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Abstract

In previous work the authors introduced a new class of modular quasi-Hopf alge-
bra D¥(G, A), associated to a finite group G, a central subgroup A and a 3-cocycle
weZ3*(G,C*). In the present paper we propose a description of the class of orbifold mod-
els of rational vertex operator algebras whose module category is tensor equivalent to
D*¥ (G, A)-mod. The paper includes background on quasi-Hopf algebras and a discussion

of some relevant orbifolds.

1. Introduction

Since its introduction by Dijkgraaf, Pasquier and Roche [4], the twisted
quantum double has been a source of inspiration in the related areas of
quasiHopf algebras, modular tensor categories (MTC), and orbifold models
of holomorphic vertex operator algebras (VOA). It follows from the work
[20] of Miiger that the module category D“(G)-mod of a twisted quantum
double of a finite group G (notation and further details are provided below)
is a MTC. Even before the idea of a MTC existed, DPR had more-or-less
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conjectured [4] that if V' is a holomorphic VOA admitting G as a group of
automorphisms then V¢-mod is equivalent to D (G)-mod for some 3-cocycle
weZ3(G,C*). Kirillov considered the conjecture from the perspective of
fusion categories [14]. His work would imply the conjecture if one can show
that all the g-twisted modules of V' form a G-graded fusion category. This
condition amounts to the rationality of V. With recent advances, this
conjecture is now known for a large family of groups G. The recent work
[19] of Miyamoto and Carnahan proves that V¢ is rational for any solvable
group G. A complete solution to the conjecture seems to be within reach.

On the other hand, much less is known in the case of rational orbifolds,
i.e., orbifolds V& where V is a rational VOA, but not necessarily holomor-
phic. Already in [4], the authors asked for a description of the c=1 ADE
orbifolds V¢ where V=L(sls, 1) is the affine algebra of level 1 associated to
sly (alternatively, the rank 1 lattice theory V. /a7 associated with the Aj root
lattice) and G a finite subgroup of SO(3,R). Until recently there was no re-
ally satisfactory answer to this question. Fusion rules and S- and T-matrices
for these theories have long been known (the icosahedral case proved to be
particularly intractable) but a quasiHopf algebra replacing the twisted dou-
ble was missing. More generally, there does not seem to be even a conjectural
description of V%-mod in the literature for any reasonably substantial class
of rational orbifolds beyond the holomorphic case.

In our recent work [15] we introduced a generalization of the twisted
quantum double, denoted by D¥(G, A), which is a certain quasiHopf algebra
quotient of D“(G) obtained from a central subgroup A of G. (The case
A=1 reduces to D*(G).) We gave necessary and sufficient conditions that
D¥(G, A)-mod is a MTC. The purpose of the present paper is to present a
conjectural description of those rational orbifolds V& whose module category
is equivalent to some D“(G, A)-mod, and to discuss a few examples. These
include the ADE examples mentioned above, thus providing an answer to
the question raised by DPR.

The paper is organized as follows. In Section 2 we present a general dis-
cussion of quasiHopf algebras, with emphasis on the construction and prop-
erties of D¥(G, A). In Section 3 we state our conjecture relating D“(G, A)
to certain rational orbifolds, and in Section 4 we consider some illustrative

examples.
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that this paper be written.

2. QuasiHopf Algebras and D“(G, A)

In this Section we provide some background, taken from [15], about
the quasiHopf algebras D¥(G, A), which we call generalized twisted quantum
doubles.

We use the following notation for a finite group G. @:Hom(G, C*) is

l2g (z,9€@) is right conjugation in G,

the group of characters of G, x9=g~
the centralizer of x in G is Cg(z):={9€G|z9=x}, Z(G):= N, Cg(zx) is the

center of G.

We take our base field to be the complex numbers C. A quasiHopf algebra
is a tuple (H, A€, ¢, a, 3,5), where H is a unital algebra and A:H—H ® H
an algebra morphism that is quasicoassociative in the sense that there is a

map ¢ (the Drinfeld associator) making the following diagram commutative:

HoH (2.1)
W W\
(H® H)® H ; H®(H®H)

S is the antipode, € the counit, and «, B€H are certain distinguished ele-
ments. We generally suppress all reference to these elements of a quasiHopf
algebra; this will not impair the reader’s understanding of what follows.
One also requires ¢ to satisfy some cocycle conditions in the form of cer-
tain diagrams involving fourfold tensor products of H that are required to
commute. Again we will generally suppress such details. A Hopf algebra is a
quasiHopf algebra for which a=f=1 and ¢=1®1®1. For further background
on quasiHopf algebras, see [10], [13] and [17].

One of the great virtues of a quasiHopf algebra H is that the category
H-mod of (finite-dimensional) H-modules is a finite tensor category, though

not necessarily a MTC.

Fix a finite group G. The group algebra CG is a familiar example of a
Hopf algebra, the coproduct being defined by A(g)=g® g (¢9€G). Dualizing,
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the dual group algebra C% has basis eq (9€G) dual to the basis of group
elements in G. It is a Hopf algebra with product and coproduct defined by

egen=0gneg, Aieg Z eq R eyp.
ab=g

Now fix a normalized multiplicative 3-cocycle weZ3(G,C*). A basic
example of a quasiHopf algebra is the twisted dual group algebra Cg, obtained
from C% just by replacing 1®1® 1 by a more interesting Drinfeld associator
defined by multiplication by

O= Z w(a,b,c) re, @ ey @ ee. (2.2)
a,b,c
Here, the cocycle conditions amount to the 3-cocycle identity satisfied by w.

The twisted quantum double D¥(G)=CS @ CG occurs as the middle term

of a sequence of morphisms of quasiHopf algebras

cg L pe(G) —2 CG

w

where i(eg)=e; ® 1, pleg ® x)=6g12. D*(G) is itself a quasiHopf algebra
with the following product and coproduct:

(eg ®x)- (ep® y):‘gg(xa Y) 6gz,h€g @y

Aeg @+ Z Yz(a,b) eq @ T ® ey ® .
ab=g

The scalars 04(x,y),vz(a,b) are determined by w as follows:

w(g,z,y)w(z,y, g"v)

o= e )
w(a, b, x)w(z,a”,b")

z(a,b):=

T )

We remark that the 2-cochains defined by the 6’s and +’s have subtle
properties which govern much of the behaviour of D“(G) — for example,
the fact that D“(G) really is a quasiHopf algebra, which is not obvious.
As another example, if we restrict =,y to Cg(g) then the 2-cochains 64,4
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coincide and become 2-cocycles. We informally record this as
19=04€2*(Ca(g), C*), (2.3)

where it is understood that the domains of 74, 6, are here restricted to Cg(g).

Since D“(G)-mod is the Drinfeld center of Vec(G, w), the fusion category
of G-graded vector space with the associativity given by w, it follows from
[20] that D“(G)-mod is a MTC.

We now fix another piece of data, namely a central subgroup ACZ(G),

and introduce
D¥(G, A):=C% @ C(G/A).

Notice that because the conjugation action of A on G is trivial then the
identical formulas used to define the operations in D“(G) still make sense
in D¥(G, A). When w is compatible with A, one can equip D¥(G, A) with a
product and coproduct similar to the case of D¥(G) so that D“(G, A) is a
quasiHopf algebra.

Now it is natural to ask if, for suitable 7', there is a commuting diagram

of quasiHopf algebras and morphisms

c¢ d D¥(G) P CcG (2.4)
cS L. DY(G,A) —2 C(G/A)

where 7(z)=2zA and p(e; ® xA)=d412A for z€G. In case 7’ exists, it will

satisfy 7'(ey @ x)=Xey ® xA for a scalar A that depends on g and .

Generally there will be no such 7/, but we can give necessary and suffi-
cient conditions for its existence. To explain this we first consider the group-
like elements of D¥(G). These are the (nonzero) elements ueD¥(G) such
that A(u)=u ® u. As in the case of Hopf algebras, the group-like elements
form a multiplicative subgroup I'Y(G)CD¥(G)* of the group of units. We
are more interested in the central group-like elements, which is the sub-

group I'g (G)CI'™(G) consisting of elements that commute with all elements
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of D¥(G). One can show (cf. [17]) that there is a diagram of short exact
sequences of groups (actually central extensions)

p

—_
Q)
)1

&

a

I
_
—_—
- >

H
Q)
—

=15

Q

where
B¥(G):={geG|,eB*(G,CX)}, Z“(G):=B*(G)NZ(G),

and vertical arrows are containments.

We emphasize that here, unlike the situation of (2.3), in order for g
to lie in B*(G) it is necessary that the 2-cochain v, be a 2-coboundary on
G rather than just the centralizer Cg(g). On the other hand, if geZ(G)
then the context of (2.3) pertains, so that v,=60, is always a 2-cocycle on G,
and the requirement to belong to Z“(G) is that this 2-cocycle is in fact a
2-coboundary.

It is shown in [15] that the existence of the morphism 7’ in (2.4) is
equivalent to the existence of an enlarged diagram of central extensions

p

1 G L T¥(@) BY(G) —=1 (2.5)
]

1 G r4(Q) Z9(GQ) —1
1] |

1 G L pl(A) ! A 1

where vertical maps are again containments and the lower s.e.s splits.

What is being asserted here is the following: the central subgroup A C
Z(G) is required to also lie in B¥(G), i.e., the 2-cocycles 6, for ge A are
2-coboundaries on G. Moreover, the s.e.s obtained by pulling-back A along
p must split.

Once 7’ is available, it follows that D“(G, A)-mod is a subcategory of
D¥(G)-mod. However, Miiger’s theorem will generally not hold for D“ (G, A),
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that is to say D“(G, A)-mod is generally not a MTC. We will describe nec-
essary and sufficient conditions, established in [15], that make this so.

First we say a bit more about the middle s.e.s in (2.5). Given geZ%(G)
we have v,=0,€ B?(G,C*), so that there is 7,6 C' (G, C*) satisfying d7,=0,,

ie.,

Tg(x)Tg(y):‘gg(x’y)Tg(x?/) (z,y€q).

Because 0, is a 2-coboundary, the twisted group algebra CY%@ that it defines
is isomorphic to the group algebra CG, and 74 defines a choice of isomorphism

ClG = CG, =~ 74(z)a.

There is no canonical choice of 74, but any two of them differ by a character
xECAJ. Indeed, we have

I'5(G)= {Z To(z)x(z)es @ glx € G, g € Z“(G)} :

zelG

A 2-cocycle feZ2(Z%(G),G) that defines the central extension that is
the middle s.e.s in (2.5) is given by the formula

7y (k)7 (k)

- Or(g,h)  (9,h€Z*(G), keq).

Blg,h) (k)=

Because we are assuming that the lower s.e.s in (2.5) splits, the re-
striction of 8 to A is a 2-coboundary on A. That is, there is a 1-cochain
veCl(4,G) such that

B(a, b):M (a,beA).

Now we can show [15] that the formula

O
@)= o) (@) (26)

defines a symmetric bicharacter (| ),:AxA—C*. Using results of Miiger
[20], [21], it follows that D“(G, A)-mod is a MTC if, and only if, ( | ),
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is nondegenerate. Actually, ( | ), is the restriction of a natural bicharacter
defined on I'§ (G), however we will not go into this here.

3. Simple Current Orbifolds

In the spirit of the proposal in [4] that the module categories of holo-
morphic orbifolds coincide with the module categories D“(G)-mod, in this
Section we describe those rational orbifolds V& expected to have the prop-
erty that V&-mod is equivalent to some D“(G, A). In this setting, the case
A=1 will reduce to the holomorphic orbifold case of DPR.

We will generally be lapse about the detailed properties of the VOAs
which we consider, but we will be concerned with rational VOAs V', which
at the very least means that V is a simple VOA and V-mod is a fusion
category, i.e. a semisimple rigid tensor category with only finitely many
simple objects. (See [7] for further background.) In fact we will only need a
small subset of such theories, and to explain which ones these are we will

review the theory of simple currents.

A simple current is a simple (or irreducible) V-module, call it M, with
the property that for all simple V-modules N, the tensor product M X N is
again a simple V-module. Otherwise stated, M represents an element in the
Grothendieck group of V-mod, and an object of Frobenius-Perron dimension
one. Thanks to the associativity of X, the distinct (isomorphism classes of)
simple currents form a group with respect to tensor product of modules,
called the group of simple currents. It is an abelian group because V-mod
is also braided. The identity element is, of course, the vacuum space V.
We are concerned here with rational VOAs V' with the property that every
simple V-module is a simple current i.e., that V-mod is pointed. We call
such a V' a simple current VOA. There are many examples of such theories.
In addition to holomorphic VOAs, where V' is the only simple module, it
is well-known that lattice theories Vi, associated to a positive-definite even
lattice L are also simple current VOAs. In this case, the group of simple
currents is isomorphic to L*/L where L* is the dual lattice of L [5].

Given a simple current VOA V', we may form the sum of all simple
V-modules M to obtain a larger space

‘7:: Dy M
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V can be equipped with the structure of an abelian intertwining algebra in
the sense of Dong-Leowsky [6]. See [8] for further details.

Conjecture. Suppose that V is a simple current VOA with group of simple
currents A. Let FCAut(V) be a finite group of automorphisms of V' (the
orbifold group) such that F' leaves invariant every simple V-module. Then

there is central extension

1 A G F 1

and a 3-cocycle weZ3(G, C*) such that VI'-mod is equivalent to D“(G, A)-
mod as modular tensor categories. Conversely, if D“(G,A) exists and
D¥(G, A)-mod is a MTC, then there is a simple current VOA V' with group
of simple currents A and a group of automorphisms F=G /A such that V-
mod is tensor equivalent to D¥(G, A)-mod.

4. Examples

We illustrate the Conjecture by discussing some examples in greater
detail. Let the notation be as before.

Example 1. The holomorphic case.
Here, A=1 means that V is a holomorphic VOA and D“(G, A)=D“(G). The
Conjecture thus reduces that of DPR.

Example 2. The case F=1, i.e., G=A and D*(G, A)=CS& as quasiHopf

w
algebras.

We saw before that in order for 7’ to exist (i.e., D¥(G, A) is a quasiHopf
algebra quotient of D¥(@)) it is necessary that ACZ“(G), meaning that each
0,€ B*(G,C*) is a 2-coboundary for all ge A. That is, weZ3(A4,C*), is an
abelian 3-cocycle on A in the sense of [17], where such cocycles are stud-
ied extensively. They are closely related to the abelian cohomology groups
introduced by Eilenberg and Maclane [11].

Thus in the case at hand, the Conjecture asserts that V-mod is tensor
equivalent to (Cf for an abelian 3-cocycle w that is nondegenerate in a suit-
able sense. Rather than explain what degeneracy means here, we consider a
special case in more detail.
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Let L be an even lattice with bilinear form ( , ):LxL—Z, and let Vf,
be the corresponding lattice VOA. Then A=L*/L. The conjecture says that
Vr-mod is tensor equivalent to the dual group algebra of L*/L twisted by
an abelian 3-cocycle weZ3(L*/L,C*). The origin of w is well-known in this
case (cf. [6], Chapter 12 and [17], Section 11). Let s:A—L* be a normalized

section of the canonical s.e.s

1 L Lr A 1

Let co:L*xL*—C* be an alternating bicharacter with co(a, §)=(—1)(*"
(o, BEL). Set

w(a, b, c)=(—1)s)s@)+sb)=s(atb)) o (5(¢), 5(a)+s(b) — s(a +b)).

w is indeed an abelian 3-cocycle (cf. [17], Proposition 11.1) whose cohomology

class is independent of the choice of bicharacter and section.

Example 3. The case |A|=2.

Here, we are discussing simple VOAs V' with just two simple modules. One
of them is the adjoint module V', the other we denote by M. Roughly speak-
ing, we may think of V=V&M as a holomorphic super VOA, though this
may not conform to some definitions. (This will not matter in the following

discussion.)

Next we discuss results of [18] concerning the existence of D“(G, A)
in the special case that G is a finite group with ezactly one subgroup of
order 2. We take A to be the unique subgroup of order 2. Let T be a 2-
Sylow subgroup of G. It is well-known that 7' is either cyclic or generalized
quaternion. Groups with a unique involution have 2-periodic cohomology
by the Artin-Tate theory [1], and for such groups the 2-Sylow subgroup
of H3(G,CX) is cyclic of order |T|. We call a 3-cocycle weZ3(G,C*) a 2-
generator if the corresponding cohomology class [w]€ H3(G,C*) has order
divisible by |T|.

In the setting of the previous paragraph, we can prove [18] that 7" always
exists, so that D* (G, A) is a quasiHopf algebra quotient of D“(G). Moreover,
D¥(G, A)-mod is a MTC if, and only if, w is a 2-generator.
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There are a number of interesting classes of finite groups with a unique
subgroup A of order 2. The following lists some of them.

SLs(q) (¢ >3 an odd prime power)
2.46,2.A7,6.Aq,6.A7 (4.1)
binary polyhedral groups = finite subgroups of SUs(C)

Here, SLs(q) is the group of 2x2 matrices of determinant 1 over the finite
field of cardinality ¢, and 2.A,, is the 2-fold perfect central extension of the
alternating group A,,. For n=6,7 Schur discovered that there are exceptional
6-fold perfect central extensions of A,,. There are a few overlaps among these
groups: SLy(3) and SLs(5) are the binary octahedral and icosahedral groups
respectively, and 2.4g = SL9(9).

Our Conjecture says that for each pair (G,w) such that G has a unique
subgroup of order 2 and [w] is a 2-generator of H3(G,C>), there is a holo-
morphic super VOA V=V & M (in the sense described before) such that
GCAut(V), G/ACAut(V) and VE/4-mod is tensor equivalent to D¥(G, A)-

mod.

As far as we know, the existence of a V for most groups G on the
list (4.1) is unknown. However, it is well-known that the binary polyhedral
groups, and indeed SU,(C) itself, act on the ¢=1 holomorphic super VOA
defined by the A; root lattice theory V. /a7, also known as the affine algebra
Lg, 1 of level 1 associated to the Lie algebra sly(C). We review some of the
details.

Adopting the lattice perspective, the irreducible modules for V. /a7, con-
sist of the adjoint module V 5, and the module M=V, NI/ corresponding

to the two cosets of v/2Z in its dual lattice %Z. Thus V:V\/ﬁz@‘ﬁ/\/ﬁ-ﬁ/ﬁz
=V ,. We have Aut(V)=503(R), obtained by exponentiating the weight
1 stftes of V' (which form the Lie algebra sls). The projective action of this
group on M lifts to a linear action of its universal cover SUs(C), which is
the full automorphism group of V.

The binary polyhedral groups G of even order are the finite subgroups
of SU,(C) that contain the center {£1}. Setting A={=£1}, the preceding

discussion shows that GCAut(V) and G/ACAut(V), so we have rational
orbifolds VG/4. These theories have been studied extensively in both the
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physical and mathematical literature, and the S- and T-matrices are known.
See, for example, [2] and [3] for type D. Dong and Nagatomo [9] computed
the fusion rules for VE/4 on the basis of the VOA axioms in all cases except
the icosahedral example.

Now we can compute the S- and T-matrices for all D¥(G, A) whenever
G is a binary polyhedral group and w is a 2-generator. Note that H3(G, C*)
is cyclic of order |G| in this case, so that the number of 2-generators is
exactly |G|/2. Consider, for example the icosahedral group G=S5Ly(5). This
is a group of order 120, so there are 60 2-generators [w] of order 8,24,40
or 120. In the case of V&/4-mod discussed above, the S-matrix appears to
correspond to an [w] of maximal order 120.

In this way we get a large number of MTCs and accompanying modular
data, and the Conjecture says that among them we should find the categories
VE/A.mod. This appears to indeed be the case, since in particular we can
find matching S-matrices in all cases.
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