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A fundamental task in various disciplines of science, including biology, is to find underlying

causal relations and make use of them. Causal relations can be seen if interventions

are properly applied; however, in many cases they are difficult or even impossible

to conduct. It is then necessary to discover causal relations by analyzing statistical

properties of purely observational data, which is known as causal discovery or causal

structure search. This paper aims to give a introduction to and a brief review of the

computational methods for causal discovery that were developed in the past three

decades, including constraint-based and score-based methods and those based on

functional causal models, supplemented by some illustrations and applications.

Keywords: directed graphical causal models, causal discovery, conditional independence, statistical

independence, structural equation models, non-Gaussian distribution, non-linear models

1. INTRODUCTION

Almost all of science is about identifying causal relations and the laws or regularities that govern
them. Since the seventeenth century beginnings of modern science, there have been two kinds of
procedures, and resulting kinds of data, for discovering causes: manipulating and varying features
of systems to see what other features do or do not change; and observing the variation of features
of systems without manipulation. Both methods shone in the seventeenth century, when they were
intertwined then as they are today. Evangelista Torricelli manipulated the angles and shapes of
tubes filled with mercury standing in a basin of the stuff, showing the height of the mercury in the
tubes did not vary; Pascal had a manometer of Torricelli’s design carried up a mountain, the Puy de
Dome, to show that the height of the mercury did vary with altitude. Galileo, for whom Torricelli
worked, had identified (qualitatively) the orbits of Jovian satellites from observational time series,
and similarly characterized sunspots. Kepler, Galileo’s northern contemporary, adduced his three
laws from planetary observations, and a generation later Newton laid the foundations of modern
physics with a gravitational law adduced from solar system observations and a single experiment,
on pendulums. Modern molecular biology is an experimental subject, but the foundation of
biology, in Darwin’s Origin of Species, has only a single experiment, the drifting of seeds.

This paper is about the scientific application of a kind of representation of causal relations,
directed graphical causal models (DGCMs), and computerized methods for finding true causal
representations of that kind from data, whether observational or experimental or both. We focus
on it here because while apparently first proposed in 2000 for studies of gene expression (Murphy
and Mian, 1999; Friedman et al., 2000; Spirtes et al., 2000), the models have found wide use in
systems biology, especially in omics and in neural connectivity studies, and there has recently been
an explosion in the number of algorithms that have been proposed and applied for discovering such
representations in biological applications.

A traditional way to discover causal relations is to use interventions or randomized experiments,
which is in many cases too expensive, too time-consuming, or even impossible. Therefore,
revealing causal information by analyzing purely observational data, known as causal discovery,
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has drawn much attention (Spirtes et al., 2000). Past decades
have seen a series of cross-disciplinary advances in algorithms
for identifying causal relations and effect sizes from observational
data or mixed experimental and observational data. These
developments promise to enable better use of appropriate “big
data." They have already been applied in genomics, ecology,
epidemiology, space physics, clinical medicine, neuroscience,
and many other domains, often with experimental or quasi-
experimental validation of their predictions. Causal discovery
will be the focus of this review. In traditional causality research,
algorithms for identification of causal effects, or inferences
about the effects of interventions, when the causal relations
are completely or partially known, address a different class of
problems; see Pearl (2000) and references therein.

We will start with the so-called constraint-based as well
as score-based methods for causal discovery. Since the 1990’s,
conditional independence relationships in the data have been
exploited to recover the underlying causal structure. Typical
(conditional independence) constraint-based algorithms include
PC and Fast Causal Inference (FCI) (Spirtes et al., 2000). PC
assumes that there is no confounder (unobserved direct common
cause of two measured variables), and its discovered causal
information is asymptotically correct. FCI gives asymptotically
correct results even in the presence of confounders. Such
approaches are widely applicable because they can handle various
types of data distributions and causal relations, given reliable
conditional independence testing methods. However, they do
not necessarily provide complete causal information because
they output (independence) equivalence classes, i.e., a set of
causal structures satisfying the same conditional independences.
The PC and FCI algorithms produce graphical representations
of these equivalence classes. In cases without confounders,
there also exist score-based algorithms that aim to find the
causal structure by optimizing a properly defined score function.
Among them, Greedy Equivalence Search (GES) (Chickering,
2003) is a well-known two-phase procedure that directly searches
over the space of equivalence classes.

Recently it has been shown that algorithms based on properly
defined Functional Causal Models (FCMs) are able to distinguish
between different Directed Acyclic Graphs (DAGs) in the same
equivalence class. This benefit is owed to additional assumptions
on the data distribution than conditional independence relations.
A FCM represents the effect variable Y as a function of the direct
causes X and some noise term E, i.e., Y = f (X,E), where E is
independent of X. Thanks to the constrained functional classes,
the causal direction between X and Y is identifiable because
the independence condition between the noise and cause holds
only for the true causal direction and is violated for the wrong
direction. We will review causal discovery methods based on
linear non-Gaussian models (Shimizu et al., 2006) or non-linear
models (Hoyer et al., 2009; Zhang and Hyvärinen, 2009b), and
discuss their applicability.

In practice, for reliable causal discovery one needs to address
specific challenges that are often posed in the causal process or
the sampling process to generate the observed data. Therefore, we
will discuss how to deal with a number of such practical issues,
which include causality in time series, measure error, missing

data, non-stationarity or heterogeneity of the data, and selection
bias. We finally briefly discuss the applications of causal search
algorithms as well as some related methods in biology and offer
some guidance for their choice and use.

2. DIRECTED GRAPHICAL CAUSAL
MODELS

A DGCM has the following components: (1) a set of variables,
regarded as “random variables," (2) a set of directed edges
between pairs of variables, each edge regarded as the hypothesis
that the two variables would be associated if all other variables
were fixed at some values while the tail variable is exogenously
varied, and (3) a joint probability distribution over the possible
values of all of the variables. The variables can be time indexed,
forming a set of causally related stochastic processes; some of the
variables can be unmeasured; the variables can be categorical,
ordinal, or continuous; there can be measurement error and
selection bias, also graphically represented; and there can be
(and are usually assumed to be) omitted sources of variation
specific to each variable, often deemed “noise” or “disturbances.”
A class of DGCMs, commonly presented as “structural equation
models” (SEMs), or functional causal models (FCMs), assumes
the value of each variable is a deterministic function of its
direct causes in the graph and the unmeasured disturbances.
The function linking a variable to its direct causes can be any
whatsoever, although linear models are most common. The class
of DGCMs includes, but is more general than, regression models,
factor models, ARM time series models, latent class models, and
others. Requiring neither initial conditions (except in time series)
nor boundary conditions, DGCMs contrast with differential
and partial differential systems of equations, which can also be
representations of a system of causal relations.

Note that not all directed graphical models have causal
interpretations–traditional graphical models provide a compact,
yet flexible, way to decompose the joint distribution of the data
as a product of simpler factors (Koller and Friedman, 2009),
and the second component of a DGCM given above is essential
for a directed graph to have a causal meaning. It states that
two variables with an edge in between are associated if all other
variables were fixed at some values while the tail variable is
exogenously varied and, hence, indicates that if Xi → Xj in the
directed graph, then Xi is a direct cause of Xj. In other words,
it says that if Xi → Xj in the directed graph, then there exist
interventions on Xi that will directly change the distribution
(or value) of Xj. The causal Bayesian network was defined in a
similar way by Pearl (2000, p.23). The pairing of a directed graph
and a joint probability distribution on values of its variables is
subject to constraints. In the case of a directed graph without
cycles (no closed directed paths) the constraint is that a graphical
condition–d-separation–must imply conditional independence
in the probability distribution.

A path from a vertex X1 to a vertex Xn is a sequence of distinct
vertices < X1, ...,Xn > such that for each pair of vertices Xi and
Xi+1, there is an edge Xi → Xi+1 or Xi+1 → Xi. A directed
path from Xi to Xn is a path in which for each pair Xi and Xi+1,
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Xi → Xi+1. A variable Xi is a collider on a path P iff the path
contains Xi−1 → Xi ← Xi+1 (i.e., Xi is a common effect of its
neighbors on the path); otherwise it is a non-collider. For three
disjoint sets of variables X, Y , and S, X is d-separated from Y
conditional on S iff all paths between any member of X and any
member of Y are blocked by S. The path P is blocked by S if 1)
any non-collider on P is in S or if 2) P contains a collider which is
not in S and whose descendants are not in S, either.

The graphical property of d-separation and its connection
with conditional independence has a more intuitive but less
practically useful equivalent in the local Markov Condition:
every variable, X, in a directed acyclic graph, is independent
of its non-descendants conditional on its parents (the variables
with edges directed into X). The Markov condition can be
thought of as a generalization of a familiar principle in
experimental inference: fixing the values of variables that directly
influence some variable of interest, X, “screens off” more remote
causes that can only influence X via the more direct causes.
Graphs that have the same d-separation properties are usually
called “Markov equivalent” and imply the same conditional
independence relations; a collection of all directed acyclic graphs
that areMarkov equivalent is aMarkov Equivalence Class (MEC).
For linear systems, the graphical property of d-separation has
been generalized to directed graphs with cycles–closed directed
paths (Spirtes, 1995). For a system that has a graph that
represents the marginalized graph of a larger system, there is a
corresponding relation,m-separation (Ayesha et al., 2009).When
the Markov condition is assumed to hold for a causal graph
and its associated population distribution, it is called the Causal
Markov Assumption.

It is important to note that d-separation and related properties
provide necessary but not sufficient conditions for conditional
independence relations in the joint probability distribution over
the values of the variables. The probability distribution may
have additional conditional independence relations that are not
entailed by d-separation applied to a graph. When no such extra
conditional independence relations hold the distribution is said
to be faithful to the graph (and when assumed to be true of
the causal graph and its corresponding population distribution
is called the Causal Faithfulness Assumption).

The reason for regarding the graphical relations in a DGCM
as causal claims, not just a representation of associations or
dependence, is that a DGCM entails claims about the results of
many hypothetical experiments: if an acyclic DGCM contains a
directed edge X → Y , the experimental claim is that if every
other variable represented in the graph is held fixed, X and Y will
covary if X is forced to vary, but not if Y is forced to vary. These
experimental predictions can be computed from the graph and
the probability distribution (Spirtes et al., 2001).

3. TRADITIONAL CONSTRAINT-BASED
AND SCORE-BASED CAUSAL DISCOVERY
METHODS

Roughly speaking, causal search methods are nothing but
statistical estimation of parameters describing a graphical

causal structure. It is computationally intensive estimation,
but statistical estimation of parameters nonetheless, and so
understood, something familiar. Most statistical estimators give
a number or an interval, the estimated correlation, directly
as a function of the data. But other estimators are more
laborious. In all but simple models, the estimate of a posterior
probability distribution, for example, or the estimate of a
cyclic structural equation model usually requires iterative or
Monte Carlo procedures, sometimes explicitly described as
“searches” (Hoff, 2009).

The parameters to be estimated in the simple case of an
acyclic model with non-interactive causes and no unobserved
confounders (a confounder is an unobservable direct common
cause of two observed variables) are just the entries in an N × N
matrix, where N is the number of variables, and an (i, j)th entry
indicates whether variable j is the parent of variable i. When
“latent” variables are allowed, two possible values for an entry are
needed, one indicating a direct connection, the other indicating
a confounding by an unobserved common cause. A further value
can be added when a direct connection between a pair of variables
is unknown rather than known to be absent. The issue is how to
estimate any of these parameters.

Statistical estimation has various desiderata. Statistical
“consistency," that is, under sampling assumptions, the estimates
converge in probability or almost surely to the true value;
uniform convergence, in which there are probabilistic bounds
on the size of errors at finite sample sizes, etc. Graphical causal
model search based on the Faithfulness assumption and which
conditional independence relations hold has in general only
“pointwise" consistency, which does not provide finite sample
error probabilities and does not provide confidence intervals
for the estimated structure; although in sequences of models
in which the number of variables and sparsity of the graph is
controlled as a function of the sample size, there is a uniform
consistency result when assumptions stronger than Faithfulness
are made (Kalisch and Bühlmann, 2007).

For the most part, there are two classes of search algorithms,
and their sub-classes and “nearby methods.” One class of search
algorithms tries to efficiently search for a MEC of graphs that
most closely entails (under the Causal Markov and Faithfulness
Assumptions) the set of conditional independence relations
judged to hold in the population. Another class of algorithms
estimates the dependencies or conditional independencies of
each variable on independent noises, and uses these relations to
construct a directed graphical model. We will illustrate how each
of these is possible, and mention some variants.

3.1. The PC Algorithm
One of the oldest algorithms that is consistent under i.i.d.
sampling assuming no latent confounders is the PC algorithm
(Spirtes et al., 2001), which provides a search architecture into
which can be plugged many statistical procedures for deciding
conditional independence. Suppose then we have some such
statistical decision procedure, which might be a hypothesis
test for conditional independence, or a method based on the
difference of fitting scores such as the Bayesian Information
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FIGURE 1 | Illustration of how the PC algorithm works. (A) Original true causal

graph. (B) PC starts with a fully-connected undirected graph. (C) The X − Y

edge is removed because X ⊥⊥ Y . (D) The X −W and Y −W edges are

removed because X ⊥⊥ W |Z and Y ⊥⊥ W |Z. (E) After finding v-structures.

(F) After orientation propagation.

Criterion (BIC) between models with and without a particular
directed edge.

Let the true structure be as in Figure 1A. By d-separation, this
structure implies that X is independent of Y , written X ⊥⊥ Y , and
thatX andY are each independent ofW conditional on Z, written
{X,Y} ⊥⊥ W |Z. Suppose when called, the statistical decision
procedure finds these relations. PC is based on the fact that under
the causal Markov condition and the faithfulness assumption,
when there is no latent confounder, two variables are directly
causally related (with an edge in between) if and only if there
does not exist any subset of the remaining variables conditioning
on which they are independent (Spirtes et al., 2001). It works
like this:

1. Form a complete undirected graph, as in Figure 1B.
2. Eliminate edges between variables that are unconditionally

independent; in this case that is the X − Y edge, giving the
graph in Figure 1C.

3. For each pair of variables (A,B) having an edge between them,
and for each variable C with an edge connected to either of
them, eliminate the edge between A and B if A ⊥⊥ B |C as
in Figure 1D.

4. For each pair of variables A,B having an edge between them,
and for each pair of variables {C,D}with edges both connected
to A or both connected to B, eliminate the edge between A and
B if A ⊥⊥ B | {C,D}.

Continue checking independencies conditional on subsets of
variables of increasing size n until there are no more adjacent
pairs (A,B), such that there is a subset of variables of size n
such that all of the variables in the subset are adjacent to A or
all adjacent to B. In the considered example, Z and W are not
independent conditional on X or on Y or on both X and Y , so
there are no further statistical decisions to make. Similarly for X
and Z, and for Y and Z.

5. For each triple of variables (A,B,C) such that A and B are
adjacent, B and C are adjacent, and A and C are not adjacent,
orient the edges A − B − C as A → B ← C, if B was not in
the set conditioning on which A and C became independent
and the edge between them was accordingly eliminated. We
call such a triple of variables a v-structure.

In the example, Z was not conditioned on in eliminating theX−Y
edge, so orient X − Z − Y as X → Z ← Y , with the result given
in Figure 1E.

6. For each triple of variables such that A → B − C, and A and
C are not adjacent, orient the edge B − C as B → C. This is
called orientation propagation.

In Figure 1F, Y → Z −W is oriented as Y → Z → W. In this
example, the true structure is recovered uniquely.

There are several other simple orientation propagation rules
that are not illustrated here. The inference steps illustrated are
not tuned for the example; they are instances of a general set of
rules that hold for any i.i.d. data from a directed acyclic graph. If
the conditional independence decisions are correct in the large
sample limit, the PC algorithm is guaranteed to converge to
the true Markov Equivalence Class in the large sample limit,
assuming the Causal Markov and Faithfulness assumptions,
i.i.d. samples, and no unmeasured confounders. Note that in
some examples, none of orientation rules will apply to a given
undirected edge, and that edge will remain undirected in the
output. This means that while the two variables are known to
be adjacent, it is not known which direction the edge points, or
equivalently, there are two different members of the MEC which
differ in the direction of that edge. The graphical object with
a mixture of directed and undirected edges is called a pattern
or CPDAG (Completed Partially Directed Acyclic Graph) that
represents a MEC of DAGs. For sparse graphs, the PC algorithm
is feasible on at least tens of thousands of variables (in the linear
or multinomial case, in which conditional independence test is
computationally efficient).

It is worth noting that the output of causal discovery
algorithms such as PC is typically different from and much
more informative than the so-called “conditional independence
graph" (Lauritzen, 1996), in which two variables are not adjacent
if and only if they are conditionally independent given all
the remaining variables. (The conditional independence graph
reduces to the “partial correlation graph" in the special case
of jointly Gaussian variables.) In conditional independence
graphs, edges are undirected, so they do not have a causal
interpretation. Furthermore, the adjacencies may be different
from the estimated causal graph; for instance, in the above
example, X and Y , although marginally independent, are not
conditionally independent given the rest of the variables, i.e.,
{Z,W}. As a consequence, in the conditional independence graph
they will be adjacent, different from the causal graph.

3.2. The FCI Algorithm
Since its inception, a large number of variations of the PC
algorithm have been published and it has been supplemented
with a variety of heuristics, or “wrappers.” The most important
generalization is the Fast Causal Inference (FCI) Algorithm
(Spirtes et al., 2001), which tolerates and sometimes discovers
unknown confounding variables. Its results have been shown to
be asymptotically correct even in the presence of confounders.
Figure 2A, where U is an unmeasured variable, illustrates how
this is possible without illustrating the full complexity of the
FCI algorithm.
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FIGURE 2 | IIllustration of how the FCI algorithm is able to determine the

existence of latent confunders. (A) Original true causal graph. (B) After edges

are removed because of conditional independence relations. (C) The output of

FCI, indicating that there is at least one unmeasured confounder of Y and Z.

As with the first state of the PC procedure, FCI calls
statistical independence judgements to prune an undirected
graph, yielding Figure 2B.

The “o” mark means it can be an arrow head or an arrow tail.
The reason for the “o" marks will become apparent. FCI orients
edges by a procedure similar to PC but without assuming that
every edge is directed one way or the other. The X�Z edge
was eliminated without conditioning on Y because X and Z are
unconditionally independent; the X�Y�Z triple is therefore
oriented as a “collider", X� > Y <⊸ Z. In the same way,
Y�Z�W is found to be a collider, Y� > Z <⊸ W,
yielding Figure 2C.

The bidirected edge between Y and Z indicates that there is
at least one unmeasured confounder of Y and Z. The remaining
“o" symbols at X and W indicate that the algorithm cannot tell
whether the X,Y connection is a directed edge from X to Y , or
an unmeasured confounder, or both; the same for the Z and W.
In fact, no algorithm based entirely on conditional independence
relations can determine which of these is the case.

In contrast to this example, in which one can determine that
there is at least one unmeasured confounder of Y and Z, there
are other situations in which one can exclude the possibility of
having confounders. For instance, consider the causal graph in
Figure 1A and suppose we have enough data generated by it.
Then in the output of FCI, we know that there cannot be any
confounder of Z and W, because otherwise X and W cannot be
independent conditioning on Z (X andW are not d-separated by
Z if Z andW have a confounder).

As with PC there are variants of FCI, mostly designed to speed
up the algorithm at the cost of reduced information (e.g., see the
RFCI algorithm Colombo et al., 2012).

3.3. The Greedy Equivalence Search
Architecture
Instead of beginning with a complete undirected graph, as in
PC and FCI, the Greedy Equivalence Search (GES) (Chickering,
2003) starts with an empty graph, and adds currently needed
edges, and then eliminates unnecessary edges in a pattern. At
each step in the algorithm as decision is made as to whether

adding a directed edge to the graph will increase fit measured by
some quasi-Bayesian score such as BIC, or even by the Z score
of a statistical hypothesis test, the edge that most improves fit is
added. The resulting model is then mapped to the corresponding
Markov equivalence class, and the procedure continued. When
the score can no longer be improved, the GES algorithm then
asks, edge by edge, which edge removal, if any, will most improve
the score, until no further edges can thus be removed. The
GES procedure is not so easy to illustrate as is PC, because its
trajectory depends on the relative strengths of the associations
and conditional associations of the variables. In the large sample
limit, however, the two algorithms converge on the same Markov
Equivalence Class under assumptions that are nearly the same.
On finite samples, the algorithms may give different results, and
there is as yet no GES style algorithm for cases with unknown
confounders. GFCI (Ogarrio et al., 2016), a combination of GES
and FCI, using GES to find a supergraph of the skeleton and FCI
to prune the supergraph of the skeleton and find the orientations.
GFCI has, however, proved more accurate in many simulations
than the original FCI algorithm.

4. NON-GAUSSIAN OR NON-LINEAR
METHODS BASED ON FUNCTIONAL
CAUSAL MODELS

Constraint-based methods for causal discovery involve
conditional independence tests, which would be a difficult task if
the form of dependence is unknown. It has the advantage that it
is generally applicable, but the disadvantages are that faithfulness
is a strong assumption and that it may require very large sample
sizes to get good conditional independence tests. Furthermore,
the solution of this approach to causal discovery is usually
non-unique, and in particular, it does not help in determining
causal direction in the two-variable case, where no conditional
independence relationship is available.

What information can we use to fully determine the causal
structure? A fundamental issue is given two variables, how to
distinguish cause from effect. To do so, one needs to find a way
to capture the asymmetry between them. Intuitively, one may
think that the physical process that generates effect from cause
is more natural or simple in some way than recovering the cause
from effect. How can we represent this generating process, and in
which way is the causal process more natural or simple than the
backward process?

When talking about the causal relation between two variables,
traditionally people were often concerned with the linear-
Gaussian case, where the involved variables are Gaussian with
a linear causal relation, or the discrete case. It turned out that
the former case is one of the atypical situations where the causal
asymmetry does not leave a footprint in the observed data or their
joint distribution, as explained later in this section.

Recently several causal discovery approaches based on
Functional Causal Models (FCMs) have been proposed for causal
discovery from continuous variables. A FCM represents the effect
Y as a function of the direct causes X and some unmeasurable
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factors or noise:

Y = f (X, ε; θ1), (1)

where ε is the noise term that is assumed to be independent from
X, the function f ∈ F explains how Y is generated from X, F
is an appropriately constrained functional class, and θ1 is the
parameter set involved in f . We assume that the transformation
from (X, ε) to (X,Y) is invertible, such that N can be uniquely
recovered from the observed variables X and Y .

For convenience of presentation, let us assume that both X
and Y are one-dimensional variables. Without precise knowledge
on the data-generating process, the FCM should be flexible
enough such that it could be adapted to approximate the
true data-generating process; more importantly, the causal
direction implied by the FCM has to be identifiable in most
cases, i.e., the model assumption, especially the independence
between the noise and cause, holds for only one direction,
such that it implies the causal asymmetry between X and
Y . Under the above conditions, one can then use FCMs to
determine the causal direction between two variables, given
that they have a direct causal relationship in between and
do not have any confounder: for both directions, we fit the
FCM, and then test for independence between the estimated
noise term and the hypothetical cause, and the direction
which gives an independent noise term is considered plausible.
It has been shown that without any further assumption on
the function f , causal direction is not identifiable because
for both directions one can find an independent noise term
(Hyvärinen and Pajunen, 1999; Zhang et al., 2015).

Several forms of the FCM have been shown to be able to
produce unique causal directions, and have received practical
applications. In the linear, non-Gaussian, and acyclic model
(LiNGAM) (Shimizu et al., 2006), f is linear, and at most one
of the noise term ε and cause X is Gaussian. In the post-
nonlinear (PNL) causal model (Zhang and Chan, 2006; Zhang
andHyvärinen, 2009b), the effectY is further generated by a post-
nonlinear transformation on the non-linear effect of the cause X
plus noise term ε:

Y = f2(f1(X)+ ε), (2)

where both f1 and f2 are non-linear functions and f2 is
assumed to be invertible.1 The post-nonlinear transformation f2
represents sensor or measurement distortion, which is frequently
encountered in practice. In particular, the PNL causal model
has a very general form (LiNGAM is clearly a special case),
but it has been shown to be identifiable in the generic case
[except five specific situations given in Zhang and Hyvärinen
(2009b)]. Another special case of the PNL causal model, the
non-linear additive noise model (Hoyer et al., 2009; Zhang and
Hyvärinen, 2009a) assumes that f is non-linear with additive
noise ε, i.e., that f2 in Equation 2 is the identity mapping. Below

1In Zhang and Chan (2006) both functions f1 and f2 are assumed to invertible; this

causal model, as a consequence, can be estimated by making use of post-nonlinear

independent component analysis (PNL-ICA) (Taleb and Jutten, 1999), which

assumes that the observed data are component-wise invertible transformations of

linear mixtures of the independence sources to be recovered.

we will discuss the identifiability of causal direction according
to various FCMs, how to distinguish cause from effect with the
FCM, and the applicability of causal discovery methods based on
those FCMs.

It is worth noting that in the discrete case, if one knows
precisely what FCM class generated the effect from cause, which,
for instance, may be the noisy AND or noisy XOR gate, then
under mild conditions the causal direction can be easily seen
from the data distribution. However, generally speaking, if the
precise functional class of the causal process is unknown, in the
discrete case it is difficult to recover the causal direction from
observed data, especially when the cardinality of the variables
is small. As an illustration, let us consider the situation where
the causal process first generates continuous data and discretizes
such data to produce the observed discrete ones. It is then not
surprising that certain properties of the causal process are lost
due to discretization, making causal discovery more difficult. In
this paper we mainly focus on the continuous case. Readers who
are interested in causal discovery from discrete variables ormixed
discrete and continuous variables may refer to Peters et al. (2010);
Cai et al. (2018); Huang et al. (2018).

4.1. Method Based on the Linear,
Non-gaussian Model
The linear causal model in the two-variable case can be

written as:

Y = bX + ε, (3)

where ε ⊥⊥ X. Let us first give an illustration with simple
examples why it is possible to identify the causal direction
between two variables in the linear case. Assume Y is generated
from X in a linear form, i.e., Y = X + ε, where ε ⊥⊥ X.
Figure 3 gives the scatterplot of 1,000 data points of the two
variablesX and Y (columns 1 and 3) and that of the predictor and
regression residual for two different regression tasks (columns 2
and 4). The three rows correspond to different settings: X and E
are both Gaussian (case 1), uniformly distributed (case 2), and
distributed according to some super-Gaussian distribution (case
3). In the latter two settings, X and E are non-Gaussian, and one
can see clearly that for regression of X given Y (the anti-causal or
backward direction), the regression residual is not independent
from the predictor anymore, although they are uncorrelated by
construction of regression. In other words, in those two situations
the regression residual is independent from the predictor only for
the correct causal direction, giving rise to the causal asymmetry
between X and Y .

Rigorously speaking, if at most one of X and ε is
Gaussian, the causal direction is identifiable, due to the
independent component analysis (ICA) theory (Hyvärinen
et al., 2001), or more fundamentally, due to the Darmois-
Skitovich theorem (Kagan et al., 1973). This is known as the
LiNGAM (Shimizu et al., 2006).

LiNGAM can be estimated from observational data in a
computationally relatively efficient way. Suppose we aim to
estimate the causal model underlying the observable random
vector X = (X1, ...,Xn)

⊺. (Note that here we abuse notation
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FIGURE 3 | Illustration of causal asymmetry between two variables with linear relations. The causal relation is X → Y . From top to bottom: X and E both follow the

Gaussian distribution (case 1), uniform distribution (case 2), and Laplace distribution (case 3). The two columns on the left show the scatter plot of X and Y and that of

X and the regression residual for regressing Y on X, and the two columns on the right correspond to regressing X on Y .

slightly by using X as a vector of random variables and Xi as a
random variable, while X denoted a random variable above.) In
matrix form we can represent such causal relations with a matrix
B, i.e., X = BX+ E, where B can be permuted to a strictly lower-
triangular matrix and E is the vector of independent error terms.
This can be rewritten as:

E = (I− B)X, (4)

where I denotes the identity matrix. The approach of ICA-
LiNGAM (Shimizu et al., 2006) estimate the matrix B in two
steps. It first applies ICA (Hyvärinen et al., 2001) on the data:

Z =WX, (5)

such that Z has independent components. Second, an estimate
of B can be found by permuting and resealing the matrix W, as
implied by the correspondence between (Equations 4, 5).

As the number of variables, n, increases, the estimated linear
transformationWmay more likely converge to local optima and
involve more and more random errors, causing estimation errors
in the causal model. Bear inmind that the causal matrix we aim to
estimate, B, is very sparse because it can be permuted to a strictly
lower-triangular matrix. Hence, to improve the estimation
efficiency, one may enforce the sparsity constraint on the entries

of W, as achieved by ICA with sparse connections (Zhang
et al., 2009) or the Two-Step method (Sanchez-Romero et al.,
2019). Another way to reduce the estimation error is to find
the causal ordering by recursively performing regression and
independence test between the predictor and residual, as done
by DirectLiNGAM (Shimizu et al., 2011).

It is worth mentioning that in the linear case, it is
possible to further estimate the effect of the underlying
confounders in the system, if there are any, by exploiting
overcomplete ICA (which allows more independent sources
than observed variables) (Hoyer et al., 2008). Furthermore,
when the underlying causal model has cycles or feedbacks,
which violates the acyclicity assumption, one may still be
able to reveal the causal knowledge under certain assumptions
(Lacerda et al., 2008; Sanchez-Romero et al., 2019).

Finally, one may then challenge the non-Gaussianity
assumption in the LiNGAM model as well as its extensions.
Here we argue that in the linear case, non-Gaussian distributions
are ubiquitous. Cramér’s decomposition theorem states that if
the sum of two independent real-valued random variables is
Gaussian, then both of the summand variables much be Gaussian
as well; see (Cramér, 1970, page 53). By induction, this means
that if the sum of any finite independent real-valued variables
is Gaussian, then all summands must be Gaussian. In other
words, a Gaussian distribution can never be exactly produced by
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linear composition of variables any of which is non-Gaussian.
This nicely complements the central limit theorem: (under
proper conditions) the sum of independent variable get closer to
Gaussian, but it cannot be exactly Gaussian, except all summand
variables are Gaussian. This linear closure property of the
Gaussian distribution implies the rareness of the Gaussian
distribution and ubiquitousness of non-Gaussian distributions,
if we believe the relations between variables are linear. However,
the closer it gets to Gaussian, the harder it is to distinguish the
direction. Hence, the practical question is, are the errors typically
non-Gaussian enough to distinguish causal directions in the
linear case?

4.2. Non-linear Methods
In practice non-linear transformation is often involved in the
data generating process, and should be taken into account in the
functional class. As a direct extension of LiNGAM, the non-linear
additive noisemodel represents the effect as a non-linear function
of the cause plus independent error (Hoyer et al., 2009):

Y = fAN(X)+ ε. (6)

The above model, as well as LiNGAM, enforces rather strong
constraints on the causal process. If the assumed FCM is too
restrictive to be able to approximate the true data generating
process, the causal discovery results may be misleading.
Therefore, if the specific knowledge about the data generating
mechanism is not available, to make it useful in practice, the
assumed causal model should be general enough, such that it can
reveal the data generating processes approximately.

The PNL causal model takes into account the non-linear
influence from the cause, the noise effect, and the possible sensor
or measurement distortion in the observed variables (Zhang
and Chan, 2006; Zhang and Hyvärinen, 2009b). See (2) for
its form. It has the most general form among all well-defined
FCMs according to which the causal direction is identifiable in
the general case. (The model used in Mooij et al. (2010) does
not impose structural constraints but assumes a certain type of
smoothness; however, it does not lead to theoretical identifiability
results.) Clearly it contains the linear model and non-linear
additive noise model as special cases. The multiplicative noise
model, Y = X · ε, where all involved variables are positive,
is another special case, since it can be written as Y =

exp(logX + log ε), where log ε is considered as a new noise term,
f1(X) = log(X), and f2(·) = exp(·).

The identifiability of the causal direction is a crucial issue
in FCM-based causal discovery. Since LiNGAM and the non-
linear additive noise model are special cases of the PNL causal
model, the identifiability conditions of the causal direction for
the PNL causal model also entail those for the former two FCMs.
Such identifiability conditions for the PNL causal model was
established by a proof by contradiction (Zhang and Hyvärinen,
2009b). It assumes the causal model holds in both directionsX→
Y and Y → X, and show that this implies very strong conditions
on the distributions and functions involved in the model. Under
certain conditions [e.g., p(ε) is positive on (−∞,+∞)], there are
only all five cases in which the causal direction is not identifiable

according to the PNL causal model (Zhang and Hyvärinen,
2009b). The first one is the linear-Gaussian case, in which the
causal direction is well-known to be non-identifiable. Suppose
the data were generated according to the PNL causal model in
settings other than those specific conditions; then in principle,
the backward direction does not follow the model, and the causal
direction can be determined.

Generally speaking, causal discovery based on non-linear
FCMs are not computationally as efficient as in the linear case.
Non-linear causal models have been used for distinguishing cause
from effect given two variables which are believed to be directly
causally related (Hoyer et al., 2009; Zhang and Hyvärinen, 2009b;
Peters et al., 2017): they are fitted to data in both directions,
and the direction in which the estimated noise is independent
from the hypothetical cause (or equivalently, the direction with
a higher likelihood) is regarded as causal direction. They can be
easily combined with conditional independence-based methods
(Zhang and Hyvärinen, 2009b): conditional independence-based
methods estimate the MEC from observational data with non-
linear or non-parametric methods for conditional independence
tests (e.g., the kernel-based method Zhang et al., 2011a), and then
non-linear models are applied to further orient the undirected
edges in the MEC.

5. SEVERAL BIOLOGICAL EXAMPLES

The Two-Step algorithm and the FASK algorithm (Sanchez-
Romero et al., 2019) are two examples of procedures that use
adjacency searches to provide an initial undirected directed
graph which the algorithms then prune, refine, or extend. Non-
Gaussian features of the signal are then used (in different
ways) to direct edges, allowing cyclic graphs. Two-Step, but
not FASK, also allows for unmeasured confounding. FASK has
been applied (Ramsey and Bryan, 2018b) to a famous data set
(Sachs’s data set Sachs et al., 2005) recording various cellular
protein concentrations under a variety of exogenous chemical
inputs. Sach’s gives an expert model, and in supplementary
data gives additional connections for which the experimental
literature is not entirely consistent. The data has been reanalyzed
several times by various methods, generally not recovering Sach’s
model or the “expert” model alone or with supplementary edges.
Allowing these supplementary edges as undirected edges, the
“extended expert" model Ramsey and Andrews use is given
in Figure 4.

Using FASK, and using the knowledge that the experimental
treatments are exogenous, they recover the model, given in
Figure 5, automatically with default values for the search
algorithm.

Figure 5 is very close to Figure 4, replacing undirected
edges with directed edges or 2-cycles (cycles between only
two variables) and supplementing some directed edges with a
feedback reciprocity. The most noticeable fault in the FASK
model is the absence of the Mek → ERK edge, which is well-
established.

The Causal Stability algorithm is another example of an
automated procedure applied to biological data (Stekhoven
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FIGURE 4 | The “extended expert" model for Sachs’s data set). See Sachs

et al. (2005) or Ramsey and Bryan (2018b) for the significance of the variables.

et al., 2012). The question under consideration was which genes
influence the time to flowering of the Arabadopsis thaliana
flower. The available data had measurements of expression levels
of 21,326 genes for 47 samples from diverse geographic origins.
The Causal Stability Ranking algorithm that was used had the
following steps. After the data was preprocessed, subsample of
size n/2 were drawn 100 times. On each subsample, the PC
algorithm was run, and then for each gene a lower bound
on the absolute value of the total causal effect on time to
flowering was estimated by the IDA algorithm, using the
output pattern of the PC algorithm and the data as input.
(Conceptually, the IDA algorithm estimates the total effect of
a gene on time to flowering by estimating the total effect
for each DAG represented by the output pattern of PC.) The
minimum absolute values of the estimated total effect of each
gene on time to flowering were then used to rank the genes.
Finally, for a range of different q values ({100, 150, 200, ..., 2, 000})
the frequency with which each gene appeared in the top
q genes was calculated. The median rank over the different
values of q was then used to generate a final ranking of
the genes.

When ordered in this way, the top 25 genes contained 5 genes
that were known to cause time to flowering. Of the remaining
20 genes that were not known to cause time to flowering, 13
genes had readily available mutants that could be easily tested
experimentally to see if the mutant plants differed significantly
from the wild type with respect to time to flowering. Of the
13 mutants, 4 had viability issues. Of the 9 remaining genes
without viability issues, 4 were novel genes found to cause time
to flowering.

FIGURE 5 | The Model for the Sach’s Data estimated by the FASK algorithm.

6. PRACTICAL ISSUES IN CAUSAL
DISCOVERY

Causal discovery aims to find causal relations by analyzing
observational data. The data are produced by not only the
underlying causal process, but also the sampling process. In
practice, to achieve reliable causal discovery, one needs to address
specific challenges posed in the causal process or the sampling
process. Belowwe report some particular issues that have recently
been considered; for many of them, better approaches are still
needed to improve the reliability and computational efficiency of
causal discovery.

6.1. Causality in Time Series
Multivariate time series provide the data for many biological
and other scientific inquiries, for example mRNA expression
series in genomics, and Blood Oxygenation Level Dependent
(BOLD) time series in neuropsychology. Finding the causal
dynamics generating such data is challenging for many reasons,
including that the generating process may be non-linear, the
data acquisition rate may be much slower than the underlying
rate of changes, there may be measurement error, the system
may be non-stationary (i.e., the probability distributions of
variables conditional on their causes may change, and even the
causal relations may change) and there may be unmeasured
confounding causes. The general problem of estimating the
causal generating processes for time series is not close to solved,
but there is progress in understanding how to deal with these
problems in various classes of cases, and increased understanding
of why popular methods do not work. In principle, any of the
methods described previously, as well as others, can be used on
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time series. But their accuracies are sensitive to all of the factors
just mentioned.

There are several strategies for treating time series data. One
is to partition the data into disjoint “windows" and take the
measurements in each unit as a data analytic unit. Another is
to assume or estimate a number of lagged effects and treat all
measurements separated by no more than that number of lags
as a data analysis unit. That is a standard procedure in vector
autoregression, or what is often called “Granger Causality." A
further alternative is to treat the measurements at any time
as independent of the measurements at any other time. Each
has its disadvantages. The window method necessarily omits
relations across windows and results may vary with the choice
of window size. In the other two procedures, the units are not all
independent, but most units are.

It is well-established that the most common procedure,
Granger causality, is very sensitive to temporal aggregation or
subsampling [for the effect of aggregation and subsampling and
some possible ways to deal with them, see (Danks and Plis,
2013; Gong* et al., 2015; Gong et al., 2017)]. If the sampling
rate is equal to the actual time interval required for a signal to
propagate (and there is no confounder), Granger’s method is very
accurate. However, in many times series, data are subsampled or
temporally aggregated due to the measuring device or sampling
procedure, or for the purpose of efficient collection and storage.
It has been shown that under suitable assumptions, the true
causal relations are still identifiable from both subsampled
and temporally aggregated data; interested readers may refer
to Gong* et al. (2015); Gong et al. (2017) and references
therein. In particular, It was shown that due to highly temporally
aggregated data, time-delayed causal influences in the original
causal process appear to be instantaneous in the aggregated time
series, which implies that the estimated instantaneous causal
relations from low-resolution aggregated data are consistent with
the underlying causal influences (Gong et al., 2017).

On the application side, a good deal of research has been done
on functional Magnetic Resonance Imaging (fMRI) time series,
including a recent comparison of multiple methods. Roughly
speaking, one can view fMRI data as some kind of highly
temporally aggregated version of the underlying neural activities.
The Two-Step and FASK procedures, described in section 5,
prove to have the best precision (percentage of edges found that
are correct) and recall (percentage of true edges that are found)
(Sanchez-Romero et al., 2019). Remarkably, they are robust to
(simulated) errors in variables whose variance is no larger than
the measurement-free variance of the variables. Two-step retains
high precision but has large recall losses; FASK retains both good
precision and recall.

6.2. Other Issues
Below are some other issues that arise in many causal discovery
tasks.

• Deterministic case. In a particular deterministic case where
Y = f (X) without noise, it is impossible to make
use of the independence between noise and the cause to
find the causal direction. However, one may exploit a
certain type of independence between the transformation

f and the distribution of the cause X to characterize
the causal asymmetry and determine the causal direction
(Janzing et al., 2012).
• Nonstationary/heterogenous data. It is commonplace to

encounter nonstationary or heterogeneous data, in which the
underlying generating process changes over time or across
data sets. Interestingly, if the qualitative causal structure
is fixed and the mechanisms or parameters associated
with the causal structure may change across data sets
or over time (the mechanisms may change such that
some causal links in the structure vanish over some time
periods or domains), causal discovery may benefit from
distribution shift because causal modeling and distribution
shift are heavily coupled. This, in particular, inspires a
framework for causal mechanism change detection, causal
skeleton estimation, causal direction identification, and
nonstationary driving force estimation (Huang et al., 2017;
Zhang et al., 2017b).
• Measurement error. Measurement error in the observed

values of the variables can greatly change the output of various
causal discovery methods. Given the ubiquity of measurement
error caused by instruments or proxies used in the measuring
process, this problem has received much attention, and
sufficient conditions under which the causal model for the
underlying measurement-error-free variables can be partially
or completely identified in the presence of measurement error
with unknown variance have been established (Zhang et al.,
2017a). This will hopefully inspire a set of causal discovery
methods dealing with measurement error.
• Selection Bias. Selection bias is an important issue in

statistical inference, which arises when the probability of
including a data point into the sample depends on some
attributes of the point. Selection bias, if not corrected, often
distorts the results of statistical analysis and causal discovery
and inference. In the presence of outcome-dependent selection
bias, with FCM-based causal discovery it is possible to identify
the correct causal direction and estimate properties of the
causal mechanism (Zhang et al., 2016).More general situations
with selection bias remain to be studied.
• Missing data. Missing data are ubiquitous in many domains

such as healthcare. When these data entries are not missing
completely at random, the (conditional) independence
relations in the observed data may be different from
those in the complete data generated by the underlying
causal process. Consequently, simply applying existing causal
discovery methods to the observed data may lead to the
wrong conclusions. A modified PC algorithm was proposed
for causal discovery in the presence of missing data (Tu
et al., 2019), whose output is asymptotically correct under
certain assumptions.

7. APPLICATION OF CAUSAL DISCOVERY
IN BIOLOGY AND SOME GUIDELINES TO
PRACTICE

A great deal of research in biology applies traditional machine
learning techniques to various data sets, e.g., genome sequencing
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data sets (Libbrecht and William, 2015), without trying to find
causal relations. In contrast, within the past two decades there
has been an increasing number of publications on reconstructing
gene regulatory networks or other types of networks in biology;
for reviews of this line of work, see e.g., (Narendra et al.,
2011; Frolova, 2012; Marbach et al., 2012; Villaverde et al.,
2013; Djordjevic et al., 2014; Sinoquet, 2014; Li et al., 2015;
Liu, 2015; Hill et al., 2016; Banf and Rhee, 2017). Not all of
them aimed to find causal information represented by directed
graphs. Many studies tried to derive weaker notions of causal
representations, by making use of pairwise dependence between
variables (Butte and Kohane, 2001; Margolin et al., 2006), or
estimating a partial correlation graph (de la Fuente et al., 2004),
or finding a partial correlation graph and further combining it
with heuristic methods to infer partial ordering (Opgen-Rhein
and Strimmer, 2007), or learning particular types of undirected
graph structure (e.g., a tree structure) from data (Huynh-Thu
and Sanguinetti, 2015; Gitter et al., 2016), or discovering Markov
Blankets of the variables (Ram and Chetty, 2011). Some work
infers causal associations between gene expression and disease
(Schadt et al., 2005)–luckily, the causal direction between gene
expression and disease is known. A number of studies rely
on Bayesian network learning to infer certain information of
the network; see, e.g., (Pe’er et al., 2001; Auliac et al., 2008;
Adabor et al., 2015).

Causal discovery methods or their underlying ideas already
received some applications in genetics. For instance, the idea
of the PC algorithm was adopted to infer causal relationships
among phenotypes (Neto et al., 2010), to estimate gene regulatory
networks (Zhang et al., 2011b), and to model the isoprenoid gene
network in Arabidopsis thaliana (Wille et al., 2004). Granger
causal analysis received a number of applications in estimation
of gene regulatory networks; see, e.g., (Michailidis and d’Alché
Buc, 2013; Emad and Milenkovic, 2014; Carlin et al., 2017; Yang
et al., 2017; Finkle et al., 2018), and similarly, some findings were
based on dynamic Bayesian network learning from observational
biological data (Yu et al., 2004; Wu and Liu, 2008; Vasimuddin
and Srinivas, 2017). There are also applications of network
inference methods to leverage multiple data sets (Reiss et al.,
2006; Joshi et al., 2015; Zitnik and Zupan, 2015; Omranian
et al., 2016). Extended approaches to specific types of network
estimation problems also exist, including network deconvolution
(Feizi et al., 2013) and network inference by ANOVA
(Küffner et al., 2012).

Overall, although the past 30 years witnessed remarkable
progress in development of theories and practical methods
for automated causal search, they received rather limited
applications in biology–in fact, practical causal analysis is
not a matter of pressing a few buttons. There are multiple
algorithms available, many of them are poorly tested, some
of them are poor implementations of good algorithms,
some of them are just plain poor algorithms, all of them
have choices of parameters, and all of them have conditions
on the data distributions and other assumptions under
which they will be informative rather than misleading.
We offer some general guidelines to practice (see also
Malinsky and Danks, 2018).

1. Look at the distributions of the variables. This can be
done by visualization or by performing a statistical test.
For continuous variables a critical question is whether
the distribution is Gaussian or non-Gaussian. This can be
checked by an Anderson-Darling Test or eyeballed via a Q-
Q plot. If the variables are non-Gaussian, the scatterplots
of paired variables can give an indication of whether their
relations are linear, polynomial of some obvious kind,
periodic, or a mixture of distributions.

2. Check that preprocessing software has not distorted the
distributions. For example, standard “high pass" filtering in
fMRI software, eliminates some or all of the non-Gaussianity
in variables and, as a consequence, the best available
algorithms for fMRI time series become uninformative.

3. For continuous variables, check to see if the data are actually
mixtures of different causal processes. If the individual
causal processes follow linear-Gaussian models, there is a
tool–Unmixer–in the TETRAD suite of causal search tools
(http://www.ccd.pitt.edu) , and a tool for non-Gaussian
variables is in development. If there are a small number of
multiple components, the Unmixer algorithm will sort cases;
a distinct label as an exogenous variable can be attached to
each case, identifying the component to which it belongs,
and searches can be run with that additional information.
Alternatively, an algorithm such as IMaGES, designed for
differing distributions with different linear coefficients, can
be run.

4. If the data contain both categorical and continuous variables
and there can possibly be categorical variables that are
effects and causes, the Conditional Gaussian search in
TETRAD can address the problem. That algorithm has
limitations suggested by its name: it assumes conditional on
values on categorical parents that a continuous variable is
Gaussian, and it assumes there are no latent confounders.
Work is in progress on generalizations. Alternatively, the
continuous variables can be discretized, which sometimes
works best when the continuous variables have very non-
linear relations. Discretization has a terrible cost in effective
sample size, and is only advisable when the number
of samples is much larger compared to the number
of variables.

5. There is no consensus about what to do about missing
values. There is R software for imputing missing values, and
commonly used simple strategies such as imputing a mode
or median value of a variable, or even deleting an entire case
if it has one or more missing values (not recommended).
In search algorithms that proceed by evaluating conditional
independence on specially chosen subsets of variables (such
as the PC algorithm), evaluations can be done simply by
ignoring missing values for the relevant variables. It has been
shown that this scheme may produce spurious edges (Tu
et al., 2019), and an extension of the PC algorithm was
also proposed there, whose results are asymptotically correct
under certain assumptions on the missingness mechanism.

6. Decide whether the data may suffer from sample selection
bias, or measurement error, or unmeasured common causes.
If there is sample selection bias and/or unmeasured common
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causes, there are algorithms, GFCI, FCI, RFCI in the
TETRAD suite, and Matlab procedures, Two-Step, that
tolerate unknown latent common causes.

7. Specify known influences between measured variables,
or known absences of influences. In experimental data,
treatment should not be caused by putative effects of
treatment. In fMRI studies, for example, stimuli can be
convolved with a hemodynamic response function; in
biological experiments, the application of a chemical dosage
is an exogenous variable. Known exogenous relations can
be used to test a search algorithm: they provide a “gold"
standard. Further, known causal relations actively guide
some search algorithms and result in improved recall
and precision.

8. If something about the system is known, test search
algorithms and parameter choices on simulated systems that,
so far as possible, mimic the observed distributions.

9. There is no consensus about choosing parameter values for
search. For undirected graphs estimated by LASSO, there is
a cross-validation procedure or BIC for parameter setting.
For causal searches using a BIC score there is an adjustable
penalty that forces sparsity on the output (in finite samples,
of course). Work is in progress on how best to adjust search
parameter values (e.g., the significance levels in hypothesis
tests) as a function of sample size, number of variables, and
sparsity. Search procedures generally do not have confidence
intervals for their results, and a “test" of the whole of a
high dimensional model seldom makes any sense: many
weak dependencies will not be found, but cumulatively
they contribute to the real distribution, and so failure of
complete recall will result in rejection of a model. Further,
in complex models something is wrong somewhere almost
always (precision is not perfect), and the model as a whole
will typically be rejected by a test. Comparison tests are
of course possible–e.g., against a completely disconnected
graphical model–but they are not informative about the truth
of the selected model.

10. There are very few publicly available competent tests
of model search methods. New methods are proposed
almost monthly, and published packages vary in quality
of implementation. Accuracy recommendations based on
public contests are limited to whatever algorithms were
submitted to the contests and the particular properties of
the data. For DAG searches for linear models (Ramsey and
Bryan, 2018a) provides a careful assessment of the most
prominent public methods. Bootstrapping an algorithm
repeatedly on the data can be informative about how
much to trust the output, and can give an estimate of the
probabilities of edges . If the results vary widely over the
different bootstrap samples, the output should not be trusted.
Unfortunately, the converse is not true - stable output is not
necessarily correct causal output.

8. CONCLUSION AND DISCUSSIONS

Understanding causal relations is helpful for constructing
interventions to achieve certain objectives and also enables
making predictions under interventions. It is an important
issue in most disciplines of science, especially in biology and
neuroscience. A traditional way to discover causal relations
is to use interventions or randomized experiments, which is,
however, in many cases of interest too expensive, too time-
consuming, unethical, or even impossible. Therefore, inferring
the underlying causal structure from purely observational
data, or from combinations of observational and experimental
data, has drawn much attention in various disciplines. With
the rapid accumulation of huge volumes of data, it is
necessary to develop automatic causal search algorithms that
scale well.

We have reviewed two types of causal search algorithms.
One makes use of conditional independence relations in the
data to find a Markov equivalence class of directed causal
structures. Typical algorithms include the PC algorithm, FCI, and
the GES algorithm. The other makes use of suitable classes of

TABLE 1 | Comparison of the fundamental causal discovery methods reviewed in this paper.

PC FCI GES LiNGAM/PNL/ANM

Faithfulness assumption required? Yes Yes Some weaker condition

required (not totally clear yet)

No

Specific assumptions on data

distributions required?

No No Yes (usually assumes

linear-Gaussian models or

multinomial distributions)

Yes

Properly handle confounders? No Yes No No

Output Markov equivalence class Partial ancestral graph Markov equivalence class DAG as well as causal

model (under the respective

identifiability conditions)

Remark on practical issues Confounder in the linear, non-Gaussian case Hoyer et al. (2008);

feedback in linear cases Lacerda et al. (2008); Sanchez-Romero et al. (2019);

measurement error Zhang et al. (2017a);

non-stationary times series or heterogeneous multiple data sets Huang et al. (2017); Zhang et al. (2017b);

missing data Tu et al. (2019);

subsampled or aggregated time series Danks and Plis (2013); Gong* et al. (2015); Gong et al. (2017), etc.
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structural equation models and is able to find a unique causal
structure under certain assumptions, for which the condition that
noise is independent from causes plays an important role. We
have reviewed model classes including LiNGAM, the non-linear
additive noise (ANM) model, and the post-nonlinear (PNL)
causal model.

Each of the useful methods has its own pros and cons.
The PC algorithm and FCI, as typical methods relying
on conditional independence relations, require decisions on
conditional independence as input, which is straightforward in
linear cases (for instance, by Fisher Z tests or differences in
BIC scores) but rather difficult in general non-linear situations.
For linear causal relations, the search procedures can scale very
well (e.g., PC and GES can easily deal with tens of thousands
of variables for sparse graphs). But on the other hand, their
output is a Markov equivalence class, which contains all directed
graphs sharing the same conditional independence relations–in
this case, the output may not be informative enough in certain
circumstances. Methods based on structure equations models
have to resort to the functional form of the causal influence, and
generally speaking, they cannot handle latent confounders in a
straightforward way. The non-Gaussian or non-linear functional
causal models help identify more detailed information of the
causal process; however, causal search methods based on them
usually do not scale as well as those conditional-independence-
based methods. To estimate LiNGAM, the estimation methods
Two-Step and FASK are feasible on thousands of variables
generated by a sparse graph. Current methods for estimating
non-linear causal models are feasible on only dozens of variables.
Table 1 summarizes the assumptions and properties of the
fundamental causal discovery methods reviewed in the paper, as
well as a summary of the contributions to address some of the
practical issues that often arise in causal discovery in biology,
especially in genetics.

Finally, we note that for reliable causal discovery, one often
needs to address particular challenges that may be posed in
the causal process or in the sampling process to generate
the observed data. Typical challenges include sampling bias
in the data, various types of non-linear effects, existence of
measurement error, confounding effects, and heterogeneity
of the data. Better methods to deal with those issues will
clearly improve the quality of causal structure search, especially
in genetics.

Some Software Packages and Source
Code
The following software packages that are relevant to causal
discovery, among others, are available online.

• The Tetrad project webpage (Tetrad implements a large
number of causal discovery methods, including PC and its
variants, FCI, and LiNGAM):
http://www.phil.cmu.edu/tetrad/
• Kernel-based conditional independence test (Zhang et al.,

2011a):
http://people.tuebingen.mpg.de/kzhang/KCI-test.zip
• LiNGAM and its extensions (Shimizu et al., 2006, 2011):

https://sites.google.com/site/sshimizu06/lingam
• Fitting the nonlinear additive noise model (Hoyer et al., 2009):

http://webdav.tuebingen.mpg.de/causality/additive-noise
tar.gz
• Distinguishing cause from effect based on the PNL causal

model (Zhang and Hyvärinen, 2009b):
http://webdav.tuebingen.mpg.de/causality/CauseOrEffect_
NICA.rar
• Probabilistic latent variable models for distinguishing between

cause and effect (Mooij et al., 2010):
http://webdav.tuebingen.mpg.de/causality/nips2010-gpi-
code.tar.gz
• Information-geometric causal inference (Janzing et al., 2012):

http://webdav.tuebingen.mpg.de/causality/igci.tar.gz
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