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Abstract

The definitions of the nth Gauss sum and the associated nth central charge are intro-
duced for premodular categories C and n € Z. We first derive an expression of the
nth Gauss sum of a modular category C, for any integer n coprime to the order of the
T-matrix of C, in terms of the first Gauss sum, the global dimension, the twist and their
Galois conjugates. As a consequence, we show for these n, the higher Gauss sums are
d-numbers and the associated central charges are roots of unity. In particular, if C is
the Drinfeld center of a spherical fusion category, then these higher central charges are
1. We obtain another expression of higher Gauss sums for de-equivariantization and
local module constructions of appropriate premodular and modular categories. These
expressions are then applied to prove the Witt invariance of higher central charges for
pseudounitary modular categories.

Mathematics Subject Classification 18D10 - 57R56

1 Introduction

In 1801 [19], Gauss introduced the sum t, (k) = le‘-;(l) e2ini/ k which is now called
a (quadratic) Gauss sum. The value of this sum was computed by Gauss up to a sign
in 1805 for 7 (k) when k is odd; it is equal to & +/k or =+ i+/k depending on whether
k = 1or 3 (mod 4), respectively. The sign of this quadratic Gauss sum was finally

proved to be positive in 1811 [18].
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Another version of Gauss sum was introduced in 1840 by Dirichlet [28]: for each
multiplicative character x of a field F, of odd prime order p, its Gauss sumis g, (x) =

Zj.:(; x (j)e?™ni/P The quadratic Gauss sum 7, (p) can be recovered from g, (x) for
any integer n coprime to p if x is the Legendre symbol of IF,. Moreover, the Gauss
sums g, (x) also reveal a relation with Frobenius—Schur indicators via Jacobi sums
when counting the number of solutions of the equation x™ + y™ = 1in F, (cf.
[21]). The narrative of higher Gauss sums of premodular categories in this paper is a
generalization of quadratic Gauss sums.

Quadratic Gauss sums can be understood in terms of the sum of the values of
quadratic forms of finite abelian groups. In particular, if one considers the quadratic
form g : Zx — C* with g(j) = €>™"°/k then the sum of the values of g is the
Gauss sum 17, (k).

Premodular or ribbon categories are categorical generalizations of quadratic forms
of finite abelian groups. Abelian groups equipped with nondegenerate quadratic
forms are the classical counterparts of modular categories, which arise naturally in
low-dimensional topology and rational conformal field theory. Moreover, modular cat-
egories constitute the mathematical foundation of topological quantum computations
[44,58]. One can assign a real number called the quantum dimension to each object
of a ribbon category C. There is a natural isomorphism 6 of the identity functor of C,
called the ribbon isomorphism, whose values on the simple objects of C play the role
of the values of a quadratic form of a finite abelian group.

In the late twentieth century, a notion of Gauss sum incidentally emerged in quantum
invariants of 3-manifolds derived from modular categories introduced by Reshetikhin
and Turaev (cf. [25,29,33,42,53,54,59]). The modulus of a Gauss sum 7 and the finite-
ness of the order of 7/T reemerge in the contexts of invariants of 3-manifolds and
rational conformal field theory (RCFT) (cf. [54] and [55]). Similar to its classical
counterpart, the Gauss sums characterize modular categories with T-matrices of order
2, up to equivalence [57]. Moreover, the classification of relations among the Witt
classes [C(slz, k)] [8] and [C(sl3, k)] [46] were proven in part using first central charge
arguments.

In this paper, we define higher Gauss sums 1, and anomalies o, of a premodular
category as generalizations of the Gauss sum of a quadratic form of a finite abelian

group G and the Jacobi symbol (%) A natural choice of the square root of the

anomaly o, is defined as the higher (multiplicative) central charge &, forn € Z
which is motivated by rational conformal field theory.

Frobenius—Schur indicators are arithmetic invariants of premodular categories.
They were first introduced for the representations of finite groups a century ago.
Their recent generalizations to Hopf algebras [30] and rational conformal field theory
[3] inspired the development of Frobenius—Schur indicators of pivotal categories [35].
Similar to their classical counterparts, the higher Gauss sums of modular categories
are closely related to the Frobenius—Schur indicators. In particular, the modulus of the
higher Gauss sums of a modular category are completely determined by the Frobenius—
Schur indicators. More relations between these arithmetic invariants and examples are
demonstrated in Sect. 3.
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One subtlety to the definitions of higher anomaly or central charges for a premodular
category is that they are only well-defined when t,(C) # 0. For a modular category
C, 11(0)7-1(C) = dim(C) # 0 (cf. [2,15,32,54]). Our Theorem 4.1 shows that for any
modular category C, t,(C) # 0 when #n is coprime to the order of the T-matrix of C.

A d-number is an algebraic integer which generates in the ring of algebraic integers
an ideal fixed by the absolute Galois group [38]. The formal codegrees of spherical
fusion categories are d-numbers and they have been used to prove the non-existence
of fusion categories associated with specific fusion graphs/rules (cf. [5,41,56]). In
Corollary 4.2, higher Gauss sums 1, (C) are shown to be d-numbers and the higher
central charges &,(C) are roots of unity under the assumption that C is modular and n
are coprime to the order of the T-matrix of C. In particular, when C is the Drinfeld center
of a spherical fusion category, the coprime higher central charges are 1 (Theorem 4.4),
which may not hold for other » by Example 4.6.

Higher Gauss sums and central charges behave well under standard constructions
such as de-equivariantizations of premodular categories and categories of local mod-
ules over certain connected étale algebras (also known as simple current extensions
or condensations). In particular, Theorem 5.6 proves that |G|z, (C%) = 1,(C) and
€n (C(();) = £&,(C) where C((); is the condensation of the premodular category C by a
Tannakian subgroup G of C for any integer n coprime to the order of the T-matrix of
C. In addition, if C is modular (Theorem 5.8) the preceding statement holds for the
category C?‘ of local modules over a ribbon algebra A of C (defined in Definition 2.4).

As an application of Sects. 4 and 5, we prove in Theorem 6.1 that two Witt equiv-
alent pseudounitary modular categories must have the same higher central charge
&, for any integer n coprime to the orders of their T-matrices. We use this result to
distinguish Witt equivalence classes of pseudounitary modular categories which are
indistinguishable using the first central charge alone. The higher central charges which
are well-defined for any two Witt equivalent pointed modular categories are invariants,
and we conjecture this statement could be generalized for all Witt equivalence classes.

The organization of this paper is as follows: Sect. 2 describes the notations, basic
definitions, and necessary concepts while introducing fundamental examples. Sec-
tion 3 motivates our definitions of higher Gauss sums and higher (multiplicative)
central charges for premodular categories. The relations between higher Gauss sums
and Frobenius—Schur indicators, and a relation between the first and second Gauss
sums are shown in this section. A broad range of examples are given to illustrate their
properties. Section 4 describes the Galois action on the modular data of modular cat-
egories which is the key to prove our main result Theorem 4.1. Section 5 consists of a
sequence of technical lemmas proven by graphical calculus. These lemmas and Theo-
rem 4.1 are then applied to prove Theorems 5.6 and 5.8. Some examples of computing
higher Gauss sums and central charges are illustrated. Section 6 proves the Witt invari-
ance of certain higher central charges (Theorem 6.1). Applications of higher central
charges to differentiate Witt equivalence classes which are indistinguishable by the
first central charge alone are demonstrated. The paper ends with some open questions
to stimulate conversation and future research.
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2 Preliminaries
2.1 Premodular and modular categories

In this section, we recall some basic definitions and results on fusion and modular
categories. The readers are referred to [14] and [32] for the details.

Throughout this paper, a fusion category C is a C-linear, abelian, semisimple, rigid
monoidal category with finite-dimensional Hom-spaces, finitely-many isomorphism
classes of simple objects and simple monoidal unit 1. In particular, we abbreviate the
dimension of the Hom-space C(X, Y) over C by

[X : Y]e := dimc(C(X, Y))

forany X, Y € C, and the set of isomorphism classes of simple objects of C by O(C).

The duality of C can be extended to a contravariant monoidal equivalence (—)*, and
so (—)** defines a monoidal equivalence on C. A pivotal structure on C is a natural
isomorphism j : id¢ — (—)** of monoidal functors. For any given pivotal structure j
on C, one can define a (left) trace Tr¢(f) € C for any endomorphism f : V — VinC
(see for example [34]). In particular, Trce(idy ) is called the (left pivotal) dimension of
V and denoted by dim¢(V), or dim(V) when the category is clear from the context.
The pivotal structure j is said to be spherical if dim(V) = dim(V*) forall V € O(C).
In this case, dim(V) is a real cyclotomic integer for V € C (cf. [15]). In particular,
dim (V) is totally real. The global dimension dim(C) of C is given by

dim(C) = Z dim(V)2.
VeO(C)

Note that dim(C) can be defined without using any pivotal structure of C [15,32].
Recall that an algebraic number a is called totally positive if every Galois conjugate
of a is a positive real number. Since dim(V) is totally real, dim(C) is a totally positive
cyclotomic integer.

A fusion category C is called pseudounitary if dim(C) agrees with FPdim(C), the
Frobenius—Perron dimension of C. In this case, C admits a unique spherical pivotal
structure such that dim (V) is the Frobenius—Perron dimension of V for all V € C (cf.
[15]). Throughout this paper, we assume that any pseudounitary fusion category is
equipped with such a canonical spherical pivotal structure.

By virtue of [35, Theorem 2.2] we may assume without loss of generality that any
pivotal category C in this paper is strict. In other words, C is a strict monoidal category
such that (—)* is a strict monoidal functor, (—)** = id¢, and the pivotal structure
j :id¢ — (—)** is the identity. Under this assumption, we can perform computations
using graphical calculus with the conventions of [2,26] for any premodular category
C.

For a braided fusion category C with braiding c, the Miiger centralizer or relative
commutant D’ of a full fusion subcategory D of C is the full subcategory generated by
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{X € O@©) | cy,x ocx,y =idxgy forallY e O(D)}.

Note that 7’ is always a fusion subcategory of C. A braided fusion category is said
to be nondegenerate if O(C') = {1}. Note that the Drinfeld center Z(C) of a fusion
category C is a nondegenerate braided fusion category.

A premodular category Cis a braided spherical fusion category. The (unnormalized)
S-matrix of a premodular category C is defined as

SX‘Y = Trc(CyYX* o Cx*yy) for X, Y € O(C)

In particular, S7,1 = 1. Nondegeneracy of the braiding of any premodular category
C can be characterized by the invertibility of its S-matrix (cf. [32]). In this case, C is
called a modular category.

If D is a spherical fusion category, then its Drinfeld center Z(D) inherits the spher-
ical structure of D, and hence a modular category. Throughout this paper, the Drinfeld
center Z(D) of a spherical fusion category D is always assumed to be spherical with
the inherited spherical structure from D.

In a premodular category C, the underlying braiding ¢ determines the Drinfeld
isomorphism u : id¢ — (—)** of C-linear functors (cf. [34, p38]). The twist or ribbon
isomorphism is defined as § = u~! j where j is the spherical structure of C. For each
X € O), 8x = A -idy for some scalar . € C. We will use the abuse notation to
denote A by 6x. By [1,55], 6x is a root of unity and so the T-matrix of C, which is
defined as

Te = (Ox,y0x)x,y e 0©)>

has finite order. The order N = ord(T'z(c)) is called the Frobenius—Schur exponent of
C (cf. [34]), which is generally greater than ord(7¢). Since the S-matrices of C and Z(C)
are defined over the cyclotomic field Q(e27/N) (see [37]), N is also the conductor of
C.If C is modular, then ord(7¢) = ord(7'z(c)). Therefore, we will simply call ord(7¢)
the conductor or the FS-exponent of C when it is modular.

If C is a premodular category with braiding c, then we define C*' to be identical
to C as spherical fusion categories but with the reversed braiding ¢x y := c)_,lx for all

X, Y € C™. In this case the associated twist 6 satisfies x = Oy ! for all X € C™".

For any finite group G, the category Rep(G) of finite-dimensional complex rep-
resentations of G is a braided fusion category with the braiding inherited from Vec,
the category of finite-dimensional C-spaces. In particular, C = Rep(G) is symmetric,
i.e., O(C") = O(C). Moreover, Rep(G) is pseudounitary and the corresponding pivotal
dimensions coincide with the dimensions of vector spaces over C. Therefore, Rep(G)
admits a natural premodular category structure and its ribbon isomorphism 6 is the
identity. For the purpose of this paper, a premodular category C is called Tannakian if C
is equivalent to Rep(G) for some finite group G. In particular, the ribbon isomorphism
of a Tannakian category is the identity natural isomorphism.

Example 2.1 Let A be a finite abelian group and g : A — C* a quadratic form. By the
results of [12,13], there exists an Eilenberg—-MacLane 3-cocycle (w, c¢) of A, where
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w is a 3-cocycle and c is a 2-cochain of A such that c(a,a) = g(a) for alla € A.
In particular, ¢ defines a braiding on the fusion category Vec4, the category of finite-
dimensional A-graded vector spaces over C with the associativity isomorphisms given
by w. The fusion category Vec is pseudounitary with the canonical pivotal dimensions
given by the usual dimensions of C-spaces. Therefore, Vec, with the braiding c is a

premodular category and we denote it by Vecf_f)’c) . The quadratic form g completely

determines the equivalence class of Vecf;”’c). We denote by C(A, q) any of these
equivalent premodular categories. This premodular category C(A, q) is modular if
and only if the corresponding quadratic form g is nondegenerate. The category of
super vector spaces sVec can be defined as the premodular category C(Z;, g) with
q(l) =-—1.

Example 2.2 (premodular categories from Lie theory) Another family of premodular
categories can be realized by a construction based on the representation theory of
the g-deformed universal enveloping algebra U, (g) (cf. [16,31]) for a complex finite-
dimensional simple Lie algebra g and a complex parameter g. These categories have
a long history in mathematical physics. The readers are referred to [43] for a general
survey of the subject. The properties of the resulting categories depend heavily on q.
For certain roots of unity, modular tensor categories are produced while other choices
may result in premodular categories, or ones with infinitely-many isomorphism classes
of simple objects. For the illustrative examples in this paper we will only consider
those roots of unity of the form g = €™ i/(mk+h")) where k € N is the level, bV is the
dual Coxeter number of g and m € {1, 2, 3} is a scaling factor dependent on g. The
categories C(g, k) in this smaller collection are known to be unitary modular tensor
categories with modular data accessible via the Kac—Petersen formulas [24].

Given two premodular categories C and D, their (Deligne) tensor product C X D
has simple objects X X Y for X € O(C) and Y € O(D), and is again premodular with
the ribbon structure given by Oxxy = Ox ® 6y . For any braided fusion category C, it
follows from a well-known result of Miiger [32] that

ZC) ~CRC 2.1

is a braided equivalence if and only if C is nondegenerate.

2.2 Local modules and the Witt group

There are several constructions of new modular categories from a given one in the
context of rational conformal field theory. One method is to consider a certain sub-
category of the tensor category of modules over a commutative algebra object in a
modular category. The readers are referred to [26] for more details. When one adds
various restrictions to the commutative algebras under consideration, the resulting ten-
sor category is fusion, braided, premodular, and sometimes modular. Here we review
the basics of this theory assuming the reader is familiar with the rudimentary defini-
tions of modules over algebras in fusion categories which can be found in [26] and
[14, Chapter 8] when needed.
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Definition 2.3 Let C be a premodular category. An algebra A of C (or simply A € C)
is called connected étale if the multiplication morphismm : A ® A — A satisfies the
following conditions:

(a) [1: Alc = 1 (connected),

(b) m oca,a = m, (commutative) and
(c) m splits as a morphism of A-bimodules (separable).

A connected étale algebra A of C is called ribbon if
(d) dim(A) # 0 and 64 = id4.

The conditions (a), (b), (c) and (d) for a ribbon algebra ensure the category of left
A-modules Cy4 is a spherical fusion category equipped with the spherical structure
inherited from C (cf. [26]). However, the braiding of C can only be passed onto some
fusion subcategories of C4 in general. The following definition is due to Pareigis [40].

Definition 2.4 Let C be a premodular category with a connected étale algebra A € C.
Denote by C% the full subcategory of local modules (or dyslectic modules) M € Cy,
ie.,

POCM,ACCAM = P, 2.2)
where p : A® M — M is the left A-module action of M.

It is shown in [26] that if a connected étale algebra A is in addition ribbon, then Cg
is premodular. Moreover, Cg is modular if C is [26, Theorem 4.5]. It is worth to note
that the same results could be established for the category of right local modules of A.

For a ribbon algebra A € C we denote the dimension of a left A-module M € Cx
by dimy4 (M). By [26, Theorem 1.18], we have the relations

dime(M)
dime(A)

dim(C)

and  dim(C%) = (2.3)

Let D be a Tannakian subcategory of C. Suppose D is equivalent to Rep(H) for
some finite group H as premodular categories. The dual group algebra A = C[H]* €
Rep(H), called the regular algebra of D, is a ribbon algebra of Rep(H), and hence
of C.

Example 2.5 Let q be a nondegenerate quadratic form on a finite abelian group G.
Then C(G, g) is a modular category of rank |G|. Assume in addition that the metric
group (G, g) has an isotropic subgroup H C G (i.e. g(x) = 1 for all x € H). Then
C(G, q) contains a Tannakian subcategory D equivalent to Rep(H) as premodular
categories. Let A be the regular algebra of D. Then dim(C(G, q)%) = |G|/|H|*.

Suppose the premodular category C contains a Tannakian subcategory D which is
equivalent to Rep(H) for a finite group H as premodular categories. Then D C D’ and
D is a Tannakian subcategory of D’. We denote by (D) g the de-equivariantization
of D' by H. Let A be the regular algebra of D. By [11, Proposition 4.56(i)], the local
A-module category C% is equivalent to (D’) g as premodular categories.
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Another application of local module categories lies in the study of the Witt equiv-
alence of nondegenerate braided fusion categories introduced in [7].

Definition 2.6 Nondegenerate braided fusion categories C and D are Witt equivalent
if there exist fusion categories Aj, A such that Z(A;) KC ~ Z(A,) KD is a braided
equivalence. The Witt equivalence class of C is denoted by [C].

Two nondegenerate braided fusion categories C and D are Witt equivalent if there
exist connected étale algebras A € Cand B € D such that C ~ DY as braided fusion
categories (cf. [7, Proposition 5.15]).

The Witt equivalence classes of nondegenerate braided fusion categories form an
abelian Witt group W under the Deligne tensor product with [C]~! = [C™'] (see
Eq. 2.1). The Witt group W of nondegenerate braided fusion categories is a gener-
alization of the Witt group WQ of nondegenerate quadratic forms of finite abelian
groups. In particular, the subgroup W, (p) of W generated by the Witt equivalence
classes of the pointed modular categories C(G, g), where p is a prime and G is a
finite abelian p-group, is canonically isomorphic to the classical Witt group WQ(p)
of nondegenerate quadratic forms of finite abelian p-groups (see [7, Section 5.3]).

3 Higher Gauss sums and central charges
3.1 Definition and motivation

Let C be a modular category. The Gauss sums 7 (C) of C are defined as

() = Z 05! dim(X)>2. (3.1)
XeO©)

Their properties can be found in the literature such as [2,14,32] and [10]. It is well-

known that T+ (C)t~(C) = dim(C) > 1, and ztgg)) is a root of unity [55]. In particular,
|t +(C)| = +/dim(C). From this, the definition of the (multiplicative) central charge of
C can be defined as £(C) := 7 (C)/+/dim(C), which is also a root of unity.

The same definition (3.1) of Gauss sums 7% (C) can be extended easily to a pre-
modular category C. However, T* (C) could be zero which can be demonstrated in the
category sVec of super vector spaces where t+(sVec) = 7 (sVec) = 1 — 1 = 0 (cf.
Example 2.1). Therefore, £(sVec) is undefined with this definition. Nevertheless, the
notion of higher Gauss sums can be generalized and studied for arbitrary premodular
categories.

Definition 3.1 Let C be a premodular category and n € Z. The nth Gauss sum of C is
defined as

w0 = Y 0% dim(X)%
XeO(©C)

Note that 7, (C) = t—,(C) as dim(X) € R for all X € O(C) (cf. [15]).
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3.2 Gauss sums and Frobenius-Schur indicators

For any object X in a spherical fusion category C and n € Z, the nth Frobenius—Schur
indicator (FS-indicator) of X, denoted by v,(X), is a scalar introduced in [35,37].
The notion was also previously defined in the contexts of Hopf algebras and rational
conformal field theory (cf. [3,30]). We will simply define the nth FS-indicator of C as

(€)== Y dim(X)v,(X). (3.2)
XeO(©)

Remark 3.2 By virtue of [37, Corollary 5.6], v_,(X) = v,(X) forn € Z and X € C.
Therefore, v_,(C) = v,(C) for n € Z. Moreover, if C = Rep(H) for any semisimple
quasi-Hopf algebra H over C, then v,(C) = v,(H) where H is considered as the
regular representation of H.

If C is modular, the modulus of 7, (C) can be expressed in terms of v, (C) as stated
in the following proposition, which is essentially proved in [22, Proposition 5.5] with
a different emphasis in the statement.

Proposition 3.3 ([22, Proposition 5.5]) Let C be a modular category. Then for any
integer n, we have

12.(O)|* = dim(C) v (O).

In particular, dim(C) divides |1,(C)|? in the ring of algebraic integers, and v, (C) is a
totally non-negative cyclotomic integer for any n € Z. O

The preceding proposition can be further refined if C is a Drinfeld center. The
following refinement is essentially proved in [50, Lemma 3.8].

Proposition 3.4 ([50, Lemma 3.8]) Let D be a spherical fusion category and C =
Z(D). Then, forn € Z,

7 (0) = dim(D)v, (D).

Thus, we have the immediate corollary for semisimple quasi-Hopf algebras.

Corollary 3.5 Let C = Z(Rep(H)) for some semisimple quasi-Hopf algebra H. Then
foranyn € Z,

7,(C) = dim(H)v,(H). (3.3)
If in addition H is a Hopf algebra, then
7(C) = dim(H) Tr(Sy) € Z 34

where Sy is the antipode of H.
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Proof Equation (3.3) follows directly from Remark 3.2 and Proposition 3.4, and
Eq. (3.4) is an immediate consequence of (3.3) and [30, Theorem 2.7(3)]. O

Now, we can apply Corollary 3.5 to compute the higher Gauss sums of the Drinfeld
double any finite group in the following corollary.

Corollary 3.6 Let G be a finite group. The nth Gauss sum of Z(Rep(G)) is
=1, =|G|l-x€eG|x"=1}| >0
foralln € Z.

Proof Recall that v,(Rep(G)) = v,(C[G]) = |{x € G | x" = 1} for any
non-negative integer n. Since v,(Rep(G)) is a positive integer, v_,(Rep(G)) =
v, (Rep(G)). The equation follows immediately from Corollary 3.5. O

Example 3.7 In general, the higher Gauss sums of modular categories could be zero.
Here, we list two examples of integral modular categories of even dimension with zero
second Gauss sums.

(i) IfC = C(Zy, q) where g(1) = i, then 72(C) = 0 and so the second central charge
is undefined despite C(Z,, q) being modular.

(i) It has been shown in [49, Section 5] that there exists a semisimple Hopf algebra
H of even dimension with Tr(Sy) = 0. Therefore, if C = Z(Rep(H)), then
72(C) = 0 by Corollary 3.5.

Another important consequence of Proposition 3.3 is the invariance of v, in the Morita
equivalence class of any pseudounitary fusion category.

Corollary 3.8 Let A be a pseudounitary fusion category, and B a fusion category
Morita equivalent to A, i.e., Z(A) and Z(B) are equivalent braided fusion categories.
Then B is also pseudounitary and

v (A) = v, (B) foralln € Z,

where the underlying spherical structures of A and B are the canonical ones deter-
mined by their pseudounitarity.

Proof Since A is pseudounitary, so is Z(.A). Therefore, Z(B) is pseudounitary and so
dim(B)? = dim(Z(B)) = FPdim(Z(B)) = FPdim(5)?> = FPdim(A)?.

Since dim(B), FPdim(B) and FPdim(A) are positive real numbers, dim(B) =
FPdim(B) = dim(A) and hence B is pseudounitary. Assuming both A and B are
equipped with the canonical spherical structures determined by their pseudounitarity,
Z(A) and Z(B) are equivalent modular categories by [35, Corollary 6.2]. Therefore,
T (Z(A)) = 1,(Z(B)) for all n € Z. Since dim(A) = dim(B), it follows from
Proposition 3.4 that v, (A) = v,(B) for alln € Z. O
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3.3 Anomaly and central charge

The quotient 71(C)/+/dim(C) of a modular category C, called the central charge of
C, is a square root of @ = 71(C)/7_1(C) since dim(C) = 71(C)t_1(C) = |11(O)|*.
The choice of positive square root of dim(C) determines a square root of «, which is
natural but not particularly a canonical one. One can easily extend these notions to
higher degrees for premodular categories.

Definition 3.9 Let C be a premodular category. For n € Z, we respectively define the
nth anomaly and the nth (multiplicative) central charge of C as

‘L',,(C) Tn(c)
= d £(C) = 2
o 4 8O= )

(3.5)

provided z,,(C) # 0.

The first anomaly appears as an important quantity in the 3-dimensional topological
quantum field theory defined by a modular category C (see for example [54]). The
motivation for our definitions of higher Gauss sums and central charge is closely
related to the Reshetikhin—Turaev invariants of links and 3-manifolds arising from
modular categories.

Let C be a modular category and D the positive square root of dim(C). Denote the
RT-invariant of a 3-manifold M corresponding to C by RT(M). Let n € N. By [54,
Section I1.2.2], the RT-invariant of the lens space L(n, 1) associated to C is given by

RT(L(n, 1)) = D™ 31_;1, (3.6)

where the category C in the notation of the Gauss sums has been suppressed for brevity.
The same manifold with reversed orientation, denoted by —L(n, 1), has RT-invariant

RT(—L(n, 1)) = D~V (z_)) 1z_,. (3.7)

Observe that RT(—L(n, 1)) = RT(L(n, 1)). If any one of the invariants is nonzero,
we have
RT(L(n, 1))
RT(—L(n, 1))

Qn

=D 2(1_1) %, = . (3.8)

3.4 Basic properties and examples

Some straightforward observations about Definitions 3.1 and 3.9 are collected here
for future use.

Lemma 3.10 For all premodular categories C and integers n such that t,(C) # 0,

() £ (C) = £-n(C) = & (O,

(ii) &,(C) and all of its Galois conjugates have modulus 1,
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(iii) &,(C) is a root of unity if and only if &, (C) is an algebraic integer. In this case, if
N is the FS-exponent of C, then ord(t,, (C)) | N if N is even, and ord(«t,, (C)) | 2N
otherwise.

Proof The first claim follows from 7+,(C) = t+,(C*") and 7,(C) = 7_,(C). Note

that ., (C) = % € Q(e?™/N)). Therefore, all the Galois conjugates of o, (C) have

modulus 1, and so do &,(C). If &,(C) is an algebraic integer, then &,(C) is a root of
unity by a theorem of Kronecker (see [20]). Hence, o, (C) is also a root of unity. Since
o, € Qe /N), if &, (C) is a root of unity, then ord(e,(C)) | N or ord(a,(C)) | 2N
respectively depends on whether N is even or odd. O

Example 3.11 Accessible formulas for the dimensions and twists of C(g,, 3) can be
found in Sections 2.3.4 of [47], and one computes

1 .
&) = m(ﬁ— i),

which has minimal polynomial 2x* — 3x2 + 2 and thus is not a root of unity. Corol-
lary 4.2 below describes when such a phenomenon is possible.

The higher Gauss sums and central charges also respect the Deligne tensor product
of premodular categories.

Lemma 3.12 If C and D are premodular, then for alln € Z
(CH® D) = 1, (O)tn(D). (3.9

If t,(C)1,,(D) # 0, then we also have &,(CX D) = &,(C)&,(D).

Proof The result follows from the fact that dimensions and twists are multiplicative
with respect to X, i.e. dim(X X Y) = dim¢(X) dimp(Y) and Oxxgy = Ox6y for any
X € OC)and Y € O(D). Hence

LwCRD)= Y  Oigydim(XKY)>?
XXYeO(CKRD)

= Z Z 0161 dime(X)? dimp(Y)?
XeO(C) YeO(D)

=t (Ot(D).
The last statement follows directly from the definition of &,. O
Corollary 3.13 If C is modular, then &,(Z(C)) = 1 for all n € Z such that t,(C) # 0.
Proof Apply Lemma 3.10 (ii) to Z(C) ~ CX C™" [see Eq. (2.1)]. O

Example 3.14 One can easily see that there are families of inequivalent premodular
categories which have the same higher multiplicative central charges. The first of such
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an example can be obtained from finite groups. Recall from Corollary 3.6 that for any
finite group G the higher Gauss sums of Z(Rep(G)) are positive integers. Therefore,
all the higher central charges of Z(Rep(G)) are all equal to 1. In fact, the same property
holds for Rep(G). Since 7, (Rep(G)) = |G|, &, (Rep(G)) = 1 foralln € Z.

The modular categories in Example 3.14 are all contained in the trivial Witt equiv-
alence class [Vec] (Sect. 2.2), but the following example illustrates that higher central
charges of C could be different from 1, and they are the first central charges of the
Galois conjugates of C.

Example 3.15 Let p € N be an odd prime and g, : Z, — C* a nondegenerate
quadratic form such that g, (1) = €?**4/P for some integer a not divisible by p. Then
the Gauss sum of C, = C(Z,, q,) is identical to the classical quadratic Gauss sum of
qa, Which is given by

-1 a -1
Ca —] a 1) = —_ —_—
71(Ca) ]E:Oq () (p) ( » )p

where (%) is the Legendre symbol. Thus, for p t n, the nth Gauss sum and multi-
plicative charge of C, are respectively

p—1
_1 -1
7,(Co) = ZQan(j) = (ﬂ) \/g and £,(Ca) = (ﬂ> (—)
j=0 P d g ’

Therefore, 7, (C;) = 71(Cpq) and &, (Cy) = &1(Cpa)- Since C, is equivalent to Cp, if and
only if 71 (C,) = 71(Cs), there are only two inequivalent modular categories among C,
for a given prime p which are determined by the Legendre symbol (%) These two
inequivalent modular categories, which can be distinguished by their central charges
&1, are also generators of the Witt group Wy, (p).

In light of Propositions 3.3 and 3.4, one can see the higher Gauss sums are closely
related to the higher Frobenius—Schur indicators, and they are invariants of premodular
categories. The following example is an application of the higher Gauss sums to
distinguish the Drinfeld centers of the Tambara—Yamagami categories.

Example 3.16 A Tambara—Yamagami (7)-)category C is a fusion category with
O(C) = A U {m} where A is a finite abelian group and the fusion rules are given
by

m®m:2a, a®m=mQ@a=m, a®b=ab fora,b e A.

acA

A T)-category is completely determined by the abelian group A, a symmetric nonde-
generate bicharacter y of A, and asquarerootr of |A|~ 1 andis denoted by TV(A, x,r)
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(cf. [51]). Every T)-category is pseudounitary (cf. [15]) and its Drinfeld center is con-
sequently a modular category. The 7)-categories defined by the abelian group A = Z%
are representation categories of quasi-Hopf algebras and they are completely distin-
guished by their higher Frobenius—Schur indicators (cf. [36]). The group Z% admits two
inequivalent nondegenerate symmetric bicharacters, namely the standard symmetric
bicharacter xsym and the alternating bicharacter yai. Using the higher FS-indicators
computed in [36] or [49], we have the following table of higher Gauss sums for the
Drinfeld centers of these 7)-categories.

C H 71 (7] 3 T4 75 76 7 8
TV(A, Xl §) ClDg] 8 48 8 64 8 48 8 64
TV(A, Xait: 2) C[Qs] 8 16 8 64 8 16 8 64
TV(A, Xsym, 3) K 8 48 8 32 8 48 8 64
TV(A, Xsym» 7) K. 8 16 8 32 8 16 8 64

Here C is equivalent to Rep(H) as spherical fusion categories, t, is the nth Gauss
sum of Z(C), K is the Kac algebra of dimension 8, and K, is a twist of K defined in
[36]. Since these four sequences higher Gauss sums are different, the Drinfeld centers
of these 7)-categories are inequivalent modular categories. However, all the higher
central charges of these modular categories are 1.

The repetition of higher central charges is also revealed by the following proposi-
tion.

Proposition 3.17 Let C be a premodular category. Then t1(C)1—2(C) € R. In particu-
lar, if 11 (C)t—2(C) # 0, then a1 (C) = a2(C) or §1(C) = £&(0).

Proof Using the graphical calculus conventions of [2], we have

110720 = 11(0) @ =110 G‘D @‘D (3.10)

where the line is labeled by the pseudo-object ) xeo dime(X)X. Note that [2,
Lemma 3.1.5] holds for premodular categories by the same proof. Applying [2, Lemma
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3.1.5] to the last term of (3.10), we have

1120 =(0) Q—D= @ () | . @1

where the second equality follows from the rigidity of C. Since C is spherical, we have

10720 = @ (0)=140mn©, (12

where the last equality follows from [2, Lemma 3.1.5]. The second assertion follows
directly from the definition. O

4 Arithmetic properties of higher Gauss sums: modular case

In this section, we study the action of the Galois group of Q on the higher Gauss sums
of a modular category C. We obtain a relation of the higher Gauss sums in terms of the
action of automorphisms of Q in Theorem 4.1. In particular, we prove in Corollary 4.2
that those Gauss sums 7, (C) with r relatively prime to ord(7¢) are nonzero d-numbers,
and the corresponding central charges are roots of unity. We also extend a result of
Miiger on the first Gauss sum of the Drinfeld center of a spherical fusion category to
higher Gauss sums in Theorem 4.4.

Let C be a modular category with the unnormalized S- and T-matrices S and T
respectively. Set s := J#@S. Then, si’l = dim(X)2/ dim(C). For anyn € N,

denote ¢, := e¥*/" Tt was quite well known (see [6,9,15]) that all entries of S and
T are cyclotomic integers. It has been recently shown (see [37, Proposition 5.7]) that
they are elements of Q(¢ord(7)). Thus, the Galois group Gal(Q(ord(7))/Q) acts on
the modular data of C. The reader is referred to [10] or [6] for more details of Galois
group actions on the modular data.

For any automorphism o of Q, there exists a unique permutation & on O(C) such
that

o (SX_Y> _ X6 4.1

S1,Y S1,6(Y)
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for all X, Y € O(C). Moreover, o gives rise to a sign function €, : O(C) — {£1}
such that

o(sx,y) = €6 (X)s5(x),y = €a (Y)sx 6(1) 4.2)

for all X, Y € O(C). In particular, for any X € O(C), we have

o(s% 1) = sg(x),l. 4.3)
Fix any y € C such that
71(C)
Y =& = W oL 4.4

define 7 := y ~!T. Then the assignment

p:[(l) _01]»—>s, [(1) i]»—w 4.5)

uniquely determines a linear representation of SL(2, Z) (cf. [2, Remark 3.1.9]).

Note that ¢ is a diagonal matrix with entries indexed by X € O(C). We will denote the
diagonal entry of ¢ corresponding to an X € O(C) by tx. In other words, txy = 6xy !
for any X € O(C). According to [10, Theorem II],

o2 (tx) = ts(x)- (4.6)
Because 01 = 1, Eq. (4.6) states
1 05
o2 (—) =2d 4.7)
14 14

which implies [10, Proposition 4.7]

Y
—02(}/) = 05(1)- 4.8)

For any n € Z relatively prime to ord(T), there exists an automorphism o, of Q
such that oy, : {ora(r) —> ;;’rd(T) (cf. [27, Theorem V1.3.1]). In particular, o, (6x) = 6%
for all X € O(C). Let i1 denote the multiplicative inverse of n modulo ord(7"). Then

a; ! (0x) = 0, (6x) = 0% 4.9
for all X € O(C). Note that such o, is not unique but its restriction on Q(¢ord(7)) is

unique. Now we can state our theorem of Galois group action on the higher Gauss
sums.
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Theorem 4.1 Let C be a modular category, N = ord(1¢), and n € Z relatively prime
to N. Let n be the multiplicative inverse of n modulo N, and let o be any automorphism
of Q such that o ({n) = ¢y Then, fora € Z,

_ dim() ,,

Tan(C) = G(T“(C))meé(]l) and (4.10)
_ dim(C)

Van(C) = U(va(C))O’(Tm(C)). 4.11)

In particular, t,(C) # 0 and &,(C) is well-defined.

Proof Fix a 3rd root y of &1 (C) (cf. Eq. (4.4)). By Egs. (4.3), (4.6) and (4.9), we have

7.(C) _ 2 .a
 (Gmoys) =7 | T shart

XeO(0)

Y ok
XeO(©©)

Y sExa0 (02ER) by 43)
XeO(@©)

Z sg(x),]la_l(tg(x)) by(4.6)
XeO(©0)

=2

XeO(@©©)

dim (6 (X))?o 1 (62
dim(C)o ~1(y%)

(X))

1
= dim(C)o ' (y9)

_ Tan ()
~ dim(C)o~1(y9)’

Y dim(6(X))%047y, by (4.9)
XeO(0)

where the last equality is based on the fact that 6 is a permutation on O(C). Therefore,
with M := o (7,(C)) dim(C) /o (dim(C)) for brevity,

—1/.,a a
o (y9) -1 Y -1
iy =M () = Mo G5 = Mo 12
by Egs. (4.8) and (4.9). This proves (4.10). The equality (4.11) is then a consequence of
Proposition 3.3. The last statement follows immediately from the fact that |71 (C)|> =
dim(C) > 1 as C is modular. O

Tan(C) =M

Recall from [38] that a d-number is defined as an algebraic integer whose principal
ideal in the ring of algebraic integers is invariant under the action of the absolute Galois
group. It is immediate from the definition that the subset of d-numbers in the ring of
algebraic integers is closed under multiplication and taking square roots, and that any
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algebraic unit is a d-number. Moreover it is shown in [38, Corollary 1.4] thatif Cis a
spherical fusion category, then dim(C) is a d-number.

Corollary 4.2 Let C be a modular category, N = ord(T¢), and n € Z relatively prime
to N. Let n be the multiplicative inverse of n modulo N, and let o be any automorphism
of Q such that 0 ({n) = ¢y Then,

(a) the nth anomaly of C is given by
@ (€) = o (@i(0)) - 037y, (4.13)

In particular, a, (C) and &,(C) are both roots of unity such that &,(C)*N = 1.
(b) The nth Gauss sum of C is a d-number.

Proof By Theorem 4.1, we have

7, (C) _ o(t (C))Og(]l)

o, (C) = .0 o (T-10)0; 1,

=0 (1(0) - 037, (4.14)

It is known (for example, [2, Section 3]) that ¢; € Q(¢y) is a root of unity. Therefore,
a,(C) is a root of unity in Q(¢y). As a square root of &, (C), &,(C) is also a root of
unity, this completes the proof of part (a).

Now, by Proposition 3.3, we have

7 (0)? = |1 (C) > (C) = dim(C)v, (C)a (C). (4.15)

By Proposition 3.6 and Proposition 3.8 of [4], v, (C) is an algebraic unit for all prime
q 1 N. By the Dirichlet prime number theorem, there exists a prime number g such
that g = n (mod N). Hence, v,(C) = v,(C) and so v,(C) is an algebraic unit. Since
dim(C) is a d-number, ‘L',% (C) is a d-number and so are its square roots. O

For the Drinfeld center of a spherical fusion category, we have more explicit descrip-
tions of its Gauss sums and anomalies. We first obtain the twists of the Galois orbit of
1.

Lemma4.3 Let D be a spherical fusion category, and 0 the ribbon isomorphism of
Z(D). Then, for any automorphism o of Q,

051y = 1.
Proof By [32, Theorem 1.2], 71 (Z(D)) = 7—1(Z(D)) = dim(D), and so & (Z(D)) =
1. By [10, Proposition 4.7] or (4.8), we find 65 (1) = 1since lisa 374 root of &1 (Z(D)).

m}

Now, we can prove our second main theorem of this section, which extends a result
of Miiger [32, Theorem 1.2] to higher Gauss sums.
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Theorem 4.4 Let D be a spherical fusion category, N = ord(Tz(p)), n € Z relatively
prime to N. Let n be the multiplicative inverse of n modulo N, and let o be any
automorphism of Q such that o ({n) = ¢y Then, for a € Z,

_ dim(D)2
Tan(Z(D)) = 0 (4 (Z(D)))W and 4.16)
_ dim(D)
Van (D) = 0 (vq (D))m 4.17)
Moreover,
o (vq(D))
an(Z(D)) = ———— 4.18
s (S lo(va(D))| .

whenever v,(D) # 0. In particular, £,,(Z(D)) = 1 whenever o (v,(D)) is positive.
For a = 1, we always have

B B _ dim(D)?
§.(Z2(D)) =1 and 7, (Z2(D)) = 1-n(Z(D)) = o @m(D)’ (4.19)
Proof By Theorem 4.1 and Lemma 4.3, we have
B dim(Z(D)) dim(D)?
Tan(Z(D)) = 0 (74 (Z(D)))m =0(Tq (Z(D)))m-

Now, Proposition 3.4 implies Eqgs. (4.17) and (4.18) whenever v, (D) # 0since dim(D)
is totally positive. Thus, if o (v,(D)) > 0, &,,(Z(D)) = 1. By [32, Theorem 1.2],
71(Z(D)) = 1—1(Z2(D)) = dim(D). Therefore, the second equation of (4.19) follows
directly from (4.16). Now, we find 7, (Z(D)) is also totally positive, and so &, (Z(D)) =
1. O

It has been shown in Example 3.14 that the higher central charges of Tannakian
categories and their Drinfeld centers are all 1. Using the same notations as in the above
theorem, the following examples of non-integral modular categories indicate that the
case when 7 is not relatively prime to N is more subtle, even when the higher central
charges are well-defined.

Example 4.5 Let ‘H be Haagerup—Izumi fusion category of rank 6 [17]. The unitary
fusion category H is tensor generated by one simple object p, and O(H) = G L Gp
where G is a multiplicative group of order 3. The fusion rules of H are given by the
group multiplication of G together with

a®p=ap, a®b,o=(ab)®,0=b,0®a_1 and ap®bp=ab_169®cp
ceG
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for all a, b € G. By unitarity, dim(ap) = @ for any a € G. The Drinfeld center
Z(H) has rank 12, and its modular data can be found in [17], which in principle enables
us to compute all the central charges. One particularly useful information given by
the modular data is that ord(T'z(7)) = 39. Therefore, by Theorem 4.4, if n is not a
multiple of 3 or 13, then &,(Z(H)) = 1.

For any multiple n of 3 or 13, we compute &, (Z(H)) by using v, (H). Note that
in Z39, every multiple of 3 can be written as 3k for some k such that ged(k, 39) =1
(for example, 9 = 48 = 3 x 16 mod 39), and the same is true for multiples of 13.
Therefore, by Theorem 4.4, we only have to compute v3(H) and vi3(H), and use
Galois actions to get the indicators at other multiples of 3 and 13.

By [52, Theorem 5.4], v3(ap) = 1, and vi3(ap) = /B forany a € G. Since G
generates a fusion subcategory equivalent to Rep(G) as spherical fusion categories,
v3(Rep(G)) = 3 and vi3(Rep(G)) = 1. Therefore,

v3(H) = v3(Rep(G)) + Y _ v3(ap)dim(ap) =3 +3

aeG

(3+¢E)_ 15 +3/13
2 N 2

and similarly

V13(H)=1+3(3+2‘/ﬁ) <1+£/ﬁ) =13 +3+/13.

Consequently, by Proposition 3.4, 73(Z(H)) and 713 (Z(H)) are positive real numbers,
hence £&3(Z(H)) = £13(Z(H)) = 1. Note that v3 and v;3 are totally positive. By Theo-
rem 4.4, if n is a multiple of 3 or 13, then &, (Z(H)) = 1. In summary, &,,(Z(H)) = 1
for any integer m.

However, there are Drinfeld centers of spherical fusion categories whose &, is not
equal to 1 when 7 is not relatively prime to N. In fact, as we will see in the following
example, &, is not even a root of unity.

Example 4.6 Let H be the 27-dimensional Hopf algebra Hy7(1, ¢3) in [50, Table 1]
where {3 is a primitive 374 root of unity. Let C = Z(Rep(H)). It is shown in loc. cit.
that v3(H) =305 + 4§32). Therefore, by Corollary 3.5, we have

73(C) = dim(H)vs3(H) = 81(5 + 4¢3).
Since the minimal polynomial of

_ 81(5+4¢d)

%O = 516+40)

is 7x2 4 2x 47, a3 is not an algebraic integer. Hence, &3 cannot be a root of unity. Note
that dim(C) = dim(Rep(H))? = 3. Therefore, by the Cauchy Theorem [4,23,34],
ord(T¢) is also a power of 3.
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5 De-equivariantization and local modules

Let C be a premodular category with the ribbon isomorphism 6, and let A € C be a
ribbon algebra of C, i.e. a connected étale algebra with dim¢(A) # 0 and 64 = idg
(cf. Definition 2.3). In the language of [26] [7, Remark 3.4], A is a rigid C-algebra.In
this section, we will derive expressions for the higher Gauss sums and central charges
of the local A-module category C% in terms of those of C in two different settings
(Theorems 5.6 and 5.8).

Recall the notations and concepts related to A-modules in C from Sect. 2.2. We
will use the same convention of graphical calculus as in [26] to prove the following
lemmas which are essential to our main results of this section. Note that Lemmas 5.1
and 5.2 are in the spirit of [39, Theorem 2.5] and its proof.

Lemma 5.1 Let C be a premodular category and A a ribbon algebra of C. Then, for
any M € C4 and f € Endc(M),

= dim¢(A) Tre(f). .1)

(5.2)

By the naturality of the braiding of C and the associativity of the A-action on M, we
have

(5.3)
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Now [26, Lemma 1.14] and the axioms of an A-module imply

= dim¢(A) = dim¢(A) = dim¢(A) Tre(f). (5.4)

M M

For any M € O(Cy), define

Py = ———(pmcm,aca,m(ida ®ppm)(ia ®idy)) € Ende(M),  (5.5)
dim¢(A)

where iy : 1 —> A ® A is as in [26, Definition 1.11], ¢ is the brading of C and

oM AQ® M — M is the A-module structure of M. Note that Py is the same as P,

in [26, Lemma 4.3] (with M = X, ) where C is assumed to be modular. However, the

same proof of [26, Lemma 4.3] can be used for a premodular category C, and so we

have

0 otherwise. (5-6)

Py — {idM it M € OCY),
Lemma 5.2 Let C be a premodular category with the ribbon isomorphism 6 and A a
ribbon algebra of C. Then,

(a) for any M € O(CA)\OCY), Trc(By) = 0, and
(b) forany M € (’)(C%) and n € Z, 0y, = A'idy, where A = 0x for any simple
subobject X of M in C. In particular, Trc(0),) = A" dim4 (M) dim¢(A).

Proof 1t suffices to show Trc(G;Il) = 0 for the statement (a) since

Tre(6;,") = Z 05" dime(X)[M : X]c = Trc(@n), (5.7)
XeO(©C)

where the second equality follows from 6, ! = 9x and dim¢(X) € R. By [26, Figure
16] and Lemma 5.1, we have

/|
’
s

1 ’
TrC(e;ll Py) = m \// E_ﬂ = Tl'c(e;ll). (5.8)

M
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Therefore, by Eq. (5.6),if M € O(CA)\O(Cg), then 0 = Trc(t‘;71;[1 Py) = Trc(O;ll).

For (b), let ¢ be the twist of C% and M € (’)(Cg). Then ¥p; = Aidys for some
A € C*. By [26, Theorem 1.7], the twist in Cg is inherited from that of C. We have
Py = Opy. Therefore, A = Ox for any X € O(C) such that [M : X]¢ # 0. Thus, by
[26, Theorem 1.18], we have

Trc®)) = Y 0%[M : X]cdime(X)

XeO(©C)
=" ) [M: X]edime(X)
XeO(©©)
= A dime(M) = A" dimy (M) dime(A). (5.9)

O

Lemma 5.3 Let C be a premodular category with ribbon isomorphism 6. If A € Cis a
ribbon algebra of C, then

@) 1,(C) = Z dima (M) Trc(0%) for all n € Z,

MeO(Cya)
_ u©
) () = Gme(A)’
(c) dim(Cn) = m and dim¢(A) is totally positive.
dimg(A)

Proof By [26, Theorem 1.18], dim 4 (M) = GECOH for any object M € Ca. Since the
forgetful functor C4 — Cis aleft adjointof F : C — C4; X - A ® X, we have

L@ = Y Opdime(X)?= ) 0%dime(X)dima(A® X)

XeO(C) XeO()

= ) 6fdime(X) Y [A®X:Mle,dims(M)
XeO(©) MeO(Ca)

= Y dims(M) ) 6%[M : X]cdime(X)
MeO(Cxp) XeO(©C)

= ) dima(d) Trc(6p)),
MeO(Cy)

and this proves part (a).

For the statement (b), we consider n = 1. Then, Lemma 5.2 implies

u@= ), dma@M)Trc@n)+ Y, dima(M) Trc(6n)
MeO(C)) MeOCH\O(CY)
= dim¢(A) Z Oy dima (M)% + 0
MeO(CY)
= dim¢(A)71 (CY).
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Now, we consider n = 0 for equation of part (a). We have

dim@) =1() = Y dima(M)dime(M)
MeO(Cy)

= dim¢(A) Z dim (M)? = dim¢(A) dim(Ca).
MeO(Cy)

Since the global dimensions dim(C) and dim(C4) are totally positive, so is dim¢(A),
and the proof is completed. O

The following corollary, which is a generalization of [26, Theorem 4.5] to premodular
categories, is now an immediate consequence of the preceding lemma.

Corollary 5.4 Let C be a premodular category with t1(C) # 0. If A € C is a ribbon
algebra of C, then & (C%) = £1(0). O

Let C be a premodular category. Recall that a fusion full subcategory A of C is a
Tannakian subcategory if A is equivalent Rep(G) for some finite group G, as premod-
ular categories. Let A = Fun(G) be the regular algebra (the algebra of complex valued
functions on G). In this case, A is aribbon algebra of C with dimension dim¢(A) = |G|,
and C4 is the de-equivariantization Cg of C (cf. Definition 2.3 and [11]). The corre-
sponding category of local modules is denoted by C% (= C%).

Let G be a finite subgroup of the group of the isomorphism classes of invertible
objects of C. We simply call G a Tannakian subgroup of C if the full subcategory
A of C generated by G is a Tannakian subcategory of C. In this case, G is abelian,
O(A) = G and A is equivalent to the premodular category Rep(G), where G (= G)
is the character group of G. Therefore, the regular algebra A of A is given by

A=Pe (5.10)

geG

Thus, AQ g = g® A = AinC for g € G. Hence, for any M € O(C4) and for any
X € O(C), we have

[M:g®Xle=[A®g®X: Mle, =[A®X : Mle, = [M: Xlc. (5.11)

Now fixan M € O(C4) and let X € O(C) be a simple subobject of M in C. In other
words, [M : X]¢ #0.Since A® X = @geG g ® X and M is a direct summand of
A ® X in C, every simple subobject Y of M in Cis of the form g ® X for some g € G.
In particular, for any ¥ € O(C) such that [M : Y]¢ # 0, we have dim¢(Y) = dim¢g(X)
and [M : Y]¢c = [M : X]¢ by (5.11). Hence, for any n € Z, we have
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Tre@p) = Y 63[M : Y]edime(Y)
YeO(©)

= ) 65[M:Y]cdime(Y)

YeO(C)
[M:Y]c#0

=[M : X]edime(X) Y 6. (5.12)

YeO(©0)
[M:Y]e#0

Lemma 5.5 Let C be a premodular category with ribbon isomorphism 6, and G a
Tannakian subgroup of C. Then for any M € O(CG)\(’)(C%) and n € 7 relatively
prime to ord(T¢),

Tre(0}) = 0.

Proof By Lemma 5.2 (a), forany M € O(Cg)\O(C%), we have Tr¢(0y) = 0. There-
fore, by Eq. (5.12), we have

> ey =0,

YeO()
[M:Y]c#0

as the dimension of a simple object in a fusion category is not 0 and [M : Y]¢ # 0 by
assumption. For any integer n relatively prime to ord(7¢), there exists 0, € Gal(Q/Q)
such that 0, (0x) = 0y for all X € O(C). We then have

Y p=o| Y 6x|=0,

Xe0(0) XeO(C)
[M:X]c#0 [M:X]c#0
which, together with Eq. (5.12), proves the lemma. O

Theorem 5.6 Let C be a premodular category, and G a Tannakian subgroup of C. Then
for all n € Z relatively prime to ord(1¢),

7 (C) = |G|t (CY).

In addition, if 14 (C) # 0, then £,(C%) = &(0).
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Proof Let6 be the ribbon isomorphism of C, and A the regular algebra of the Tannakian
subcategory .4 equivalent to Rep(G). Lemmas 5.3 and 5.5 imply

@ = ) dima(M)Trc©)
MeO(Cy)
= > dima(M)Tre(0)) + > dim 4 (M) Tre(07,)
MeO(C)) MeOCAH\O(CY)

=dim¢(4) Y 60 dima(M)* +0
MeO(CY)
= dimc(A)7,(CY) = |G|7a(CE).

The last assertion follows directly from the definition of higher central charges as |G|
is a positive integer. O

With the notations as above, recall that in this case, the de-equivariantization (A)
of the centralizer of A is the same as the category of local A-modules C?L‘.

Example 5.7 Consider the category C := C(so0s,4) of rank 15 containing the Tan-
nakian subcategory A := Rep(Z;) and has ord(T¢) = 28. The de-equivariantization
Az, = C%z factors as D®2, where D := (C(sly, 5);“)rev is a premodular category of
rank 3. Let d := 2cos(7/7) and ¢ = ¢™/7. The dimensions of the nontrivial simple
objects of D are d and d> — 1, and their twists are =2 and ¢* respectively (cf. [48]).
There are 12 integers m such that 1 < m < 28 and gcd(m, 28) = 1. Therefore,
T (C) = 212 (D) by Theorem 5.6, and we have

¢t ifm=5,13,19,27;
)¢t iftm =317,
5m(0) = ¢ ifm =11,25; 5-13)
0 ifm =1,9,15,23.

One would expect Theorem 5.6 could be generalized to any ribbon algebra A of a
premodular category C. However, we are only able to do this for modular categories
C as the Galois group actions on their modular data can be applied.

Theorem 5.8 Let C be a modular category, A € C a ribbon algebra, and N = ord(T¢).
Suppose 1¢ and 1,4 are respectively the monoidal units of C and Cg. Ifn € Zis
relatively prime to N, then

o (dim¢(A))

0510 = 0501, En(CQ) =&, and ©,(C) = dime(A)?2

7 (C) #0
(5.14)

where o is any automorphism of Q such that o ({n) = ¢ 1’;’, and n is the multiplicative
inverse of n modulo N as in Sect. 4.
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Proof By Theorem 4.1 and Lemma 5.4,

dim(C%)
o (dim(C})) 71
_ _o@© _dmc) ,
o (dim¢(A)) o (dim(CY)) )
_ o (02Mm©) dim(C%) (9&<1A>)"
"7 dim(C) o (dime(A) dim(C%)) \ Os(ie)

(%) = o (t1(CY))

_ o 2Wm©) dm@dime(A)? (G,

=70 m© o (dm(©) dime(4) 1) (9&(16))

_ o(dim¢(A)) 051 \"

= “Smecay 1 © (—9&(%) . (5.15)

For any y € C such that y3 = &(C), we also have y3 = & (C%) by Corollary 5.4.
Thus by Eq. (4.8),

4
Y6100 = 53,y = bean

hence 05 (1,)/851,) = 1 which can be substituted into (5.15) to yield the third equality
of the statement. Since C is modular, t,(C) # 0 by Theorem 4.1 and hence t, (C%).

Since dim¢(A) is totally positive, we have |z, (C’%)l = %lm (C)]. Therefore,

the equality &, (C%) = &,(C) follows directly from definition. O

Theorem 5.8 could be viewed as a generalization of the last statement of The-
orem 4.4. Indeed, if C = Z(D) for some spherical fusion category D, then the
Lagrangian algebra A = I(1p) is a ribbon algebra of C where I is the left adjoint of
the forgetful functor from C to D. Since dim¢(A)? = dim(C), dim(C%) = 1 and so
C% =~ Vec (cf. [7, Proposition 5.8]). Hence Theorem 5.8 implies

: 2 . 2
1 (Z(D)) = ()" \oey — MDY
o (dim¢(A)) o (dim(D))

6 Witt relations and central charges

Recall that each Witt equivalence class in WV has a completely anisotropic (contains
no nontrivial connected étale algebras) representative which is unique up to braided
equivalence [7, Theorem 5.13]. For Witt equivalence classes in the unitary subgroup
Wun C W, generated by equivalence classes of pseudounitary nondegenerate braided
fusion categories, this completely anisotropic representative is unique up to ribbon
equivalence, as there exists a unique spherical structure with nonnegative dimensions
for all objects (cf. [15]). By [7, Lemma 5.27], if two pseudounitary modular categories



53  Page 28 of 32 S.-H.Ngetal.

C and D are Witt equivalent, then &1 (C) = &;(D). The goal of this section is to extend
this result to higher central charges with the following theorem.

Theorem 6.1 Let C and D be pseudounitary modular tensor categories such that [C] =
[D]. If n € Z is coprime to ord(T¢) - ord(Tp), then &,(C) = &,(D).

Proof Recall [7, Corollary 5.9] that C is Witt equivalent to D if and only if there exists
a fusion category A such that Z(A) >~ CXI D™ is a braided equivalence. Since Z(.A)
is the Deligne product of pseudounitary categories, it is also pseudounitary. Moreover,
since

dim(A)? = dim(Z(A)) = FPdim(Z(A)) = FPdim(A)?,

A is also pseudounitary. The assumption gcd(n, ord(T¢)ord(Tp)) = 1 implies &, (C)
and &,(D) are well-defined by Theorem 4.1. By Theorem 4.4, §,(Z(A)) = 1 as
ord(T'z(4)) = lem(ord(T¢), ord(Tp)). Thus, by Lemmas 3.10 and 3.12, we find

£.(0)6n(D) = 1.

By Corollary 4.2, &,(C) and &, (D) are root of unity, and the result follows. O

The structure theorem for the classical Witt group of quadratic form WQ [45]
coincides with that of the pointed Witt group W) [7, Proposition 5.17]. In particular,

W= P Walp) (6.1)

primes p

where W (p) consists of the equivalence classes of all pointed modular categories
with the fusion rules of abelian p-groups. It is well-known that Wy, (2) = Zg @ Z,,
Wpt(p) = Z4 for p = 3 (mod 4), and Wi (p) = Zy @ Z; for p = 1 (mod 4).

In Example 3.15, we have demonstrated the application of the first central charge to
distinguish the generator of W, (p) when p is an odd prime. In fact, the higher central
charges can distinguish all element of W, (p) for any prime p. We demonstrate this
application in the following example.

Example 6.2 The group Wy (2) is generated by C = C(Z4, q) and D = C(Z4,q) W
C(Zy,q"), where g(1) = ¢g and ¢’ (1) = §4_1. One can compute directly that

O =0 5O=¢, ad=1, &D)=-L

Denote by &, = XD for any non-negative integers a, b, and W the subgroup
of Wp(2) generated by the Witt equivalence classes of C and D. We find

E(Eap]) = (E1(Eap), E3(Eap)) = (&€, (—1)PE3%).

In particular, £ : W — (¢g) x (¢g) defines a group homomorphism with its image
isomorphic to Zg @ Z,. Since Wy (2) is of order 16, [C] and [D] are generators of
Wpt(2) by Theorem 6.1.



Higher Gauss sums of modular categories Page290f32 53

Outside of W, one can use higher central charges to differentiate various Witt
equivalence classes.

Example 6.3 In this example, we use the formulas for the modular data of C(g,, k) as
in [47, Sections 2.3.4]. Set C := C(g,, 8)%5 and D := C(g,, 11)¥1°. One computes

£1(C) = exp(—mi/3) = £1(D), (6.2

but C and D are not Witt equivalent. To see this, note that ord(7¢) = 36, and ord(Tp) =
45 [47]. By direct computation, we have £13(C) = 1 and &;3(D) = —1. Hence [C] #
[D] by Theorem 6.1. All Witt group relations amongst classes [C(g,, k)] were classified
in [48] corroborating this result.

The following proposition implies the converse of Theorem 6.1 does not hold.

Proposition 6.4 Let C be a modular category and N := ord(T¢). For any integer k
relatively prime to N,

E(CEN) = 1.

Proof By Theorem 4.1, o (C) and & (C) are well-defined. By Lemma 3.12, Corol-
lary 4.2, and Lemma 3.10, we have e have

£(CY) = £2(CH2N) = e (€N = g () = o (@} (DO, = 1.
O

Example 6.5 Let C be a modular category such that its Witt equivalence class [C] € W
is of infinite order. The existence of such categories is discussed in [7, Example 6.4].
By the above proposition, for any k coprime to N, & (CEMN ) = 1 = & (Vec), but
[CX*M] # [Vec] in Wby our assumption on C. Hence, the above proposition provides
counter-examples to the converse of Theorem 6.1.

7 Questions

The higher central charges of pointed modular categories can be computed by using
the structure of Wt (Sect. 6). There is an explicit formula for &1 (C(g, k)) based only
on dim(g), k, and the dual Coxeter number of g [2, Equation 7.4.5]. As &, is often
undefined when n # +1, 0 it is unclear whether a similar general formula (i.e. without
reference to Galois automorphisms in Theorem 4.1) for higher central charges exists.

Question 7.1 Does an explicit formula exist for &, (C(g, k)) for n # £1, 0 using only
the input data of n, g, and k?

By Example 3.7, there exist modular categories D with some of its higher Gauss
sums being 0. Thus, if C is a modular category containing a modular subcategory D
such that 7, (D) = 0 for some integer a > 1, then 7,(C) = 0asC~ DX D'.
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Question 7.2 Are there necessary and sufficient conditions for higher Gauss sums
of a premodular (or modular) category to vanish (hence higher central charges are
undefined)?
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