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Model Predictive Control-Based
Path-Following for Tail-Actuated
Robotic Fish
There has been an increasing interest in the use of autonomous underwater robots to
monitor freshwater and marine environments. In particular, robots that propel and
maneuver themselves like fish, often known as robotic fish, have emerged as mobile sens-
ing platforms for aquatic environments. Highly nonlinear and often under-actuated
dynamics of robotic fish present significant challenges in control of these robots. In this
work, we propose a nonlinear model predictive control (NMPC) approach to path-
following of a tail-actuated robotic fish that accommodates the nonlinear dynamics and
actuation constraints while minimizing the control effort. Considering the cyclic nature
of tail actuation, the control design is based on an averaged dynamic model, where the
hydrodynamic force generated by tail beating is captured using Lighthill’s large-
amplitude elongated-body theory. A computationally efficient approach is developed to
identify the model parameters based on the measured swimming and turning data for the
robot. With the tail beat frequency fixed, the bias and amplitude of the tail oscillation are
treated as physical variables to be manipulated, which are related to the control inputs
via a nonlinear map. A control projection method is introduced to accommodate the
sector-shaped constraints of the control inputs while minimizing the optimization com-
plexity in solving the NMPC problem. Both simulation and experimental results support
the efficacy of the proposed approach. In particular, the advantages of the control projec-
tion method are shown via comparison with alternative approaches.
[DOI: 10.1115/1.4043152]

1 Introduction

Aquatic ecosystem sustainability is often at risk due to the
increase of potential threats, such as oil spills, invasive species,
and industrial and household waste. As a result, monitoring and
understanding aquatic environments has become essential to
ensuring the longevity of aquatic ecosystems and for securing
water resources. In recent years, a type of aquatic robots that
mimics the movement of fish (Fig. 1) has emerged as an attractive
choice for the aforementioned applications. These robots have
various actuation mechanisms, from oscillating caudal or pectoral
fins to undulation of the entire body, and like fish, they are able to
attain high maneuverability [1].

To be suitable for monitoring such ecosystems, these robots
need to be able to sustain long field-operation time, and it is, thus,
crucial for them to be highly energy-efficient. The latter makes
optimal control an important problem for robotic fish. Much of
the work done for robotic fish has been in robot development
[2–11] and modeling [12–18]. There has also been extensive work
on motion control of robotic fish, which has mainly been focused
on the generation of fish-like swimming gaits, and on control to
drive the robot to achieve a desired motion. In the case of swim-
ming gait generation, several kinematics and dynamics-based
schemes [19–27], as well as bioinspired approaches, such as
central pattern generators [28–33], have been used to produce
fish-like swimming. However, these approaches are typically
open-loop in nature. Although some works have examined
trajectory-tracking or stabilization problems [12,34], they have
mainly been focused on heading or depth control.

There has been additional work done on model-based closed-
loop motion control to achieve maneuvering or trajectory tracking

[35–41]. In Ref. [35], a point-to-point control of a four-link
robotic fish was implemented, where a classical proportional-
integral derivative controller and a fuzzy logic controller were
designed for speed and orientation control. The authors in Ref.
[36] devised a control strategy for maneuvering an aquatic vehicle
using an oscillating foil. The strategy consists of an optimal off-
line motion planning step and an online feedback control step
composed of a cascade of finite time, time-scalable linear quad-
ratic control and input–output linearization, in combination with a
sliding mode controller. Furthermore, in Ref. [37] a target-
tracking and collision-avoidance algorithm for two autonomous
robotic fish was implemented via a situated-behavior-based
decentralized control approach, using a combination of an attrac-
tive force toward a target and a repulsive force for collision avoid-
ance. In Ref. [38], a fuzzy control law for a pectoral-fin-driven
robotic fish was developed to perform rendezvous and docking
with an underwater post in water currents. Zou et al. developed a
neural-network-based sliding mode control algorithm for coopera-
tive trajectory tracking of multiple robotic fish [39]. In Ref. [40],
three simplified linearized models of the decoupled fish dynamics
were used for the design of linear quadratic regulators to achieve

Fig. 1 A robotic fish developed by the Smart Microsystems
Lab at Michigan State University
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speed and orientation control and to stabilize the pitch and roll.
Furthermore, a line-of-sight guidance scheme was implemented
for way-point tracking. Finally, the authors in Ref. [41] designed
a sliding mode controller for swimming, orientating, and way-
point tracking of robotic fish in three-dimensional motion. Despite
aforementioned progress in the control of robotic fish, a unified,
systematic control approach that incorporates performance objec-
tives and accommodates input constraints for such robots has not
been proposed.

Nonlinear model predictive control (NMPC) presents a promis-
ing framework for dealing with uncertainties as well as input and
state constraints. There is extensive work on NMPC for path-
following of mobile robots [42–47], but little work has been
reported on its application to control of robotic fish. In this work,
we propose and implement a path-following NMPC scheme for a
tail-actuated robotic fish. We consider a tail-actuated robotic fish
particularly because of its simple mechanical design and low
power consumption. On the other hand, the highly nonlinear and
coupled dynamics, along with the under-actuated nature of the
robot, pose significant challenges for the control design.

In this controller design, a high-fidelity averaged nonlinear
dynamic model is used. Furthermore, the physical control inputs
consist of two of the tail-beat parameters, the bias and the ampli-
tude, while the other (angular frequency) is kept constant. We pro-
pose a framework to address the nonlinear input constraints.
Specifically, to maximize the use of the admissible control and
handle the nonlinear control constraints in a computationally effi-
cient manner, we employ an analytical projection scheme for the
control inputs. We further propose a novel estimation scheme to
identify some key unknown parameters in the robotic fish model.
In particular, inspired by the work in Ref. [48], we develop a
parameter estimation method to empirically identify the hydrody-
namic and scaling coefficients of the model instead of utilizing
time-consuming computational fluid dynamics simulations, or
relying on trial-and-error data fitting between dynamic simulation
and experimental measurement. To implement the controller in
real-time, we employ a framework using Visual Cþþ, which con-
sists of the ACADO toolkit [49] used to solve repeatedly the opti-
mal control problem, and an image processing algorithm using
OpenCV to provide feedback.

Some preliminary results of this work were presented at the
2016 ASME Dynamic Systems and Control Conference [50]. The
improvement of this paper over [50] is extensive and significant.
First, we have proposed a computation-efficient method to deal
with the nonlinear constraints. Second, we have further formu-
lated a parameter estimation scheme to identify crucial parameters
in the model. Third, we have developed the experimental frame-
work and implemented the proposed NMPC scheme
experimentally.

The rest of the paper is organized as follows. We first review
the dynamic and scaled averaging models of the tail-actuated
robotic fish, followed by a simplified averaged model. In Sec. 3,
we present the path-following problem formulation, followed by
the NMPC design and the proposed control projection scheme.
In Sec. 4, simulation results are discussed, and in Sec. 5, the
experimental setup, the proposed parameter estimation scheme,
and the experimental results are presented. Section 6 concludes
the paper.

2 Robotic Fish Model

2.1 Dynamic Model. As was done in Ref. [48], the tail-
actuated robotic fish is modeled as a rigid body with a rigid tail
that is actuated at its base, and it is assumed that the robot operates
in an inviscid, irrotational, and incompressible fluid within an infi-
nite domain. Define [X, Y, Z]T and [x, y, z]T as the inertial coordi-
nate system and the body-fixed coordinate system, respectively, as
illustrated in Fig. 2. The velocity of the center of mass in the
body-fixed coordinates is expressed as Vc ¼ ½Vcx ;Vcy ;Vcz �, where

Vcx ; Vcy , and Vcz denote the surge, sway, and heave velocities,
respectively. Furthermore, let b denote the angle of attack, formed
by the direction of Vc with respect to the x-axis, and w denote the
heading angle, formed by the x-axis relative to the X-axis. The
angular velocity expressed in the body-fixed coordinate system is
given by x ¼ ½xx;xy;xz�, which is composed of roll (xx), pitch
(xy), and yaw (xz). Finally, let a denote the tail deflection angle
with respect to the negative x-axis.

We only consider the planar motion and further assume that the
body is symmetric with respect to the xz-plane and that the tail
moves in the xy-plane. As a result, the system only has three
degrees-of-freedom, surge (Vcx ), sway (Vcy ), and yaw (xz). It is
further assumed that the inertial coupling between yaw, sway and
surge motions is negligible, which leads to the following equa-
tions of planar motion:

ðmb � maxÞ _V cx ¼ ðmb � mayÞVcyxz þ fx (1)

ðmb � mayÞ _V cy ¼ �ðmb � maxÞVcxxz þ fy (2)

ðJbz � JazÞ _xz ¼ ðmay � maxÞVcxVcy þMz (3)

where mb is the mass of the body, Jbz is the inertia of the body
about the z-axis, max and may are the hydrodynamic derivatives
that represent the added masses of the robotic fish along the x and
y directions, respectively, and Jaz represents the added inertia
effect of the body about the z-axis. The hydrodynamic forces and
moment due to tail fin actuation and the interaction of the body
itself with the fluid are captured by fx, fy, and Mz. To evaluate the
hydrodynamic forces exerted by the tail, Lighthill’s large ampli-
tude elongated body theory is used [48]. The kinematic equations
for the robotic fish are given by

_X ¼ Vcx cosw� Vcy sinw (4)

_Y ¼ Vcx sinwþ Vcy cosw (5)

_w ¼ xz (6)

Given the rhythmic nature of the robotic fish movement and the
periodic tail actuation, averaging has proven to be a useful
approach in studying the effect of the input parameters on the
dynamics of the robotic fish [48]. Furthermore, in practical appli-
cations, it is more natural to control the parameters for periodic
fin beats than to directly control the fin position at every moment.
Therefore, an averaged model is best suited for trajectory planning
and tracking control. We next review the averaged model pro-
posed in Ref. [48], where the following periodic pattern for the
tail deflection angle is considered:

Fig. 2 Top view of the tail-actuated robotic fish undergoing
planar motion [48]

071012-2 / Vol. 141, JULY 2019 Transactions of the ASME

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 05/15/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



aðtÞ ¼ a0 þ aa sinðxatÞ (7)

where a0, aa, and xa represent the bias, amplitude, and frequency
of the tail beat, respectively. The original hydrodynamic force and
moment terms in Eqs. (1)–(3) are scaled by some functions
dependent on the tail beat parameters, a0, aa, and xa, and classical
averaging is then conducted over these scaled dynamics. In partic-
ular, we define the states x1 ¼ Vcx ; x2 ¼ Vcy , and x3 ¼ xz, so that
the averaged dynamics takes the following form:

_x1 ¼ f1ðx1; x2; x3Þ þ Kf
�f 4ða0; aa;xaÞ (8)

_x2 ¼ f2ðx1; x2; x3Þ þ Kf
�f 5ða0; aa;xaÞ (9)

_x3 ¼ f3ðx1; x2; x3Þ þ Km
�f 6ða0; aa;xaÞ (10)

with

f1 x1; x2; x3ð Þ ¼
m2

m1

x2x3 �
c1

m1

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

þ
c2

m1

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

arctan
x2

x1

� �

(11)

f2 x1; x2; x3ð Þ ¼ �
m1

m2

x1x3 �
c1

m2

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

�
c2

m2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

arctan
x2

x1

� �

(12)

f3ðx1; x2; x3Þ ¼ ðm1 � m2Þx1x2 � c4x
2
z sgnðxzÞ (13)

�f 4 a0; aa;xað Þ ¼
mL2

12m1

x2
aaa 3�

3

2
a20 �

3

8
a2a

� �

(14)

�f 5 a0; aa;xað Þ ¼
mL2

4m2

x2
aa

2
aa0 (15)

�f 6 a0; aa;xað Þ ¼ �
cmL2

4J3
x2

aa
2
aa0 (16)

where m1 ¼ mb � max ; m2 ¼ mb � may ; J3 ¼ Jbz � Jaz ; c1 ¼
ð1=2ÞqSCD; c2 ¼ ð1=2ÞqSCL; c3 ¼ ð1=2ÞmL2; c4 ¼ ð1=ðJ3ÞÞKD;
c5 ¼ ð1=ð2J3ÞÞL

2mc; and c6 ¼ ð1=ð3J3ÞÞL
3m. Here S denotes the

reference surface area for the robot body, CD, CL, and KD repre-
sent the drag force coefficient, lift coefficient, and drag moment
coefficient, respectively, q is the density of water, L is the tail
length, c is the distance from the body center to the pivot point of
the actuated tail, and m represents the mass of water displaced by
the tail per unit length and is approximated by ðp=4Þqd2 with d
denoting the tail depth. Kf is a scaling constant, and Kmða0Þ is a
scaling function affine in a0. To further facilitate control design,
in this paper Km is considered as a constant during the NMPC
design. This term is found by taking the average of Km for a given
range of a0. The resulting model is called the simplified averaged
model in this paper.

3 Path-Following Control Algorithm

Considering that robotic fish are battery-powered, energy-
efficient locomotion is highly desirable in order to prolong the
field-operation time. It is important to design a controller that is
able to meet performance objectives such as minimizing the path-
tracking error while accommodating consideration of control
effort. We are thus motivated to develop an NMPC scheme for
path-following. NMPC is an attractive choice because it allows
explicit consideration of state and input constraints, is capable of
handling nonlinear models, and can optimize control performance
[51,52].

3.1 Path-Following Error Coordinates. In contrast to tra-
jectory tracking, in path-following one is interested in following a
geometric reference parametrized by some scalar without any
specified timing. The kinematic model of the robotic fish is
expressed in a Frenet–Serret frame {F} that moves along the ref-
erence path according to some desired function of time. Figure 3
illustrates the path-following problem.

Assume that the reference path is a twice continuously differen-
tiable geometric curve that is defined as a set of points P parame-
trized by the scalar s

P ¼ fP 2 R2jP ¼ pðsÞ;8s 2 ½0; lp�g (17)

where lp denotes the length of the path, and the function p : R
1 !

R
2 is twice differentiable. Let P denote a point on the path to be

followed, hp the tangential angle of the path at point P, and hc the
angle between the robotic fish velocity vector Vc and the inertial
X-axis, while the coordinate axes xp and yp are directed along the
tangential and normal directions at point P. We let point C denote
the center of the robotic fish, and the vectors �C and �P describe the
positions of C and P in the three-dimensional (3D) inertial frame
{I}. Note that since we are only considering the planar case, the
third component of the position vectors is taken as 0. Let r ¼
½Xe; Ye; 0�

T
denote the position of the robotic fish center C with

respect to the point P on the path expressed in {F}. Let IRF denote
the rotation matrix from {I} to {F} and FRI denote the rotation
matrix from {F} to {I}, with

IRF ¼
cos hp sin hp 0

�sin hp cos hp 0

0 0 1

2

4

3

5 (18)

Define _hp ¼ CpðsÞ _s, where Cp(s) is the path’s curvature. One
can express

�C ¼ �PþFRIr (19)

The velocity of �C in {I} is given by

d�C

dt

� �

fIg
¼

d�P

dt

� �

fIg
þ FRI

dr

dt

� �

fFg

þ FRI xp � rð Þ (20)

where

xp ¼
0

0
_hp

2

4

3

5 (21)

Fig. 3 Illustration of the path-following problem for robotic
fish
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Multiplying the previous equation on the left by IRF gives the
velocity of C expressed in {F}

IRF

d�C

dt

� �

fIg
¼

d�P

dt

� �

fFg
þ

dr

dt

� �

fFg

þ xp � rð Þ (22)

where

d�C

dt

� �

fIg
¼

_X
_Y

0

2

6

4

3

7

5
(23)

d�P

dt

� �

fFg
¼

_s

0

0

2

4

3

5 (24)

dr

dt

� �

fFg

¼

_Xe

_Y e

0

2

6

4

3

7

5
(25)

xp � r ¼

0

0

CpðsÞ _s

2

6

6

4

3

7

7

5

�

Xe

Ye

0

2

6

6

4

3

7

7

5

¼

�CpðsÞ _sYe

CpðsÞ _sXe

0

2

6

6

4

3

7

7

5

(26)

After rearranging and solving for _Xe and _Y e from Eq. (22), we
get the following expression:

_Xe

_Y e

" #

¼
_X cos hp þ _Y sin hp � _s þ CpðsÞ _sYe

� _X sin hp þ _Y cos hp � CpðsÞ _sXe

" #

(27)

Let ae¼w – hp, and further expand _X and _Y with Eqs. (4) and
(5), respectively, which results in the following error state model:

_Xe

_Y e

_ae

0

B

B

@

1

C

C

A

¼

Vc cosðae þ bÞ � _s þ CpðsÞ _sYe

Vc sinðae þ bÞ � CpðsÞ _sXe

xz � CpðsÞ _s

0

B

B

@

1

C

C

A

(28)

where Vc is the magnitude of the robotic fish’s translational veloc-
ity. The dynamical model of the robotic fish in the error state is
then obtained by augmenting the previous equations with the sim-
plified averaged scaled dynamics as seen in Eqs. (8)–(10). Ideally,
one would like the robotic fish to not only converge to a desired
path, but also move along the path with some desired surge veloc-
ity and desired angular velocity. Let Vdx be the desired surge
velocity, and let the velocity error states be defined by
ge ¼ Vcx � Vdx ; xe ¼ xz � CpðsÞ _s, and fe ¼ _s � Vc cosðae þ bÞ
so that

_ge

_xe

_fe

0

B

B

@

1

C

C

A

¼

_V cx � _Vdx

_xz � CpðsÞ€s � gcðsÞ _s
2

€s � _V c cosðae þ bÞ þ Vc sinðae þ bÞð _ae þ _bÞ

0

B

B

@

1

C

C

A

(29)

where gcðsÞ ¼ ððdCpðsÞÞ=dsÞ. Since we are interested in steering
the robotic fish such that Vcx ¼ Vdx , and xz ¼ CpðsÞ _s, by doing a
change of variables on Eqs. (8)–(10) using the previous defini-
tions, we can express the robotic fish dynamic equations in terms
of the error velocity states. The error state vector is then given by

Xe ¼

Xe

Ye

ae

ge

xe

fe

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

(30)

Since we have formulated the problem with respect to the error
dynamics, and have shifted the equilibrium point of the dynamic
equations, our control objective has become a stabilization prob-
lem for the resultant error dynamics.

3.2 Path-Following Control Design. To steer the robotic fish
to the desired path, and drive the error state vector Xe to zero, we
utilize an NMPC scheme using the robot’s simplified averaged
model. NMPC is an optimization-based method for feedback con-
trol of nonlinear systems, where the basic idea is to repeatedly
solve a finite horizon optimization problem subject to state and
input constraints. At a given time t, measurements are obtained,
and using a model of the process, the controller predicts the
behavior of the system over a prediction horizon Tp and then
determines over the control horizon Tc the input necessary to max-
imize the performance objective. The first part of the optimal con-
trol obtained is implemented until the next sampling instant, and
then a new measurement is obtained and the process repeats [52].

To design the controller, we consider the robot’s simplified
averaged model in which the control represents functions of the
actual control variables, namely, the tail-beat pattern parameters
a0, aa, and xa. By choosing the control in this manner, we allow
the control inputs to appear linearly in the dynamic equation. In
particular, we have chosen our control inputs as

uf1 ¼ a2a 3�
3

2
a20 �

3

8
a2a

� �

(31)

uf2 ¼ a2aa0 (32)

which are present in functions f4ða0; aa;xaÞ to f6ða0; aa;xaÞ in
Eqs. (8)–(10). To simplify discussion, it is assumed that the
robotic fish uses a fixed tail-beat frequency xa. Furthermore, since
the system dynamics are expressed in terms of the velocity errors
states, by doing a change of variables we have essentially shifted
the equilibrium point of the dynamical system, which means that
there is also a shift on the control inputs uf1 and uf2 . Let u2ss and
u3ss represent the shifted control values, which are defined as
follows:

u2ss ¼
6qsCDV

2
dx

KfmL2x2
a

(33)

u3ss ¼
4KDCP sð ÞV2

dx

KmmL2cx2
a

(34)

In order to satisfy the condition that _Xe ¼0 when Xe ¼ 0 and
ue ¼ 0, we define the control inputs as follows:

ue ¼

ue1

ue2

ue3

0

B

B

@

1

C

C

A

¼

€s � _V c cosðae þ bÞ þ Vc sinðae þ bÞð _ae þ _bÞ

uf1 � u2ss

uf2 � u3ss

0

B

B

@

1

C

C

A

(35)

where ue1 is essentially _fe as seen in Eq. (29).
Since one is interested in steering the robotic fish to the desired

path, we employ a stage cost that is a function of the error state
vector Xe. Furthermore, to minimize the control effort a weight-
ing term on the control inputs is introduced. The following quad-
ratic cost is chosen:

FðXe; ueÞ ¼ ðXeÞ
T
QðXeÞ þ ðueÞ

T
RðueÞ (36)
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where Q and R are positive definite weighting matrices that penal-
ize deviations from the desired values.

Furthermore, to guarantee closed-loop stability and conver-
gence, we utilize the terminal penalty, and the fictitious terminal
control law pðXeÞ as proposed in Ref. [53], where a polytopic lin-
ear differential inclusion-based method is employed to obtain the
weighting matrix QT for a terminal penalty of the following form:

EðXeðtþ TpÞÞ ¼ ðXeðtþ TpÞÞ
T
QTðXeðtþ TpÞÞ (37)

The reader is referred to Ref. [53] for details on how to obtain this
weighting matrix.

By solving the optimal control problem we obtain the optimal
control sequence for ue1 ; ue2 , and ue3 . From ue1 , we can obtain _fe,
and thus the state fe from which we can then solve for _s. Further-
more, from ue2 and ue3 , along with Eqs. (31)–(34), one can solve
for the actual robotic fish control variables a0 and aa.

3.3 Control Projection. Given that the NMPC inputs, ue2
and ue3, consist of functions of the actual robotic fish control vari-
ables a0 and aa, the NMPC input constraints are nonlinear in
nature. As an illustration, Fig. 4 plots the admissible control inputs
in terms of uf1 and uf2 when the tail beat bias and amplitude have
the following limits:

� a0min
¼ �40 deg

� a0max
¼ 40 deg

� aamin
¼ 0 deg

� aamax
¼ 30 deg

where a0min
; a0max

; aamin
, and aamax

are the physical limits on the
tail-beat bias and amplitude, respectively.

Although NMPC is able to handle nonlinear control constraints,
defining the constraints in this manner leads to an increase in com-
putational time and complexity which in turn makes it challenging
to implement in real-time. It is thus desirable to define boxed-
constraints since this can reduce significantly the complexity of
the optimization problem and thus lower the computational time.
One way of handling the irregular sector-shaped admissible con-
trol region as shown in Fig. 4, is to choose a rectangular area that
lies inside this sector-shaped region as depicted by the light gray
box in Fig. 5. However, this deprives one of fully utilizing the
admissible control. To overcome this problem, we propose to
employ a projection method, where we define the NMPC boxed
constraint to be such that it encompasses the admissible control
region as depicted in Fig. 6, and then project the computed values
onto the true region depicted by the red sector-shaped section.

Let z denote a control point anywhere in this rectangular region,
and let the sector-shaped set be represented by U. We can then
project the point z onto the convex set U such that

ProjUðzÞ¢ argmin
u2U

jjz� ujj (38)

Given that U is convex, this problem is then well defined and
ProjUðzÞ is unique. Instead of relying on an iterative optimization
algorithm to determine the projected value, one can directly
obtain an analytical solution that will simplify the projection and
minimize computational complexity, as explained next. By taking
advantage of the symmetry of the admissible control set, one can
restrict the analysis to the left-half plane. To characterize the
boundaries of the admissible control region, we obtain the rela-
tionship between uf1 ; uf2 , and a0 by solving for aa from Eq. (32)
and then substituting that into Eq. (31). Similarly, by solving for
a0 from Eq. (32), we can obtain an equation that captures the rela-
tionship between uf1 ; uf2 , and aa. These equations are given as
follows:

v1 uf1 ; uf2 ; a0ð Þ¢� a20uf1 þ 3�
3

2
a20

� �

a0uf2 �
3

8
u2f2 ¼ 0 (39)

v2 uf1 ; uf2 ; aað Þ¢� a2auf1 �
3

2
u2f2 þ 3a4a �

3

8
a6a ¼ 0 (40)

where Eq. (39) represents the left boundary when a0 ¼ a0min
and

Eq. (40) represents the arc at the top when aa ¼ aamax
. To imple-

ment the projection scheme, the following cases are considered:

ðAÞ v1ðuf1 ; uf2 ; a0min
Þ � 0 and v2ðuf1 ; uf2 ; aamax

Þ � 0

ðBÞ v1ðuf1 ; uf2 ; a0min
Þ � 0 and v2ðuf1 ; uf2 ; aamax

Þ > 0

ðCÞ v1ðuf1 ; uf2 ; a0min
Þ > 0 and v2ðuf1 ; uf2 ; aamax

Þ � 0

ðDÞ v1ðuf1 ; uf2 ; a0min
Þ > 0 and v2ðuf1 ; uf2 ; aamax

Þ > 0

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Fig. 4 Illustration of the admissible input control set for
robotic fish

Fig. 5 Illustration of a rectangular section chosen from the
admissible control set

Fig. 6 Boxed section encompassing the admissible control
set
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For case (A), the point to be projected is inside or on the bound-
ary of the convex set U and no projection is needed. For case (D),
the point to be projected would be outside of the box encompass-
ing the constraint set U and thus does not need to be considered.
For case (B), the point to be projected is above the arc, and there-
fore ProjUðzÞ can be found by finding the minimum distance from
the point z to the arc described by Eq. (40). Let z¼ (p, q) and
u� ¼ ðu�f1 ; u

�
f2
Þ ¼ ProjUðzÞ. The relationship between u�f1 and u�f2 is

given by

u�f1 ¼
1

a2amax

�3

2
u�f2

2 þ 3a4amax
�
3

8
a6amax

� �

(41)

and the distance between z and u� is then given by

g2 u�f2
� �

¼ u�f2 � p
� �2 þ u�f1 � q

� �2

¼ u�f2 � p
� �2

þ
1

a2amax

�3

2
u�f2

2 þ 3a4amax
�
3

8
a6amax

� �

� q

 !2

(42)

By taking the partial derivative of g2ðu
�
f2
Þ with respect to u�f2

and setting it to zero, we can obtain a unique real root for u�f2 that
would minimize this distance. Finally, u�f1 is obtained with
Eq. (41).

For case (C), the point to be projected is below the left bound-
ary. In this case, u�f1 and u

�
f2
are related by

u�f1 ¼
1

a20min

�3a30min

2
u�f2 þ 3a0min

u�f2 �
3

8
u�f2

2

� �

(43)

and the distance between z and u� can be captured by

g3 u�f2
� �

¼ u�f2 � p
� �2 þ u�f1 � q

� �2

¼ u�f2 � p
� �2 þ

�3a0min

2
u�f2 þ

3u�f2
a20min

�
3

8a20min

u�f2 � q

 !2

(44)

By taking the partial derivative of g3ðu
�
f2
Þ with respect to u�f2 and

setting it to zero, we can obtain a unique real root for u�f2 , and con-
sequently u�f1 with Eq. (43).

4 Simulation Results

To evaluate the effectiveness of the designed controller, simula-
tion was carried out using ACADO model predictive control tool-
kit. The parameters used (Table 1) were based on a robotic fish
developed by Smart Microsystems Lab at Michigan State Univer-
sity. Furthermore, while the input constraints are the same as
those presented in the experiment section, the parameters used to
solve the optimization problem and implement the NMPC are as
follows:

� Length of optimization horizon : Tc ¼ Tp ¼ 12 s
� Sampling interval : ts ¼ 1 s
� Weightingmatrix : Q ¼ diagð7; 7; 0:3; 1; 1; 7Þ
� Control weightingmatrix : R ¼ 0:001I3
� Vcmax ¼ 0:04 m= sec
� _smax ¼ 0:04m= sec
� a0min

¼ �40 deg
� a0max

¼ 40 deg
� aamin

¼ 0 deg
� aamax

¼ 30 deg

where Vcmax is the maximum velocity the robotic fish can
achieve, _smax is the maximum speed the point s can move along
the path with, and a0min

; a0max
; aamin

, and aamax
are the physical

limits on the tail-beat bias and amplitude, respectively. Note that
all of the following simulation was run with the same set of
parameters and initial conditions. Furthermore, the terminal pen-
alty weighting matrix was determined as described in Sec. 3.2.
Though the controller was designed using the simplified averaged
model, the simulation was performed using the original dynamic
model. In other words, the model of the process was based on the
simplified averaged dynamics as described by Eqs. (8)–(10), and
the inputs obtained from solving the optimization problem were
applied to the system described by Eqs. (1)–(3).

We first considered the following path:

xp ¼ s

yp ¼ 0
(45)

where xp and yp represent the position of the point P in the {I}
frame. This path has a curvature of cpðsÞ ¼ 0, and we chose to
require the robotic fish to move with a constant velocity Vc ¼
0:03 m/s. In Figs. 7–9 we compare the desired path and the
closed-loop trajectory of the robotic fish for three cases. In partic-
ular, Fig. 7 shows the simulation results of the NMPC utilizing the
projection scheme, while Fig. 8 shows the results for the case
when no projection was employed and a boxed constraint within
U was chosen instead (as shown in Fig. 5). Finally, Fig. 9 shows
the results when the nonlinear constraints for the set U were
directly defined. Note that in this work the blue dashed line repre-
sents the closed-loop trajectory of the robotic fish while the solid
red line represents the desired path, and the arrowheads point in
the direction of progression. Furthermore, the red diamond repre-
sents the starting position of the robotic fish, the green dot repre-
sents the starting point of the path, and the magenta box
represents the imaginary boundaries of the fish tank. Moreover,
Fig. 10 shows the computed physical inputs from solving the

Table 1 Identified parameters for the robotic fish used in this
work

Parameter Value

mb 0.725 kg
max �0.217 kg
may �0.7888 kg
Jbz 2.66� 10–3 kg/m2

Jaz �7.93� 10–4 kg/m2

L 0.071 m
d 0.04 m
c 0.105 m
q 1000 kg/m3

S 0.03 m2

CD 0.97
CL 3.9047
KD 4.5� 10–3 kg/m2

Kf 0.7
Km (averaged) 0.45

Fig. 7 Simulation: line-tracking results for NMPC with the pro-
posed control projection method
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NMPC with the larger boxed constraint and their final values after
the proposed projection.

Similarly, we considered the following circular path:

xp ¼ 0:3 sinðsÞ
yp ¼ 0:3 cosðsÞ

(46)

which has a constant curvature of cp(s)¼ 3.33. In Figs. 11–13, we
compare the desired path trajectory with those obtained by the
robotic fish using the three aforementioned control schemes,
respectively.

From the simulation results, one can see that the proposed
NMPC scheme with projection outperforms the other two
schemes in both line-tracking and arc-tracking cases; in particular,
it results in smaller tracking error at the steady-state. Compared
with the case with boxed constraint within the set U, the proposed
scheme offers larger control authority. The better tracking results
from the proposed scheme compared to the case using direct, non-
linear constraints, however, were somewhat surprising. We con-
jecture that this is because the latter algorithm cannot reach an
optimal solution within the allotted computing time. In particular,
directly defining the nonlinear constraints requires the optimiza-
tion algorithm to conduct more iterations in order to find the solu-
tion, which also makes it difficult to implement in real-time.

5 Experimental Results

In order to evaluate the effectiveness of the designed controller,
experiments were carried out using the robotic fish depicted in
Fig. 1. The robot consisted of a rigid-shell body and a relatively
rigid tail, which were both 3D-printed. The tail was actuated using
a Hitec digital micro waterproof servo (HS-5086WP) (Poway,
CA), while a microchip digital signal processors and controller
(DSPIC30F6014, Chandler, AZ) was used to control the tail
actuation. Furthermore, an XBee-PRO module (Hopkins, MN)
was used for communication with a computer. Two Tenergy Li-
Ion rechargeable batteries (7.4V, 3350 mAh) (Fremont, CA) were
used to power the robot. For the experiments, the robotic fish was
run in a 1.38m by 0.8m tank equipped with an overhead Logitech
camera (Newark, CA) as seen in Fig. 14. Furthermore, to obtain
the robotic fish’s position and orientation in the tank, two markers
were attached to the anterior and posterior of the robotic fish
body. We then captured an overhead video of the robotic fish

Fig. 8 Simulation: line-tracking results for NMPC with boxed
constraints inside the admissible sector-shaped control region

Fig. 10 Simulation: computed NMPC physical inputs and their
projected values

Fig. 11 Simulation: arc-tracking results for NMPC with the pro-
posed control projection method

Fig. 9 Simulation: line-tracking results for NMPC with direct
nonlinear control constraints

Fig. 12 Simulation: arc-tracking results for NMPC with boxed
constraints inside the admissible sector-shaped control region

Fig. 13 Simulation: arc-tracking results for NMPC with nonlin-
ear control constraints
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swimming in the tank using the camera, and utilized Visual Cþþ
and the OpenCV library to implement an image processing algo-
rithm. The algorithm detected the positions of the two markers
and then used their average to obtain the center position of the
robotic fish. The heading angle of the robot was estimated using
the positions of the two markers. Additionally, the Kalman filter
function in OpenCV was used to estimate the linear and angular
velocities of the robot based on the measured position and head-
ing. During every sampling time ts, the OpenCV algorithm was
used to obtain measurements for NMPC, which were then passed
to the nonlinear optimization tool ACADO to solve the optimal
control problem. In particular, we ran the software on a Surface
Pro tablet with an Intel(R) Core(TM) i5 central processing unit @
2.50GHz with 4.0 GB of DDR3 RAM. Once the control inputs
were calculated, the bias and amplitude values for the tail beat
were obtained and then transmitted to the robotic fish wirelessly,
and the process was repeated.

5.1 Model Parameter Identification. The robotic fish mass
and tail fin dimensions were measured, the values of which are as
shown in Table 1. Furthermore, the added masses, added inertia,
and wetted surface were calculated based on a prolate spheroid
approximation of the robotic fish body [54]. Identification of the
hydrodynamic parameters (such as CD, CL, and KD) of the robotic
fish model (8)–(16) typically requires extensive effort in fitting
dynamic simulation data to experimental data by scanning the
parameter space [15]. Furthermore, the determination of the scal-
ing coefficients of Kf and Km requires scanning the parameter
space for multiple sets of tail beat patterns and matching the simu-
lated average model data to the simulated dynamic model [48],
which is time-consuming. In this paper, we propose an efficient
and systematic way to identify the model parameters by exploiting
the approximate, analytical relationship between the steady-state
turning parameter (turning radius, turning period, etc.) and the
model parameters established in Ref. [48]. With the assumption
jx1j � jx2j, which is reasonable in general, we can obtain the
unique equilibrium of the system (8)–(10), under a given tail beat
pattern, as

�x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KfmL2x2
aaa 3�

3

2
a20 �

3

8
a2a

� �

6qSCD

v

u

u

u

t

(47)

�x2 ¼
Kf

2qS CD þ CLð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6mqSCDL
2x2

aa
2
aa

2
0

Kf 3�
3

2
a20 �

3

8
a2a

� �

v

u

u

u

t

þ
2m1

qS CD þ CLð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KmmL
2cx2

aa
2
aa0

4KD

s

(48)

�x3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KmmL2cx2
aa

2
aa0

4KD

s

(49)

And the steady-state turning period Tp (i.e., how long the robot
takes to complete a full orbit), turning radius R, and angle of
attack b can be expressed as

Tp ¼ 2p=j�x3j (50)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�x21 þ �x22Þ
q

=j�x3j (51)

b ¼ arctanð�x2=�x1Þ (52)

Using Eqs. (47)–(52), we formulate the following algorithm to
obtain the hydrodynamic coefficients CD, CL, and KD, as well as
the scaling coefficients Km and Kf for the averaged model.

Let R1 ¼ ðKf =CDÞ. By solving for the ratio ðKf =CDÞ from Eq.
(47), we obtain

R1 ¼
6qS�x21

mL2x2
aaa 3�

3

2
a20 �

3

8
a2a

� � (53)

Using the previous equation, one can obtain the numerical value
of the ratio R1 for a given set of tail beat parameters and the corre-
sponding measured �x1. In particular, we found this ratio by aver-
aging the different values obtained for each set of measurements.

Furthermore, let Km ¼ K0 þ K1a0. By solving for ðKm=KDÞ
from Eq. (49), and using the definition h0 ¼ K0=KD and
h1 ¼ K1=KD, one gets

h0 þ a0h1 ¼
4�x23

mL2cx2
aa

2
aa0

(54)

Using Eq. (54) can then estimate the numerical values for h0 and
h1 by utilizing, for example, the constrained linear least squares
(lsqlin) function in MATLAB, based on the tail beat parameters and
the corresponding measurement of �x3 for a set of experiments.

By considering R1 and the ratio ðKm=KDÞ, we have reduced the
number of parameters to be estimated from 5 (Kf ;Km;CD;CL;KD)
to 3 (R1; ðKm=KDÞ;CL). In order to obtain the particular values for
CD, Kf, Km, and KD, and to estimate the remaining parameter CL,
we utilize Eqs. (53) and (54) along with Eqs. (48) and (51). By let-
ting c0 ¼ CD þ CL and substituting R1, h0 and h1 into Eq. (51),
one obtains

R2j�x3j
2 ¼ �x21 þ

CD

c0
d1 þ

d2

c0

� �2

(55)

where

d1 ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6mqSL2x2
aa

2
aa

2
0

R1 3�
3

2
a20 �

3

8
a2a

� �

v

u

u

u

t

(56)

Fig. 14 The experimental setup
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d2 ¼
2m1

qS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1 þ h2a0ð ÞmL2cx2
aa

2
aa0

4

r

(57)

Using Eq. (55) and letting c1 ¼ ð1=c0Þ, we can obtain the
following:

y ¼ c21d
2
2 þ d21C

2
Dc

2
1 þ 2c1d2d1CD (58)

where y ¼ R2j�x3j
2 � �x21. Letting /1 ¼ c21; /2 ¼ C2

Dc
2
1, and

/3 ¼ c21CD, one can rewrite the previous expression as

y ¼ /1d
2
2 þ d21/2 þ 2d2d1/3 (59)

With a set of collected data, the parameters /1 through /3 can
be estimated readily using techniques, such as the constrained
linear-least square method. We can then solve for CD, CL, and Kf

using the definitions established previously. Since the proposed
estimation method only provides the ratio ðKm=KDÞ, to obtain the
values for Km and KD, we run simulations with the original
dynamical model and choose KD such that the angular velocity of
the dynamic model matches that of the averaged model.

For the implementation of the earlier parameter estimation
scheme, we first ran experiments to obtain the steady-state turning
radii and periods for different tail biases (0 deg; 25 deg; 40 deg),
and amplitudes (15 deg; 20 deg; 25 deg) while holding the fre-
quency at 1Hz. The values obtained for the parameters Kf, Km,
CD, CL, and KD are listed in Table 1. Furthermore, to validate the
models we ran experiments with the same set of biases and ampli-
tudes as previously stated while holding the frequency at 1.5Hz.
Table 2 lists the errors in turning radius and period between those
obtained from experiments and those obtained from simulation
using the parameters estimated earlier. The comparison indicates
that the estimated model has acceptable accuracy.

5.2 Experimental Results on Path-Following. The parame-
ters used to solve the optimization problem and implement the
NMPC were as follows:

� Length of optimization horizon : Tc ¼ Tp ¼ 7s
� Sampling interval : ts ¼ 1s
� Weightingmatrix : Q ¼ 0:9I5
� Control weightingmatrix : R ¼ 0:001I3
� Vcmax ¼ 0:04 m=s
� _smax ¼ 0:04m=s
� a0min

¼ �40 deg
� a0max

¼ 40 deg
� aamax

¼ 30 deg
� aamin

¼ 0 deg

The following were the inputs constraints used for the case
implementing projection:

�1:810 � ue1 � 0:190

0 � uf 1 � 0:794

�0:191 � uf2 � 0:191

2

6

6

4

3

7

7

5

(60)

For the case using boxed constraints (without projection), we
considered the following input constraints:

�1:81 � ue1 � 0:1900

0:366 � uf 1 � 0:794

�0:115 � uf2 � 0:115

2

6

6

4

3

7

7

5

(61)

We first considered the following path:

xp ¼ s

yp ¼ 0
(62)

where xp and yp represent the position of the point P in the {I}
frame. The desired velocity for the robotic fish was set to be
0.03m/s.

In Figs. 15 and 16 we compare the desired path and the closed-
loop robotic fish trajectory, obtained by using the NMPC with the
proposed control projection scheme, and with a boxed constraint
inside the nonlinear constraint set U, respectively. We do not
report the case of NMPC with nonlinear constraints U directly,
because it could not be implemented in real-time due to its long
computation time.

Similarly, we considered the following circular path:

xp ¼ 0:3 sinðsÞ
yp ¼ 0:3 cosðsÞ

(63)

and Figs. 17 and 18 show the path-following results for NMPC
with the proposed projection and for NMPC with boxed con-
straints inside U, respectively.

Overall, the tracking results shown in Figs. 15–18, one can see
that, consistent with the simulation results, the proposed NMPC
scheme with projection resulted in faster convergence to the

Fig. 15 Experiments: line-tracking results for NMPC with the
proposed control projection method

Table 2 Model validation results: relative model prediction
error for turning radius and turning period, when the tail beats
at 1.5Hz

(aa, a0) Turning radius error (%) Turning period error (%)

(15 deg, 45 deg) 11.23 8.80
(15 deg, 50 deg) 7.57 11.65
(20 deg, 45 deg) 8.46 3.82
(20 deg, 50 deg) 8.74 12.55
(25 deg, 45 deg) 2.90 0.97
(25 deg, 50 deg) 11.07 15.88

Fig. 16 Experiments: line-tracking results for NMPC with
boxed constraints inside the admissible sector-shaped control
region
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desired path and smaller path error, due to the availability of
larger control authority.

6 Conclusion

In this paper, we proposed and implemented in real-time a
path-following NMPC scheme for a tail-actuated robotic fish. A
high-fidelity averaged nonlinear dynamic model was used for con-
troller design. A parameter estimation scheme was employed to
empirically identify the hydrodynamic parameters and scaling
coefficients of the model. Furthermore, given that the control
inputs were functions of two of the tail-beat parameters, specifi-
cally the tail bias and tail amplitude, a control projection strategy
was implemented to handle these nonlinear input constraints and
maximize the use of the admissible control region in a computa-
tionally efficient manner. Finally, simulation and experimental
results demonstrated the effectiveness of the proposed scheme.

For future work, the proposed NMPC algorithm will be eval-
uated in an environmental sensing application, where there will be
an upper-level path planning scheme integrated with the NMPC-
based path-tracking scheme. Furthermore, in another direction, we
plan to extend this work to robotic fish with more sophisticated
dynamics, such as robotic fish actuated by both pectoral fins and
caudal fin [18], and underwater robots like the gliding robotic fish
[55].
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