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Abstract

In previous work the authors introduced a new class of modular quasi-Hopf alge-

bra Dω(G,A), associated to a finite group G, a central subgroup A and a 3-cocycle

ω∈Z3(G,C×). In the present paper we propose a description of the class of orbifold mod-

els of rational vertex operator algebras whose module category is tensor equivalent to

Dω(G,A)-mod. The paper includes background on quasi-Hopf algebras and a discussion

of some relevant orbifolds.

1. Introduction

Since its introduction by Dijkgraaf, Pasquier and Roche [4], the twisted

quantum double has been a source of inspiration in the related areas of

quasiHopf algebras, modular tensor categories (MTC), and orbifold models

of holomorphic vertex operator algebras (VOA). It follows from the work

[20] of Müger that the module category Dω(G)-mod of a twisted quantum

double of a finite group G (notation and further details are provided below)

is a MTC. Even before the idea of a MTC existed, DPR had more-or-less
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conjectured [4] that if V is a holomorphic VOA admitting G as a group of

automorphisms then V G-mod is equivalent to Dω(G)-mod for some 3-cocycle

ω∈Z3(G,C×). Kirillov considered the conjecture from the perspective of

fusion categories [14]. His work would imply the conjecture if one can show

that all the g-twisted modules of V form a G-graded fusion category. This

condition amounts to the rationality of V G. With recent advances, this

conjecture is now known for a large family of groups G. The recent work

[19] of Miyamoto and Carnahan proves that V G is rational for any solvable

group G. A complete solution to the conjecture seems to be within reach.

On the other hand, much less is known in the case of rational orbifolds,

i.e., orbifolds V G where V is a rational VOA, but not necessarily holomor-

phic. Already in [4], the authors asked for a description of the c=1 ADE

orbifolds V G where V=L(sl2, 1) is the affine algebra of level 1 associated to

sl2 (alternatively, the rank 1 lattice theory V√
2Z associated with the A1 root

lattice) and G a finite subgroup of SO(3,R). Until recently there was no re-

ally satisfactory answer to this question. Fusion rules and S- and T -matrices

for these theories have long been known (the icosahedral case proved to be

particularly intractable) but a quasiHopf algebra replacing the twisted dou-

ble was missing. More generally, there does not seem to be even a conjectural

description of V G-mod in the literature for any reasonably substantial class

of rational orbifolds beyond the holomorphic case.

In our recent work [15] we introduced a generalization of the twisted

quantum double, denoted by Dω(G,A), which is a certain quasiHopf algebra

quotient of Dω(G) obtained from a central subgroup A of G. (The case

A=1 reduces to Dω(G).) We gave necessary and sufficient conditions that

Dω(G,A)-mod is a MTC. The purpose of the present paper is to present a

conjectural description of those rational orbifolds V G whose module category

is equivalent to some Dω(G,A)-mod, and to discuss a few examples. These

include the ADE examples mentioned above, thus providing an answer to

the question raised by DPR.

The paper is organized as follows. In Section 2 we present a general dis-

cussion of quasiHopf algebras, with emphasis on the construction and prop-

erties of Dω(G,A). In Section 3 we state our conjecture relating Dω(G,A)

to certain rational orbifolds, and in Section 4 we consider some illustrative

examples.
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We thank Terry Gannon for his interest and input, and for suggesting

that this paper be written.

2. QuasiHopf Algebras and Dω(G,A)

In this Section we provide some background, taken from [15], about

the quasiHopf algebras Dω(G,A), which we call generalized twisted quantum

doubles.

We use the following notation for a finite group G. Ĝ=Hom(G,C×) is

the group of characters of G, xg=g−1xg (x, g∈G) is right conjugation in G,

the centralizer of x in G is CG(x):={g∈G|xg=x}, Z(G):= ∩x CG(x) is the

center of G.

We take our base field to be the complex numbers C. A quasiHopf algebra

is a tuple (H,∆, ǫ, φ, α, β, S), where H is a unital algebra and ∆:H→H ⊗H

an algebra morphism that is quasicoassociative in the sense that there is a

map φ (the Drinfeld associator) making the following diagram commutative:

H ⊗H
∆⊗Id

��♦♦♦
♦♦
♦♦
♦♦
♦♦

Id⊗∆

��❖❖
❖❖

❖❖
❖❖

❖❖
❖

(H ⊗H)⊗H
φ

�� H ⊗ (H ⊗H)

(2.1)

S is the antipode, ǫ the counit, and α, β∈H are certain distinguished ele-

ments. We generally suppress all reference to these elements of a quasiHopf

algebra; this will not impair the reader’s understanding of what follows.

One also requires φ to satisfy some cocycle conditions in the form of cer-

tain diagrams involving fourfold tensor products of H that are required to

commute. Again we will generally suppress such details. A Hopf algebra is a

quasiHopf algebra for which α=β=1 and φ=1⊗1⊗1. For further background

on quasiHopf algebras, see [10], [13] and [17].

One of the great virtues of a quasiHopf algebra H is that the category

H-mod of (finite-dimensional) H-modules is a finite tensor category, though

not necessarily a MTC.

Fix a finite group G. The group algebra CG is a familiar example of a

Hopf algebra, the coproduct being defined by ∆(g)=g⊗ g (g∈G). Dualizing,
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the dual group algebra C
G has basis eg (g∈G) dual to the basis of group

elements in G. It is a Hopf algebra with product and coproduct defined by

egeh=δg,heg, ∆:eg �→
∑

ab=g

ea ⊗ eb.

Now fix a normalized multiplicative 3-cocycle ω∈Z3(G,C×). A basic

example of a quasiHopf algebra is the twisted dual group algebra C
G
ω , obtained

from C
G just by replacing 1⊗1⊗1 by a more interesting Drinfeld associator

defined by multiplication by

φ:=
∑

a,b,c

ω(a, b, c)−1ea ⊗ eb ⊗ ec. (2.2)

Here, the cocycle conditions amount to the 3-cocycle identity satisfied by ω.

The twisted quantum double Dω(G)=C
G
ω ⊗CG occurs as the middle term

of a sequence of morphisms of quasiHopf algebras

C
G
ω

i �� Dω(G)
p �� CG

where i(eg)=eg ⊗ 1, p(eg ⊗ x)=δg,1x. D
ω(G) is itself a quasiHopf algebra

with the following product and coproduct:

(eg ⊗ x) · (eh ⊗ y)=θg(x, y) δgx,heg ⊗ xy

∆:eg ⊗ x �→
∑

ab=g

γx(a, b) ea ⊗ x⊗ eb ⊗ x.

The scalars θg(x, y), γx(a, b) are determined by ω as follows:

θg(x, y):=
ω(g, x, y)ω(x, y, gxy)

ω(x, gx, y)
,

γx(a, b):=
ω(a, b, x)ω(x, ax, bx)

ω(a, x, bx)
.

We remark that the 2-cochains defined by the θ’s and γ’s have subtle

properties which govern much of the behaviour of Dω(G) – for example,

the fact that Dω(G) really is a quasiHopf algebra, which is not obvious.

As another example, if we restrict x, y to CG(g) then the 2-cochains θg, γg
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coincide and become 2-cocycles. We informally record this as

γg=θg∈Z2(CG(g),C
×), (2.3)

where it is understood that the domains of γg, θg are here restricted to CG(g).

SinceDω(G)-mod is the Drinfeld center of Vec(G,ω), the fusion category

of G-graded vector space with the associativity given by ω, it follows from

[20] that Dω(G)-mod is a MTC.

We now fix another piece of data, namely a central subgroup A⊆Z(G),

and introduce

Dω(G,A):=C
G
ω ⊗ C(G/A).

Notice that because the conjugation action of A on G is trivial then the

identical formulas used to define the operations in Dω(G) still make sense

in Dω(G,A). When ω is compatible with A, one can equip Dω(G,A) with a

product and coproduct similar to the case of Dω(G) so that Dω(G,A) is a

quasiHopf algebra.

Now it is natural to ask if, for suitable π′, there is a commuting diagram

of quasiHopf algebras and morphisms

C
G
ω

i ��

=
��

Dω(G)
p ��

π′

��

CG

π

��
C
G
ω

i �� Dω(G,A)
p̄ �� C(G/A)

(2.4)

where π(x)=xA and p̄(eg ⊗ xA)=δg,1xA for x∈G. In case π′ exists, it will

satisfy π′(eg ⊗ x)=λeg ⊗ xA for a scalar λ that depends on g and x.

Generally there will be no such π′, but we can give necessary and suffi-

cient conditions for its existence. To explain this we first consider the group-

like elements of Dω(G). These are the (nonzero) elements u∈Dω(G) such

that ∆(u)=u ⊗ u. As in the case of Hopf algebras, the group-like elements

form a multiplicative subgroup Γω(G)⊆Dω(G)× of the group of units. We

are more interested in the central group-like elements, which is the sub-

group Γω
0 (G)⊆Γω(G) consisting of elements that commute with all elements
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of Dω(G). One can show (cf. [17]) that there is a diagram of short exact

sequences of groups (actually central extensions)

1 �� Ĝ
i �� Γω(G)

p �� Bω(G) �� 1

1 �� Ĝ
i ��

=

��

Γω
0 (G)

��

p �� Zω(G) ��

��

1

where

Bω(G):={g∈G|γg∈B2(G,C×)}, Zω(G):=Bω(G) ∩ Z(G),

and vertical arrows are containments.

We emphasize that here, unlike the situation of (2.3), in order for g

to lie in Bω(G) it is necessary that the 2-cochain γg be a 2-coboundary on

G rather than just the centralizer CG(g). On the other hand, if g∈Z(G)

then the context of (2.3) pertains, so that γg=θg is always a 2-cocycle on G,

and the requirement to belong to Zω(G) is that this 2-cocycle is in fact a

2-coboundary.

It is shown in [15] that the existence of the morphism π′ in (2.4) is

equivalent to the existence of an enlarged diagram of central extensions

1 �� Ĝ
i �� Γω(G)

p �� Bω(G) �� 1

1 �� Ĝ
i ��

=

��

Γω
0 (G)

��

p �� Zω(G) ��

��

1

1 �� Ĝ
i ��

=

��

p−1(A)

��

p �� A ��

��

1

(2.5)

where vertical maps are again containments and the lower s.e.s splits.

What is being asserted here is the following: the central subgroup A ⊆
Z(G) is required to also lie in Bω(G), i.e., the 2-cocycles θg for g∈A are

2-coboundaries on G. Moreover, the s.e.s obtained by pulling-back A along

p must split.

Once π′ is available, it follows that Dω(G,A)-mod is a subcategory of

Dω(G)-mod. However, Müger’s theorem will generally not hold forDω(G,A),
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that is to say Dω(G,A)-mod is generally not a MTC. We will describe nec-

essary and sufficient conditions, established in [15], that make this so.

First we say a bit more about the middle s.e.s in (2.5). Given g∈Zω(G)

we have γg=θg∈B2(G,C×), so that there is τg∈C1(G,C×) satisfying δτg=θg,

i.e.,

τg(x)τg(y)=θg(x, y)τg(xy) (x, y∈G).

Because θg is a 2-coboundary, the twisted group algebra C
θgG that it defines

is isomorphic to the group algebra CG, and τg defines a choice of isomorphism

C
θgG

∼=−→ CG, x �→ τg(x)x.

There is no canonical choice of τg, but any two of them differ by a character

χ∈Ĝ. Indeed, we have

Γω
0 (G)=

{
∑

x∈G
τg(x)χ(x)ex ⊗ g|χ ∈ Ĝ, g ∈ Zω(G)

}
.

A 2-cocycle β∈Z2(Zω(G), Ĝ) that defines the central extension that is

the middle s.e.s in (2.5) is given by the formula

β(g, h)(k)=
τg(k)τh(k)

τgh(k)
θk(g, h) (g, h∈Zω(G), k∈G).

Because we are assuming that the lower s.e.s in (2.5) splits, the re-

striction of β to A is a 2-coboundary on A. That is, there is a 1-cochain

ν∈C1(A, Ĝ) such that

β(a, b)=
ν(a)ν(b)

ν(ab)
(a, b∈A).

Now we can show [15] that the formula

(a|b)ν :=
τa(b)τb(a)

ν(a)(b)ν(b)(a)
(2.6)

defines a symmetric bicharacter ( | )ν :A×A→C
×. Using results of Müger

[20], [21], it follows that Dω(G,A)-mod is a MTC if, and only if, ( | )ν
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is nondegenerate. Actually, ( | )ν is the restriction of a natural bicharacter

defined on Γω
0 (G), however we will not go into this here.

3. Simple Current Orbifolds

In the spirit of the proposal in [4] that the module categories of holo-

morphic orbifolds coincide with the module categories Dω(G)-mod, in this

Section we describe those rational orbifolds V G expected to have the prop-

erty that V G-mod is equivalent to some Dω(G,A). In this setting, the case

A=1 will reduce to the holomorphic orbifold case of DPR.

We will generally be lapse about the detailed properties of the VOAs

which we consider, but we will be concerned with rational VOAs V , which

at the very least means that V is a simple VOA and V -mod is a fusion

category, i.e. a semisimple rigid tensor category with only finitely many

simple objects. (See [7] for further background.) In fact we will only need a

small subset of such theories, and to explain which ones these are we will

review the theory of simple currents.

A simple current is a simple (or irreducible) V -module, call it M , with

the property that for all simple V -modules N , the tensor product M ⊠N is

again a simple V -module. Otherwise stated, M represents an element in the

Grothendieck group of V -mod, and an object of Frobenius-Perron dimension

one. Thanks to the associativity of ⊠, the distinct (isomorphism classes of)

simple currents form a group with respect to tensor product of modules,

called the group of simple currents. It is an abelian group because V -mod

is also braided. The identity element is, of course, the vacuum space V .

We are concerned here with rational VOAs V with the property that every

simple V -module is a simple current i.e., that V -mod is pointed. We call

such a V a simple current VOA. There are many examples of such theories.

In addition to holomorphic VOAs, where V is the only simple module, it

is well-known that lattice theories VL associated to a positive-definite even

lattice L are also simple current VOAs. In this case, the group of simple

currents is isomorphic to L∗/L where L∗ is the dual lattice of L [5].

Given a simple current VOA V , we may form the sum of all simple

V -modules M to obtain a larger space

Ṽ := ⊕M M
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Ṽ can be equipped with the structure of an abelian intertwining algebra in

the sense of Dong-Leowsky [6]. See [8] for further details.

Conjecture. Suppose that V is a simple current VOA with group of simple

currents A. Let F⊆Aut(V ) be a finite group of automorphisms of V (the

orbifold group) such that F leaves invariant every simple V -module. Then

there is central extension

1 �� A �� G �� F �� 1

and a 3-cocycle ω∈Z3(G,C×) such that V F -mod is equivalent to Dω(G,A)-

mod as modular tensor categories. Conversely, if Dω(G,A) exists and

Dω(G,A)-mod is a MTC, then there is a simple current VOA V with group

of simple currents A and a group of automorphisms F=G/A such that V F -

mod is tensor equivalent to Dω(G,A)-mod.

4. Examples

We illustrate the Conjecture by discussing some examples in greater

detail. Let the notation be as before.

Example 1. The holomorphic case.

Here, A=1 means that V is a holomorphic VOA and Dω(G,A)=Dω(G). The

Conjecture thus reduces that of DPR.

Example 2. The case F=1, i.e., G=A and Dω(G,A)=C
G
ω as quasiHopf

algebras.

We saw before that in order for π′ to exist (i.e., Dω(G,A) is a quasiHopf

algebra quotient ofDω(G)) it is necessary that A⊆Zω(G), meaning that each

θg∈B2(G,C×) is a 2-coboundary for all g∈A. That is, ω∈Z3(A,C×)ab is an

abelian 3-cocycle on A in the sense of [17], where such cocycles are stud-

ied extensively. They are closely related to the abelian cohomology groups

introduced by Eilenberg and Maclane [11].

Thus in the case at hand, the Conjecture asserts that V -mod is tensor

equivalent to C
A
ω for an abelian 3-cocycle ω that is nondegenerate in a suit-

able sense. Rather than explain what degeneracy means here, we consider a

special case in more detail.
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Let L be an even lattice with bilinear form 〈 , 〉:L×L→Z, and let VL

be the corresponding lattice VOA. Then A=L∗/L. The conjecture says that

VL-mod is tensor equivalent to the dual group algebra of L∗/L twisted by

an abelian 3-cocycle ω∈Z3(L∗/L,C×). The origin of ω is well-known in this

case (cf. [6], Chapter 12 and [17], Section 11). Let s:A→L∗ be a normalized

section of the canonical s.e.s

1 �� L �� L∗ �� A �� 1

Let c0:L
∗×L∗→C

× be an alternating bicharacter with c0(α, β)=(−1)〈α,β〉

(α, β∈L). Set

ω(a, b, c)=(−1)〈s(c),s(a)+s(b)−s(a+b)〉c0(s(c), s(a)+s(b)− s(a+ b)).

ω is indeed an abelian 3-cocycle (cf. [17], Proposition 11.1) whose cohomology

class is independent of the choice of bicharacter and section.

Example 3. The case |A|=2.

Here, we are discussing simple VOAs V with just two simple modules. One

of them is the adjoint module V , the other we denote by M . Roughly speak-

ing, we may think of Ṽ=V⊕M as a holomorphic super VOA, though this

may not conform to some definitions. (This will not matter in the following

discussion.)

Next we discuss results of [18] concerning the existence of Dω(G,A)

in the special case that G is a finite group with exactly one subgroup of

order 2. We take A to be the unique subgroup of order 2. Let T be a 2-

Sylow subgroup of G. It is well-known that T is either cyclic or generalized

quaternion. Groups with a unique involution have 2-periodic cohomology

by the Artin-Tate theory [1], and for such groups the 2-Sylow subgroup

of H3(G,C×) is cyclic of order |T |. We call a 3-cocycle ω∈Z3(G,C×) a 2-

generator if the corresponding cohomology class [ω]∈H3(G,C×) has order

divisible by |T |.

In the setting of the previous paragraph, we can prove [18] that π′ always

exists, so thatDω(G,A) is a quasiHopf algebra quotient of Dω(G). Moreover,

Dω(G,A)-mod is a MTC if, and only if, ω is a 2-generator.
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There are a number of interesting classes of finite groups with a unique

subgroup A of order 2. The following lists some of them.

SL2(q) (q ≥ 3 an odd prime power)

2.A6, 2.A7, 6.A6, 6.A7 (4.1)

binary polyhedral groups = finite subgroups of SU2(C)

Here, SL2(q) is the group of 2×2 matrices of determinant 1 over the finite

field of cardinality q, and 2.An is the 2-fold perfect central extension of the

alternating group An. For n=6, 7 Schur discovered that there are exceptional

6-fold perfect central extensions of An. There are a few overlaps among these

groups: SL2(3) and SL2(5) are the binary octahedral and icosahedral groups

respectively, and 2.A6
∼= SL2(9).

Our Conjecture says that for each pair (G,ω) such that G has a unique

subgroup of order 2 and [ω] is a 2-generator of H3(G,C×), there is a holo-

morphic super VOA Ṽ=V ⊕ M (in the sense described before) such that

G⊆Aut(Ṽ ), G/A⊆Aut(V ) and V G/A-mod is tensor equivalent to Dω(G,A)-

mod.

As far as we know, the existence of a Ṽ for most groups G on the

list (4.1) is unknown. However, it is well-known that the binary polyhedral

groups, and indeed SU2(C) itself, act on the c=1 holomorphic super VOA

defined by the A1 root lattice theory V√
2Z, also known as the affine algebra

Lsl2,1 of level 1 associated to the Lie algebra sl2(C). We review some of the

details.

Adopting the lattice perspective, the irreducible modules for V√
2Z con-

sist of the adjoint module V√
2Z and the moduleM=V1/

√
2+

√
2Z corresponding

to the two cosets of
√
2Z in its dual lattice 1√

2
Z. Thus Ṽ=V√

2Z⊕V1/
√
2+

√
2Z

=V 1√
2
Z
. We have Aut(V )=SO3(R), obtained by exponentiating the weight

1 states of V (which form the Lie algebra sl2). The projective action of this

group on M lifts to a linear action of its universal cover SU2(C), which is

the full automorphism group of Ṽ .

The binary polyhedral groups G of even order are the finite subgroups

of SU2(C) that contain the center {±1}. Setting A={±1}, the preceding

discussion shows that G⊆Aut(Ṽ ) and G/A⊆Aut(V ), so we have rational

orbifolds V G/A. These theories have been studied extensively in both the
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physical and mathematical literature, and the S- and T -matrices are known.

See, for example, [2] and [3] for type D. Dong and Nagatomo [9] computed

the fusion rules for V G/A on the basis of the VOA axioms in all cases except

the icosahedral example.

Now we can compute the S- and T -matrices for all Dω(G,A) whenever

G is a binary polyhedral group and ω is a 2-generator. Note that H3(G,C×)

is cyclic of order |G| in this case, so that the number of 2-generators is

exactly |G|/2. Consider, for example the icosahedral group G=SL2(5). This

is a group of order 120, so there are 60 2-generators [ω] of order 8, 24, 40

or 120. In the case of V G/A-mod discussed above, the S-matrix appears to

correspond to an [ω] of maximal order 120.

In this way we get a large number of MTCs and accompanying modular

data, and the Conjecture says that among them we should find the categories

V G/A-mod. This appears to indeed be the case, since in particular we can

find matching S-matrices in all cases.
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