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Abstract— In this work, we propose a backstepping-based
trajectory tracking control approach for a tail-actuated robotic
fish, which has highly nonlinear and under-actuated dynamics.
A modified heading error is introduced that augments the
heading error with a term dependent on lateral tracking error,
which enables the exploitation of dynamics coupling to address
the under-actuation challenge and stabilize both the heading
and lateral tracking errors. Furthermore, the input constraints
imposed by physical limitations are accounted for with the
incorporation of an auxiliary system. Simulation results support
the efficacy of the proposed control approach and its advantages
are shown via comparison with a PI controller.

I. INTRODUCTION

Due to their high maneuverability and simple mechanical

design, robotic fish are gaining interest in a number of under-

water sensing applications. While extensive work has been

reported on motion control of robotic fish, it has mainly been

focused on the generation of coordinated movements of the

actuation components to produce some fish-like swimming

gaits [1]–[9]. Some works have addressed trajectory tracking

and stabilization problems [10], [11], but mostly with an

emphasis on heading or depth control. On the other hand,

some limited work has been done on model-based closed-

loop motion control to achieve maneuvering, speed and

orientation control, path following or point-to-point tracking

[12]–[18]. Our recent work addressed the path-following

control problem for a tail-actuated robotic fish [19], where

a nonlinear model predictive control (NMPC) scheme was

proposed. However, the computational complexity of NMPC

poses great challenges in implementing such controllers on

resource-constrained robotic fish.

Backstepping-based control design presents a practical,

promising, and systematic approach for trajectory tracking

with stability guarantees. In particular, it is computation-

ally inexpensive, especially when compared to methods

such as NMPC. Some limited work has been reported on

backstepping-based control of robotic fish [20], [21]. In [20],

the authors proposed a target-tracking hybrid controller that

consists of an open-loop turning controller and a closed-loop

backstepping controller, to drive a robotic fish to a specified

target location. In [21], the authors proposed a backstepping

controller for tracking control of a nonholonomic fish robot

with dynamics That can be expressed in a chained form.

The proposed approach guaranteed asymptotic convergence
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to a desired trajectory generated by a reference fish robot,

but limitations were placed on the desired trajectory since it

had to be generated by dynamics in the same chained form.

Furthermore, input constraints were not accommodated.

In this work, a backstepping-based control scheme for

a tail-actuated robotic fish to track a desired trajectory is

proposed. The scheme accommodates the under-actuation

nature of the dynamics by exploiting input coupling, and

it incorporates input constraints. The design is based on

an experimentally validated high-fidelity average dynamic

model for robotic fish. In particular, inspired by the work

[22], a new error coordinate is introduced that augments

the heading error with a term dependent on the lateral

tracking error. Then by using the angular velocity as a

virtual input to regulate the aforementioned modified heading

error, the controller is able to handle the tracking of desired

heading and lateral displacement trajectories, aside from that

of the longitudinal displacement trajectory. Furthermore, to

accommodate the input constraints, an auxiliary system is

designed such that the error due to the difference between

the feasible and “desired” inputs is compensated for. Finally,

Lyapunov-based design is carried out to ensure closed-loop

stability of the system. Simulation results demonstrate the

effectiveness of the controller and show its advantage over a

PI controller.

II. DYNAMIC MODEL OF ROBOTIC FISH

The tail-actuated robotic fish is modeled as a rigid body

with a rigid tail that is actuated at its base, and it is

assumed that the robot operates in an inviscid, irrotational,

and incompressible fluid within an infinite domain [23].

Let [X,Y,Z]T and [x, y, z]T be defined as the inertial

coordinate system and the body-fixed coordinate system,

respectively, as illustrated in Fig. 1. In this work, only the

planar motion is considered and it is assumed that the body is

symmetric with respect to the xz-plane and that the tail moves

in the xy-plane. Thus the system only has three degrees of

freedom, namely surge (Vcx ), sway (Vcy ), and yaw (ωz).

Furthermore, let ψ denote the heading angle, formed by

the x-axis relative to the X-axis and let α denote the tail

deflection angle with respect to the negative x-axis.

Consider the following periodic pattern for the tail deflec-

tion angle:

α(t) = α0 + αa sin(ωαt) (1)

where α0, αa, and ωα represent the bias, amplitude, and

frequency of the tail beat, respectively. By using classical

averaging methods an averaged model can be obtained as

proposed in [23]. In particular, define the states x1 = Vcx ,
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B. Backstepping Control Design

By formulating the tracking problem in terms of the error

dynamics, the control objective has become a stabilization

problem. In particular, the trajectory-tracking problem is to

find a control law such that, for an arbitrary initial error,

the state (Xe,Ye,ψ̄e) of system (21) can be held near the

origin (0,0,0). To design the controller, the robot’s simplified

averaged model is considered. Here the control inputs are

functions of the actual physical variables, namely the tail-

beat pattern parameters α0, αa, and ωα. To simplify discus-

sion, a fixed tail-beat frequency ωα is assumed. The control

inputs are then chosen as

u1 = αa(3−
3

2
α2

0
−

3

8
α2

a) (22)

u2 = α2

aα0 (23)

which are present in functions f4(α0, αa, ωα) to

f6(α0, αa, ωα) in Eqs. (2)-(4). Note that the control

inputs defined this way appear linearly in the dynamic

equations.

1) Choice of Lyapunov Function: Given the under-

actuated nature of the system and the coupling effects

between the inputs specifically in Eqs. (3)-(4), the choice

of Lyapunov function is not trivial. From Eq. (21) one can

see that the error system has a triangular structure with

two stages. In other words, one could attempt to design

the virtual velocity control Vcx , Vcy and ωz to stabilize the

subsystem Xe, Ye, and ψ̄e at the origin, and then design the

controls u1 and u2 based on the backstepping technique.

In this case, the natural choice for a Lyapunov function

would be V =
1

2
(X2

e + Y 2

e + ψ̄2

e). However, given the

nature of the under-actuated dynamics (only two inputs u1
and u2 are at our disposal), this would lead to an over-

constrained problem where the two inputs need to be chosen

to stabilize three states. Similarly, from Eq. (21), one could

attempt to stabilize Xe and Ye at the origin by using virtual

inputs Vcx and Vcy , by the choice V =
1

2
(X2

e + Y 2

e ).

Although this could allow the tracking of the position, the

orientation error is not guaranteed to be bounded, and given

the input coupling between V̇cy and ω̇z , this leads to unstable

turning and whirling of the robotic fish. Finally, if one

chooses to stabilize Xe and ψ̄e, which entails choosing

V =
1

2
(X2

e+ψ̄
2

e), then the lateral displacement error will not

be controlled, which does not guarantee actual convergence

to the trajectory.

To handle the under-actuated nature of the robot,we define

a new Lyapunov function that will allow us to stabilize the

subsystem Xe, Ye, and ψ̄e with only two virtual velocities.

Choosing the sway velocity Vcy as a virtual input is impracti-

cal in reality and leads to uncontrolled twirling of the robot;

therefore, the only viable choices are Vcx and ωz . We are

thus motivated to define a modified error Ze that incorporates

both the heading error ψ̄e and the lateral error Ye:

Ze = ψ̄e + φ (24)

where the “correction” angle

φ = kze1 arctan(kze2urYe) (25)

and kze1 and kze2 are some positive design constants to

be chosen later. In particular, kze1 is used to adjust on the

correction angle within the total error Ze, while kze2 tunes

the magnitude of the angle. Intuitively, by choosing Ze in

this manner the robotic fish heading angle can be used to

steer the robot towards a desired trajectory. In particular,

the heading angle error ψ̄e is “corrected” by an angle φ

that is dependent on the error Ye, such that it captures the

rotation needed for the robot to point towards the desired

trajectory. Furthermore, by utilizing the arctan function, φ

is guaranteed to be bounded and by choosing Ze in this

manner, tracking of ψ̄r is implied when Ye is small enough.

Finally, Eq. (24) is well defined and the convergence of Ye
and Ze implies that of ψ̄e.

2) Trajectory Tracking Control Synthesis: First, to stabi-

lize the (Xe, Ze) subsystem, the following candidate Lya-

punov function is chosen

V1 =
1

2
X2

e +
1

2
Z2

e (26)

Let α1 and α2 represent the virtual inputs, which will be

chosen shortly. Furthermore, let αd1 and αd2 be the desired

virtual inputs, and let the virtual errors be given as

Z1 = α1 − αd1 (27)

Z2 = α2 − αd2 (28)

The time derivative of Eq. (26) is given by

V̇1 =XeẊe + ZeŻe

=Xe(Vcx − Vr cos(ψ̄e) + ωzYe)+

Ze(µωz − ω̄r + τ)

(29)

where

τ = kze1kze2
ur(Vr sin(ψ̄e) + Vcy ) + u̇rYe

(kze2urYe)
2 + 1

(30)

µ = 1−
kze1kze2urXe

(kze2urYe)
2 + 1

(31)

Let α1 = Vcx and α2 = µωz . With Eq. (27), Eq. (29) can

be rewritten as

V̇1 =Xe(Z1 + αd1 − Vr cos(ψ̄e) + ωzYe)

+ Ze(Z2 + αd2 − ω̄r + τ)
(32)

Let the desired virtual inputs be defined as

αd1 = Vr cos(ψ̄e)− ωzYe −KXeXe (33)

αd2 =ω̄r − τ −KZeZe (34)

so that

V̇1 =Xe(Z1 −KXeXe) + Ze(Z2 −KZeZe) (35)

We then define a new Lyapunov function

V2 = V1 +
1

2
Z2

1
+

1

2
Z2

2
(36)

The time derivative of Eq. (36) is given by

V̇2 = V̇1 + Ż1Z1 + Ż2Z2 (37)

With Eqs. (2)-(4) along with the input definition Eq. (22)-

(23), one can expand the V̇cx , V̇cy and ω̇z terms that appear
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in Eq. (36). After simplification, u1 and u2 can be chosen

using

Kfc7u1 +Kmc9Yeu2 =− f1 + V̇r cos(ψ̄e)− Vr sin(ψ̄e)
˙̄ψe−

f3Ye − ωzẎe −KXeẊe −Kz1Z1

(38)

ηu2 =− f3µ− µ̇ωz + ˙̄ωr − δ −KZe
Że −Kz2Z2 (39)

where

δ =kze1kze2
F

(kze2urYe)
2 + 1

− kze1kze2
G

((kze2urYe)
2 + 1)2

(40)

F =ürYe + u̇rẎe + u̇r(Vr sin(ψ̄e) + Vcy )

+ ur(V̇r sin(ψ̄e) + Vr cos(ψ̄e)
˙̄ψe + f2)

(41)

G =2kze2Yeur(urẎe + Yeu̇r)(ur(Vr sin(ψ̄e) + Vcy ) + Yeu̇r)

(42)

η =kze1kze2
urKfc8

(kze2urYe)
2 + 1

+Kmc9µ (43)

such that

V̇2 = −KXeX
2

e −KZeZ
2

e +XeZ1 + ZeZ2 −K1Z
2

1 −K2Z
2

2 (44)

By adding and subtracting
Z2

1

4KXe
and

Z2

2

4KZe
and completing

the square, one can arrive at

V̇2 =−KXe(Xe −
1

2KXe

Z1)
2
−KZe(Ze −

1

2KZe

Z2)
2

− Z
2

1 (K1 −

1

4KXe

)− Z
2

2 (K2 −

1

4KZe

)

(45)

If KXe > 0, KZe > 0, K1 >
1

4KXe
and K2 >

1

4KZe
, then

V̇2 < 0 unless Xe = Ze = Z1 = Z2 = 0. From Lasalle’s

Invariance Principle [24], one can conclude the convergence

of (Xe, Ze, Z1, Z2) to zero.

Finally, u1 and u2 can be obtained via
[

u1
u2

]

=

[

Kfc7 Kmc9Ye
0 η

]

−1[

Γ1

Γ2

]

(46)

where Γ1 and Γ2 represent the right hand side of Eqs. (38)-

(39), respectively.

3) Control Synthesis Incorporating Input Constraints:

Given that robot’s actuators have physical limitations, the

backstepping-based controller design should accommodate

such constraints so that the control scheme can be success-

fully implemented. In order to address magnitude constraints

on the control inputs the following scheme inspired by [25]

and [26] is proposed.

Let v1 and v2 represent the nominal backstepping control

inputs, and let u1 and u2 be the inputs that can be practically

implemented. To obtain the value for u1 and u2, first the

values given by v1 and v2 are used to solve for the tail-beat

parameters α0, αa using Eqs. (22)-(23), and then the tail-beat

parameter values are saturated such that they lie within the

range [α0min
, α0max

], and [αamax
, αamin

]. Finally u1 and u2
are obtained using Eqs. (22)-(23) with the saturated values.

To analyze the influence of the input constraints, the

following auxiliary system is chosen,






















λ̇1 = −ζ1λ1 + λ2

λ̇2 = −ζ2λ2 +Kfc7(u1 − v1) + YeKmc9(u2 − v2)

λ̇3 = −ζ3λ3 + λ4

λ̇4 = −ζ4λ4 − η(u2 − v2)

(47)

The variables λ1-λ4 defined above represent the filtered

effect of the non-achievable portion of the virtual and

control inputs. In particular, the additional tracking error

that arises because of mismatch between the nominal and

implementable inputs is represent by λ1 and λ3, while λ2
and λ4 represent the error propagated to the virtual inputs. As

a result, the modified tracking errors are defined as follows:

X̄e = Xe − λ1 (48)

Z̄e = Ze − λ3 (49)

Furthermore, let the modified virtual errors be given as

Z̄1 = α1 − αd1 − λ2 (50)

Z̄2 = α2 − αd2 − λ4 (51)

To stabilize the (X̄e, Z̄e) subsystem the following Lyapunov

function is chosen

V̄1 =
1

2
X̄2

e +
1

2
Z̄2

e (52)

With these new definitions, similar stability analysis as

done in Eq. (29)-(35) is carried out. Let the desired virtual

inputs be defined as

αd1 = Vr cos(ψ̄e)− ωzYe −KXeX̄e − ζ1λ1 (53)

αd2 =ω̄r − τ −KZeZ̄e − ζ3λ3 (54)

so that

˙̄V1 = X̄e(Z̄1 −KXeX̄e) + Z̄e(Z̄2 −KZeZ̄e) (55)

Then a new Lyapunov function is defined as

V̄2 = V̄1 +
1

2
Z̄2

1
+

1

2
Z̄2

2
(56)

The time derivative of Eq. (56) is given by

˙̄V2 = ˙̄V1 +
˙̄Z1Z̄1 +

˙̄Z2Z̄2 (57)

As previously done, the terms V̇cx , V̇cy and ω̇z that appear

in Eq. (57) can be further expanded. After simplifying the

above, v1 and v2 can be chosen as

Kfc7v1 +Kmc9Yev2 =− f1 + V̇r cos(ψ̄e)− Vr sin(ψ̄e)
˙̄ψe − f3Ye

− ωzẎe −KXe
˙̄Xe + ζ2

1
λ1 − (ζ1 + ζ2)λ2

−Kz1Z̄1

(58)

ηv2 =− f3µ− µ̇ωz + ˙̄ωr − δ −KZe

˙̄Ze + ζ2
3
λ3

− (ζ3 + ζ4)λ4 −Kz2Z̄2

(59)

By following similar stability analysis as previously done
for the constraints-free case, one can arrive at the following

˙̄V2 =−KXe(X̄e −
1

2KXe

Z̄1)
2
−KZe(Z̄e −

1

2KZe

Z̄2)
2

− Z̄
2

1 (K1 −

1

4KXe

)− Z̄
2

2 (K2 −

1

4KZe

)

(60)

If KXe > 0, KZe > 0, K1 > 1

4KXe
and K2 > 1

4KZe
,

then ˙̄V2 < 0 unless when X̄e = Z̄e = Z̄1 = Z̄2 = 0
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implying the convergence of (X̄e, Z̄e, Z̄1, Z̄2) to zero as time

approaches infinity. Furthermore, since 0 ≤ V̄2(t) ≤ V̄2(0),
one can conclude that (X̄e, Z̄e, Z̄1, Z̄2) are each in L2. This

shows that even when physical limitations do not allow the

the desired control signals to be implemented, the quantities

X̄e and Z̄e do not diverge. In other words, this guarantees

convergence for the compensated tracking errors X̄e and Z̄e

but not the actual tracking errors Xe and Ze. The latter may

actually increase during periods when input limitations are

in effect given that the desired control signal is not being

implemented (i.e. u1 6= v1 and/or u2 6= v2). However, when

the control signal limitations are not in effect, (i.e. u1 = v1
and u2 = v2), λ1-λ4 approach zero, and (X̄e, Z̄e) converges

towards (Xe, Ze).

IV. SIMULATION RESULTS

To evaluate the effectiveness of the designed controller,

simulations were carried out using MATLAB. Furthermore,

a PI controller was implemented to provide performance

comparison. The robotic fish parameters used for simulation

are listed Tab. I.

TABLE I: PARAMETERS OF THE ROBOTIC FISH.

PARAMETER VALUE PARAMETER VALUE

mb 0.725 kg max -0.217 kg
may -0.7888 kg c 0.105 m

Jaz -7.93×10−4 kg · m2 L 0.071 m

Jbz 2.66×10−3 kg · m2 d 0.04 m

ρ 1000 kg/m3 S 0.03 m2

CD 0.97 CL 3.9047

KD 4.5 ×10−3 kg·m2 Kf 0.7
Km(averaged) 0.45 .

The tunable backstepping and PI controller parameters in

the simulation were chosen as follows:

KXe=0.6 KZe=0.7 KZ1
=0.46 KZ2

=0.2

ζ1=0.4 ζ2=0.8 ζ3=0.9 ζ4=0.9

KZe1
=5 KZe2

=63.3 KP1=3.5 KP2=0.85

KI1=0.021 KI2=0.023 α0min
=-50◦ α0max

=50◦

αamin
=0◦ αamax

=30◦ ts =0.66 s ωα= 3π

where α0min
,α0max

, αamin
and αamax

are the physical limits

on the tail-beat bias and amplitude respectively. Furthermore,

KP1, KP2, KI1, and KI2 are the PI controller tunable

parameters. The variable ts is the sampling interval which

pertains to the amount of time between an update to the

control inputs. In this design, we chose ts = 0.66 seconds

given that the tail-beat frequency is 1.5 Hz. The controller

parameters were chosen such that under the right values the

backstepping controller was able to regulate the error system

to the origin. We found that KXe
and KZe

controlled the

balance between the convergence rate of the Xe and Ze error,

respectively, while varying ζ1−ζ4 controlled the convergence

rate of the errors λ1 − λ4, which are a consequence of the

effect of the input constraints. For the PI controller, its gain

parameters were tuned carefully. Note that although the

backstepping controller was designed using the simplified

averaged model, the simulations were performed on the

Fig. 2: Simulation: line-tracking trajectories for

backstepping-based and PI control.

Fig. 3: Simulation: circle-tracking trajectories for

backstepping-based and PI control.

original dynamic model. The following line and circular

trajectories were considered

Ẋr =ur, Ẏr = 0, ψ̇r = ωr

ur =0.02 m/s, vr = 0 m/s, ωr = 0 rad/s

Ẋr =R1ωr cos(ωrt), Ẏr = −R1ωr sin(ωrt)

ψ̇r =ωr, R1 = 0.2 m, ωr = 0.09 rad/s

(61)

where Ẋr and Ẏr represent the velocity of the trajectory

in the {I} frame. In Figs. 2-3 the desired and the closed-

loop trajectories of the robotic fish are compared for the

backstepping-based and PI controller in both the line and

circular cases. Note that the diamonds represents the starting

position of the robotic fish, while the green circle represents

the starting point of the path. In particular, 10 simulations

trials were run for each type of trajectory with different initial

conditions. Figs. 4-5 illustrate the averaged magnitude of the

position errors over time along with the corresponding stan-

dard deviations for line and circular tracking, respectively, for

both the proposed backstepping scheme and the PI controller.

From simulation results, in particular from Figs. 4-5, one can

see that, with the proposed backstepping scheme, smaller

position tracking error in the allotted time is obtained, as

well as a faster convergence to the desired trajectory.

V. CONCLUSIONS

In this paper, we proposed a backstepping-based trajec-

tory tracking backstepping-based scheme for a tail-actuated

robotic fish. A high-fidelity averaged nonlinear dynamic

model was used for controller design. Furthermore, a Lya-

punov function was designed to achieve trajectory tracking

and deal with the under-actuated system dynamics. The input
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Fig. 4: Simulation: line-tracking position error for

backstepping-based and PI control. “STD” curves represent

the standard deviation envelopes for the average error under

each controller.

Fig. 5: Simulation: circle-tracking position error for

backstepping-based and PI control. “STD” curves represent

the standard deviation envelopes for the average error under

each controller.

constraints were accommodated in the design via the use of

an auxiliary system and the closed-loop stability was guar-

anteed with Lyapunov analysis. Finally, simulation results

demonstrated the effectiveness of the proposed scheme, and

showed its advantages over an alternative PI controller.

For future work, the proposed backstepping algorithm will

be verified with experiments, and the closed-loop system

stability will be analyzed further to demonstrated how the

modified error coordinate guarantees the convergence of the

heading and lateral error, which seems to be implied from

the simulation results.
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