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ABSTRACT

In this paper, we study the denoising of piecewise smooth graph sig-
nals that exhibit inhomogeneous levels of smoothness over a graph.
We extend the graph trend filtering framework to a family of non-
convex regularizers that exhibit superior recovery performance over
existing convex ones. We present theoretical results in the form of
asymptotic error rates for both generic and specialized graph models.
We further present an ADMM-based algorithm to solve the proposed
optimization problem and analyze its convergence. Numerical per-
formance of the proposed framework with non-convex regularizers
on both synthetic and real-world data are presented for denoising,
support recovery, and semi-supervised classification.

Index Terms— graph signal processing, graph trend filtering,
piecewise smooth graph signals, semi-supervised classification, non-
convex penalties

1. INTRODUCTION

Signal estimation from noisy observations is a well-studied problem
in signal processing and has applications for signal inpainting, col-
laborative filtering, recommender systems and other large-scale data
completion problems. Since noise can have deleterious, cascading
effects in many downstream tasks, being able to efficiently and ac-
curately reconstruct a signal is of significant importance.

With the explosive growth of information and communication,
signals are generated at an unprecedented rate from various sources,
including social networks, citation networks, biological networks,
and physical infrastructure [1]. Unlike time-series signals or im-
ages, these signals lie on complex, irregular graph structures, and
require novel processing techniques, leading to the emerging field of
signal processing on graphs [2–4]. The associated graph-structured
data are referred to as graph signals. In graph signal processing, a
canonical assumption is that the graph signal is smooth with respect
to the graph, that is, the signal coefficients do not vary much over
local neighborhoods of the graph. However, this characterization is
insufficient for many real-world signals. There are often localized
discontinuities and patterns in the signal, and the signal is smooth
in a piecewise manner over the graph. In community detection, for
example, the label is constant within each group, but discontinuous
over the edges that connect nodes in different groups. As a result,
it is necessary to develop representations and algorithms to process
and analyze such piecewise smooth graph signals.

In this work, we study the denoising of piecewise smooth graph
signals that exhibit an inhomogeneous level of smoothness over the
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graph and have abrupt, localized discontinuities. The class of piece-
wise smooth signals, which includes piecewise constant graph sig-
nals, is complementary to the class of smooth graph signals that ex-
hibit homogeneous levels of smoothness over the graph. The recon-
struction of such smooth signals has been well studied in previous
work both within the field of graph signal processing as well as in
the context of Laplacian regularization.

The graph trend filtering (GTF) framework [5], which applies
total variation denoising on graphs [6], is a particularly flexible and
attractive approach that is based on minimizing the `1 norm of dis-
crete graph differences. In this work, we present an extension to the
GTF framework and apply a family of non-convex regularizers that
exhibit superior recovery performance over `1 norm minimization.
Although the `1 norm based regularization has many attractive prop-
erties [7], it is well-known that the estimates are biased toward zero
for large coefficients. To reduce the bias, nonconvex penalties such
as the smoothly clipped absolute deviation (SCAD) penalty [8] and
the minimax concave penalty (MCP) [9] are proposed as alternatives
with the attractive oracle property: in the asymptotic sense, they per-
form as well as the case where we know in advance the support of
the sparse vectors [10–14]. These penalties behave similarly to the
`1 norm when the signal values are small, but tend to a constant when
the signal values are large. Through theoretical analyses and empiri-
cal performance, we demonstrate the improved performance of GTF
using non-convex penalties such as SCAD and MCP in terms of both
reduced reconstruction error as well as improved support recovery,
i.e. how accurately we can localize the boundaries and discontinu-
ities of the piecewise smooth signals.

The rest of this paper is organized as follows. In Section 2, we
provide some background and definitions on graph signal process-
ing and GTF. Section 3 presents the proposed GTF framework with
non-convex penalties, its performance guarantee, and an efficient al-
gorithm based on ADMM. Numerical performances of the proposed
approach are examined on both synthetic and real-world data for de-
noising and semi-supervised classification in Section 4. Finally, we
conclude in Section 5.

2. GRAPH SIGNAL PROCESSING, PIECEWISE SMOOTH

SIGNALS, AND GRAPH TREND FILTERING

We consider an undirected graph G = (V, E ,A), where V =
{v1, . . . , vn} is the set of nodes, E = {e1, . . . , em} is the set of
edges, and A = [Aj,k] 2 R

n⇥n is the graph shift operator [2],
or the weighted adjacency matrix. The edge set E represents the
connections of the undirected graph G, and the positive edge weight
Aj,k between nodes vj and vk measures the underlying relation
between the jth and the kth node, such as a similarity, a dependency,
or a communication pattern. Let a graph signal be defined as

β =
⇥

�1,�2, . . . ,�n

⇤T 2 R
n,
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also satisfy these assumptions, among others. We note that for
SCAD, µ � 1

��1
and for MCP, µ � 1

�
. Fig. 1 illustrates the `1,

SCAD and MCP penalties for comparisons. SCAD and MCP pri-
marily differ from `1 penalty in that they apply less penalty over
large signal values, and as a result mitigate the bias effect.

3.1. Error Bounds

We present asymptotic error rates on the generalized GTF prob-
lem (4) under the noise model in (1). Furthermore, we specialize
the error rates to a few common graph models.

Theorem 1. Let C be the number of connected components in the
graph G, or equivalently, the dimension of the null space of ∆(k+1).
Further, let r be the number of rows of ∆(k+1), and ⇣ the maximum
`2 norm of the columns of ∆(k+1)†. Setting � = Θ(⇣

p
log r), and

for a penalty function ⇢(·;�, �) such that µ < 1

k∆(k+1)k22
,

kβ̂ � β?k22
n

 O

✓

C

n

◆

+
4g(∆(k+1)β?;�, �)

n(1� µk∆(k+1)k22)
(5)

 O

✓

C

n

◆

+
4Θ(⇣

p
log r)k∆(k+1)β?k1

n(1� µk∆(k+1)k22)
. (6)

We note that error rates for GTF with a non-convex regular-
izer g(·;�, �) are at least as fast as those using the `1 regularizer.
Particularly, the rates with non-convex regularizers are faster when
there are large coefficients on which they apply less shrinkage such
that g(∆(k+1)β?;�, �) ⌧ �k∆(k+1)β?k1. It is shown in [5] that
⇣  1

�2(L)(k+1)/2 , where �2(L) is the smallest non-zero eigenvalue

of the graph Laplacian matrix L = ∆
(1)T

∆
(1) and quantifies the

algebraic connectivity of the graph [24]. Moreover, one can bound
�2(L) � 4

nD
, where D is the diameter of the graph. Consequently,

we get faster rates when the graph is well-connected and has a small
diameter. We can further specialize the rates in Theorem 1 for some
representative graphs to gain further insights.

• Chain graph: For univariate trend filtering,

kβ̂ � β?k22
n

= O

 

r

log n

n
nk
�

�∆
(k+1)

β
?
�

�

1

!

.

• d-regular graphs and Erdős-Rényi random graphs: For d-
regular graphs as well as Erdős-Rényi random graphs with edge
probability p 2 (0, 1) such that d = np,

kβ̂ � β?k22
n

= O

 

p

log(nd)

nd
k+1
2

�
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!

.

3.2. ADMM Algorithm

We optimize the generalized GTF formulation in (4) via the alternat-
ing direction method of multipliers (ADMM) framework for solv-
ing separable optimization problems [25]. Via a change of variable
defining η = ∆

(k+1)β, we can write the transformed problem

β̂ = argminβ2Rn

1

2
ky � βk22 + g(η;�, �) s.t. η = ∆

(k+1)
β

and its corresponding Lagrangian as:

L(β,η,u) =
1

2
ky � βk22 + g(η;�, �) +

⌧

2
k∆(k+1)

β � η + uk22

� ⌧

2
kuk22 (7)

where u is the Lagrangian multiplier, and ⌧ the parameter. Algo-
rithm 1 shows the ADMM updates based on the Lagrangian in (7).
Note that both SCAD and MCP admit closed-form proximal opera-
tors. We have the following convergence guarantee for Alg. 1.

Theorem 2. Alg. 1 converges to a local minimum if ⌧ � �⇢(·;�, �)00.

Algorithm 1 ADMM Optimization for Non-Convex GTF

1: Inputs: y,∆(k+1), and parameters �, �, ⌧
2: Initialize:

D  ∆
(k+1), η  Dβ, u Dβ � η,

β  y or βinit if given.
3: repeat

4: β  (I + ⌧DTD)�1(⌧DT (η � u) + y)
5: for i  1 to length(Dβ) do

6: ⌘i  prox⇢([Dβ]i + ui;�/⌧)
7: . prox⇢(t;↵) = proximal operator on t with ↵⇢

8: end for

9: u u+Dβ � η

10: until termination

4. NUMERICAL EXPERIMENTS

For the following experiments, we fixed � = 3.7 for SCAD, � =
1.4 for MCP, and tuned � and ⌧

�
for each experiment. To meet the

convergence criteria in Theorem 2, we enforce ⌧ � 1
�

. SCAD/MCP

were warm-started with the GTF estimate with `1 penalty.

4.1. Denoising via GTF with Non-Convex Regularizers

In this experiment, we compare the performance of GTF using non-
convex regularizers such as SCAD and MCP with that using the `1
norm. For the ground truth, we construct a piecewise constant signal
on a 20 ⇥ 20 2d-grid graph and the Minnesota road graph, and add
different levels of noise as (1). We recover the signal with Alg. 1,
and plot the SNR of the reconstructed signal versus the SNR of the
input signal in Fig. 2. SCAD/MCP consistently outperforms `1 in
denoising both regular and irregular graph signals. Below we further
highlight two important advantages of non-convex regularizers.
Bias Reduction: We demonstrate the reduction in signal bias in
Fig. 3 for the graph signal defined over a 12 ⇥ 12 2d-grid graph,
using both the `1 penalty and the MCP penalty. Clearly, the MCP
estimate (orange) has less bias than the `1 estimate (blue), and can
recover the ground truth surface (purple) more closely.
Support Recovery: We illustrate the improved support recov-
ery performance of non-convex regularizers [26] on localizing the
boundaries for a piecewise constant signal on the Minnesota road
graph as in Fig. 2. We aim to classify an edge as being 1) between
two nodes in the same piece or 2) a cut edge across two pieces. By
sweeping the regularization parameter �, we obtain the ROC curve,
the true positive rate versus the false positive rate of classifying an
edge correctly, and see that MCP and SCAD consistently outperform
the `1 penalty.

4.2. Semi-Supervised Classification

Graph-based learning provides a flexible and attractive way to model
data in semi-supervised classification problems when labels are ex-
pensive to acquire [15, 16, 19], where a nearest-neighbors graph can
be constructed based on the similarity between each pair of samples.
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