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Abstract—Non-volatile memory (NVM) technologies such as
spin-transfer torque magnetic random access memory (STT-
MRAM) and spin-orbit torque magnetic random access memory
(SOT-MRAM) have significant advantages compared to conven-
tional SRAM due to their non-volatility, higher cell density, and
scalability features. While previous work has investigated several
architectural implications of NVM for generic applications, in
this work we present DeepNVM, a framework to characterize,
model, and analyze NVM-based caches in GPU architectures
for deep learning (DL) applications by combining technology-
specific circuit-level models and the actual memory behavior of
various DL workloads. We present both iso-capacity and iso-
area performance and energy analysis for systems whose last-
level caches rely on conventional SRAM and emerging STT-
MRAM and SOT-MRAM technologies. In the iso-capacity case,
STT-MRAM and SOT-MRAM provide up to 4.2x and 5x
energy-delay product (EDP) reduction and 2.4x and 3Xx area
reduction compared to conventional SRAM, respectively. Under
iso-area assumptions, STT-MRAM and SOT-MRAM provide
2.3x EDP reduction on average across all workloads when
compared to SRAM. Our comprehensive cross-layer framework
is demonstrated on STT-/SOT-MRAM technologies and can be
used for the characterization, modeling, and analysis of any
NVM technology for last-level caches in GPU platforms for deep
learning applications.

I. INTRODUCTION

As computers suffer from memory and power related
limitations, the demand for data-intensive applications has
been on the rise. With the increasing data deluge and recent
improvements in GPU architectures, deep neural networks
(DNNs) have achieved remarkable success in various tasks
such as image classification and speech recognition by utiliz-
ing inherent massive parallelism of GPU platforms. However,
DNN workloads continue to have large memory footprints and
significant computational requirements to achieve higher accu-
racy. Thus, DNN workloads exacerbate the memory bottleneck
which degrades the overall performance of the system. Non-
volatile memory (NVM) technology is one of the most promis-
ing solutions to tackle memory bottleneck problem for data-
intensive applications. However, because much of emerging
NVM technology is not available for commercial use, there
is an obvious need for a framework to perform design space
exploration for these emerging NVM technologies for deep
learning (DL) workloads.

In this work, we present DeepNVM, a framework to char-
acterize, model, and analyze NVM-based caches in GPU
architectures for DL workloads. Without loss of general-
ity, we demonstrate our framework for spin-transfer torque
magnetic random access memory (STT-MRAM) and spin-
orbit torque magnetic random access memory (SOT-MRAM),
keeping in mind that it can be used for analyzing any NVM
technology, GPU platform, or deep learning workload. Our
cross-layer analysis framework incorporates both circuit-level
characterization aspects and the memory behavior of various
DL workloads running on an actual GPU platform. DeepNVM
enables the evaluation of power; performance, and area (PPA)
of NVMs when used for last-level (L.2) caches in GPUs and
seeks to exploit the benefits of this emerging technology to
improve the performance of deep learning applications.

II. RELATED WORK AND PAPER CONTRIBUTIONS

Although 16nm has become a commonplace technology for
high-end customers of foundries, an intriguing inflection point
awaits the electronics community as we approach the end of
the traditional density, power, and performance benefits of
CMOS scaling. To move beyond the computing limitations
imposed by staggering CMOS scaling trends, MRAM has
emerged as a promising candidate.

Prior work has proposed effective approaches to overcome
the shortcomings of emerging NVM technologies such as
using hybrid SRAM and NVM-based caches that utilize the
complementary features of different memory technologies [1]
and relaxing non-volatility of NVM to reduce its high write
latency [2]. While these studies have shown the potential of
NVM technologies for generic applications to some extent,
there is a need for a cross-layer analysis framework to explore
the potential of NVM technologies for DL workloads.

The most commonly used modeling tool for emerging
NVM technologies is NVSim [3], a circuit-level model for
performance, energy, and area estimation. However, NVSim
is not sufficient to perform a detailed cross-layer analysis for
NVM technologies for DL workloads since it does not take
architecture-level analysis and application-specific memory
behavior into account. In this paper, we incorporate NVSim
with our novel architecture-level iso-capacity and iso-area
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Fig. 1: Overview of the cross-layer analysis flow

analysis flow to perform design space exploration for conven-
tional SRAM and emerging NVM caches for DL workloads.
This paper makes the following contributions:

1) Circuit-level bitcell characterization. We perform de-
tailed circuit-level characterization combining a com-
mercial 16nm CMOS technology and prominent STT [4]
and SOT [5] models from the literature to iterate through
our framework in an end-to-end manner to demonstrate
the flexibility of our framework for future studies.

2) Microarchitecture-level cache design exploration. We
use NVSim [3] to perform a fair comparison between
SRAM, STT-MRAM, and SOT-MRAM by incorporating
the circuit-level models developed in 1) using 16nm
technology and choosing the best cache configuration
for each of them.

3) Iso-capacity analysis. To compare the efficacy of
MRAM caches to conventional SRAM caches, we per-
form our novel iso-capacity analysis based on actual
platform profiling results for the memory behavior of
various DNNs by using the Caffe framework [6] on a
high-end NVIDIA 1080 Ti GPU (implemented in 16nm
technology) for the ImageNet dataset [7].

4) Iso-area analysis. Because of their different densities,
we compare SRAM and NVM caches in an iso-area
analysis to quantify the benefits of higher density of
NVM technologies on DL workloads running on GPU
platforms. Since existing platforms do not support result-
ing iso-area cache sizes, we extend the GPGPU-Sim [8]
simulator to run DL workloads and support larger cache
capacities for STT-MRAM and SOT-MRAM.

To the best of our knowledge, putting everything together,
DeepNVM is the first comprehensive framework for cross-layer
characterization, modeling, and analysis of emerging NVM
technologies for DL workloads running on GPU platforms.

The rest of the paper is organized as follows. In Section
III, we describe the details of our methodology from circuit to
microarchitecture-level characterization, modeling, and analy-
sis to obtain SRAM, STT-MRAM, and SOT-MRAM cache pa-

TABLE I: STT-MRAM and SOT-MRAM bitcell parameters
after device level characterization

STT-MRAM SOT-MRAM
Sense Latency (ps) 650 650
Sense Energy (pJ) 0.076 0.020

Write Latency (ps) | 8400 (set) / 7780 (reset) 313 (set) / 243 (reset)

Write Energy (pJ) 1.1 (set) / 2.2 (reset) 0.08 (set) / 0.08 (reset)

Fin Counts 4 (read/write) 3 (write) + 1 (read)

Area (normalized) 0.34* 0.29%*

: Area is normalized with respect to the foundry SRAM bitcell

rameters. We also detail our iso-capacity and iso-area analysis
methodology. In Section IV, we show experimental results for
STT-MRAM, SOT-MRAM, and conventional SRAM. Finally,
Section V concludes the paper by summarizing the results.

III. METHODOLOGY
A. Circuit-level NVM Characterization

A vast majority of work in the literature uses simple bitcell
models [9] to assess the PPA of corresponding cache designs.
Because bitcells are the core components of the memory, the
methodology to calculate the bitcell latency, energy, and area
is crucial for accurate comparisons. To this end, we use a
commercial 16nm bitcell design' as a baseline as we model
the STT and SOT bitcells. This technology node also matches
the fabrication technology of the GPU platform that we use
to gather actual memory statistics in Section III-C. For our
simulations, we used perpendicular to the plane STT [4] and
SOT [5] models and a commercial 16nm FinFET model that
takes post-layout effects into account. To find the latency
and energy parameters, we used parametrized SPICE netlists
wherein the read/write pulse widths were modulated to the
point of failure. Furthermore, we swept a range of fin counts
for the access devices to find the optimal balance between the
latency, energy, and area. We summarize the obtained bitcell
parameters in Table I. We use these bitcell parameters for
cache design exploration as discussed in Section III-B.

B. Microarchitecture-level Cache Design Exploration

In order to demonstrate the impact of using STT and SOT
bitcells in L2 caches, we use NVSim [3], a circuit-level analysis
framework that delivers energy, latency, and area results. After
developing NVSim-compatible bitcell models as described in
Section III-A, we analyzed a range of cache capacities for all
possible configurations and cache access types to demonstrate
the potential of STT-MRAM and SOT-MRAM as the cache
capacity tends to grow.

Based on the optimization target used in NVSim, the cache
PPA values vary substantially. Therefore, we choose the best
configuration for each type of memory technology in terms
of energy-delay-area product (EDAP) metric to perform a fair
comparison that encompasses all and not just one of the design
constraint dimensions. As described in Section III-A, we use
a commercial 16nm bitcell design. Next, we compare SRAM,
STT-MRAM, and SOT-MRAM for various cache capacities in
terms of area, latency, and energy results.

!Details about the commercial bitcell design cannot be shared due to non-
disclosure agreement terms.
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Fig. 2: Dynamic energy (left chart) and leakage energy (right chart) (lower is better) normalized with respect to SRAM by
using NVMs with iso-capacity (3MB) for inference (I) and training (T) stages

TABLE II: Latency, energy, and area results for SRAM, STT-
MRAM, and SOT-MRAM caches for iso-capacity and iso-area

SRAM ST"l"jMRAM SOT-MRAM
Iso-Capacity | Iso-Area | Iso-Capacity | Iso-Area

Capacity (MB) 3 3 7 3 10
Read Latency (ns) 291 2.98 4.58 4.47 6.68
Write Latency (ns) 1.53 9.31 10.06 1.34 2.46
Read Energy (nJ) 0.35 0.81 0.93 0.37 0.51
Write Energy (nJ) 0.32 0.31 0.43 0.25 0.39
Leakage Power (mW) 6442 748 1463 563 1434
Area (mm°) 5.53 2.34 5.12 1.83 5.5

Table II shows the latency, energy, and area results that
correspond to the cache capacity of 1080 Ti GPU (3MB)
and to the larger MRAM caches that fit into the same area
of SRAM baseline. We convert read and write latencies to
clock cycles based on 1080 Ti GPU’s clock frequency for
our calculations. For STT-MRAM and SOT-MRAM, we show
parameters for both iso-capacity and iso-area when compared
to SRAM. We use these parameters to evaluate the workload
dependent impact of memory choices.

Implications in architecture-level analysis. To gauge the
benefits of using MRAM technology, we consider two sce-
narios: (i) First, one could replace the SRAM cache in a
GPU with the same capacity MRAM with a smaller area. (ii)
Alternatively, by using the same area dedicated to the cache,
one can increase the on-chip cache capacity, thereby reducing
costly DRAM traffic. We analyze and discuss both approaches
through platform profiling results for iso-capacity scenario and
a set of architecture-level simulations for iso-area scenario.
C. Architecture-level Iso-Capacity Analysis

As the platform target to demonstrate our work, we use a
high-end 1080 Ti GPU which is fabricated in a commercial
16nm technology node which also matches our bitcell and
cache models. We use the Caffe [6] framework to run various
DNNs such as AlexNet, GoogLeNet, VGG-16, ResNet-18, and
SqueezeNet for the ImageNet [7] dataset. We use the NVIDIA
profiler [10] to obtain the device memory and L2 cache read
and write transactions to better understand both on-chip and
off-chip memory behavior.

D. Architecture-level Iso-Area Analysis

Since the iso-area larger capacities enabled by higher den-
sity NVM implementations do not exist in existing platforms,
we use GPGPU-Sim [8] to explore power and performance
implications of having these larger L2 caches in GPU architec-
tures for DL workloads. For comparison, we model the high-

TABLE II: GPGPU-Sim Configurations

GTX 1080 Ti
Number of Cores 28
Number of Threads/Core 2048
Number of Registers/Core 65536
48 KB, 128 B line,
L1 Data Cache 6-way LRU

128 KB/channel, 128 B
line, 16-way LRU
8 KB, 128 B line,

L2 Data Cache

Instruction Cache

16-way LRU
Number of 4
Schedulers / Core
Core. Tiercomect 1481, 2962
i > 1481, 2750

L2, Memory

end GTX 1080 Ti GPU. The configurations for 1080 Ti GPU
are shown in Table III. This GPU is built using a commercial
16nm technology node which matches our bitcell and cache
models. In particular, for GPGPU-Sim compatibility, we set
L2 cache capacity to 3MB. We use this capacity for our
analysis in the rest of the paper. We measure the number
of DRAM transactions to quantify and better understand the
relationship between larger L2 caches and the overall system
power and performance. As a DL benchmark, we use AlexNet
with the ImageNet dataset which is provided by the DarkNet
[11] framework. We extend DarkNet source code to enable
DL workloads on GPGPU-Sim.

IV. RESULTS
We analyze STT-MRAM and SOT-MRAM in terms of
energy, performance, and area results by using GPU profiling
results for both iso-capacity and iso-area cases in Section IV-A
and Section IV-B, respectively.

A. Performance and Energy Results for Iso-Capacity

By combining the actual technology-dependent latency and
energy metrics from Table II, we can perform a performance
and energy analysis for replacing conventional SRAM caches
with MRAM caches. We choose batch size 4 for inference and
64 for training for our workloads. Figure 2 shows normalized
leakage energy and dynamic energy breakdown results for
1080 Ti GPU based on actual platform memory statistics and
our MRAM cache models at the same cache capacity. We use
our cache parameters and profiling results to calculate results
for various DNNs for both inference and training.

In Figure 2, we observe that STT-MRAM has 2.17x
dynamic energy whereas SOT-MRAM has 1.02x dynamic
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Fig. 3: Iso-capacity (3MB) energy and energy-delay product
for NVM-based caches (lower is better) normalized with
respect to SRAM-based caches for inference (I) and training
(T) stages. DRAM energy and latency are also included in
EDP results.

energy on average when compared to SRAM baseline. Fur-
thermore, our results show that 87% of the total dynamic
energy comes from read operations whereas write operations
only make for 13% of all transactions on average across all
workloads. Our profiling results also support these findings as
read operations dominate write operations in DL workloads.
On the other hand, Figure 2 also shows that STT-MRAM
and SOT-MRAM provide 6.6x and 8.5x lower leakage energy
on average when compared to SRAM, respectively. Based on
this, Figure 3 shows significant total normalized energy re-
duction of STT-MRAM and SOT-MRAM compared to SRAM
given that leakage energy dominates the total energy. In more
detail, STT-MRAM and SOT-MRAM achieve 5.6 x and 7.7x
energy reduction on average across all workloads compared to
SRAM baseline, respectively. Moreover, Figure 3 shows that
STT-MRAM and SOT-MRAM provide up to 4.2x and 5x
EDP reduction and 2.4x and 3x area reduction, respectively.

B. Performance and Energy Results for Iso-Area

DRAM Access
Reduction (%)

RENN
ORhONOOPS

—*— GTX 1080 Ti
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L2 Cache Capacity (MB)
Fig. 4: Simulation results for the reduction in the total number
of DRAM accesses in percentage (%)

As in the iso-capacity study, for iso-area analysis we use
a batch size 4 for inference and 64 for training. Figure 4
shows the reduction in the total number of DRAM accesses
as L2 cache capacity increases. We use GPGPU-Sim and start

s SRAM  mmm STT-MRAM SOT-MRAM

o 1.0
o
Wosg
el
(9]
NO0.6
©
€04
o
Z0.2

0.0
A\ ‘\“‘\5”\\\ Ao (\ex\\\\x\ﬂ P\ @6\0\5’@ S\

NS (oW G e N
R 00 et \ch,‘ e et °@e\’~"fs“ \les

Fig. 5: Iso-area energy-delay product for NVM-based caches
(lower is better) normalized with respect to SRAM-based
caches for inference (I) and training (T) stages. DRAM energy
and latency are also included in the results.

with the baseline configuration which is 3MB for GTX 1080
Ti and double its cache capacity up to 24MB to quantify
the percentage of DRAM access reduction for STT-MRAM
and SOT-MRAM at larger cache capacities. Figure 4 shows
that replacing SRAM with STT-MRAM and SOT-MRAM
equivalents that fit into the same area significantly reduces
the total number of DRAM transactions by 14.6% and 19.8%,
respectively for 1080 Ti GPU. When DRAM accesses are
included in determining EDP, as shown in Figure 5, STT-
MRAM and SOT-MRAM provide 2.3x EDP reduction on
average across all workloads when compared to SRAM.

V. CONCLUSION

In this paper, we present the first cross-layer analysis
framework to characterize, model, and analyze various NVM
technologies in GPU architectures for deep learning work-
loads. Our novel framework can be used to further explore the
feasibility of emerging NVM technologies for deep learning
applications for different design choices such as technology
nodes, bitcell models, deep learning workloads, cache config-
urations, optimization targets, and target platforms.
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