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Abstract—1In this work, we propose a backstepping-based
trajectory tracking control approach for a tail-actuated robotic
fish, which has highly nonlinear and under-actuated dynamics.
A modified heading error is introduced that augments the
heading error with a term dependent on lateral tracking error,
which enables the exploitation of dynamics coupling to address
the under-actuation challenge and stabilize both the heading
and lateral tracking errors. Furthermore, the input constraints
imposed by physical limitations are accounted for with the
incorporation of an auxiliary system. Simulation results support
the efficacy of the proposed control approach and its advantages
are shown via comparison with a PI controller.

I. INTRODUCTION

Due to their high maneuverability and simple mechanical
design, robotic fish are gaining interest in a number of under-
water sensing applications. While extensive work has been
reported on motion control of robotic fish, it has mainly been
focused on the generation of coordinated movements of the
actuation components to produce some fish-like swimming
gaits [1]-[9]. Some works have addressed trajectory tracking
and stabilization problems [10], [11], but mostly with an
emphasis on heading or depth control. On the other hand,
some limited work has been done on model-based closed-
loop motion control to achieve maneuvering, speed and
orientation control, path following or point-to-point tracking
[12]-[18]. Our recent work addressed the path-following
control problem for a tail-actuated robotic fish [19], where
a nonlinear model predictive control (NMPC) scheme was
proposed. However, the computational complexity of NMPC
poses great challenges in implementing such controllers on
resource-constrained robotic fish.

Backstepping-based control design presents a practical,
promising, and systematic approach for trajectory tracking
with stability guarantees. In particular, it is computation-
ally inexpensive, especially when compared to methods
such as NMPC. Some limited work has been reported on
backstepping-based control of robotic fish [20], [21]. In [20],
the authors proposed a target-tracking hybrid controller that
consists of an open-loop turning controller and a closed-loop
backstepping controller, to drive a robotic fish to a specified
target location. In [21], the authors proposed a backstepping
controller for tracking control of a nonholonomic fish robot
with dynamics That can be expressed in a chained form.
The proposed approach guaranteed asymptotic convergence
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to a desired trajectory generated by a reference fish robot,
but limitations were placed on the desired trajectory since it
had to be generated by dynamics in the same chained form.
Furthermore, input constraints were not accommodated.

In this work, a backstepping-based control scheme for
a tail-actuated robotic fish to track a desired trajectory is
proposed. The scheme accommodates the under-actuation
nature of the dynamics by exploiting input coupling, and
it incorporates input constraints. The design is based on
an experimentally validated high-fidelity average dynamic
model for robotic fish. In particular, inspired by the work
[22], a new error coordinate is introduced that augments
the heading error with a term dependent on the lateral
tracking error. Then by using the angular velocity as a
virtual input to regulate the aforementioned modified heading
error, the controller is able to handle the tracking of desired
heading and lateral displacement trajectories, aside from that
of the longitudinal displacement trajectory. Furthermore, to
accommodate the input constraints, an auxiliary system is
designed such that the error due to the difference between
the feasible and “desired” inputs is compensated for. Finally,
Lyapunov-based design is carried out to ensure closed-loop
stability of the system. Simulation results demonstrate the
effectiveness of the controller and show its advantage over a
PI controller.

II. DYNAMIC MODEL OF ROBOTIC FISH

The tail-actuated robotic fish is modeled as a rigid body
with a rigid tail that is actuated at its base, and it is
assumed that the robot operates in an inviscid, irrotational,
and incompressible fluid within an infinite domain [23].

Let [X,Y.Z]T and [x,y,2z]T be defined as the inertial
coordinate system and the body-fixed coordinate system,
respectively, as illustrated in Fig. 1. In this work, only the
planar motion is considered and it is assumed that the body is
symmetric with respect to the xz-plane and that the tail moves
in the xy-plane. Thus the system only has three degrees of
freedom, namely surge (V.,), sway (V. ), and yaw (w.).
Furthermore, let i) denote the heading angle, formed by
the x-axis relative to the X-axis and let o denote the tail
deflection angle with respect to the negative x-axis.

Consider the following periodic pattern for the tail deflec-
tion angle:

at) = ag + ag sin(wyt) (1)
where «g, ag, and w, represent the bias, amplitude, and

frequency of the tail beat, respectively. By using classical
averaging methods an averaged model can be obtained as
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x2 = V¢, and T3 = w, so that the averaged dynamics takes
the following form [23]
i1 = fi(z1, 32, 23) + Krer fa(oo, . wa) 2
iy = folw1, 2, 23) + Kycs fs(ao, da, wa) (3)
i3 = f3(1,22,23) + Kmco fo(ao, da, wa) 4)
with

mo C1 2 2
fl(xl,fl,‘g, wg) =——T2T3 — —T14/ X7 + Z‘2+
my my

co s @)
— w94/ 12 4+ 22 arctan(=—)
mi Ty
mia C1
fo(z1, 0, x3) = — — w123 — — w00/ 2% + 23
mo mo (6)

C2 T2
— —=x1y/23 + 23 arctan(=)
ma Z1

2
f3(x1, w0, 23) =(my1 — ma)T122 — cawisgn(w.) (7
- 3 3
2 2 2
1(0, Qg, Wa) =w506(3 — an - gaa) )
7 2 2
f5(0, gy wa) =Wy a0 ©)
7 2 2
6(0{0, aavwa) =W, (10)
where m1 = my — mg,, M2 =My — M, J3 = Jp: — Jo,,
1 1 Kp L?
o = 5pSCp, c2 = 5,059& €4 = {750 CT = Tomys €8 =
TL , and cg = —CTJL . Here S denotes the reference
ma 3

surface area for the robot body, C'p,Cy, and Kp represent
the drag force coefficient, lift coefficient, and drag moment
coefficient, respectively, p is the density of water, L is the
tail length, c is the distance from the body center to the pivot
point of the actuated tail and m represents the mass of water
displaced by the tail per unit length and is approximated
by %pd2 with d denoting the tail depth. Ky is a scaling
constant, and K, is a scaling function affine in «. Finally,
the kinematic equations for the robotic fish are given by

X =V, costp — V,, sinep (11)
Y:Vcwsinw—&—VCycosw (12)
U =w, (13)

To further facilitate control design, in this work K,, is
considered as a constant by taking the average of K, for a
given range of ag. The resulting model is referred to as the
simplified averaged model.

III. TRAJECTORY TRACKING CONTROL ALGORITHM

A. Trajectory Tracking Error Coordinates

The trajectory tracking problem involves controlling the
robotic fish such that it tracks a reference trajectory that is
parametrized in time ¢. In essence, this means that the robot is
required to be at a desired position with a desired orientation
at any given time ¢. Fig.1 illustrates the idea.

Let the vectors C(t) and P(t) denote the position of the
center of the robotic fish (point C) and the desired position
with respect to the inertial frame {I} at a given time ¢,
respectively. Let C and P be defined as

Fish body \

(.

Z

Fig. 1: Top view of the tail-actuated robotic fish undergoing

planar motion.
o [x X,
c=|y|, P=|Y, (14)
P Pr

Let R denote the rotation matrix from the inertial frame
{I} to the body-fixed frame {B} and R denote the rotation
matrix from {B} to {I}, with

cosy —siny 0
BR; = |siny cosyp 0 (15)
0 0 1

Furthermore, let e = [X,; Ye; %] denote the tracking error
vector expressed in the body-fixed frame such that

e="Rg(C—P) (16)
The derivative of e expressed in {B} is given by
de_ gome By im, (1€ AP
== —Sw.) Rp(C-P)+ 'Rp(‘T - ) (D
where
X
de -¢
(55).. =% (18)
i)~ |
{B} e
apP ):(7« costp, —siny, O [ur
— = 1Y, | = |siny, cosy. Of |vr (19)
ey 0 0 1 |w
0 —w. O
Sw)=|w. 0 0 (20)
0 0 0

where u,., v, and w, are desired surge, sway and angular
velocities, respectively.
Y,

Let V; = \/ X2+ Y2, ¢, = arctan(3*) and Yo = —

. d
1. By solving for e from Eq. (17) one can obtain the error

state model, which 1s then augmented with the simplified
averaged scaled dynamics as seen in Section II, particularly
Egs. (2)-(4), to obtain

Xe Ve, — Vicos(e) + w.Ye
Y_fe ‘/cy + ‘/;" Sin(&e) - sze
e | = we W @1
V., J1(Ve, Ve, w2) + Kyer fa(ao, da, wa)
‘./Cy fQ(VZ:m»‘/::yywz) +Kf08f§(a07aa7w(x)
Wy f3(%m7vcyywz) + chgfﬁ(amaaawa)
where @, = 4 (arctan ;;T ).
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B. Backstepping Control Design

By formulating the tracking problem in terms of the error
dynamics, the control objective has become a stabilization
problem. In particular, the trajectory-tracking problem is to
find a control law such that, for an arbitrary initial error,
the state (X,,Y,,7.) of system (21) can be held near the
origin (0,0,0). To design the controller, the robot’s simplified
averaged model is considered. Here the control inputs are
functions of the actual physical variables, namely the tail-
beat pattern parameters oy, o, and w,. To simplify discus-
sion, a fixed tail-beat frequency w,, is assumed. The control
inputs are then chosen as

3 3
ulzad&fyﬁfgab (22)
u2 :aiao (23)
which are present in functions fi(ap, g, ws) to

fo(ao, aq,wa) in Egs. (2)-(4). Note that the control
inputs defined this way appear linearly in the dynamic
equations.

1) Choice of Lyapunov Function: Given the under-
actuated nature of the system and the coupling effects
between the inputs specifically in Egs. (3)-(4), the choice
of Lyapunov function is not trivial. From Eq. (21) one can
see that the error system has a triangular structure with
two stages. In other words, one could attempt to design
the virtual velocity contgol Veor Ve, and w, to stabilize the
subsystem X., Y, and 1), at the origin, and then design the
controls u; and uy based on the backstepping technique.
In this case, the natural choice for a Lyapunov function
would be V = %(Xf + Y2 + ¢2). However, given the
nature of the under-actuated dynamics (only two inputs u;
and ug are at our disposal), this would lead to an over-
constrained problem where the two inputs need to be chosen
to stabilize three states. Similarly, from Eq. (21), one could
attempt to stabilize X, and Y, at the origin by using virtual
inputs V., and V. , by the choice V = %(Xg + Y2).
Although this could allow the tracking of the position, the
orientation error is not guaranteed to be bounded, and given
the input coupling between ch and w,, this leads to unstable
turning and whirling of the robotic fish. Finally, if one
chooses to stabilize X, and 7,/76, which entails choosing

V= 1(X 214)2), then the lateral displacement error will not
be controlled, which does not guarantee actual convergence
to the trajectory.

To handle the under-actuated nature of the robot,we define
a new Lyapunov function that will allow us to stabilize the
subsystem X, Y., and VJ_J@ with only two virtual velocities.
Choosing the sway velocity V., as a virtual input is impracti-
cal in reality and leads to uncontrolled twirling of the robot;
therefore, the only viable choices are V,, and w,. We are
thus motivated to define a modified error Z, that incorporates
both the heading error 1/36 and the lateral error Y,:

Ze=vPe+¢ (24)
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where the “correction” angle

¢ =k, arctan(k,_,u,Ye) (25)
and k., and k, , are some positive design constants to
be chosen later. In particular, k,_, is used to adjust on the
correction angle within the total error Z., while k,_, tunes
the magnitude of the angle. Intuitively, by choosing Z. in
this manner the robotic fish heading angle can be used to
steer the robot towards a desired trajectory. In particular,
the heading angle error 7. is “corrected” by an angle ¢
that is dependent on the error Y., such that it captures the
rotation needed for the robot to point towards the desired
trajectory. Furthermore, by utilizing the arctan function, ¢
is guaranteed to be bounded and by choosing Z. in this
manner, tracking of v, is implied when Y, is small enough.
Finally, Eq. (24) is well defined and the convergence of Y,
and Z, implies that of ).

2) Trajectory Tracking Control Synthesis: First, to stabi-
lize the (X, Z.) subsystem, the following candidate Lya-
punov function is chosen

1 1
Vi= X2+ 3522 (26)
Let a; and o represent the virtual inputs, which will be
chosen shortly. Furthermore, let ay1 and a4o be the desired

virtual inputs, and let the virtual errors be given as

Z1 = a1 — agq 27
Zy = ap — Qg2 (28)
The time derivative of Eq. (26) is given by
Vl :XeXe + ZeZe
=X (V., — V,cos(ve) +w,Ye)+ (29)
Ze(uw, — wp +7)
where
ur (Ve sin(e) + Ve, ) + Yo
=k, k., Y 30
T el'VZe2 (kzezurye)2 4 1 ( )
kz kz rXe
M — 1 _ el c2u (31)

(kzezurYe)Z +1

Let ay = V., and ag = pw,. With Eq. (27), Eq. (29) can
be rewritten as
Vl :Xe(Zl + ag1 — ‘/r COS(&e) + sze)

(32
+ Z(Zy+ qga —0p +7)
Let the desired virtual inputs be defined as
aq1 =V, COS(’(ZC) —w. Y, — Kx.Xe (33)
Qg =W — T — KZeZe (34)
so that
Vi =X(Z1 — KxeXe) + Ze(Z2 = KzeZe)  (35)
We then define a new Lyapunov function
1 1
%:m+§ﬁ+§ﬁ (36)
The time derivative of Eq. (36) is given by
Vo=WVi+ 2121+ ZoZo (37)

With Egs. (2)-(4) along wjth the input definition Eq. (22)-
(23), one can expand the V., V., and w, terms that appear



in Eq. (36). After simplification, u; and uy can be chosen

using

Kyerur + KpcgYeus = — fi + Vi cos(ihe) — Vi Sin(ﬂ_fe)lze—
f3)/e - sze - KXeXe - Kzlzl

(38)
My = — fap — jiw, +@p — 6 — Kz, Ze — K., Zy (39)
where
F G
6=k koy o — ko k.
e (FzppurYe)? +1 e ((kzppurYe)? +1)2
(40)
F =i, Y, + 0, Y. + i, (V,sin(e) + V2, an

+up (Ve sin(de) + Vi cos(Pe)tbe + f2)

G =2k.,Yeur(urYe + Yeur) (ur (V; sin(vpe) + Ve, ) + Yetiy)
(42)
" urKycg

——+ K
Ze1Vze2 (szZUr}/;)2 +1 + Kmcop

43)
such that
Vo= —KxeX2 = KzeZ2 4+ XeZ1+ ZeZo — K1Z2 — Ko Z2 (44)

2
By adding and subtracting é{

the square, one can arrive at

Z;

and IR

and completing

. _ - 2 o _ 1 2
Vo = — Kxo(Xe T Z1)? — Kzo(Z. T Zs)
L ) e (45)
— 23Ky — ——) — Z3(K2 —
i 4Kx€) 2(Ke 4KZE)
If Kxe >0, Kze >0, K1 > g0~ and K3 > gz, then

Vg < O unless X, = Z, = Z1 = Z5 = 0. From Lasalle’s
Invariance Principle [24], one can conclude the convergence
of (Xe, Ze, Z1,Z2) to zero.

Finally, v and wuo can be obtained via

-1
. KfC7 chgi/e
= 0 "

Uy
(%]

ry
FJ (46)

where I'; and I's represent the right hand side of Eqs. (38)-
(39), respectively.

3) Control Synthesis Incorporating Input Constraints:
Given that robot’s actuators have physical limitations, the
backstepping-based controller design should accommodate
such constraints so that the control scheme can be success-
fully implemented. In order to address magnitude constraints
on the control inputs the following scheme inspired by [25]
and [26] is proposed.

Let v; and vs represent the nominal backstepping control
inputs, and let u; and usy be the inputs that can be practically
implemented. To obtain the value for u; and wus, first the
values given by v; and ve are used to solve for the tail-beat
parameters v, o, using Egs. (22)-(23), and then the tail-beat
parameter values are saturated such that they lie within the
range [ag, .. , @0, .., and [@q, ..., @q,,,. |- Finally uq and us
are obtained using Eqgs. (22)-(23) with the saturated values.

To analyze the influence of the input constraints, the

1naw]

following auxiliary system is chosen,

A= —CGA1+ Ao

Ao = —Coda + Kyer(ur — v1) + Yo Ko (ug — v2)

Az = —C3h3 + M\

Mg = —Cada — n(uz — v2)

(47

The variables \;-\4 defined above represent the filtered
effect of the non-achievable portion of the virtual and
control inputs. In particular, the additional tracking error
that arises because of mismatch between the nominal and
implementable inputs is represent by A; and A3, while Ay
and \4 represent the error propagated to the virtual inputs. As
a result, the modified tracking errors are defined as follows:

Xe=X.— X\ (48)
Ze=Ze— X3 (49)
Furthermore, let the modified virtual errors be given as
Zi=a1 —aq — X (50)
Zy =3 — gz — M (51)

To stabilize the (X, Z,) subsystem the following Lyapunov
function is chosen
_ 1. 1_
Vi= X2+ 528 (52)
With these new definitions, similar stability analysis as

done in Eq. (29)-(35) is carried out. Let the desired virtual
inputs be defined as

aqr = Vi cos(Pe) —w.Ye — KxeXe — QA1 (53)
gy =Wy — T — Kzeze — (33 54
so that

Vl :Xe(Zl _KX€X6)+ZE(Z2_KZEZ€) (55)

Then a new Lyapunov function is defined as

_ _ 1. 1
Vo=V + 5Zf + 5222 (56)
The time derivative of Eq. (56) is given by

‘72 = ‘71 + 2121 + 2222 (57)

As previously done, the terms VLI, ch and w, that appear
in Eq. (57) can be further expanded. After simplifying the
above, v; and v9 can be chosen as
Krcrvr + KpeoYeva = — f1 + V;«COS(’l;e) — V}sin(&e)qze — f3Ye

—w. Y, — Kxo X+ A — (G4 C)As
- K. 7,
(58)
nugy = — fSM — fiw; + d)r —-— KZGZE + C§>\3
—(G+C)M — K., 2o

By following similar stability analysis as previously done
for the constraints-free case, one can arrive at the following

(59)

i % 7L— 2 7 > \2
Vo = — Kxe(Xe K~ Z1)" — Kze(Ze 2K, Z3)
e 1 e (60)
— 73Ky — — Z2(Ky — ——
1(Ka 4KX€) 2 (Ko 4KZ€)
If Kxe >0, Kze > 0, K1 > 72— and Ky > 72—,

then Vo < O unless when X, = Z, = Z; = Z5 = 0
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implying the convergence of (X, Z., Z1, Z2) to zero as time
approaches infinity. Furthermore, since 0 < Va(t) < V5(0),
one can conclude that (X,, Z., Z;, Z,) are each in Lo. This
shows that even when physical limitations do not allow the
the desired control signals to be implemented, the quantities
X, and Z. do not diverge. In other words, this guarantees
convergence for the compensated tracking errors X, and Z,
but not the actual tracking errors X, and Z.. The latter may
actually increase during periods when input limitations are
in effect given that the desired control signal is not being
implemented (i.e. u; # v1 and/or uy # v3). However, when
the control signal limitations are not in effect, (i.e. u; = v;
and uy = v), A\1-A4 approach zero, and (X, Z.) converges
towards (X, Z.).

IV. SIMULATION RESULTS

To evaluate the effectiveness of the designed controller,
simulations were carried out using MATLAB. Furthermore,
a PI controller was implemented to provide performance
comparison. The robotic fish parameters used for simulation
are listed Tab. I.

TABLE I: PARAMETERS OF THE ROBOTIC FISH.

PARAMETER | VALUE [ PARAMETER | VALUE |
my, 0.725 kg Max -0.217 kg
May -0.7888 kg ¢ 0.105 m
Jaz -793x107* kg-m? | L 0.071 m
Jb 2.66x1073 kg-m? | d 0.04 m

) 1000 kg/m? S 0.03 m?
Cp 0.97 Cr 3.9047

Kp 4.5 x1072 kg'm? Ky 0.7

K (averaged) | 0.45 .

The tunable backstepping and PI controller parameters in
the simulation were chosen as follows:

Kx.=0.6  Kz.=0.7 Kz,=046  Kz,=02
1=0.4 (2=0.8 (3=0.9 (4=0.9
Kz, =5 Kz,,=633 Kpi=3.5 Kpy=0.85
Kn=0.021 Kp=0.023 «o,,,=50° «,,,=50°
g in=0°  0g,..=30° t;=066s w,=3T

where oy, ;. ,00,,..> Qa,,;, and o, . are the physical limits
on the tail-beat bias and amplitude respectively. Furthermore,
Kpi, Kpy, K1, and Kjo are the PI controller tunable
parameters. The variable ¢, is the sampling interval which
pertains to the amount of time between an update to the
control inputs. In this design, we chose ¢t; = 0.66 seconds
given that the tail-beat frequency is 1.5 Hz. The controller
parameters were chosen such that under the right values the
backstepping controller was able to regulate the error system
to the origin. We found that Kx, and Kz controlled the
balance between the convergence rate of the X, and Z, error,
respectively, while varying (; —(4 controlled the convergence
rate of the errors A\; — A4, which are a consequence of the
effect of the input constraints. For the PI controller, its gain
parameters were tuned carefully. Note that although the

backstepping controller was designed using the simplified
averaged model, the simulations were performed on the

---PI Trajectory
I~—Backstepping Trajectory|
0.6 —Desired Trajectory -
;E:O 4 N
0.2
O L i
(0] 0.5 1 1.5
X(m)
Fig. 2: Simulation: line-tracking trajectories for
backstepping-based and PI control.
08 ---Pl Trajectory
——Backstepping Trajectory|
06 | —Desired Trajectory
Eo0.4}
>
0.2}
0 A A
0 0.5 1 1.5
X(m)
Fig. 3: Simulation: circle-tracking trajectories for

backstepping-based and PI control.

original dynamic model. The following line and circular
trajectories were considered

X, =u,, Y,=0, tr=uw,
u, =0.02 m/s, v, = 0 m/s,
X, =Rjw, cos(wyt), Y, = —Rjw, sin(wyt)
Ur =wp, Ry =02m, w,=0.09 rad/s

where X, and Y, represent the velocity of the trajectory
in the {I} frame. In Figs. 2-3 the desired and the closed-
loop trajectories of the robotic fish are compared for the
backstepping-based and PI controller in both the line and
circular cases. Note that the diamonds represents the starting
position of the robotic fish, while the green circle represents
the starting point of the path. In particular, 10 simulations
trials were run for each type of trajectory with different initial
conditions. Figs. 4-5 illustrate the averaged magnitude of the
position errors over time along with the corresponding stan-
dard deviations for line and circular tracking, respectively, for
both the proposed backstepping scheme and the PI controller.
From simulation results, in particular from Figs. 4-5, one can
see that, with the proposed backstepping scheme, smaller
position tracking error in the allotted time is obtained, as
well as a faster convergence to the desired trajectory.

wyr =0 rad/s
(61)

V. CONCLUSIONS

In this paper, we proposed a backstepping-based trajec-
tory tracking backstepping-based scheme for a tail-actuated
robotic fish. A high-fidelity averaged nonlinear dynamic
model was used for controller design. Furthermore, a Lya-
punov function was designed to achieve trajectory tracking
and deal with the under-actuated system dynamics. The input
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< | N T e N -
0 1 1 1 s W 1
0 5 10 15 20 25
time(s)

Fig. 4: Simulation: line-tracking position error for
backstepping-based and PI control. “STD” curves represent
the standard deviation envelopes for the average error under
each controller.

\ ——Backstepping Control
_ - -STD of Backst: ing Control
1S 0.15 \ —PI Co?\troélm Siepping Fontre
- \ |--- STD of PI Control
2 0.1 1
L
20.05 1
<C
0 N
0 20 40 60
time(s)

Fig. 5: Simulation: circle-tracking position error for
backstepping-based and PI control. “STD” curves represent
the standard deviation envelopes for the average error under
each controller.

constraints were accommodated in the design via the use of
an auxiliary system and the closed-loop stability was guar-
anteed with Lyapunov analysis. Finally, simulation results
demonstrated the effectiveness of the proposed scheme, and
showed its advantages over an alternative PI controller.

For future work, the proposed backstepping algorithm will
be verified with experiments, and the closed-loop system
stability will be analyzed further to demonstrated how the
modified error coordinate guarantees the convergence of the
heading and lateral error, which seems to be implied from
the simulation results.
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