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ABSTRACT: In holographic duality, if a boundary state has a geometric description
that realizes the Ryu-Takayanagi proposal then its entanglement entropies must obey
certain inequalities that together define the so-called holographic entropy cone. A
large family of such inequalities have been proven under the assumption that the bulk
geometry is static, using a method involving contraction maps. By using kinematic
space techniques, we show that in two boundary (three bulk) dimensions, all entropy
inequalities that can be proven in the static case by contraction maps must also hold
in holographic states with time dependence.
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1 Introduction

There is a widespread belief that the Ryu-Takayanagi (RT) proposal [1, 2] is a pow-
erful hint for understanding quantum gravity. It says that in holographic duality von
Neumann entropies of boundary subregions are ‘geometrized’ in the bulk: they are
represented by extremal surfaces (when the bulk theory is Einstein gravity) or similar



extremal, extended objects. What does this fact tell us about the fundamental theory
of gravity?

Part of the message has already been decoded; examples include subregion-subregion
duality [3, 4] and the quantum error-correcting property of the bulk [5]. Yet we expect
the RT formula—and its covariant generalization, the Hubeny-Rangamani-Takayanagi
(HRT) formula [6, 7]—to usher further progress. One promising direction to explore
is the following question: which theories and states admit classical bulk duals? This
problem (and its converse [8]) has inspired several lines of ongoing research, for exam-
ple [9-17]. The present paper is an amalgamation of two approaches, which investigate
special properties of holographic states and the implications of the RT and HRT for-
mulas.

The program [18] that directly begot this paper starts by asking: if entanglement
entropies are ‘geometrized’ as prescribed by Ryu and Takayanagi, what restrictions on
the class of states does this impose? A hallmark example of extra restrictions levied
by the geometrization of entanglement is the monogamy of mutual information [19]:

S(AB) + S(BC) + S(CA) > S(ABC) + S(A) + S(B) + S(C). (1.1)

Here A, B, C' are disjoint boundary regions and S(X) is the von Neumann entropy on X
which can be one of these regions and their various unions. To formalize the problem,
one considers the set of all possible tuples of entanglement entropies on these regions
and their unions that can be achieved by a quantum state such that each individual
entropy is an extremum of some functional such as a bulk area. A simple argument
reveals that this object is a cone in the multi-dimensional ‘entropy space’ whose axes
parameterize the von Neumann entropies of subregions and their unions. The shape
of the cone demarcates the divide between states with smooth geometric descriptions
and other states, the latter being either absent or very exotic from the viewpoint of
semiclassical gravity.

Any hypersurface in the entropy space that does not intersect the holographic en-
tropy cone defines an inequality that is obeyed by all states with semiclassical bulk
duals. Of particular interest are inequalities represented by hypersurfaces that are tan-
gent to the cone; their joint envelope is the boundary of the entropy cone. If the cone is
polyhedral then it is fully determined by a finite set of inequalities, which are identified
with facets of the cone and which we now focus on. Inequality (1.1), the monogamy of
mutual information, is an example of such a facet. Saturating monogamy or any other
holographic inequality identified with a facet isolates an interesting class of states: ones
whose entanglement entropies are only marginally amenable to an RT-style geometriza-
tion, in the sense that a small deformation of their entanglement entropies could make
it impossible to view them as extremal values of some bulk functional. In this way,



every facet of the holographic entropy cone (every inequality) presumably reflects some
essential property of states that can describe a smooth geometry in quantum gravity.

Little is known for certain about the full holographic entropy cone. However, if
we impose the additional condition that the conformal field theory (CFT) states and
their dual bulk geometries be static, the static holographic entropy cone has been
characterized in great detail [18]. Tts authors found infinitely many inequalities obeyed
by static holographic states which, in particular, include all such inequalities for up
to n = 5 named regions A, B,C, D, E. This means that the ‘n < 5 static holographic
entropy cone’ has been fully determined.? Our goal in this paper is to check whether
time-dependent holographic states can violate any of the static entropy inequalities,
including those proven in [18]. Restricted to the context of fewer than six named
regions, our question is this: is the full holographic entropy cone larger than the static
one?

There is a second lesson drawn from the RT proposal, which also undergirds the
material in this paper: that understanding bulk physics can be simplified by using bi-
local quantities on the boundary. Two examples of this are the bit thread prescription
for computing entanglement entropies [21, 22] and the kinematic program [23]. The for-
mer converts the task of finding entanglement entropies into a problem of maximizing a
certain flow; the integral curves of the flow have two endpoints on the boundary, naively
interpretable as the locations of degrees of freedom tied by a bi-local correlation.® The
kinematic program, in turn, seeks to organize the data about the CFT and AdS using
bi-local objects such as bulk geodesics or OPE expansions of pairs of operators [26-29]
(see also [30]). In the present paper, we use kinematic space to organize the data about
entanglement entropies (computed by the HRT proposal) in time-dependent settings.

By doing so, we find that in two boundary (three bulk) dimensions, all entropy
inequalities that can be proven in the static case by contraction maps (including those
proven in [18]) continue to hold in time-dependent states. In particular, this means
that in two boundary dimensions time-dependent states do not make (the known part
of) the holographic entropy cone larger than the static cone. On a technical level, going
to kinematic space allows us to retain all the truly essential ingredients of the proof in
[18] while disposing of the assumption of a static bulk. Where the authors of [18] cut
and glued subregions of the bulk, we manipulate more abstract quantities defined in
kinematic space, which generalize the static concept of the intersection number of two

1By ‘static’ we mean that there is a time reflection symmetry with respect to a time slice on which
the boundary regions lie.

2The n = 5 inequalities proven in [18] were only later shown to form a complete set [20].

31t would be interesting to understand all holographic inequalities found in [18] in the language of
bit threads. For the monogamy of mutual information (1.1), this was carried out in [24, 25].



geodesics.* More conceptual comments on why kinematic space is helpful in generaliz-
ing the proof of [18]—and why this benefit is limited to two boundary dimensions—are
contained in the Discussion.

The paper is organized as follows: In Sec. 2 we set up the problem and explain
the necessary machinery from kinematic space. Sec. 3 reviews the static proof of holo-
graphic entropy inequalities given in [18]. Sec. 4 proves the same inequalities in time-
dependent pure states on a circle or line; this is the main result of our paper. Because
our proof may be challenging to parse in a casual reading, we illustrate it with an
informative example in Sec. 5. Sec. 6 extends the proof of Sec. 4 to mixed states and
CFTs on other (disconnected) topologies. We comment on the significance and outlook
of our results in the Discussion.

2 Preliminaries

2.1 Notation

Between now and Sec. 6 we will assume that the two-dimensional CFT is in a pure
state and lives on a connected Lorentzian manifold—either Minkowski space R>! or a
cylinder S x time. The extension of our proof to CFTs living on disjoint unions of such
manifolds and to mixed states—as is the case in holographic duals of multi-boundary
black holes—is covered in Sec. 6.

We will be proving inequalities of the form

Z alS(]l) Z ZBTS<JT> ) (21>

where o; and 3, are positive coefficients. The I; and J, are subregions on some space-
like slice of the CFT and we do not assume that they are connected.

It is useful to set a notation for the connected components of the regions I; and J,.
We will refer to such connected components as X;, with ¢ indexing the ordering of the
intervals on the CFT slice. (The ordering is the reason why it is convenient to assume
that the CFT lives on a connected manifold.) When the CFT lives on a circle, i is
understood modulo N, where N is the total number of disjoint intervals that comprise
the I;s and J,.s. The interval which separates X;_; from X; will be called Y;; when X;_;
and X; are contiguous, Y; = (). As a final piece of notation, we let:

ZQZ' = Xz and Zgi_l = Y; (22)

4Ref. [31] explains that our kinematic space ‘intersection numbers’ can be related to ordinary, static
intersection numbers by modular flow.



Figure 1. The connected (left) and disconnected (right) phases of the holographic entan-
glement entropy of two intervals. The coloring of the disconnected phase is explained in the
text; see also Fig. 2.

The indices of the Zs are valued modulo 2.

If we vary the relative sizes of the Z-intervals, the holographic entanglement en-
tropies will undergo phase transitions. This happens when different collections of
geodesics that connect interval endpoints exchange dominance and become minimal
as stipulated by the RT proposal. A prototypical example of this phenomenon is
the phase transition in the holographic entanglement entropy of two disjoint intervals,
which was studied in [32]. This entanglement entropy can be either in the connected or
disconnected phase; see Fig. 1. Our proof will require tracking the phases of the terms
on the left hand side of (2.1) and adjusting the phases of terms on the right hand side.
Thus, it is important to have an efficient vocabulary for identifying and distinguishing
such phases. We will refer to distinct phases as colorings.

Consider some S(I;) (or S(J,)), which is part of inequality (2.1). Region I; is the
union of some number of X;s. We will partition these connected components of I; into
colors. A coloring of the components of [; specifies a phase of S(I;) in that all intervals
marked with the same color (and only they) are connected in that phase. For example,
if I; comprises four intervals X, Xy, X3, X4, we have the following colorings:

( X2X3X4) or

(Xl)(X2X3X4) or (XQ)(X1X3X4) or (Xg)(X1X2X4) or (X4)(X1X2X3)
(X1X5)(X3X4) or (XXHEGXY) or (X1X,)(X2X3) or
(X1)(X2)(X3X4) and 5 other permutations or

(X)X

X1)(X2) (X5)(Xa). (2.3)



Figure 2. The phase (X4X5)(X2X3XX7)(X1) of a seven-interval region on a circle and its
coloring tree (see text).

The top option is the completely connected phase; the bottom one is the completely
disconnected phase. The left panel of Fig. 2 depicts an example coloring (phase) of a
seven-interval region on a circle.

One may object that a complete characterization of a phase should also tell us the
ordering of intervals within one color. As an example, in addition to the completely
connected phase of three intervals (X;X5X3), there might conceivably exist an alter-
native phase (X;X3X5), which is also ‘completely connected.” This turns out not to
be the case: the minimal configuration is always the one where successive geodesics
connect intervals according to their spatial ordering. We prove this intuitive fact in
Appendix A.

A final caveat about phases of entanglement entropy is that not all colorings are
valid: in the spatial ordering, the colors of intervals must never alternate. As an
example, the coloring (X;X3)(X2Xy) is forbidden, which is why we crossed it out
from the list above. This rule reflects the requirement that the minimal surface which
computes S(I;) be homologous to [;. In a static situation, it means that the minimal
surface may not cross itself.

Although in the preceding discussion we colored the connected components of I,
in a pure state any such coloring uniquely colors I;, the complementary region. In
particular, if X; and X, are consecutive intervals with the same color in /; then Y;
and Y; have the same color in I;. The coloring of I; and of I; contains equivalent
information because specifying the phase of S(I;) also specifies the phase of S(I}).



2.2 Inequalities as adversarial games

In every specific instance of the problem, verifying an inequality amounts to the fol-
lowing: given a coloring on the left, we must find one coloring on the right whose total
geodesic length is no greater. Note that it is unnecessary to find the globally minimal
coloring on the right; we only have to find one which is no greater than the left hand
side. (If we succeed in finding one such coloring, the global minimum—if different—will
be even smaller and the inequality will still hold.) Thus, we can recast the problem
as an adversarial game: one player chooses a coloring for the left and her opponent’s
objective is to find an even smaller coloring for the right. To prove an inequality is to
formulate a winning strategy for the second player.

The inequalities that we are mainly interested in were proven in [18] to hold in static
configurations. Our goal is to show that in three bulk dimensions, every inequality
proven in [18] also holds when the bulk space-time is time-dependent. To do so, we will
reuse certain ingredients from the proof in [18] to formulate a winning strategy for the
second player. Verifying that the resulting strategy guarantees a win will not involve
the existence of a static bulk, but rely on purely boundary considerations by exploiting
properties of kinematic space.

2.3 Kinematic space

In its most general form, kinematic space comprises arbitrary pairs of points from a
CFT manifold [23, 28]. Here we will draw the points from a spatial slice of the CFT
on which the intervals X; and Y; live. In fact, even this notion of kinematic space is
too detailed for our purposes: we will bin together points living in any one interval to
form a discretized kinematic space whose coordinates are the X;s and Y;s themselves.
Such a kinematic space can be represented as a symmetric matrix; it has the topology
of T?/Zy. We will denote our discretized kinematic space K; see Fig. 3.

The coloring for the [*" term on the left produces a function h; on K; we will call
this function the overlap number. For an element (Z;, Z;) € KC, hy(Z;, Z;) encodes how
many colors separate intervals Z; from Z;. For instance, if X;, X; C I; have the same
color, h(X;, X;) = 0 and, assuming Y; # 0 # Y1, h(X:,Y;) = (X, Yj41) = 1. In
order to formalize the definition of h;, we have to introduce an auxiliary concept: the
coloring tree (see the right panel of Fig. 2).

To every color in the coloring of I; or of I; we associate a vertex of a graph. Two
vertices are connected if there exists a pair of contiguous intervals bearing their two
colors. To see that a graph defined this way is necessarily a tree, consider one vertex,

which corresponds to a color ¢ and intervals (X;, X;,...X; ). Let us partition the

ik



Figure 3. The kinematic space and overlap number h(Z;, Z;) for the phase depicted in Fig. 2.

remaining intervals into groups which fall in between the consecutive components of c:

group I: {)/i1+17 Xi1+17 s 7}/1'2}
group 2: {Yi,q1, Xiyy1,. -+, Yig ) (2.4)

Each of these groups accounts for one edge adjacent to ¢ because Y;, 1 and Y;, have the
same color in I;. (When Y; ;1 = 0, substitute X;, 1 instead.) But in a valid coloring—
one where colors do not alternate—mno color can appear in more than one group. Thus,
no two edges adjacent to ¢ can be part of a loop.

With recourse to the coloring tree, it is easy to define the overlap number. We
set hy(Z;, Z;) to be the graph distance between the colors of Z; and Z; in the coloring
tree. In static configurations, the overlap number has a more direct meaning: it takes
a geodesic with endpoints in Z; and Z; and counts its intersections with the geodesics
that compute S(I;). We stress, however, that the coloring tree and h; are purely
boundary concepts and their definitions make no commitment to a static bulk. The
overlap number for the phase depicted in Fig. 2 is tabulated in Fig. 3.

We can combine the overlap numbers h; from different terms on the left hand side



to form an aggregate quantity which we call the overlap function:
L
hins(Zi, Z5) =Y onhu(Z;, Z;). (2.5)
=1

This object counts the total overlap number of (Z;, Z;) in a particular choice of colorings
for all terms on the left hand side of (2.1). In our adversarial game, the right hand side
player’s choice of coloring can similarly be scored by an overlap function hrpg. The
importance of these functions is captured by the following two lemmas.

2.4 Overlaps determine multiplicities of all geodesics

Lemma 1. In every coloring of the left hand side, the overlap function hpgs completely
characterizes the collection of geodesics that compute >, oqS(1;). Explicitly, let the
minimal geodesic that connects the common endpoint of Z; and Z; 1 to the common
endpoint of Z; and Zj1 appear on the left hand side of (2.1) kpus(i,j) times. This
multiplicity of geodesics is a nonnegative integer determined by hypys via:

o 1
krus(i,j) = §(hLHS(Zi, Zi) + hins(Zig1, Zisa) — hons(Ziy Zisa) — hons(Zi, Z5)).
(2.6)

Proof. The geodesic under consideration contributes to a given term S(I;) if and only
if on the coloring tree of I;, Z; and Z;;, share one color, whereas Z;;; and Z; share a
different color. To diagnose this, consider the difference between

1 if Z; and Z;4; have different colors and
Zj; is closer to Z; 11 than to Z; on the coloring tree of I;

hl(Zi7 ZJ) _ hl(Zz'+17 Z]) — 1 if Z; and Z;11 have different colors and (27>

Z; is closer to Z; than to Z; 41 on the coloring tree of I;
0 otherwise (i.e., if Z; and Z;41 have the same color
on the coloring tree of I;)

and

if Z; and Z; 1 have different colors an
1 if Z, d Zi41 h diff t col d
Zj41 is closer to Z; 11 than to Z; on the coloring tree of I;

) ] . ) ) _ if Z; and Z;41 have different colors and
hl(Z“ ZJ+1) hl<Z’L+17 ZJ+1) - -1 Zj41 is closer to Z; than to Z;41 on the coloring tree of I

0 otherwise (i.e., if Z; and Z;4+1 have the same color
on the coloring tree of I;)

(2.8)
First, in the case of

hl(Z’ia Z]) - hl(Z’L'+17 ZJ) = 17 hl<Zi7 Zj+1) - hl<Zi+17 Zj+1) = _17 (29)

the geodesic under consideration must contribute to S(1;). To see this, we use eqs. (2.7)
and (2.8) to find that Z; and Z;;; have different colors, and Z; is closer to Z;+1 than



to Z;, whereas Z;;; is closer to Z; than to Z;;;. Since by construction Z; and Z;;
share an edge on the coloring tree, going through Z;, Z;11, Z;, Z;11, and back to Z;
would create a nontrivial loop, unless Z;, Z;; have the same color (corresponding to
the same vertex) and Z; 1, Z; have the same color. This means that the geodesic under
consideration contributes to S(I;).

Second, in all cases where (2.9) is not satisfied, we must have

h(Zi, Z;) — hi(Ziga, Z;) = W(Zi, Zijr) — hi(Ziva, Zjsq). (2.10)

To see this, we note that the left hand side of eq. (2.10) vanishes if and only if its
right hand side vanishes. Therefore, to show eq. (2.10) we only need to rule out the
possibility of its left hand side being —1 and its right hand side being 1. An argument
similar to the one in the previous paragraph (but with Z; and Z;,, exchanged) implies
that Z;, Z; share a color and Z,,, Z;4; share a different color, but this is an invalid
coloring because the colors alternate.

Therefore, eq. (2.6) holds because its right hand side simply collects contributions
of a given geodesic from all terms in ), a;S(I;). O

Of course, the same argument establishes that hryg determines which geodesics
(and with what multiplicities) comprise every phase of ) /,5(J,). In other words,
hrrs and hrys completely characterize the geodesics corresponding to the colorings of
the ;s and J,s, which in turn specify phases of ), ;S(f;) and ) 5,S(J,-). (We cannot,
however, read off from hppg or hrys which phase is physically realized, i.e., which
phase minimizes the total geodesic length.) Since hrps and hrpgs uniquely identify the
geodesics that comprise each phase of >, a;S(1;) and > 3,5(J;), it should be possible
to recast the inequality in terms of overlap functions. This is accomplished by the next
lemma.

2.5 Inequality in terms of overlap functions

Lemma 2. Choose a coloring of each of the regions I and J,.. If hygs > hrus for all
(Zi, Zj) € K then inequality (2.1) holds in this coloring.

Proof. Define
CMI(i,j) = S (Ui Z) + S (Ul_is1Z) — S (Ui Z) — S (UlZis1Ze) > 0. (2.11)

This quantity, a conditional mutual information, is non-negative by virtue of the strong
subadditivity of entanglement entropy [33], which the RT and HRT proposals are known
to obey [7, 34]. Each individual term in (2.11) is the entanglement entropy of a single
interval (a union of contiguous intervals), so there are no phase ambiguities about which
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geodesics compute (2.11). For example, for the first term it is the geodesic connecting
the common endpoint of Z;_; and Z; to the common endpoint of Z;_; and Z;.
In analogy to eq. (2.5), we may define and compute an overlap function for (2.11):

henri ) (Zm, Zn) = 267" (2.12)

where §¥mn = §imgin 4 §ingim  The ordering of 4, j and m,n does not matter because
elements of K are un-ordered pairs and CMI(i,5) = CMI(j,4) in pure states. The
only pair of intervals which has a net overlap with CM (i, ) is (Z;, Z;).

Given hpgg and hgyg obtained from some coloring of the terms of (2.1), consider

R
1 o
RHS' =" B.S(J,) + 5 > (hins(Zi, Z)) — hrus(Zi, Z;)) CMI(i,5).  (2.13)
r=1 i#j

By construction we have hyys = hrgs and therefore, by Lemma 1, both LHS and
RHS'" are computed by the same geodesics with the same multiplicities:®

;alsm) - ; 8,5(J,) + % ; (haiis(Zo Z;) — haus(Z, 2,)) CMI(i,j).  (2.14)

If hpws > hrus for all (Z;, Z;) € K, inequality (2.1) follows (in this coloring). O

Observe that our strategy effectively reduces inequality (2.1) to instances of strong
subadditivity. Our argument thus shows that in three bulk dimensions (at least in pure
states of CFTs on connected manifolds) the difference between (2.1) and strong sub-
additivity is combinatorial in character. The combinatorics identify the applications
of strong subadditivity, which make a specific instance of (2.1) manifest. This is remi-
niscent of the conclusions of [23], which argued that lengths of all space-like curves in
three-dimensional holographic geometries could be calculated by adding up a number
of conditional mutual information quantities or their close analogues [27].

Corollary. A winning strategy is an algorithm which, given a coloring of I, (terms
on the left hand side), finds a coloring of J,. (terms on the right hand side) such that
hras > hrus for all (Zi, Zj) e K.

We will formulate such a strategy in Sec. 4. Luckily, we will not have to start
from scratch. Instead, we will take advantage of properties of contraction maps, which
allowed the authors of [18] to constrain (and determine for up to n = 5 named re-
gions [20]) the static holographic entropy cone.

5This is not affected by the presence of terms with negative coefficients in RHS’, as we can always
move them to LHS.
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3 Contraction map and the static proof

This section reviews relevant aspects of [18]. Here (only in this section) the setup
is static: we consider a time-independent asymptotically AdS geometry that is holo-
graphically dual to some CF'T state. The inequalities of interest now concern minimal
surfaces, which are all taken from a common static slice of the bulk, as dictated by the
RT proposal. The proof of [18] involves partitioning the static bulk slice into regions;
this is the element we will remove in Sec. 4.

We are interested in inequalities of the general form

Z alS(Il) Z ZBTS<JT> ) (31>

where a; and [, are all positive. The sets I; and J, are unions of regions, which
themselves can comprise multiple basic intervals X;. For example, the monogamy of
holographic mutual information

S(AB) + S(BC) + S(AC) > S(A) + S(B) + S(C) + S(ABC) (3.2)

has Iy = AB, I, = BC, I3 = AC and J, = A, J, = B, J3 =C, J, = ABC. (The
regions A, B, C, which are assumed to be disjoint, can consist of an arbitrary number
of basic intervals that we call X;.) We have been calling the number of distinct regions
involved in inequality (3.1) n, in keeping with the notation of [18]. Thus, for (3.2) we
have n =3 (A, B,C), [ = 3, and r = 4, while N, the number of basic intervals, can be
arbitrary.

The authors of [18] represented the composition of I; and J, in terms of regions
A, B,C,... using n + 1 pairs of occurrence vectors. These are vectors in L- and R-
dimensional spaces whose entries—zeroes and ones—encode whether or not the given
region (say, A) is contained inside ; (respectively J,.):

Fr=(AcC ), €{0,1}* and 4= (AcC J)E, {0, 1}~ (3.3)

In addition to n such vectors that correspond to A, B,C,... we also define 7p = 0
and o = 0, which represent the purifying region (the complement of the union of
A B,C,...).

Our argument will make use of another concept defined in [18]: the contraction
map. This is a function f : {0, 1} — {0, 1} which satisfies two properties:

L R
> =) =Y BIf (&), — f(@)] for all F & € {0,1}F, (3.4)
=1 r=1

f(Zs) =1ys for S=0,A,B,C,... (n+1 conditions).
(3.5)

- 12 —



z y= (&)
BC AC ABC  C
O 0 0 0 0
A0 1 1 0
B 1 0 1 0
c 1 1 1 1

Table 1. The unique contraction map for the strong subadditivity inequality.

Eq. (3.4) requires that f shorten distances between two vectors with respect to a norm,
which is set by the coefficients in (3.1). Eq. (3.5) contains the ‘initial data’ based on
the composition of the regions [; and J,.

One of the main results of [18] is that the existence of a contraction map guarantees
the correctness of inequality (3.1), assuming that the bulk geometry is static. The
authors of [18] then found explicit contraction maps for multiple inequalities, which
for n < 5 fully characterize the static holographic entropy cone [20]. For example, the
contraction map that proves the strong subadditivity inequality S(BC) + S(AC) >
S(ABC) + S(C) is shown in Table 1.

In Sec. 4 we explain how to use a contraction map to define a winning strategy
in our adversarial game. This demonstrates that every inequality proven in [18] also
holds in a time-dependent geometry in three bulk dimensions. Importantly, we will not
need to find any new contraction maps. Instead, we explain how to devise a winning
strategy given that a contraction map exists.

3.1 How a contraction map works in the static case

Before returning to time-dependent settings, it is illustrative to review how contraction
maps prove inequalities when the bulk is static. They do this by partitioning the static
slice of the bulk.

Observe that the minimal surface that computes S(/;) divides the bulk static slice
into two parts. One of them, which [18] denotes W}, sits between the minimal surface
and I; on the asymptotic boundary. (The requirement that the minimal surface which
computes S([;) be homologous to I; boils down to demanding that W, exist and be
uniquely defined.) The other part of the bulk slice is its complement, W;. We draw
two examples of Wi-type regions in Fig. 4.

By taking intersections of W;s and W;s, we can partition the bulk static slice into
2% regions; see the right panel of Fig. 4. In easily constructible examples, many of them
may be empty and many others—disconnected. In a general case, however, we have
defined 2 disjoint regions whose union is the static bulk slice. We will associate these
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Figure 4. Two examples of regions W (left and center) and the regions W (Z) labeled with
the components of Z (right).

subregions of the bulk slice with vectors in {0, 1} and call them W (Z):

W@ = () Win (| Wi for &e{0,1}" (3.6)

l|z;=1 U] z;=0

An observation that will be useful momentarily is that among the 2% W (Z%)s, exactly
n + 1 reach the asymptotic boundary; these are the Zgs which we saw in egs. (3.3) and
(3.5).

In a given phase (coloring) of the left hand side, the authors of [18] give the following
prescription for selecting a ‘winning’ right hand side. Let

v, = |J wa@. (3.7)

Z| f(@)r=1

In other words, take all vectors ¥ € {0, 1} whose image under the contraction map
has one in its 7" component and form a union over all of their W (Z)s. Every U, is now
a region on the static bulk slice whose boundary has two parts: one on the asymptotic
boundary and the other in the bulk. On the asymptotic boundary, the boundary of
U, is J,. This is a consequence of the n + 1 ‘initial data’ in eq. (3.5), which guarantee
that amongst the n + 1 W (Z)s that reach the boundary, only those which border the
components of J, are included in union (3.7).

The bulk part of the boundary of U, is some bulk surface; call it A,.. By construc-
tion, A, is homologous to J, and therefore its area is greater than or equal to S(J,)
(because the latter is obtained by minimizing over all bulk surfaces homologous to J,,
including A,.). Thus, inequality (3.1) will follow if one can show

L R
S aS) =) BA,. (3.8)
=1 r=1
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This is guaranteed by the contraction condition (3.4).

To see this, think of A, as a collection of component surfaces Azz, each of
which separates one W (Z) (such that f(Z), = 1) from some other W (") (such that
f(@), =0). A component surface Az z also appears on the left hand side of (3.8) and
contributes with multiplicity Zle aj|z; — x}| because every non-zero entry of ¥ — 2’
identifies one S(I;) to which the common border of W () and W (z") belongs. With
these observations, inequality (3.8) becomes

L R
Y Ao Yl —all 2 23 Ane S BI@, — F@E)L (39)
=1 r=1

= =

T,Z

= =

T,&

which is guaranteed by the contraction property. The factors of 1/2 in (3.9) correct a
double-counting under the exchange & <+ .

This construction appears to heavily depend on the existence of a static bulk. In
particular, the atomic objects that the proof manipulates are the components Az z of
minimal surfaces, which cannot even be defined in a non-static setup. As we presently
explain, the proof in fact carries over to the dynamical context if, instead of components
of minimal areas, we manipulate the overlap numbers in kinematic space.

4 The strategy

We now return to the general, time-dependent setup. As a first step, even though the
bulk geometry contains no privileged spatial slice, we will invent one. In other words,
we choose an auxiliary spatial geometry with the topology of a disk whose boundary is
identified with the CF'T time slice that contains the regions X; and Y.

At this point, it is probably important to appease the reader and emphasize that
the role of the chosen geometry is purely auxiliary. Our proof will not draw from the
choice of geometry any quantitative inputs such as surface areas; instead, the auxiliary
geometry will only help us make certain arbitrary discrete choices in our coloring game.
Moreover, any choice of auxiliary geometry will work for conducting the proof. In this
sense, the freedom in choosing the auxiliary geometry parameterizes the flexibility
and/or redundancy in proving inequalities (2.1) using contraction maps.

4.1 Auxiliary geometry

The important point in choosing an auxiliary geometry is to decide which geodesics
intersect on which side of other geodesics. To illustrate this in more detail, consider
three geodesics 7y, 2.3 such that none of their subtended intervals contains another. In
a static geometry, this would mean that the geodesics intersect pairwise. Now, even
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Z; Z12Z; r4) 4
YN Zg Z, Zg
Z5Zs Z7 Zs ZG Z7

Figure 5. Left and center: the two auxiliary geometries for three mutually intersecting

geodesics. Right: Eight auxiliary geometries can be chosen for four mutually intersecting
geodesics; here we draw the four possible ways to pass the fourth geodesic given the three-
geodesic choice on the left.

though we do not have a physical geometry, we will make a choice and declare geodesics
~v1 and 7, to ‘intersect’ either on one side or on the other side of v3. We have two possible
choices, which are shown in the left two panels in Fig. 5.

When choosing an auxiliary geometry, we make such a choice for every triple of
geodesics whose subtended intervals partially overlap pairwise. In order not to have to
repeat this clunky phrase, from now on we will simply call them ‘mutually intersecting
geodesics,’® with the understanding that their ‘intersection’ happens in the auxiliary
space, not in the physical bulk geometry (where they will in general bypass one an-
other, separated in time). These choices are not all independent; for example, given
four mutually intersecting geodesics 71234, we would naively have 2(:) = 16 possible
configurations but only 8 of them can be realized; see the right panel in Fig. 5.

Proceeding in analogy to the static case, we now define W, and W in the auxiliary
geometry. A given coloring of I; selects a set of geodesics, which subtend components
of I;. Those geodesics and I; form the boundary of a submanifold in the auxiliary
geometry, which is W;; W) is its complement. Thus far, we are using the same definitions
as in the static case, except that they are applied to the auxiliary geometry.

In fact, we will need slightly finer objects than the W;s: their connected compo-
nents. We shall denote the connected components of W; with W, where c labels the
color” in the given coloring (phase) of I;. For example, a phase of I; depicted in Fig. 2

(now we interpret the figure as the auxiliary geometry) has three connected compo-
nents: Wyed = I/I/I(X4X5), Wphe = M/Z(X2X5XGX7), and WE™" = V[/I(Xl). Another example

6In kinematic space, this means a triple of geodesics which are pairwise spacelike separated [23)].
"The superscript ¢ has nothing to do with complements (which are denoted by bars).
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Figure 6. Left and center panels: the division of regions W, and Wj from Fig. 4 into connected

hite = —+black
components. We have Wy = WP 1 1) ellow W =W U , Wy = WY Ly wied,

and Wy = WQWhite L WL Right panel: Regions W (& )E, l.e., the various intersections of
W/ and W,“'s. For example, the purple interior region is W((1, 1))(blue yred) — = Wplie n ysed
——white

while the cyan region adjacent to interval Zz is W ((0,1))(white,eyan) — 7 N Wy, In
this example, Il = leQZ5Z9 and Iz = ZQZgZ7Z11.

of colored Wy regions, which is based on Fig. 4, is displayed in the left and center
panels of Fig. 6. Because we have assumed to work in a pure state on a circle or line,
the coloring of I; automatically colors I;, so we will have analogously defined regions
Wi’

Proceeding in parallel with the static case, we now take all possible intersections
of the regions Wy and W,°. The resulting subregions, which form a partition of the
auxiliary geometry, are defined as

| win () W for Ze{0,1}" (4.1)
l|1‘l:1 l‘a?l:O
Here ¢ is a vector of colors of length L: if ; = 1, ¢; labels a color in [;; otherwise it

labels a color in ;. An example of regions W ()¢ is shown in the right panel of Fig. 6.
Among them, there are 2N special ones, which are contiguous to the boundary of the
auxiliary geometry. They correspond to the basic intervals X; and Y} on the CFT slice.
We will call them W (Z(X;))®™ (and similarly for Y;).® As an illustration, we tabulate
them for the example of Fig. 6 in Table 2

Taking the union of W (Z)¢ over all colors gives us a region, which is directly

8Some of these 2N regions could be identical. For example, W (7(X;))X:) = W (#(X;))?X) if for
all [, X; and X, share a color in the coloring of I; or of ;.
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Zi  2(Zy) c(Z;) W(#(Z;))%%)

A (1’ 0) (yellow, Whlte) W((L 0))(yellow ,white) _ =W yellow N WWhite
Zy (1,1) (vellow, cyan) W ((1,1))0ellow,eyan) — i/ yellow A pp7evan
Zy  (0,1) (white, cyan) W ((0, 1))(white cyan) — Tj7 Ve o g7 evan
Z, (O, O) (White, White) W((O, 0))(wh1te white) _ W, 777 Wwhite W2wh1te
Zs (1,0 (blue, white) W ((1,0))(blues white) — p7 blue T wwhite
Ze  (0,0)  (black, white)  W((0,0))(Plack white) _ T black o g7 white
Z;  (0,1) (black, red) W ((0, 1))(black,red) — 7Pk  ppred

Zs (0,0 (black, gray) W ((0,0))(black gray) — T7, 72 T8
Zy  (1,0) (blue, gray) W ((1,0))(Plue, gray) — 17, blue o Tz, 55
Zw (0,0 (white, gray) W ((0,0))(vhitesray) — T A T8
Zn (0,1) (white, red) W ((0, 1))(white,red) — T7 "1 o ppred

Z1o (O, 0) (Whlte, Whlte) W((O, 0))(Wh1te white) _ WIWhlte n WQWhlte

Table 2. The regions W (Z(Z;))%%), which are contiguous to the boundary, tabulated for
the example from Fig. 6. The instance of Z, and Zs illustrates that they do not have to be
distinct.

analogous to W (Z) in the static case:

U W@ = (Y win (1 W for &e{0,1}" (4.2)

l\a:l 1 l|$l:0

We have seen an illustration of regions W (Z) in Fig. 4. Among the W(Z)s, n + 1 are
special in that they are contiguous to the boundary of the auxiliary disk. These special
ones correspond to the n regions A, B, ... that populate the inequality in question, plus
an (n + 1) one that corresponds to the purifying region.

As one final object, we define for every 1 <r < R

v,= U W( 7). (4.3)
Z|f(@)r=
This is the same definition as in the static case, except that it is applied to the auxiliary
geometry.
4.2 The winning coloring

The following strategy for coloring every J,. on the right hand side of inequality (2.1)
wins the game: two basic intervals X;, X; C J, have the same color in J, if and only
if their corresponding regions W (Z)¢ belong to the same connected component of U,..
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Let us explain this rule in more detail. As we remarked below eq. (4.1), a unique
W (Z)¢ meets the asymptotic boundary of the auxiliary geometry at X; C J,; we
call it W(Z(X;))®X). Of course, interval X; C J, is also contiguous to a unique
W (Z(X}))®X*). The two subregions are contained in U, defined in (4.3) because by
construction U, meets the boundary at J, and X;, X C J,. However, W (Z(X))%%:)
and W (Z(X3))®**) may or may not belong to the same connected component of U,.
In our coloring game, the winning strategy is to assign the same color to X; and X},
in J,. if and only if W (Z(X;))®X) and W (Z(X}))®™* belong to the same connected
component of U,."

This prescription is well-defined because belonging to the same connected compo-
nent of U, is an equivalence relation.

4.3 Proof: why the strategy wins

The strategy defined above picks a coloring of every .J,. on the right hand side of
inequality (2.1). As such, it defines an overlap number h,(Z;, Z;) on kinematic space.
Our task is to prove that hLHS(Zj7 Zk) > hRHS(Zja Zk)7 i.e.,

L R
SN ah(Z,Z) =Y Brhe(Z5. Z)  forall (Z;,Z,) €K (4.4)
=1 r=1

Consider a sequence P of regions W (#(i))® (i = 1,2,...) in our partition of

the auxiliary geometry. The sequence is such that every two consecutive regions are
neighbors across one geodesic in the auxiliary geometry. In this way, P is a path
in the auxiliary geometry, which involves a sequence of jumps across geodesics—from
W (£(1))% to W (Z(i + 1))+D,

For any region V that is a union of some of the W (Z)% in the auxiliary geometry,
let A(P, V') count the number of times P enters or exits V. For example, if P consists
only of W (%)% that are part of V, h(P,V) = 0. If P consists only of W (&) that are
outside V', h(P, V) also vanishes.

Our proof relies on the following two lemmas:

Lemma 3. Let V be the union of some of the regions W (%) in the auziliary geometry.
Say that it meets the asymptotic boundary at Jy, which is a union of basic intervals
Ziy U Zy, U ... We define a coloring of Jy by the rule that two intervals Z; and Zj
are in the same color if and only if W(#(Z;))%%1) and W (%(Z,))%%¥) are in the same
connected component of V. This coloring defines an overlap number hy(Z;, Zy) on
kinematic space.

Tf W (#(X;))X) and W (#(X},))X*) are identical (as pointed out in footnote 8), they automati-
cally belong to the same connected component of U,..
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Let P be a path in the auziliary space that begins at W(#(Z;))%%) and ends at
W(2(Z;,))%%x). Then the following holds

h(P, V) > hv(Zj, Zk) for all (Zj, Zk) ek. (45)

Proof. Consider the coloring tree of Jy, viz. Sec. 2.3 and Fig. 2. The overlap number
hy(Z;, Zy) counts the edges of the coloring tree that must be crossed in going from
the color of Z; to the color of Z;. Every edge in the coloring tree corresponds to a
geodesic in the auxiliary geometry, which separates a color in Jy from a color in Jy .
Thus, hyv(Z;, Zy) identifies and counts certain geodesics that must be crossed at least
once by any path from W (#(Z;))%%) to W(%(Z;))“%*) in our auxiliary space. This
is precisely the content of inequality (4.5). The inequality is saturated if and only if
the path P makes no unnecessary geodesic crossings, i.e., if it never backtracks in the

coloring tree. O

Note that Lemma 3 applies directly to functions h(Z;, Zx) and h,(Z;, Z}) because
by construction

h(Z;, Z0) = hw,(Z;, Z)  and ho(Z;, Z2) = hu (23, Z) - (4.6)

Therefore, for any path P from W (#(Z;))%%) to W (#(Z;,))“4) in the auxiliary geom-
etry, we have:

hi(Z;, Zk) (4.7)
hr(Zj7 Zk) (48>

The second lemma below states that for a given (Z;, Zi) € K, there is a path P such
that inequality (4.7) is simultaneously saturated for all {.

Lemma 4. There ezists a path P in the auxiliary space that begins at W (#(Z;))4%,
ends at W (Z(Zy))%¥) | and satisfies

WP,W) =h(Z;, Z)  forall 1<1<L. (4.9)

Proof. Saturating (4.7) means that P cannot backtrack in the coloring tree of I;. Any
type of backtracking means crossing and re-crossing a geodesic in the auxiliary geom-
etry.

Draw a geodesic v in the auxiliary geometry that starts at some point in the interior
of interval Z; and ends at some point in Zj. By virtue of being a geodesic, v cannot
cross any other geodesic more than once. (Here we rely on the assumption that the
geometry represents a pure state, so that two minimal geodesics can cross at most
once.) Let P be the sequence of regions W (#(i))®® traversed by 7. By construction,
P is a path that never backtracks in the coloring tree of any I, so (4.9) holds. O
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Proof that the strategy of Sec. 4.2 wins. For every (Z;,Zy) € K, take a path P stipu-
lated in Lemma 4. Using (4.8) and (4.9), to prove (4.4) it suffices to show

L

> ah(P,W) > ZR: (4.10)

=1

In fact, instead of considering the entire path P in one go, we can split P into individual
jumps from W (#(i))%® to W (£(i+1))%+1). Let P; be a single jump in P, i.e., a one-step
path from W (7(i))®® to W(Z(i + 1))V, Since

h(P,W,) = Zh P,W))  and  W(PU,) =) WP,U,), (4.11)

it is enough to prove
L R
Z a h(P, W) =Y B (P, U,). (4.12)
= r=1

for every step P, : W(#(i))® — W (Z(i + 1))*V in path P.

But the contraction property (3.4) guarantees that inequality (4.12) holds whenever
we jump from any W (%) to a neighboring W (#')¢. To see this, we recognize from the
definition of W, that h(P;, W) is simply

h(Pi, W) = |w(i + 1) = (@) (4.13)

In other words, the jump W (7(i))® — W (Z(i + 1))°0+Y enters or leaves W, if and
only if the vectors Z(i) and Z(i + 1) differ in their {*" entries. Similarly,

h(R, Ur) = |f(f(l + 1))7“ - f(f(l))r| ) (414)

that is, in jumping from W (Z(i))® to W (Z(i + 1))%*Y we enter or leave U, if and
only if the vectors f(#(i)) and f(Z(i + 1)) differ in their r*® coordinate.
In this way, inequality (4.12) becomes

Zal|m+ — (i Z: F(@G+1), — f(ZG),], (4.15)

which follows from the contraction property (3.4). O

Therefore, we have proved inequality (2.1) in general, time-dependent settings using
the existence of a contraction map.
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r y=[f(7)

AB  BC AC AB  ABC C

0] 0 0 0 0 0 0
0 0 1 0 1 0

0 1 0 0 1 0

C 0 1 1 0 1 1
1 0 0 0] 0

A 1 0 1 1 1 0
B 1 1 0 1 1 0
1 1 1 1 1 1

Table 3. A non-trivial contraction map for a linear combination of strong subadditivity and
S(AB) > S(AB), inequality (5.1). The AB column in the image of f(Z) differs from the AB
column on the domain side of f in the boxed entry. The ABC-column of f(Z) differs from
the ABC-column in Table 1 (the strong subadditivity contraction map) in the boxed entry.

5 Example

We illustrate the winning strategy defined in the previous section using the following
inequality:

S(AB) + S(BC) + S(AC) > S(AB) + S(ABC) + S(O). (5.1)

This is simply the strong subadditivity inequality S(BC)+ S(AC) > S(ABC) + S(C)
plus the tautology S(AB) > S(AB). This inequality showcases several noteworthy
features of our proof, but it is sufficiently transparent so the reader will not be distracted

by adventitious features of the example. We will use the contraction map f(Z) displayed
in Table 3.

Comment 1: Because we did not cancel the tautology S(AB) > S(AB) out of
inequality (5.1), region AB has a column on both the domain and the range side of
f(Z). The simplest contraction map for (5.1) would have set both AB-columns equal
to one another (f(¥)ap = wap) and copied the entries of the strong subadditivity
contraction map (Table 1) to the columns f(Z)apc and f(Z)c. The resulting strategy
in the coloring game would be to color ABC' and C' in the same way as in proving
strong subadditivity, and to color AB as it was given on the left hand side. Such a
strategy effectively cancels S(AB) out of both sides of inequality (5.1).

Comment 2: Instead, Table 3 presents a less trivial contraction map, where the
strong subadditivity and the tautology ‘interact.” The fact that the AB-column on
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Figure 7. Auxiliary geometries for inequality (5.1): Geometry I (left) and Geometry II
(right). The boundaries of region W4p are marked in purple, the boundaries of Wx¢ are
marked in green, and the boundaries of Wpc are marked in orange. We label the regions
W(:E')E with their Z-vectors, e.g., 101 stands for WapNWgcNWac. Because each Wh is in the
disconnected phase, every O-entry in Z carries a superscript that labels the color component
of Wy,: B for the ‘bigger’ component and S for the ‘smaller’ component (a single Y-interval).
No color label is given for l-entries in & because each Wy, is connected (and therefore has a
single color).

the range side of f(Z) differs from the AB-column on the domain side means that the
player can deliberately choose a ‘suboptimal’ coloring for AB and still win the game.

Consider an instance of (5.1) where A, B, C are intervals on a circle and AB, BC, AC
are each in connected phases. Before using Table 3 to find a winning strategy, we need
to choose an auxiliary geometry. There are two distinct choices, which we call Geome-
try I and Geometry II; see Fig. 7.

Next, we use Table 3 to find the regions U, defined in eq. (4.3). We have drawn an
example in Fig. 8. For example, for Usp we have

Uap = (Wap N Wpe N Wac) U (Wap N Wae N Wac) U (Wag N Wee N Wac)
=W((1,0,1)) UW((1,1,0)) UW((1,1,1)). (5.2)

Comment 3: In Geometry I, Uyp is connected via a bridge region W((1,1,1)) so
the winning strategy sets AB to the connected phase. But in Geometry II, the bridge
W((1,1,1)) is missing and Uap is disconnected. Working with this auxiliary geometry,
the player will color A and B in AB with different colors and still win the game—even
though she knows the minimal surface for AB is the connected one (as the coloring
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Figure 8. The regions U, in both auxiliary geometries. The boundaries of Usp are marked
in purple, the boundaries of U4p¢ in black, and the boundaries of Ug in yellow. In Geometry
II, Uspc excludes the little central region 020207, but this does not affect the coloring of
ABC'; we mark this inconsequential boundary of Uapc in dotted black. Collectively, the
boundaries of Uap, Uapc, and Ug coincide with the boundaries of Wap, W, and Wac
from Fig. 7.

of AB on the left hand side of the inequality indicates). In the contraction map,
this deliberately suboptimal gambit originates from choosing the AB-column in f(Z)
different from the AB-column on the ¥ side of the table.

Importantly, the winning strategies derived from the two auxiliary geometries are
different! This illustrates that the winning strategy depends not only on the contraction
map f, but also on the auxiliary geometry chosen.

Comment 4: Imagine that our auxiliary geometry (either one) is the spatial slice of
a static bulk spacetime. In such a case, drawing the boundaries of the regions U, on
the geometry makes the inequality manifestly true; see Fig. 8. This is because each
geodesic segment appears the same'® number of times on the left hand side (Fig. 7) as
on the right hand side (Fig. 8). This is the essence of the static proof of Ref. [18].

In our proof, however, Fig. 8 functions only as an auxiliary geometry and it would
be sloppy to conclude that inequality (5.1) holds simply by beholding the two figures.
Instead, we must interpret the multiplicities of the geodesic segments in Fig. 8 as

contributions, via eq. (4.11), to quantities h(P, W;) and h(P, U, ) defined in eq. (4.5).

Before discussing how this works, we remind the reader that in eq. (4.1) we have
subdivided the regions W (Z) of the auxiliary geometry into color-wise components.

10 or greater, though this does not happen in the present case.
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Since Wap, Wpe, and Wye are all connected, they only comprise a single color; we
omit it in our labeling of Figs. 7 and 8. But for their complements, W4z, Wae, and
Wac, each comprises two colors, which we label B (bigger) and S (smaller, i.e., a single
Y-interval). Two examples of colored subregions W (Z)¢ are W ((1,0,1))=%) and
W((0,0,1))B5=) which in Figs. 7 and 8 are labeled 10%1 and 0B0P1.

To examine the logic of our proof, let us look at the single-step path P; in the aux-
iliary geometry, which jumps from W((1,0,1))=57) to W((0,0,1))B57). We have
encountered such single-step paths in egs. (4.11) and (4.12) in Sec. 4.3. The geodesic
segment that separates W ((1,0,1))=5=) from W((0,0,1))BE7) in the auxiliary ge-
ometry is part of the boundary of Wy4p, but not part of the boundary of Wpe or
VVAC:

h(P;,Wap) =1=(1,0,1) = (0,0,1)| , . (5.3)
h(P;,Wpc) = 0= |(1,0,1) = (0,0,1)| 5.,
h(P;,Wac) =0=|[(1,0,1) = (0,0,1)| ,.-

We can observe this in Fig. 7; in Table 3, this fact is encoded in the component-wise
differences between the #-vectors (1,0,1) and (0,0,1). For the right-hand-side terms
of the inequality, we similarly have:

h(P;,Uap) =1=|f((1,0,1)) = £((0,0,1))| , » (5.6)
h(P;,Uapc) = 0= |f((1,0,1)) — £((0,0,1))| , s 7)
h(P;,Uc) =0 =|f((1,0,1)) — f((0,0,1))|,

These quantities are encoded in the component-wise differences between the respective
f (&) vectors in the contraction map. In Fig. 8, they encode whether or not our geodesic
segment is part of the boundary of Usp (respectively Uapc and Ug). The number of
times the said geodesic segment is swept on Fig. 7 minus the number of times it is
swept on Fig. 8 is

L R
> ah(P,Wi) =Y By (P, Uy), (5.9)
=1 r=1

which is non-negative by the contraction property. Because the above facts can be read
off from Table 3, they hold irrespective of which auxiliary geometry we choose.

In Lemma 2 of Sec. 2.5 we established that inequality (5.1) will follow if the overlap
functions on kinematic space can be shown to satisfy

L R
his(Zy, Z) = awhi(Zy, Zk) =Y By hel(Zy, Z) = hrus(Z;, Zi) (5.10)

r=1
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Y. Y.
1 3 Y, Y,

Figure 9. The winning strategies that arise from auxiliary Geometry I (left) and Geometry II
(right). We superpose them here on top of Geometry II and Geometry I, respectively (see
Comment 5 for explanation). The color scheme is the same as in Fig. 8.

for all (Z;,Z;) € K. In Lemma 4 of Sec. 4.3, we saw that for a given (Z;,Z;) € K a
path P in the auxiliary geometry can be found such that

hP,W,) = h(Z;,Z) foralll1 <I<L and (5.11)
hP,U,) > h.(Z;,Z) foralll <r <R. (5.12)

This reduced the proof to showing

L

R
> ah(P,W) =) B h(PU) >0 (5.13)
=1 r=1

for some collection of paths P. Observing that each such path consists of single-jump
paths P; further reduced the proof to verifying

L R
3 (z () 3 5 UT>) -0 514
i \i=1 r=1
The quantity in parentheses is non-negative by the contraction property. This is ex-
actly what we verified in (5.9) for the path P;, which jumps from W ((1,0, 1)) to
W((0,0,1))F).

Comment 5: Some readers may still feel puzzled by the freedom to choose an aux-
iliary geometry. This freedom makes it look like the time-dependent problem is easier
than the static problem: not only does the former reduce to the latter but, moreover,
the former reduces to an arbitrarily chosen instance of the latter.
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auxiliary Geometry | auxiliary Geometry 11

hapa(Yz, C) 2
hpo(Ys, C) 1
hac(Ys, C) 1
hAB(T) (B7 C) 0
hape(Ys, C) 1
he(Ys, C)
Zlel Qg hl - Zf:l Br hr 0 2

Table 4. The quantities h;(Y2,C) and h, (Y2, C) derived from using either auxiliary geometry.

To see how this works, let us exercise our freedom to choose an auxiliary geometry
in the most contrarian fashion. Suppose that Geometry I is the physical, spatial slice of
a static spacetime, but choose Geometry II as the auxiliary geometry. We will also look
at the opposite situation. We display the winning choices of right hand side geodesics
in Fig. 9.

In contrast to Comment 4, we now cannot verify inequality (5.1) simply by com-
paring Fig. 9 with Fig. 7 because the geodesic segments that appear in them do not
coincide. Instead, we must go to Lemma 2.5 and verify the equivalent inequality

L R
S (2, Zx) =Y Behe(Z5, Zy) forall (Z;,Z;) € K. (5.15)
=1 r=1

Of course, we know it will hold by following the argument between egs. (5.11) and (5.14)
in the auxiliary geometry. In that line of reasoning, drawing Fig. 9 is superfluous. In
order to develop some spacetime intuition, however, we may read off h;(Z;, Z;) from
Fig. 7 and h,(Z;, Z);) from Fig. 9. This is an exercise in counting how many geodesics
that participate in the left hand side (Fig. 7) versus the right hand side (Fig. 9) of
inequality (5.1) are crossed by a straight line from Z; to Zj.

As an example, we write down the quantities hy(Y2, C) and h,(Y2,C) in Table 4.
Not surprisingly, inequality (5.15) holds for (Y2,C) € K, though to explain why this
had to be true we would have to abandon Fig. 9 and go back to the correct auxiliary
geometry. The exercise works out very similarly for other elements of /.

Comment 6: In compiling Table 4, we never used the assumed staticity of the bulk
spacetime and the geometry of its spatial slices. This assumption turned out to be
irrelevant. Our proof happens entirely in kinematic space; it is oblivious of the metric
properties of the bulk such as whether or not it is static.
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We invite the reader to explore other examples—varying the inequalities, the com-
positions of regions A, B,C,..., choices of phases on the left hand side and, finally,
choices of auxiliary geometries.

6 Multiple asymptotic boundaries and horizons

Up to now we have focused on cases where the CFT is in a pure state on a circle or line.
However, our results hold more generally, including cases where the two-dimensional
CFT is in a mixed state and/or lives on a disconnected spatial manifold.

For a mixed state p, our reasoning carries over so long as the state can be purified:

p = tro|¥) (V| (6.1)

such that the HRT formula holds in |¥). (We denote the purifying region with @ in
order to distinguish it from O, the (n + 1) region complementary to the n named
regions.) Omne such purification glues in the bulk the entanglement wedge dual to p
[3, 4] with its CPT conjugate taken about the HRT surface where the entanglement
wedge ends. This way of constructing a global spacetime dual to a pure state was
employed for example in [35, 36].

What remains is to verify that our proof extends to holographic pure states on
disconnected spatial manifolds. Recall that such states are dual to bulk spacetimes with
multiple asymptotic boundaries, which may be connected or disconnected. In the latter
case, we would carry out our proof connected component by connected component.
Therefore, in what follows, we will assume that the bulk geometry is connected, i.e.
that it represents a multi-boundary wormhole with nontrivial topology. A key challenge
in extending our proof to this setup is to enforce the homology condition for the HRT
surfaces of various regions. We will do this by lifting the problem from the bulk
geometry B to its universal cover.

6.1 Proof in multi-boundary wormholes via the universal cover

We will denote the universal cover of B with B. Recall that B = B/,(B), i.e., the bulk
geometry is the quotient of its universal cover by its fundamental group. By definition,
B is topologically trivial so the techniques of our proof of Sec. 4 should carry over to
the universal cover. Only one step requires further justification and we comment on it
presently:.

We shall lift every ingredient of the problem in B to m (B)-invariant objects in B.
Every geodesic in B is lifted to a 7 (3)-invariant set of geodesics in B. (Note that the
whole set is invariant, but it consists of geodesics that are not necessarily individually
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71 (B)-invariant.) Furthermore, every boundary region [; C B lifts to a 7 (B)-invariant
region I, C B. Observe that if a collection of geodesics in B is homologous to I
then their lift in B is homologous to I, Roughly speaking, our tactic will be to prove
inequality (2.1) by proving

The subtlety alluded to earlier is that our proof relies on the strong subadditiv-
ity property of geodesics that subtend contiguous intervals. This is most evident in
eq. (2.14). The satisfaction of a similar inequality by geodesics in B cannot, on the face
of it, be directly inferred from strong subadditivity in B because a (minimal) geodesic in
B may well be a lift of a non-minimal geodesic in B, i.e., one that does not compute an
entanglement entropy in the CFT on the asymptotic boundary of B. It turns out that
this is in fact not a problem. In Sec. 4 we could assume that the strong subadditivity
statement holds for minimal geodesics in B because Ref. [7] derived it from the null
curvature condition in B. But if the null curvature condition holds in B then it also
holds in B and the derivation of [7] can be carried out directly in B. This will produce
a strong subadditivity type statement for lengths of all geodesics in B, regardless of
their minimality in B.

As a first step in the proof, consider a collection of geodesics in B, which together
satisfy the homology conditions for regions I; on the left hand side of inequality (2.1).
This choice represents a phase of the left hand side and, equivalently, one possible
coloring of the I;s. We then lift this collection of geodesics to B to obtain a phase
of the left hand side of (6.2). The coloring of the Is obtained in this way is not any
generic coloring; it is a m; (B)-invariant coloring defined below.

Definition A coloring of I is 7 (B)-invariant when the following holds: for any two
basic intervals Z;, Z;, C I that have the same color and for every g € m;(B), the two
basic intervals g(Z;), g(Zy) also have the same color.

It is straightforward to show that (as we asserted above) the lift [, — I; lifts a
coloring of I; to a m; (B)-invariant coloring of I;. Observe that the converse is also true:
a m1(B)-invariant coloring of J,. in B descends to a well-defined coloring of J,. in B.

With these preliminaries, a proof of inequality (2.1) from inequality (6.2) reduces
to demonstrating the following claim: For every m (B)-invariant coloring of the regions
I, C B, we can find a m1(B)-invariant coloring of the J,s whose total geodesic length
is no greater. In effect, we must prove inequality (6.2) with the extra proviso that the
S(I})s and S(.J,)s are given by colorings that are m (B)-invariant. A proof of (6.2) with
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this extra stipulation suffices because a 7 (B)-invariant coloring of the J,s descends to
a coloring of J,s and, as a consequence, inequality (6.2) in B is nothing but |m1(B)]
copies of the original inequality (2.1) in B.

Working in the topologically trivial B, we proceed with proving (6.2) just as we did
in Sec. 4. The only place where our proof allowed an arbitrary choice was the selection
of the auxiliary geometry. In order to obtain a 7;(5)-invariant winning coloring of the
J,s, we choose a w1 (B)-invariant auxiliary geometry.

To confirm the m(B)-invariance of the winning strategy, observe that the regions
W, in the auxiliary geometry of B are themselves i (B)-invariant, and so are their
complements. Therefore, according to egs. (4.2) and (4.3), W(Z) and U, are also m1(B)-
invariant regions in the auxiliary geometry. Recall that two basic intervals Z;, Z;, C J,
have the same color in J, if and only if they belong to the same connected component
of U,. Since U, is m (B)-invariant, if Z;, Z; C J,. have the same color then so must
9(Z;) and g(Zy,), for every g € m;(B). This confirms that U, induces a m;(B)-invariant
coloring of J, and completes our proof.

6.2 Example: BTZ black hole

As an illustration of the concepts used above, imagine proving an inequality (2.1) in
the one-sided non-rotating BTZ geometry, which is dual to a thermal state on a circle.
Since the thermal state is mixed, as a first step we will purify the state. Gluing the
single-sided BTZ geometry to its CPT conjugate in the bulk produces the two-sided
BTZ black hole, which will be our geometry B. In the CFT language, we are applying
here the channel-state duality to obtain the thermofield double state |¥). (In the
matrix notation, we are mapping rows of the density matrix p to column vectors in
another copy of the Hilbert space.) This second Hilbert space, which we denoted @ in
equation (6.1), lives on the second asymptotic boundary of B.

As we illustrate in Fig. 10, intervals on the boundary of B come in two varieties.
Their holographic entanglement entropies are realized either by a geodesic that is indi-
vidually homologous to the interval or by a geodesic that wraps around the black hole
horizon plus the horizon itself. Although the physically realized phase of the entan-
glement entropy is decided both by the size of the interval and by the relative boost
between the interval and the static slicing, we shall refer to the two classes of intervals
simply as ‘small’” and ‘large.’

While geometry B is dual to a pure state, it is not topologically trivial; its funda-
mental group is m(B) = Z. We will therefore go to its universal cover B, which is the
AdS; geometry. (In this case m1(B) is a subgroup of the group of continuous isometries
of B, but this is an artifact of the BTZ example.) Let us inspect how the small and
large intervals, as well as their bulk extremal surfaces, lift to B.
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Figure 10. Left: the one-sided BTZ geometry. There are two types of intervals, whose HRT
surfaces either consist of a single geodesic (‘small’ intervals, here non-highlighted) or include
the black hole horizon (‘large’ intervals, highlighted). In our proof, we first purify the state
by gluing it with its CPT conjugate (the two-sided BTZ geometry, center panel) and then
go to its universal cover (a spatial slice of AdSs, right panel). The images of a small interval
end up in the disconnected phase (colored with diverse shades of gray); the images of a large
interval are in the connected phase, one of whose geodesics is the concatenation of the images
of the black hole horizon.

Each type of interval lifts to a discretely infinite family of intervals, which are
labeled by elements of m1(B) = Z. The difference between small and large intervals
comes at the level of their coloring. For a small interval Z, each image Z in B comes in
its own color and the Zs are in the totally disconnected phase. Such a coloring is m (B)-
invariant; the invariance of a coloring only stipulates that Z; ~ Z, = g(Z;) ~ 9(Z)
for all g € m1(B) but not g(Z;) ~ h(Zy) for all g, h € m(B).

In contrast, all images Z of a large interval Z’ end up in the same color in B, i.e.
the Z's are in the totally connected phase. The pieces of the extremal surfaces in S (72"
that run alongside the black hole horizon in B come together in B to form a single
geodesic, which connects the two accumulation points of the infinitely many images of
the Z's in B.

As promised, the B lifts of the HRT surfaces are homologous to the lifts of the
intervals. Therefore, we can prove inequality (6.2) by following the argument of Sec. 4.
This inequality will be a countably infinite multiple of the original inequality (2.1) in
B, as should be evident from the right panel of Fig. 10.
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7 Discussion

Let us step back and ask why our proof works—and why it does not obviously gen-
eralize to higher dimensions. As the time-dependent problem mandates, we have not
referenced any particular slice of the bulk geometry. Furthermore, by working with the
discretized version of the kinematic space that bins together entire intervals (Fig. 3 in
Sec. 2.3), we have essentially stripped the problem off geometric data and reduced it to
a topological one. Indeed, the intersection numbers that we manipulated are topologi-
cal quantities, which originate from the ordering of intervals on a circle or line. Because
this structure is special to two boundary dimensions, our proof is unlikely to extend to
higher-dimensional cases in its current form.

We can make this point a little more explicit. To prove inequalities (2.1), we equate
the difference between the left hand side and the right hand side with a combination of
conditional mutual information quantities. (This is most clearly visible from eq. (2.14).)
Evidently, in two boundary dimensions, the strong subadditivity of contiguous intervals
A B, C

I(A,C|B) = S(AB) + S(BC) — S(ABC)— S(B) >0 (7.1)

determines the entire holographic entropy cone. In the CFT computation of entangle-
ment entropies [37], inequality (7.1) selects the channel in which the identity conformal
block dominates the correlation function of four twist operators. In this language,
repeated applications of strong subadditivity select a dominant channel in the calcula-
tion of a higher-point correlation function of twist operators. This is a combinatorial
problem, which our proof solves by topological means. In higher dimensions, where
entanglement entropies are not computed by correlation functions of local operators on
an ordered space, the problem is not combinatorial in nature and it is unlikely to have
a topological solution.

It is generally expected that the facets of the holographic entropy cone should
correspond to special entanglement structures that afford holographic interpretations.
From Refs. [24, 38] we know that one such ingredient is the perfect tensor entanglement,
which is associated with the monogamy of mutual information. The other holographic
entropy inequalities should reveal further atomic ingredients from which holographic
spacetimes are built [39]. This suggests that a general proof of the holographic entropy
cone with time dependence may require a novel approach that is aware of these other
entanglement structures without using special features of three bulk dimensions.
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A Minimal order within a color respects the spatial ordering

Let X; be a collection of intervals whose indices ¢ respect the spatial ordering on a
line or circle (the CFT spatial slice). We claim that, in the notation of eq. (2.3),
the total length of geodesics in the phase (X1 X5 -+ Xy) in a pure state is no greater
than the total length in any putative phase (X,, Xo, - - - X,, ), where o is a permutation
of k elements. Therefore, the latter phase can never be the one that determines the
entanglement entropy of any CFT region in the HRT proposal (unless o is the identity).
To avoid clutter, we will abuse the notation of eq. (2.3) slightly and simply write our
claim as

(Xoy Xoy -+ X)) > (X X+ X)) (A.1)

That is, in this appendix we will use the same cycle notation to mark the phase and
the total length of geodesics in that phase.

This claim follows from the strong subadditivity property of entanglement en-
tropies. For later convenience, we will write explicitly two special instances of strong
subadditivity. Consider four points z; (i = 1,2,3,4) on a line or circle and assume
that the index i respects their spatial ordering. For i < j, let (z;,z;) denote the in-
terval'! whose left endpoint is z; and right endpoint is ;. On a line, we will supplant
this standard notation with a counterpart for complements of intervals: for ¢ > j, let
(i, 2j) = (4, +00) U (—00, ;). This definition matches the notation on a circle. Then

H'We do not distinguish between open and closed intervals, so (z1,x2) U (72, 23) = (71, 23).
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the following inequalities are both instances of strong subadditivity:

I(zo(z3ma)z1) = S((w2,24)) + S((21,23)) — S((22,23)) — S((21,24))

Iz (zow3)zs) = S((w1,23)) + S ((24, 2)) — S((21,22)) — S((24,23)) (A.2)
They are both of the form
[(A,C|B) = S(AB) + S(BC) — S(B) — S(ABC) > 0, (A.3)

i.e., both represent the positivity of conditional mutual information I(A, C|B), with:

A= (x1,29) B = (x9,23) C = (x3,14) in the first case and (A.4)
A= (z4,21) B=(x1,22) C = (22,23) in the second case. (A.5)

On a circle, there is no difference between the two cases but on a line they differ
in that the ‘interval’ A includes infinity in the second case. In summary, expression
1 (xz(szk)xl) is non-negative whenever z;,z;, x;, x; form an ordered sequence on a
circle (i.e., modulo a cyclic re-mapping).

We will prove eq. (A.1) by induction on the number of intervals k. At k =1 and
k = 2, the claim holds trivially. Assume that inequality (A.1) is true on k — 1 intervals.
It suffices to prove that:

(X X+ X)) = (X1 Xz Xp) 2 (X Koy Xoy) — (XX KXoy o XG), (AL6)

where  stands for omitting the interval from the cycle. Now, because we are working
in a pure state, we recognize that

(XCHXUz e Xak)_<XU1X02 o 'X0k> :S((X£7X£2)) +S(<X£7 Xf:;)) _S((X£7X£3>)v
(X1X2 T Xk>_(X1X2 e Xo’z e Xk) :S(<Xol'%2717 Xol';)) +S<(Xol-%2> X£2+1)) _S(<X£717 X§2+1))
(A7)

where X* and X% denote the left and right endpoints of interval X. Thus, our task
reduces to showing that:

S((X7,. X7,)) = S((X75. X2) + S (X7, X7,))

g9 o1? o1?

- S((sz’Xzfz-&-l)) + S((X:;—laXoLz-i-l)) - S((sz—laxzfz)) Z 0. (A'8)

This quantity is a combination of conditional mutual information quantities, which we
saw to be nonnegative in inequalities (A.2). To see this, we distinguish two cases which
depend on the ordering of X,,, X,,, and X,,.
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If 01 < 09 < 03, 09 < 03 < 01, Or 03 < 01 < 09, the left hand side of (A.8) equals

S(XE X2 D)) +S((XE XE) = S(xE_, x2)—S((XE, XL )

oo—1» o1) oo—1» o1)
+ 8 (Ko X53)) + S (X X)) = SN Xop) = (X1, X2)))
=I(XE_(XIXE OXE)+ 1(xE(xL . XxE)XE) >o. (A.9)

If 01 < 03 < 09, 03 < 09 < 07, Or 09 < 01 < 03, the left hand side of (A.8) equals

S(
+5(
+5(

Xow: X3,)) + S((Xgppn, X5t 1)) = S((X5, X52) — S(X i X5y))

(
(Xo0 Xo0)) + S (X, Xoy)) = S((X2, X2,)) = S (Xopen X))
(

g3’ g3’

XEXE D)) +S((XE, X0) = S((XE, X5) —S((XE, X2 )
=I(XE(XE_\XI)XE )+ I(XE(XEXE)XE )+ T(XE(XEXE_)XE) >o0.
(A.10)
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