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Abstract

Discovery of causal relations from observational data is essential for many dis-
ciplines of science and real-world applications. However, unlike other machine
learning algorithms, whose development has been greatly fostered by a large
amount of available benchmark datasets, causal discovery algorithms are notori-
ously difficult to be systematically evaluated because few datasets with known
ground-truth causal relations are available. In this work, we handle the problem of
evaluating causal discovery algorithms by building a flexible simulator in the medi-
cal setting. We develop a neuropathic pain diagnosis simulator, inspired by the fact
that the biological processes of neuropathic pathophysiology are well studied with
well-understood causal influences. Our simulator exploits the causal graph of the
neuropathic pain pathology and its parameters in the generator are estimated from
real-life patient cases. We show that the data generated from our simulator have
similar statistics as real-world data. As a clear advantage, the simulator can pro-
duce infinite samples without jeopardizing the privacy of real-world patients. Our
simulator provides a natural tool for evaluating various types of causal discovery
algorithms, including those to deal with practical issues in causal discovery, such
as unknown confounders, selection bias, and missing data. Using our simulator,
we have evaluated extensively causal discovery algorithms under various settings.

1 Introduction

Many real-life decision-making processes require an understanding of underlying causal relations. For
example, understanding the cause of symptoms is essential for physicians to make correct treatment
decisions; understanding the cause of observed environmental changes is critical to take action
against global warming. However, it is generally infeasible or even impossible to do interventions
or randomized experiments to verify these causal relations. Therefore, causal discovery from
observational data has attracted much attention [29, 31, 40, 49].

However, the evaluation of causal discovery algorithms has been a challenge [3]. The great application
demand also indicates that ground-truth causal relations in a complex scenario are often unknown to
humans. The lack of systematic evaluations of causal discovery algorithms has hindered both the
development of the field and the impact of these algorithms on solving real-life problems. Research-
wise, it is hard to identify the advantages and disadvantages of causal discovery algorithms performing
in real-world scenarios. A systematic way to evaluate causal discovery algorithms is pressing.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Other machine learning disciplines such as supervised learning and reinforcement learning have made
great success in real-world applications such as image classification [34, 45] and speech recognition
[2]. An important driving factor for their fast development and great success is the existence of a
large amount of benchmark datasets for systematic evaluation. The benchmark datasets can be in
the form of large-scale labeled and publicly available datasets such as [13, 22], which are commonly
used for supervised and unsupervised learning. They can also be in the form of synthetic data that
are generated from simulators, e.g. an autonomous driving simulator [4], an agent motion [5], and
a gaming environment [19]. Such simulators accelerate the development of reinforcement learning
algorithms and promote usage in real-life applications.

Establishing benchmark datasets for the evaluation of causal discovery algorithms will naturally
accelerate the development of this research discipline and increase its real-world impact. However, it
is difficult to collect such datasets with known ground-truth because underlying real-world causal
relations are usually highly complex. Fortunately, domain experts in disciplines such as biology and
physics can provide information about well-understood causal influences in some specific scenarios.
This gives us opportunities to utilize domain knowledge to reveal ground-truth causal relations and
build realistic simulators. In this way, we can generate data from simulators and use such benchmark
datasets for the evaluation of causal discovery algorithms.

In this work, we present a neuropathic pain diagnosis simulator for evaluating causal discovery
algorithms. As one of the most important healthcare issues, neuropathic pain is well-studied in
bio-medicine and has well-understood causal influences. By definition, neuropathic pain is caused
by disease or injury of the nervous system. It includes various chronic conditions that, together,
affect up to 8% of the population. The prevalence of neuropathic pain increased to 60% in those with
severe clinical neuropathy [9]. We build a simulator based on the causal relations in neuropathic
pain diagnoses. Given the causal relations, we estimate the parameters of the corresponding causal
graph using a small cohort of anonymous real-world clinical records to generate simulated data. Our
simulator not only provides the simulated data and the ground-truth causal relations for evaluating
causal discovery algorithms but also builds up a bridge between machine learning and neuropathic
pain diagnoses. In summary, our contribution is a neuropathic pain diagnosis simulator. Especially:

• It represents a complex real-world scenario with more than 200 variables and around 800
well-defined causal relations. It can also generate any amount of data without jeopardizing
security or privacy of patients’ data (Section 2).

• Our simulator can produce data indistinguishable from real-world data. We have verified the
simulation quality using both medical expertise and statistical evaluation (Section 3).

• Our simulator is flexible and can be used to generate data with different practical issues,
such as confounding, selection bias, and missing data (Section 2.3 and Section 4).

• We have evaluated major causal discovery algorithms, including PC [40], FCI [40], and
GES [6] with simulated data under different settings (Section 4).

2 Neuropathic Pain Simulator

In this section, we introduce our neuropathic pain diagnosis simulator 1. We first show essential
causal relations in the neuropathic pain diagnosis, and then present details of the simulator design.
Finally, we discuss some open problems in causal discovery and how to use our simulator to simulate
instances of such problems.

2.1 Causal Relations for Neuropathic Pain Diagnosis

Neuropathic pain diagnoses mainly contain symptom diagnosis, pattern diagnosis, and pathophysio-
logical diagnosis. For example, Table 1a shows typical neuropathic pain diagnostic records. Symptom
diagnosis describes the discomfort of patients. Pattern diagnosis identifies symptom patterns. In
neuropathic pain diagnosis, it identifies which set of nerves do not work properly. Such conditional
is commonly called Radiculopathy. The main tool of pattern diagnosis is the dermatome map as
shown in Figure 1. Pathophysiological diagnosis refers to the original cause of symptoms where
discoligamentous injury is the most common factor in the neuropathic pathophysiological diagnosis.

1The simulator is available at https://github.com/TURuibo/Neuropathic-Pain-Diagnosis-Simulator.
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Table 1: Diagnostic records and dataset.

(a) A typical neuropathic pain diagnostic record. "L" and "R" stand for "left" and "right".

Symptom diagnosis: R back thigh discomfort, R knee discomfort,
L knee thigh discomfort, Patellofemoral pain syndrome
Pattern diagnosis: L L5 Radiculopathy, R L5 Radiculopathy
Pathophysiological diagnosis: Discoligment injury L4-5

(b) Given many patient records, a diagnostic record dataset takes the following form. "ID" represents different
patients. "DLI" and "Radi" stand for discoligamentous injury and radiculopathy. Each row is a patient’s
diagnostic record in which "1" represents that the patient has the symptom and "0" represents that the patient has
no such symptom.

ID DLI C1-C2 DLI C2-C3 ... L C5 Radi ... R knee L neck ...
1 0 0 ... 1 ... 1 0 ...
2 1 0 ... 0 ... 0 1 ...
... ... ... ... ... ... ... ... ...
n 0 1 ... 0 ... 0 0 ...

Figure 1: Dermatome map (image
source [1]) shows surface regions of dif-
ferent nerves.

... DLI C4-C5 ...

... L C5-Radi R C5-Radi ...

L neck Interscapular
L front shld L shld L shld im

L arm L lateral arm L upper arm

L elbow L upper elbow L lateral elbow

Pathophysiology

Pattern

Symptom ...

Figure 2: Typical structure of the ground-truth
causal graph. "DLI" and "Radi" represent discol-
igamentous injury and radiculopathy. "shldr" and
"im" stand for shoulder and impingement. "L" and
"R" stand for left and right. We show the left side
symptoms, and the corresponding connections are
the same on the right side.

Given a set of patient data, we can present the data as in Table 1b, where 1 indicates that the diagnostic
label exists in a patient record and 0 otherwise.

In neuropathic pain diagnoses causal relations are well studied in biomedical research [27, 43]. In
general, neuropathic pain symptoms in symptom diagnosis are mainly caused by radiculopathies
(Radi) in the pattern diagnosis, and the radiculopathy is mostly caused by discoligamentous injuries
(DLI) in the pathophysiological diagnosis. For example, some of the causal relations are shown in
Figure 2. DLI C4-C5 causes left side C5 radiculopathy and right side C5 radiculopathy. Left side C5
radiculopathy further causes symptoms at the left front shoulder, the left lateral arm, etc. We see that
these locations are consistent with the dermatome map in Figure 1. Despite that there are other causes
of neuropathic pain symptoms and radiculopathies such as tumors and diabetes, they rarely appear
in primary care. Therefore, we focus on the causal relations among the discoligamentous injuries,
radiculopathies, and neuropathic pain symptoms in this work.

The complete causal relations are summarized in Appendix A, and we further provide interactive
causal graph visualization at: https://cutt.ly/BekNFSy. The causal graph is similar to Figure 2
and consists of three layers: Symptom diagnosis, pattern diagnosis, and pathophysiological diagnosis.
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Nodes in each layer have no connection with each other. Arrows either point from nodes in the
pathophysiological diagnosis layer to nodes in the pattern diagnosis layer or from nodes in the pattern
diagnosis layer to nodes in the symptom diagnosis layer. The causal graph also contains different
d-separations such as the folk structure, denoted by ^ structure (e.g., Left C5 Radiculopathy  
Discoligamentous injury C4-C5! Right C5 Radiculopathy), the collider structure, denoted by _
structure (e.g., Left C5 Radiculopathy! Left neck pain Left C4 Radiculopathy), and the chain
structure (e.g., Discoligamentous injury C4-C5! Left C5 Radiculopathy! Left Neck pain).

2.2 Neuropathic Pain Diagnosis Simulator

With the domain knowledge mentioned in Section 2.1, we create our simulator to generate patient
diagnostic records.

Real-world diagnostic records. To make our generated records close to the real-world scenario,
we learn parameters from a dataset including 141 patient diagnostic records [46] 2. These patients’
diagnostic records are represented as a table of binary variables as shown in Table 1b. The variables in
the pathophysiological diagnosis consist of the craniocervical junction injury and 26 discoligamentous
injuries; the variables in the pattern diagnosis include 52 radiculopathies; the variables in the symptom
diagnosis contain 143 symptoms. Similar to the real-world diagnostic records, the columns of
generated records are the mentioned variables and the rows represent the synthetic patients.

Parameter estimation of the causal graph. We estimate the Conditional Probability Distribution
(CPD) of each variable given its parents in the causal graph with the real dataset. We compute the
CPD of a variable X by P (X | Pa(X)) = P (X,Pa(X))

P (Pa(X)) , where Pa(X) represents the parents of X
in the causal graph. Since variables are binary, the joint distributions can be computed using the
number of variable values in the dataset. However, we cannot estimate the CPDs accurately for the
variables with many parents because of the curse of dimensionality and the limited number of the real
data. Therefore, instead of computing the CPD of X given all its parents, we introduce the heuristic

P (X = 1 | Pa(X) = c) := max
i2 I1

P (X = 1 | Pai(X) = ci), (1)

where c is a given vector of parent values (which can contain either value zero or one), and I1 is a
subset of the index of all variables in Pa(X) such that for 8 i 2 I1, Pai(X) 2 Pa(X) and ci = 1.
The condition of Equation 1 is that there exists ci 2 c such that ci = 1. This condition is satisfied in
the real data. Given the parent values c, we only consider the parents taking the value one, and get
the maximum conditional probability of X = 1 given a parent taking the value one in c to estimate
the CPD of P (X = 1 | Pa(X) = c).

This approximation is supported by the medical insights. Intuitively, if a symptom is caused by
multiple nerves, the chance for the symptom to exist in general is higher when these causes occur at the
same time comparing to only one of the causes occurs. For example, both L4 and L5 radiculopathies
can cause knee pain. The chance that a person with both L4 and L5 radiculopathies feels knee
pain is higher or equal to the chance that a person with either one of the radiculopathies feels knee
pain. In other words, P (X = 1 | Pa1(X) = 1, Pa2(X) = 1) � P (X = 1 | Pa1(X) = 1) and
P (X = 1 | Pa1(X) = 1, Pa2(X) = 1) � P (X = 1 | Pa2(X) = 1), where Pa1(X) and Pa2(X)
are L4 and L5 radiculopathies and X is knee pain.

Given all the conditional probability and marginal probability distributions, we use ancestral sampling
to sample neuropathic pain diagnosis data of synthetic patients.

2.3 Simulating Data with Practical Issues of Causal Discovery

Causal discovery is facing many practical issues when applied in real-world applications. Our
simulator has many advantages over real datasets in evaluating causal discovery algorithms in the
presence of these challenges. In this section, we introduce how to use our simulator to generate

2The dataset is collected in a hospital department specialized in neuropathic pain [46]. Only Ruibo Tu and
Bo C. Bertilson get access to the dataset during the course of the project.
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datasets exhibiting different open problems. In Section 4 we show experimental results of applying
causal discovery algorithms to these simulated data reflecting different real-world problems.

Unmeasured Confounding. Most causal discovery algorithms assume that all variables of con-
cerned are observed. However, in most real-life applications collected datasets may not cover all
factors to discover causal relations of interest. If there is an unobserved common direct cause of two
or more observed variables, this may produce wrong causal conclusions. This problem is known as
unmeasured confounding, which is one of the common issues that one is faced with when applying
causal discovery algorithms. Addressing unmeasured confounding is an active research direction
[18, 20, 28, 40, 47].

There are many ways for our simulator to generate datasets of unmeasured confounding. We can
delete the data of parent nodes in a ^ structure. More specifically, deleting the simulated data of the
pathophysiology diagnosis and the pattern diagnosis variables leads to confounding in the dataset
because they have at least two direct effects. We can also introduce external variables as confounders
in the data generation process. For example, we can add patients’ occupation as a confounder which
is not included in the given causal graph. The occupation affects daily activities and then increases
the risk level of injuring different spine parts. With such datasets, we can evaluate how unmeasured
confounding influences the results of causal discovery algorithms and hopefully develop new and
better algorithms to address this issue.

Selection bias. Selection bias is an important issue in learning causal structures from real-world
observational data. In practice, it is a common scenario where the data collection process is influenced
by some attributes of variables. For example, samples in a dataset are not drawn randomly from
the population, but from the people who have higher degrees than a bachelor’s degree. Then, the
selection variable is whether a person has a higher degree than a bachelor’s degree. Such selection
bias is non-trivial to be removed from the collected dataset and may introduce erroneous causal
relations in the results of causal discovery algorithms. Few methods have been developed to address
this issue [11, 12, 39, 47, 48]. We can also introduce selection bias to the simulated data. We first
choose variables which the selection depends on, and then remove or maintain records based on the
values of the chosen variables in the simulated dataset.

Missing data. Missing data is a ubiquitous issue, especially in healthcare. It is common to classify
missingness mechanisms into Missing Completely At Random (MCAR), Missing At Random (MAR),
and Missing Not At Random (MNAR) [32]. Among them, MAR and MNAR may introduce wrong
causal conclusions if one simply deletes the data with missing entries, and applies causal discovery
algorithms to the deleted complete dataset. Thus, methods that can handle different missingness
mechanisms are much in demand for causal discovery [23, 24, 38, 42, 44].

Using our simulator, we can easily generate data with different missingness mechanisms. We can
introduce missingness indicators to our causal graph. We then introduce causal relations between
missingness indicators and substantive variables, depending on the missingness mechanism wanted.
In the end, we sample the missingness indicators and mask out the data according to the values of
missingness indicators.

3 Simulation Quality

We now evaluate whether generated data from our simulator have the similar property to the real-world
data. We examine the quality of our simulated data by medical experts and statistical analysis.

3.1 Physician Evaluation

To examine the quality of our simulated data, we mix 50 simulated records with 50 records sampled
from the real-world dataset. We then ask a physician specialized in neuropathic pain diagnoses to
rate the 100 mixed records with the following score system:

• Score 1: This is not likely to be a real patient (possible but never see such patient before);
• Score 2: This is likely to be a real patient but is not very common (similar cases have

happened before but rarely);
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(a) Real data variables marginal distribution (b) Simulated data variables marginal distribution.

(c) Co-occurrence matrix of the real dataset. (d) Co-occurrence matrix of the simulated dataset.

Figure 4: Comparison of the marginal distributions and the co-occurrence matrices of the real and
simulated datasets. The orders of variables are the same in Panel (a) and (b). In Panel (c) and (d), the
red color represents pathophysiological diagnosis, the blue color represents pattern diagnosis, and the
yellow color represents symptom diagnosis.

• Score 3: This is a common patient (similar cases show up time by time);

• Score 4: This is a typical patient (similar cases show up very often).

1 2 3 4
0
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20

30
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C
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Synthetic

Figure 3: Physician’s evaluation results
of 50 real data and 50 simulated data.

The physician evaluates the 100 records without knowing
the source of the records (the simulator or the real dataset).
Figure 3 shows the physician’s evaluation results of the
real and the synthetic data. The number of records with
higher scores is increasing with the synthetic data which
is expected due to our score design. The simulator gen-
erates less unlikely diagnostic records than those in the
real datasets, which may be due to the missing and noisy
labels in the real-world data. Also, when one or two un-
likely diagnostic records are generated within many likely
diagnostic labels in a record, the physician considers the
case as "likely". This case happens more in the simulated
data than the real-world data. In general, the result shows
that the physician cannot differ the generated data from
the real-world data. Also, the simulated data follow the desired frequency (increased numbers for
higher scores) from the physician evaluation.

3.2 Data Properties

We compare the marginal probability distributions of the same variables in the real dataset and the
simulated dataset as shown in Figure 4a and Figure 4b. It shows that marginal probability distributions
of variables in both datasets are similar.

We use the co-occurrence matrix normalized by the sample size to show the relation between each
pair of variables in Figure 4c and Figure 4d 3. For example, the upper left corner of the co-occurrence
matrices represents the relations between the variables in the pathophysiological diagnosis and the
pattern diagnosis. We find that the pattern of the simulated data is similar to that of the real data.
In our simulator, we give no constraints on the relations between both sides of variables, e.g. it is

3For better visualization, we further compute the cubic root of the values in the co-occurrence matrices.
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Table 2: Results of causal discovery algorithms using the real dataset and the simulated dataset with
the same sample size. "CauAcc" and "Sim" represent "Causal Accuracy" and "Simulated".

CauAcc F1 Recall Precision
PC GES FCI RFCI PC GES PC GES PC GES

Real 0.041 0.038 0.024 0.021 0.044 0.037 0.025 0.022 0.187 0.199
Sim 0.038 0.063 0.023 0.016 0.047 0.076 0.025 0.043 0.425 0.377

Table 3: Results of different causal discovery algorithms with different sample sizes. The performance
is better when causal accuracy and F1 score have larger values.

Sample size 128 256 512 1024 2048 4096 8192 16384
F1PC 0.019 0.028 0.016 0.040 0.066 0.100 0.142 0.188
F1GES 0.042 0.083 0.120 0.150 0.173 0.217 0.261 0.325
CauAccPC 0.009 0.012 0.009 0.020 0.031 0.048 0.066 0.094
CauAccGES 0.020 0.045 0.067 0.085 0.105 0.134 0.162 0.230
CauAccRFCI 0.021 0.023 0.027 0.033 0.036 0.041 0.053 0.070
CauAccFCI 0.026 0.029 0.034 0.039 0.045 0.051 0.062 0.082

possible to have a connection between left C5 radiculopathy and right neck pain in the graph. We
also compare the correlation matrices in Appendix B.

4 Evaluating Causal Discovery Algorithms with Proposed Simulator

We evaluate major causal discovery algorithms with datasets generated from our simulator. We first
further evaluate the simulation quality by comparing the causal discovery results on a real-world
dataset and a simulated dataset. One advantage of the simulator is that we can generate any amount
of data. Thus, we can evaluate causal discovery algorithms with different sample sizes to show the
asymptotic property of causal discovery algorithms. Next, we apply causal discovery algorithms to
the simulated datasets with different practical issues: Unmeasured confounding, selection bias, and
missing data.

We use the causal discovery algorithms implemented by Tetrad [41]. In the experiments the causal
discovery algorithms comprise: Constraint-based methods, PC, FCI [40], and RFCI [10]; score-based
method, GES [6]. PC and GES output Complete Partially Directed Acyclic Graph (CPDAG), while
FCI and RFCI output Partial Ancestral Graph (PAG). We use the F1 score and causal accuracy [7]
as the evaluation metrics. Results of other metrics such as Structural Hamming Distance (SHD),
precision, and recall are shown in Appendix .

Comparison between simulated and real data. We sample 141 patient records from our simulator
with the same sample size as the real-world dataset. We apply causal discovery algorithms to both
datasets. Their results are shown in Table 2. We find that the causal accuracies and F1 scores of both
datasets are similar and the algorithms in the table cannot recover most edges of the ground-truth
causal graph. The reason might be that the real dataset has a small sample size 141 compared with
the number of nodes and edges in the causal graph. Moreover, Figure 4a shows that the appearance
frequencies of diagnostic labels in the real dataset decay exponentially, which means that many
diagnostic labels only appear in few patient diagnostic records. This is especially difficult for these
methods because they are based on conditional independence tests that require sufficient samples.
Furthermore, we find that the recall rates of PC on both datasets are similar and the precision rate of
PC on the simulated dataset is higher than the precision rate on the real dataset. The reason might
be that we generate values of a variable only based on the values of its parents. Consequently, our
simulator can cancel out the influence of unknown confounders, such as age and occupation of the
patient, and other practical issues in the real dataset. We also find that GES benefits relatively more
than other methods from such property of the simulated dataset.

Sample size. To show the influence of the sample size, we generate simulated datasets with sample
size 128, 256, 512, 1024, 2048, 4096, 8192, and 16384. Under certain assumptions, these methods
are asymptotically correct when infinite data are available. Table 3 shows that the performance
of the algorithms is improved with increasing the sample size, when there is no selection bias,
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unknown confounders, or missing values. However, all these methods are not sample efficient as the
performance is still low and has not saturated even with 16834 data points. Thus, developing sample
efficient causal discovery algorithms is needed, especially when real-life data are costly.

Confounding. We generate simulated data with external variables as confounders (see Appendix C
for details). We compare the performance of FCI and RFCI on the dataset containing unknown con-
founders with that without confounders. The sample size of both datasets is 1024. The causal accuracy
is 0.033 and 0.030 on the dataset with unknown confounders, and 0.039 and 0.033 on the dataset with-
out unknown confounders. The results of the FCI algorithms on the dataset with unknown confounders
are slightly worse than that without unknown confounders because the FCI algorithms consider the
unknown confounders and output Partial Ancestral Graph (PAG) that provides the information about
potential unknown confounders. However, it is far from ideal. We also generate confounding data by
deleting all the data of the common parents in the causal graph. The results are shown in Appendix C.

Table 4: Results of different causal discovery methods
in the presence of selection bias.

FCI RFCI PC GES
CauAcc 0.039 0.039 0.031 0.109
CauAccref 0.046 0.037 0.033 0.114

Selection bias. We choose both sides of
C6, C7, L5, and S1 radiculopathy as the
causes of a selection variable. We then delete
the simulated data regarding the values of
the selection variable. We interpret this set-
ting as a situation where the patients without
those radiculopathies hardly ever go to the
hospital; thus, the hospital hardly collects their data. Table 4 shows the results on the dataset with
selection bias and the reference one without selection bias. RFCI is more robust to selection bias
than FCI, even both should be able to handle it by design. For the algorithms without considering
selection bias, the causal accuracy of GES outperforms PC.

Missing data. We evaluated the performance on all three missingness mechanisms: MCAR,
MAR, and MNAR. We generate missing values in the dataset according to the definition in [23].
To generate the data that are MCAR, the probability distribution of missing values follows the
Bernoulli distribution with the missingness probability 0.0007. To generate the data that are MAR,
we choose variables in the pattern diagnosis as the causes of missingness indicators and variables in
the pathophysiological diagnosis and the symptom diagnosis as the variables with missing values.
Likewise, to generate the data that are MNAR, the variables with missing values are chosen in the
range of all the variables in the causal graph. Since FCI, PC, and GES cannot deal with the dataset
containing missing values, we delete the records containing any missing value and input the deleted
complete dataset. The sample size of the deleted complete dataset is 7042. As a reference, we create
a simulated dataset whose sample size is 7042 without missing values.

Table 5: Results of applying causal discovery algo-
rithms to the MCAR, MAR, and MNAR datasets.

FCI RFCI PC GES
CauAccMNAR 0.059 0.051 0.061 0.154
CauAccMAR 0.063 0.049 0.050 0.135
CauAccMCAR 0.066 0.055 0.067 0.161
CauAccref 0.062 0.050 0.059 0.145
F1MNAR X X 0.133 0.251
F1MAR X X 0.132 0.241
F1MCAR X X 0.141 0.256
F1ref X X 0.156 0.253

Table 5 shows that the results of MAR and
MNAR experiments are worse than the re-
sults of MCAR experiments, which are close
to the reference one without missing values.
This is expected as [44] shows: When the
data are MCAR, causal discovery results are
asymptotically correct; when the data are
MAR and MNAR, these algorithms may pro-
duce erroneous edges in the case where the
missingness indicators are the common chil-
dren or descendants of the common children
of the concerned variables. We then check
the number of missingness indicators satis-
fying this conclusion. It is 4 in MNAR and
7 in MAR out of total 52 missingness indicators.

5 Related Work

The evaluation of causal discovery algorithms mainly consists of synthetic and real data experiments.
Synthetic data are mostly sampled from randomly generated graph structures, or based on models
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proposed in different works. Such synthetic data experiments can show the superior performance
of proposed methods but sometimes may oversimplify the challenges in real-world scenarios [15].
Unfortunately, there are few available real-world datasets for evaluating causal discovery algorithms.
Mooij et al. [25] provided a set of cause-effect pairs with ground-truth causal relations. However,
the cause-effect pairs can be used for a limited range of causal discovery methods such as the Linear
Non-Gaussian Acyclic Model (LiNGAM) [37]. Also, the dataset containing only pair-wise data is
not complex enough to evaluate causal discovery algorithms in real-world scenarios. Several other
datasets from genomics [30, 35, 14] and health-care [44] contain causal relations among multiple
variables and are commonly used for the evaluation; however, few pairs of ground-true causal relations
are known/labeled by domain experts and the evaluation is not systematic. Therefore, it is necessary
to develop causal discovery benchmarks for real-world evaluation.

Filling the gap between the synthetic and real data evaluation [17], the simulator in the context
of real-world applications is needed. Glymour et al. [17] discussed the evaluation of search tasks,
especially causal discovery, and concluded that simulation is a desired way to evaluate the research in
this direction. Despite the argument, [17] did not build any simulator instance. Very recently, a few
simulators for causal discovery evaluation have been developed, especially considering time-series
data. Sanchez-Romero et al. [36] generated simulated fMRI data over time with the focus on the
situation where feedback loops exist. Runge et al. [33] provided ground-truth time-series datasets by
mimicking properties of real climate and weather datasets. However, these simulators are still limited
to the complexity reflecting real-world causal discovery demands and are not suitable for evaluating
the causal discovery methods for static data.

In machine learning, there are many simulators built for other disciplines. For example, reinforcement
learning benefits from the simulators covering practical issues with different applications [8, 5, 19].
Some of them are used for evaluating sequential decision making by considering counterfactual
outcomes. Oberst and Sontag [26] simulated data about treating sepsis among intensive care unit
(ICU) patients. The data consist of vital signs, treatment options, and the final mortality with a fully
specified underlying Markov Decision Process. Another simulator [16] is used for evaluating the
performance of the treatment response over time [21]. Geng et al. [16] provided the dynamics of the
tumor volume and its relation with chemotherapy, tumor growth, and radiation. Given parameters of
the dynamic equations, Lim [21] simulated the data satisfying this domain knowledge and introduced
the practical issues such as unmeasured confounding. However, these simulators contribute to
advancing the research on estimating treatment response over time but not causal discovery.

6 Discussion

In this work, we build a simulator in the neuropathic pain diagnosis setting for evaluating causal
discovery algorithms. Our simulator is based on ground-truth causal relations regarding the domain
knowledge, and its parameters are estimated with a real-world dataset. It contains 222 nodes and
770 edges establishing complex real-world challenges. Our simulator can generate any amount
of synthetic records that are indistinguishable from real-world records judged by physicians. The
simulator can also simulate practical issues in causal discovery research such as missing data, selection
bias, and unknown confounding. We demonstrated how to evaluate causal discovery algorithms using
our simulator for different challenges.

Our simulator not only contributes to causal discovery research but also machine learning in healthcare
research where public data are extremely scarce due to privacy concerns. In the future, we will refine
our simulator to consider border scenarios. At the same time, we will seek further opportunities to
build different simulators for causal discovery evaluation and machine learning in healthcare research.

Acknowledgements. Kun Zhang would like to acknowledge the support by National Institutes of
Health under Contract No. NIH-1R01EB022858-01, FAINR01EB022858, NIH-1R01LM012087,
NIH-5U54HG008540-02, and FAIN- U54HG008540, by the United States Air Force under Contract
No. FA8650-17-C-7715, and by National Science Foundation EAGER Grant No. IIS-1829681.
The National Institutes of Health, the U.S. Air Force, and the National Science Foundation are not
responsible for the views reported in this article.

In addition, the authors thank Akshaya Thippur Sridatta and Tino Weinkauf for the help of the audio
dubbing of the 3-minute introduction video and the visualization of the causal graph.

9



References

[1] Dermatone map source. https://i.pinimg.com/736x/ef/76/47/
ef7647ceae98d10588f14b4ecd7e6a89.jpg.

[2] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end speech recognition in
english and mandarin. In International conference on machine learning, pages 173–182, 2016.

[3] E. Bareinboim, I. Guyon, D. Blei, N. Meinshausen, C. Szepesvári, S. Magliacane, and Y. Bengio.
Panel discussion on datasets and benchmarks for causal learning. https://www.youtube.
com/watch?v=QaoijubZTTA, 2008.

[4] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and A. Kendall. Learning to drive
from simulation without real world labels. arXiv preprint arXiv:1812.03823, 2018.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[6] D. M. Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

[7] T. Claassen and T. Heskes. A bayesian approach to constraint based causal inference. arXiv
preprint arXiv:1210.4866, 2012.

[8] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. Quantifying generalization in
reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

[9] L. Colloca, T. Ludman, D. Bouhassira, R. Baron, A. H. Dickenson, D. Yarnitsky, R. Freeman,
A. Truini, N. Attal, N. B. Finnerup, et al. Neuropathic pain. Nature reviews Disease primers, 3:
17002, 2017.

[10] D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson. Learning high-dimensional
directed acyclic graphs with latent and selection variables. The Annals of Statistics, pages
294–321, 2012.

[11] J. D. Correa and E. Bareinboim. Causal effect identification by adjustment under confounding
and selection biases. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[12] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory.
In International conference on algorithmic learning theory, pages 38–53. Springer, 2008.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[14] A. Dixit, O. Parnas, B. Li, J. Chen, C. P. Fulco, L. Jerby-Arnon, N. D. Marjanovic, D. Dionne,
T. Burks, R. Raychowdhury, et al. Perturb-seq: dissecting molecular circuits with scalable
single-cell rna profiling of pooled genetic screens. Cell, 167(7):1853–1866, 2016.

[15] D. Garant and D. Jensen. Evaluating causal models by comparing interventional distributions.
arXiv preprint arXiv:1608.04698, 2016.

[16] C. Geng, H. Paganetti, and C. Grassberger. Prediction of treatment response for combined
chemo-and radiation therapy for non-small cell lung cancer patients using a bio-mathematical
model. Scientific reports, 7(1):13542, 2017.

[17] C. Glymour, J. D. Ramsey, and K. Zhang. The evaluation of discovery: Models, simulation and
search through “big data”. Open Philosophy, 2(1):39–48, 2019.

[18] P. O. Hoyer, S. Shimizu, A. J. Kerminen, and M. Palviainen. Estimation of causal effects using
linear non-gaussian causal models with hidden variables. International Journal of Approximate
Reasoning, 49(2):362–378, 2008.

10

https://i.pinimg.com/736x/ef/76/47/ef7647ceae98d10588f14b4ecd7e6a89.jpg
https://i.pinimg.com/736x/ef/76/47/ef7647ceae98d10588f14b4ecd7e6a89.jpg
https://www.youtube.com/watch?v=QaoijubZTTA
https://www.youtube.com/watch?v=QaoijubZTTA


[19] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. In IJCAI, pages 4246–4247, 2016.

[20] N. Kallus, X. Mao, and A. Zhou. Interval estimation of individual-level causal effects under
unobserved confounding. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 2281–2290.
PMLR, 16–18 Apr 2019. URL http://proceedings.mlr.press/v89/kallus19a.html.

[21] B. Lim. Forecasting treatment responses over time using recurrent marginal structural networks.
In Advances in Neural Information Processing Systems, pages 7483–7493, 2018.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[23] K. Mohan, J. Pearl, and J. Tian. Graphical models for inference with missing data. In Advances
in neural information processing systems, pages 1277–1285, 2013.

[24] K. Mohan, F. Thoemmes, and J. Pearl. Estimation with incomplete data: The linear case. In Pro-
ceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, pages 5082–5088. International Joint Conferences on Artificial Intelligence Organization, 7
2018. doi: 10.24963/ijcai.2018/705. URL https://doi.org/10.24963/ijcai.2018/705.

[25] J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing cause from
effect using observational data: methods and benchmarks. The Journal of Machine Learning
Research, 17(1):1103–1204, 2016.

[26] M. Oberst and D. Sontag. Counterfactual off-policy evaluation with gumbel-max structural
causal models. In International Conference on Machine Learning, pages 4881–4890, 2019.

[27] D. D. Ohnmeiss, H. Vanharanta, and J. Ekholm. Relation between pain location and disc
pathology: a study of pain drawings and ct/discography. The Clinical journal of pain, 15(3):
210–217, 1999.

[28] M. Osama, D. Zachariah, and T. Schön. Inferring heterogeneous causal effects in presence of
spatial confounding. arXiv preprint arXiv:1901.09919, 2019.

[29] J. Pearl. Causality. Cambridge university press, 2009.

[30] J. Peters, P. Bühlmann, N. Meinshausen, et al. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of the Royal Statistical Society Series B, 78(5):
947–1012, 2016.

[31] J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning
algorithms. MIT press, 2017.

[32] D. B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[33] J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour,
M. Kretschmer, M. D. Mahecha, J. Muñoz-Marí, et al. Inferring causation from time series in
earth system sciences. Nature communications, 10(1):2553, 2019.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[35] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

[36] R. Sanchez-Romero, J. D. Ramsey, K. Zhang, M. R. Glymour, B. Huang, and C. Glymour.
Estimating feedforward and feedback effective connections from fmri time series: Assessments
of statistical methods. Network Neuroscience, 3(2):274–306, 2019.

[37] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-gaussian acyclic model
for causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030, 2006.

11

http://proceedings.mlr.press/v89/kallus19a.html
https://doi.org/10.24963/ijcai.2018/705


[38] I. Shpitser. Consistent estimation of functions of data missing non-monotonically and not at
random. In Advances in Neural Information Processing Systems, pages 3144–3152, 2016.

[39] P. Spirtes, C. Meek, and T. Richardson. Causal inference in the presence of latent variables
and selection bias. In Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence, pages 499–506. Morgan Kaufmann Publishers Inc., 1995.

[40] P. Spirtes, C. N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper, and T. Richardson.
Causation, prediction, and search. 2000.

[41] P. Spirtes, C. Glymour, and R. Scheines. The tetrad project: Causal models and statistical data.
pittsburgh, 2004.

[42] E. V. Strobl, S. Visweswaran, and P. L. Spirtes. Fast causal inference with non-random
missingness by test-wise deletion. International Journal of Data Science and Analytics, pages
1–16.

[43] Y. Tanaka, S. Kokubun, T. Sato, and H. Ozawa. Cervical roots as origin of pain in the neck or
scapular regions. Spine, 31(17):E568–E573, 2006.

[44] R. Tu, C. Zhang, P. Ackermann, K. Mohan, H. Kjellström, and K. Zhang. Causal discovery in the
presence of missing data. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 1762–1770.
PMLR, 16–18 Apr 2019. URL http://proceedings.mlr.press/v89/tu19a.html.

[45] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang. Residual attention
network for image classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3156–3164, 2017.

[46] C. Zhang, H. Kjellstrom, C. H. Ek, and B. C. Bertilson. Diagnostic prediction using discomfort
drawings with IBTM. In MLHC, 2016.

[47] J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent
confounders and selection bias. Artificial Intelligence, 172(16-17):1873–1896, 2008.

[48] K. Zhang, J. Zhang, B. Huang, B. Schölkopf, and C. Glymour. On the identifiability and
estimation of functional causal models in the presence of outcome-dependent selection. In UAI,
2016.

[49] K. Zhang, B. Schölkopf, P. Spirtes, and C. Glymour. Learning causality and causality-related
learning: some recent progress. National science review, 5(1):26–29, 2017.

12

http://proceedings.mlr.press/v89/tu19a.html

