the slope of Udep

with respect to T at constant ρ, and the slope of Z with respect to ρ at constant T , which
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are equivalent to Equations 28-30. Although these additional properties provide insight

regarding Adep
10 , Adep

20 , Adep
01 , and Adep

02 , unfortunately, the results are less conclusive due to

the relatively large uncertainties in the REFPROP values, ca. 5 % and 10 % for Udep and(
∂Udep

Rg∂T

)
ρ
, respectively. Furthermore, the relationship between Equations 28-30 and the

repulsive barrier, λ, is not obvious from these results. Future work should investigate

more thoroughly the adequacy of UA Mie λ-6 (or other) force fields to predict Udep and

isochoric/isobaric heat capacities at high temperatures and pressures.

Another potential limitation is that we utilize a single layer Bayes model as opposed to

a hierarchical model, where the posterior is proportional to multiple priors that depend

on the parameters from different levels of the hierarchy (for a more detailed discussion

see References 31 and 51). Wu et al. demonstrate the need for hierarchical models when

the data set, D, contains discrepancies, i.e. internal inconsistencies. However, since we

use a conservative estimate for the surrogate model uncertainty, i.e. uSM � uD, any dis-

crepancies in the VLE data should not affect the parameter uncertainties. A hierarchical

approach is also useful when accounting for model inadequacies, i.e. when the force field

is not capable of representing multiple data types. A hierarchical method should thus

be favored if determining the parameter uncertainty when simultaneously considering

ρsatl , P sat
v and P high. Furthermore, a hierarchical model should be used if the parameters

are not transferable between molecules, e.g. the Potoff CH and C parameters for “short”

and “long” branched alkanes. However, such a hierarchical approach is unnecessary for

our purposes, since the transferable UA Mie λ-6 force field for n-alkanes is capable of

reproducing ρsatl and P sat
v , which are the only properties included in D.

VII. CONCLUSIONS

Recently, molecular simulation results at extreme temperatures and pressures have

supplemented experimental data when developing fundamental equations of state for

compounds with limited experimental data. For this hybrid data set approach to be use-

ful, it is imperative that the force field be reliable and transferable over different PρT

conditions. Unfortunately, literature united-atom force fields that are highly accurate for
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estimating VLE properties of normal and branched alkanes have systematic deviations

in Z at non-VLE conditions. Bayesian inference suggests that the UA Mie λ-6 model

type is not adequate for simultaneously predicting ρsatl , P sat
v , and P high. In the case of

ethane, evidence from VLE data supports λ = 15 or 16, while Z at high pressures re-

quires λ = 13. A similar trend is observed for larger n-alkanes. Specifically, evidence

from VLE data supports λ = 16, while we observe only slight improvement in Z at high

pressures for λ = 14. Therefore, while considerable improvement in VLE is observed for

the Mie λ-6 potential over the traditional Lennard-Jones 12-6, the use of λ > 12 does not

appear to have physical/theoretical justification but, rather, is simply an empirical rem-

edy that performs well for VLE. For these reasons, we recommend that alternative force

fields be considered for developing FEOS of normal and branched alkanes, which utilize

anisotropic-united-atom/all-atom models and/or more physically realistic non-bonded

potentials.
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