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ABSTRACT: We use the Einstein-Hilbert gravitational path integral to investigate grav-
itational entanglement at leading order O(1/G). We argue that semiclassical states
prepared by a Euclidean path integral have the property that projecting them onto a
subspace in which the Ryu-Takayanagi or Hubeny-Rangamani-Takayanagi surface has
definite area gives a state with a flat entanglement spectrum at this order in grav-
itational perturbation theory. This means that the reduced density matrix can be
approximated as proportional to the identity to the extent that its Renyi entropies S,
are independent of n at this order. The n-dependence of S, in more general states then
arises from sums over the RT/HRT-area, which are generally dominated by different
values of this area for each n. This provides a simple picture of gravitational entangle-
ment, bolsters the connection between holographic systems and tensor network models,
clarifies the bulk interpretation of algebraic centers which arise in the quantum error-
correcting description of holography, and strengthens the connection between bulk and
boundary modular Hamiltonians described by Jafferis, Lewkowycz, Maldacena, and
Subh.
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1 Introduction

The study of entanglement in gravitational systems has a long history, going back to
[1-4]. In recent years it has been given new life within the relatively precise context
of AdS/CFT [5-16]. The primary driver of this resurgence of interest has been the
Ryu-Takayanagi (RT) formula, which says that at leading order in the semiclassical
expansion in G the von Neumann entropy on a boundary spatial subregion R of any
semiclassical state p is given by

S(pr) = %VGR], (1.1)

where g is the Hubeny-Rangamani-Takayanagi (HRT) surface in the bulk associated
to that subregion and A[yg] is its area in that state [6-8]. More recently, the nature
of entanglement in AdS/CFT was clarified considerably by the observation that the
holographic mapping from the bulk to the boundary has the structure of a quantum
error-correcting code [17]. Quantum error-correcting codes are protocols which store
quantum information nonlocally in the entanglement between many local degrees of
freedom, in such a way that the stored information is protected from errors acting on
small numbers of those local degrees of freedom: in [17] it was observed that this is
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Figure 1. The encoding circuit for a tensor network holographic code (figure borrowed from
[28]). r/7 denotes bulk degrees of freedom at the red dots to the left/right of the green HRT
surface g, |x) is a tensor product of a set of EPR pairs on each link cut by yg, and Ur/Ug
are unitary transformations generated by the pieces of the network to the left/right of vg.

precisely what is required to explain the emergence of the radial direction in AdS/CFT.
In particular in [18-20] a close connection between the RT formula and quantum error
correction was developed, with [20] showing that a rather general family of quantum
error-correcting codes all obey an RT-like formula.

Throughout these developments, a supporting role has been played by Renyi en-
tropies, which for any quantum state p are defined by

Su(p) = ——— log Tr(p"). (1.2)
n—1

Typically these are well-defined for n > 1, with Si(p) being equivalent to the von
Neumann entropy —Trplog p. Indeed the most prominent appearance of Renyi entropy
is in the use of the replica trick to compute von Neumann entropy via the limit n — 1
[12, 21-23]. Renyi entropies are also interesting objects on their own however, with
their n-dependence allowing them to probe more information about a quantum state
than the von Neumann entropy does: indeed in principle we should be able to extract
the full spectrum of p from a careful study of the Renyi entropies (see [24-27] for recent
work focused specifically on Renyi entropies). It therefore is natural to ask if quantum

error correction gives any useful perspective on Renyi entropy.
One way to begin to address this question is to ask how Renyi entropy behaves in



simple tensor network models of holographic codes which have so far been constructed
[29, 30], but here a surprise is in order. These models are (to a good approximation
in the second case) examples of what [20] called subsystem codes with complementary
recovery, which in practice means that they are encoded via a quantum circuit of the
type illustrated in figure 1.! The quantum error correction interpretation of the RT
formula proposed in [20] follows from the circuit diagram in figure 1: for any state p,-
we feed into the 77 indices of the circuit, we have

S(pr) = S(xr) + S(pr), (1.3)

where yg is the restriction of |x) to the subfactor of R which does not contain 7.
S(xr) thus receives a contribution from each link which is cut by 7g, and is therefore
proportional to its area, so we can identify the first term in (1.3) as giving rise to the
leading-order RT formula (1.1). S(p,) is the von Neumann entropy of the bulk fields in
the entanglement wedge of R, and thus gives the O(G") contribution to the quantum
version of the Ryu-Takayanagi formula proposed in [31]. For our purposes here the
main point however is that we can also use this encoding circuit diagram to compute
the Renyi entropies of any bulk state we feed into the r7 legs of the circuit. At leading
order in G these Renyi entropies will again be dominated by the contribution from |y},
but since |x) consists entirely of maximally mixed EPR pairs, the eigenvalues of its
restriction yg to R are all equal and the Renyi entropy S,(pg) is thus independent of
n at leading order! This certainly is not what is predicted by general relativity in the
bulk (see e.g. [26]), and understanding what feature of holography is therefore missing
has been one of the interesting open problems in holographic error correction.

The first guess for how to rectify this discrepancy is to change the tensors in the
network. This however will not change the n-independence of the Renyi entropies,
since the index contradictions will still correspond to inserting maximally mixed states
on each link. We can try to improve this by changing the rules for doing the index
contractions to include the insertion of a non-maximally mixed state [30], but this seems
unlikely to capture the full n-dependence expected from holography, especially e.g. in
the presence of multiple intervals. Our main goal in this paper is to instead argue that
in a certain sense the simple holographic networks have it right: in the gravitational
states which they are most analogous to, the Renyi entropies are independent of n to
leading order in G! Indeed we argue that holographic tensor networks of the type shown
in figure 1 should best be understood as states where the area of the HRT surface vg
has been projected onto a definite value, killing the fluctuations which would usually be

'Readers for whom this is unfamiliar may wish to consult [28] for more background on these ideas,
which we will also review in some more detail in section 3 below.



present in a good semiclassical state generated by a path integral. In other words, the
leading-order n-dependence of the Renyi entropies for such semiclassical states arises
entirely from those fluctuations.

To reproduce this n-dependence using tensor networks, we therefore need to make
the network geometry dynamical in some sense. This conclusion will be no surprise to
experts, and indeed has already been discussed in [32]%; see also [34] for related discus-
sion of HRT-area-eigenstates and their superpositions. After all making the geometry
of the HRT surface dynamical was the difference between an incorrect first attempt
[35] to derive the RT formula, which just replicated the bulk geometry, and the later
correct version [12], which allowed the geometry to backreact as needed to solve the
equations of motion at the HRT surface [23]. Our contribution is to show more clearly
how those two approaches are related, and that in particular there is a question for
which the “wrong” replicated saddle point is actually the right answer.

The majority of this paper will focus on establishing the n-independence of the
Renyi entropies of fixed-area states in gravity, but in section 3 we will return to quantum
error correction to interpret our gravitational results. In section 4 we will then explain
how our results imply a strengthening of the JLMS relation [18] between bulk and
boundary modular Hamiltonians. The idea is that that relation holds also “in the
exponent” as a statement about the bulk and boundary modular flow operators. These
operators are used to define the modular flow operation, so understanding them better
may be of use in implementing the proposal of [36] to use modular flow as an explicit
bulk algorithm for entanglement wedge reconstruction.

2 Cutting gravitational path integrals to compute boundary
Renyi entropy

The basic idea of this section is to cut and paste gravitational path integrals in a
way that enables us to compute the boundary Renyi entropy of a state which has
been projected to a definite area of the HRT surface. Doing so however requires us to
understand how to describe gravity in a subregion. This question has been studied in
considerable detail at the classical level in [37] (see also [18, 38-44] for related work);
we now review it from a slightly different perspective which is more conducive to seeing
the connection to quantum error correction we develop in section 3.

2The simplest way to introduce dynamics to a tensor network is to include new degrees of freedom
on the links which allow the tensor we sew in to change dynamically [33], which roughly speaking is
what the “center” degrees of freedom we describe below in the gravitational picture are doing.



2.1 A phase space for gravity in the entanglement wedge

In any mechanical system, phase space is defined as the set of distinct initial conditions.
When the initial-value problem is well-posed, meaning that each initial condition leads
to a unique classical solution, we can equivalently think of phase space as the set of
classical solutions. In the presence of gauge symmetries the initial-value problem is not
well-posed for the degrees of freedom appearing in the action, but it will be well-posed
once we quotient the set of classical solutions by the set of gauge transformations: the
phase space is then in one-to-one correspondence with these equivalence classes.
For example consider the Maxwell theory, with action

5:—1/ F AF. 2.1)
2/m

Here M is an arbitrary manifold, possibly with a codimension-one boundary where we
need to specify boundary conditions. For concreteness we will require that the pullback
of A to OM vanishes, but other boundary conditions can be incorporated easily into
our analysis. We may define a “pre-phase space” consisting of all A obeying these
boundary conditions and also the equation of motion d* F' = 0, and the physical phase
space will then be the quotient of these by the set of gauge transformations A’ = A+ de
such that €|gy; = 0. The pre-symplectic form on pre-phase space is given by

Q((;lA, (SQA) = / (5114 VAN *d5214 — (5214 VAN *d(SlA) , (22)
b

where ;A and 02 A are variations which obey Maxwell’s equation (they can be thought
of as differentials on pre-phase space), and ¥ is any Cauchy slice of M (it is easy to see
that € is independent of the choice of 3). Note that if we take either of these variations
to be a gauge transformation then €2 vanishes:

Q(de, 5A) = / de A *dS A
b

:/ exddA
%

= 0. (2.3)

In going from the first to the second line we have used that dA obeys the equations
of motion, while in going from the second to the third we have used that €|gy =
0. Therefore the presymplectic form (2.2) is degenerate: the nondegenerate physical
symplectic form is obtained once we quotient the set of A by all gauge transformations
obeying the boundary conditions.



The quotient from pre-phase space to phase space can lead to difficulties in trying to
define subsystems of theories with gauge symmetries. For example let r be a subregion
of ¥.2 We can define a restricted pre-symplectic form

Qr(élA, (52_/4) = /(51/1 A *d(SQA — 5214 VAN *d(SlA) (24)

r

which we might hope to use in defining a dynamics of “the degrees of freedom in r”.
Unfortunately the same calculation that we just did for €2 now shows that €2, will not
be zero acting on variations which are pure gauge: instead we have

Q,.(de, 6A) = / exdiA, (2.5)
r

where dr denotes the part of Or which does not intersect 0¥. This in general does not
vanish. There are various approaches to this problem which have been proposed in the
literature. In [37, 45-47] the strategy is to promote the gauge transformations which
do not vanish on dr (modulo the ones that do) to new physical degrees of freedom,
which are sometimes called edge modes. These degrees of freedom have no counterparts
on the physical phase space on 3, so the phase space one constructs this way is not
a submanifold of the original one. The approach we will take instead is inspired by
the algebraic approach of [48], which we prefer since no unphysical degrees of freedom
appear and the connection to quantum error correction is more manifest.* Our strategy
is instead to just fix the restriction of A to Or to some definite configuration Ag,, and
then quotient only by gauge transformations in r which vanish on Or: we will refer to
the resulting phase space, on which , is a non-degenerate symplectic form, as P,.(4;,).
Similarly on the complement 7 of r, we can define an analogous phase space Pr(Aj,),
where we have simplified notation by observing that dr = Or. We can then construct
a gauge-invariant phase space on all of ¥ via

P =] (Pr(e) x Pr(e)). (2.6)

where [ ] denotes disjoint union and S denotes a set which contains a single representa-
tive of each gauge-equivalence class of the set of gauge field configurations on dr. Due

3This is the first instance of a convention we will maintain throughout: r denotes a spatial subregion
which we will ultimately think of as being in the bulk of AdS/CFT, while R denotes a boundary spatial
subregion.

40ur technique is also close to that in [18], but we differ on a few points. Most importantly their
analysis of the gravitational case might be read as implying that the restricted phase space only makes
sense if the internal boundary dr is extremal (this claim was also recently made explicitly in [43]), but
our analysis makes it clear that there is no such requirement and any gauge-invariant choice of that
boundary should work.



to the presence of gauge symmetry, we see that it is not the product of a phase space for
r and a phase space for 7. This phase space is not quite the one we started with, since it
does not include the canonical conjugates of the « (the electric fields within 57“) These
two phase spaces however will lead to the same quantum theory: after quantization the
decomposition (2.6) of phase space becomes a Hilbert space decomposition

7‘[ == @ags (Hr,«a ® H?a) 5 (27)

and the electric fields within Or reappear as operators which mix the different « sectors.
We thus have not lost anything compared to what we would have gotten starting with
the full theory on 3.

The Hilbert space structure (2.7) has an elegant interpretation via the theory of
von Neumann algebras, which are subsets of the bounded operators on a Hilbert space
that are closed under addition, multiplication, and hermitian conjugation, and which
also contain all multiples of the identity.> A standard theorem (see e.g. the appendix of
[20]) says that a von Neumann algebra M acting on a finite-dimensional Hilbert space
H always induces a decomposition of H of precisely the form (2.7), with all operators in
either M or its commutant M’ being block diagonal in the a. Moreover we can choose
the tensor factorization within each block such that M acts nontrivially only on H,.,
and M’ acts nontrivially only on H;_, and indeed any operator which is block diagonal
and acts only on the H,_ is in M and any operator which is block diagonal and acts
only on the H;_ is in M’. The center Z); of M, which is also the center of M’, consists
precisely of those block diagonal matrices which within each block are proportional to

the identity on H,,K ® Hz,. In other words we can decompose the Hilbert space as in
(2.7) such that

M=, (LH,)RI,),
M’ = @4 (I, ® L(Hz,)), (2.8)
ZM — EBQ)\QITQFOU

where L(H) denotes the set of linear operators on H. In gauge theories it is therefore
quite natural to interpret the decomposition (2.7) as being induced by the algebra
A(r) of gauge-invariant operators in the region r and its commutant A(7), the algebra
of gauge-invariant operators in 7 [20, 48]. The degrees of freedom labeled by « are
precisely the shared center of these two algebras.

5If the Hilbert space it acts on is infinite-dimensional, a von Neumann algebra is further required
to be closed in the weak operator topology. The theorem we state momentarily applies also in infinite
dimensions to von Neumann algebras which are direct sums of type I factors.



We now turn to gravity. In general relativity the gauge transformations are diffeo-
morphisms, and infinitesimally they act on any tensor field ¢ via the Lie derivative

b = Lo (2.9)

At leading order in G it will be sufficient to study pure general relativity with a negative
cosmological constant, with action

167G /M d'zy/=g(R + (d = 2)(d — 1)) + Sha. (2.10)

Here Sy, is a set of boundary terms which live at M, which in addition to the Gibbons-

g —

Hawking term may include additional “holographic renormalization” terms depending
on the boundary induced metric. The symplectic form €2 for general relativity with this
action can be constructed using standard techniques [49], and is invariant under gauge
transformations £ which vanish at 9M. We however would like to define a phase space
for a spatial subregion r C ¥ in gravity. Using the machinery of [49] it is not difficult
to show that under a gauge transformation é¢g = L¢g for which the generating vector
field &* vanishes at M, we have

0 (Les.d) == [ Qe —¢-0). (2.11)
where
§0= 1 GS“( g"*V’ — g*VH) §gage, (2.12)
with € being the e-tensor, and
1
Qe = — - G*d{, (2.13)

with ¢ now viewed as a one-form. dr again denotes the part of dr which does not
intersect 9%. Thus €2, will again not be invariant under all the gauge transformations
which we quotient by in the description of the full spacetime, so any construction of a
phase space for “just the degrees of freedom in r” will need to address this. The first
obvious guess is to only quotient by gauge transformations £* which vanish at Or and
only consider variations which preserve the induced metric on dr. This however is not
quite sufficient: it gets rid of the second term in equation (2.11), but the first still gives
a nontrivial result®

0, (Leg,09) = eérf)AfB(SeAB, (2.15)
or

1
167G

6If we do allow the induced metric on dr to vary then there is also a term

A B
V 5 2.14
167 G 5r ‘ B A€ 668T7 ( )

which shows that A[(‘?Ar] /(4G) is the generator of boosts in the normal plane around or.



where €4, is the e tensor on Or and €4p is the € tensor in the plane normal to or.
The quantity ¢*5 depends on the metric only through the conformal structure of the
two-dimensional metric in that normal plane, so this term will only vanish if we further
restrict the metric variations d¢g by requiring them to preserve that conformal structure.
This then requires us to further restrict the £#* we quotient by to be conformal killing
vectors in the normal plane [37]. Thus we again define subregion phase spaces P,(«)
and Pr(a), where a denotes an induced metric on dr and a conformal structure in
the normal plane, and we have quotiented only by diffeomorphisms which vanish at
Or and are conformal Killing vectors in the normal plane. We can then introduce a
phase space on the full Cauchy slice as in equation (2.6), where again we sum over
one element of each equivalence class under diffeomorphisms which do not necessarily
vanish at dr and are not required to be conformal Killing vectors in the normal plane
of the induced metrics on dr and conformal structures in the normal plane. Since
all conformal structures are gauge-equivalent on a two-dimensional plane, this means
that the set S will be equivalent just to the set of induced metrics on dr modulo
diffeomorphisms there. As in electromagnetism this will not quite be the full phase
space of general relativity on this slice, since the canonical conjugates of the a are
missing, but the two phase spaces will again lead to the same quantum theory with a
Hilbert space decomposition (2.7).

The application of this result which is of interest for us in AdS/CFT is to define the
gravitational dynamics within the entanglement wedge Wx of a boundary subregion R.
We remind the reader that for any boundary spatial subregion R the HRT surface is
defined as the codimension-two achronal surface vz obeying the following criteria:

e Ovg = OR.
e The area of v is extremal under variations which preserve the previous condition.
e There exists an achronal surface X such that 0¥ = yg U R.

e [f there is more than one surface obeying the previous criteria, we pick the one
of smallest area.

The entanglement wedge Wg of R is then defined as the bulk domain of dependence of
any such Y. In the above construction we should then take r = ¥g and or = YR to
arrive at a phase space construction of entanglement wedge dynamics. The “central”
degrees of freedom S then consist of the induced metric on the HRT surface vz modulo
diffeomorphisms, which in particular includes its area: this confirms the argument
of [20] that the “area operator” in the quantum Ryu-Takayanagi formula should be
thought of as being in the center of the algebra of operators in the entanglement wedge.



Figure 2. Using the bulk Euclidean path integral to prepare a state. The red dots are
boundary sources we can adjust to change which state we prepare, and the center degrees of
freedom « are the induced metric data on the HRT surface vp.

2.2 Computing boundary Renyi entropy at fixed area

Having constructed a classical phase space for gravity in the entanglement wedge, we
may now quantize it, and in particular we may do so using the path integral. For
simplicity we restrict to states which possess a moment of time-reflection symmetry
and can be prepared by a Euclidean path integral.” These path integrals will prepare
states in a Hilbert space with the structure (2.7), so they will have the form

) = Cajlasi)rle, i) (2.16)
ai,j
We give a graphical illustration of such a state in figure 2. This representation is
convenient because it allows to understand how projections onto definite values for «
can be inserted into the cutting and gluing of gravitational path integrals. We now use
this to compute the boundary Renyi entropies for states which have been projected in
this way.
In particular, let us consider a new state obtained by projecting the state |¢) in
Eq. (2.16) to a fixed area A on the HRT surface v5.* This fixed-area state [¢;) can
be thought of as an eigenstate of the “area operator” in the quantum RT formula.
Explicitly, it has the same form as in Eq. (2.16) with the sum restricted to a subset of
o for which the total area A[a] of 5 is A:

W) = Y. Cagleidrlej)g (2.17)

a,i,j:Ala]=A

7All of our arguments should be convertible to Lorentzian arguments along the lines of those in
[50].

80ne can also consider states where we fix the entire induced metric on vz; we discuss these at the
end of this subsection.

— 10 —



This state is prepared by the same bulk path integral with boundary sources that
prepares [1), but with the extra constraint that only configurations where the area of
YR 18 A are integrated over.

The norm of such a fixed-area state is calculated by a “full” bulk path integral
obtained by gluing the path integral preparing |¢;) with a conjugate path integral
preparing (¢;|. The two path integrals are glued together along the achronal surfaces
Y r and X5, with the fixed-area constraint enforced on 7g:

Wslvn) = [ g

e = 7, (2.18)
A’YR [Q}ZA

where A, .[g] is the area of vz in the metric g, I[g] is the bulk Euclidean action, and
dependence on the boundary sources is implicit in the path integral. We call this full
path integral Z; in anticipation of the discussion below on Renyi entropies.

In the semiclassical approximation, the path integral (2.18) is dominated by a
saddle-point solution g¢f, but as we have fixed the area of g, g{ is only required to
satisfy the equations of motion away from ~g and is allowed to develop a uniform
conical defect on 5. To see the conical defect, we choose to enforce the fixed-area
constraint in Eq. (2.18) by introducing a Lagrange multiplier p:

7, = /Dg du o~ 1lgl=in(Ayglgl-A) (2.19)

The Lagrange multiplier term can be interpreted as the action of a cosmic brane with
tension iu. Even though the cosmic brane is fixed to be on the HRT surface vz (whose
extremality can be defined here by the vanishing trace of extrinsic curvature as we
approach 7g), at the level of the saddle-point solution we could equivalently allow the
location of the cosmic brane to be arbitrary (subject to the homology constraint) and
require the total action in Eq. (2.19) to be stationary with respect to variations of the
brane location. From this we find that the saddle-point geometry gf should satisfy the
equations of motion everywhere including on the cosmic brane. In the case of Einstein
gravity that we focus on, codimension-2 cosmic branes backreact on the geometry by
creating a conical deficit angle proportional to its tension [51].1° Therefore, the saddle-
point solution of Eq. (2.19) is characterized by a real conical defect geometry ¢§ and

9We will provide a more general argument at the end of this subsection (when we discuss states
with the entire induced metric on g fixed) which does not rely on showing that the singularity on g
is a conical defect.

10This follows from the observation in footnote 6 that the area of vz gives the generator of boosts
in the normal plane around g, and can also just be derived by studying the behavior of the Einstein
equation in the vicinity of the brane.

- 11 -
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Figure 3. Cutting open the n = 1 gravitational path integral (left) and gluing together 3
copies to form a path integral for computing the third boundary Renyi entropy (right). Red
dots are the sources which produce the “ket” part of the density matrix, while blue dots are
their CPT conjugates which produce the “bra” part. The HRT surface g is represented by
the black dot in the center, and is shared between all copies in the Renyi computation.

a purely imaginary u = —iup chosen so that the area of vg agrees with A after the
backreaction of the cosmic brane is taken into account. We will refer to the conical
opening angle in g{ as ¢;.

Now let us calculate the boundary Renyi entropies on R in the fixed-area state
|9 4). We will do this in two ways and obtain the same result. The first way is a direct
calculation of the Renyi entropies S,(pg) for integer n > 2 by rewriting Eq. (1.2) as

5.(pr) = 7= 108 7% (2.20)
where Z,, is an n-fold bulk path integral obtained by gluing together n copies of the
path integral preparing |¢ ;) (denoted by Py, ---, P,) and n copies of the conjugate
path integral preparing [¢ ;) (denoted by Py, ---, P,). The manner of gluing is as
follows: we first glue P, with P; along Y5, and then glue P; with P;_; along Y (with
the understanding that Py means P,). The common surface vz in the resulting path
integral is constrained to have area A since each of the pieces we glue does. A natural
bulk interpretation of this gluing procedure is that the first step of gluing P, with P;
along X7 generates n copies of an unnormalized density matrix which can be viewed as
the bulk version of pr and may also be obtained by cutting the path integral Z; open
along X . The second step then forms Trp}, by cyclically gluing these density matrices
together along Y. We illustrate this in figure 3.

Just like Z7, the n-fold path integral Z,, is given at leading order in the semiclassical
approximation by the action of the dominant saddle-point solution g¢,

Z, = e~ tonl, (2.21)

- 12 —



which can be used to rewrite Eq. (2.20) as

Ilgn] — ndlgi]

Sulpr) = == — (2.22)

A nice consequence of fixing the area of the HRT surface vg is that the saddle-point
geometry g, is extremely simple — it is obtained by cyclically gluing n identical copies
of ¢gf along Xp (after first cutting each one open along ¥g). The resulting geometry
g¢ is locally identical to ¢gf away from v and has a conical defect on vz with opening
angle ¢, = no;.

The action of ¢¢ (including gf) consists of two contributions:

A

(77/(]51 — 27T)A

2.2
G (2.23)

[[92] = n[away[gﬂ +

Here the first term comes from everywhere away from ~z and is therefore proportional
to n. The second term comes from a localized contribution on the conical defect vz due
to the fact that the Ricci scalar R contains a delta function at v times a coefficient
2(2m — n¢y) that is twice the conical deficit angle. Plugging this into the Euclidean
Einstein-Hilbert action I = — [ d%z,/g R/(167G), we find the second term in Eq. (2.23)
where we have used the fixed area A of YR-
Plugging the action (2.23) into Eq. (2.22) we find that terms linear in n cancel out,
giving the Renyi entropy A
A
Sn(pr) = yTed (2.24)
We have obtained this result for integer n > 2, but it can trivially be analytically
continued to an arbitrary n, leading to Renyi entropies that do not depend on n.
This suggests that the fixed-area state |¢);) has a flat entanglement spectrum on the
boundary subregion R at leading order in gravitational perturbation theory.
Now we provide an alternative way of obtaining the same boundary Renyi entropies.
It is simpler than the brute-force method used above, and has the advantage of giving
the Renyi entropies for arbitrary n directly without analytic continuation. We start
with the cosmic brane prescription for Renyi entropies derived in Refs. [12, 26]. Tt says
that a refined version of the Renyi entropy defined by

n—1

Suom) = 20, (“25,0m) ) = —r0, (2 1ow'Te ) (2.25)

is given by the area of a codimension-2 cosmic brane 7g ,, inserted into the bulk solution:

S(pr) = el

(2.26)

— 13 —



The cosmic brane «yg, is homologous to the subregion R and creates a conical defect
with deficit angle 2w (n — 1)/n due to its tension (n — 1)/(4nG). The refined Renyi
entropy gn(pR) can be defined alternatively as the von Neumann entropy of the den-
sity matrix p%/Trp}. The prescription (2.26) is a natural generalization of the RT
formula with the cosmic brane vg, replacing the HRT surface yz. Once we know
the refined Renyi entropies gn, the Renyi entropy S,, for any n is easily obtained by
integrating (2.25):

. n " §H’<pR) /
Sn(pr) = — /1 e dn'. (2.27)

Let us now apply this prescription to the fixed-area state |¢);). We need to insert a
cosmic brane g, into the saddle-point geometry gf dominating the state norm Z;. It
is worth noting that this cosmic brane vg,, is different from (and introduced in addition
to) the cosmic brane introduced earlier by the Lagrange multiplier in Eq. (2.19) (which
is already present in ¢f). However, the two cosmic branes coincide with each other and
create a combined conical angle that is actually the same as the one in ¢gf — another great
simplification due to fixing the area of the HRT surface yz. To see this, we observe that
if we place the cosmic brane g, at exactly the location of 7z and do not change the
geometry ¢f in any way, it would automatically satisfy the equations of motion away
from g and have the same area A on vr- Thus inserting the “extra” cosmic brane
Yr.n does not affect the geometry at all — the only thing that gets changed is the saddle
point of the Lagrange multiplier, or equivalently the tension of the “original” cosmic
brane already present in ¢¢: its saddle-point value in the path integral (2.19) changes
from pg to prp — (n—1)/(4nG) to “absorb” the tension of the extra cosmic brane g,
in order to keep the geometry unchanged and the equations of motion satisfied.

Therefore, the area of the cosmic brane g, is A and Eq. (2.26) immediately leads
to a constant refined Renyi entropy

~ A
S.(pr) = —. 2.28
(m) = o (2.25)
Integrating this in Eq. (2.27) we reproduce the n-independent Renyi entropy (2.24).
In the discussion above we have focused on fixed-area states (2.17), but we now
point out that the same n-independent Renyi entropy applies to states obtained by

projecting |¢) in Eq. (2.16) to a fixed value & of a:
[a) =D Caijld,i)rld, 4)g, (2.29)
2%

as long as the norm of the state is dominated semiclassically by a saddle-point geometry.
This fixed-« state is prepared by the same bulk path integral that prepares |¢)) but
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with the extra constraint that the entire induced metric on the HRT surface vy is given
by .

The norm of [14) is again calculated by a full bulk path integral Z; defined in a
way similar to Eq. (2.18). We assume that the path integral Z; is dominated in the
semiclassical approximation by some saddle-point solution g¢§.!' The difference with
the fixed-area case is that here gf is allowed to develop a more general singularity than
a uniform conical defect on yg. A specific example of such a singularity is a conical
defect whose conical angle varies along vg, but in general it could be any singularity
whose contribution to the bulk Lagrangian is a distribution (such as a delta function)
localized on vg.

The boundary Renyi entropies on R in the fixed-a state can be calculated by the
same two methods used above. The second method of introducing a cosmic brane vz,
to calculate the refined Renyi entropy immediately leads to the same conclusion that
the cosmic brane g, would be placed at exactly the location of the singularity in g
without modifying the geometry in any way. This gives the same n-independent refined
Renyi entropy (2.28) with A replaced by A[a], the total area calculated from the fixed
induced metric &. Therefore, the Renyi entropies are also n-independent and given by

Ala]

Sn(pr) = TR (2.30)

We can reproduce this result using the first, more direct method as well. The Renyi
entropies for integer n > 2 are calculated from Eqs. (2.20) and (2.22) with the saddle-
point geometry gt now satisfying the fixed-a constraint. Again g¢ is simply obtained
by cyclically gluing n copies of g along ¥ r. To calculate the contribution to the action
from the singularity on v in ¢ and g¢, it is useful to regularize the singularity in g¢f
by replacing a small neighborhood of vz with a smooth geometry and to construct g¢
by gluing n copies of this regularized version of gf, with the understanding that the
thickness of the neighborhood of vz will be taken to zero eventually. This version of
g¢ has a simple, uniform conical defect on vz with opening angle 271, and its action is

(n — 1A[4]

(2.31)
where the first term comes from everywhere away from 7g (which is smooth in the
regularized ¢¢) and the second comes from the uniform conical defect. Eq. (2.31) is the
generalized version of Eq. (2.23) that applies here. Plugging it into Eq. (2.22) we find
the n-independent Renyi entropy (2.30) as promised.

1We leave it to future work to verify this assumption and find the precise form of the singularity
on g in general situations.
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Finally, we point out that we do not expect our conclusion of n-independent Renyi
entropies to be modified by higher-derivative corrections in the gravitational action. In
these cases, the RT formula (1.1) and its generalization (2.26) to refined Renyi entropies
are modified by replacing the area A by some generalized notion of area Age, [52-54].
This generalized area is an integral over vz of some combination of local geometric
invariants and its form is completely determined by the bulk action. We expect that a
calculation very similar to the one performed above in Einstein gravity would lead to
the same n-independent Renyi entropies as in Eqs. (2.24) and (2.30) with A replaced
by Agen, although we leave the details to future work.

2.3 The origin of n-dependence

We can now easily understand how the n-dependence of the Renyi entropy in unpro-
jected semiclassical states arises. Consider the fixed-area replicated path integral

20(4) = [ Dgue 15,4 (00) ~ ). (2.32)

where here Dg, means that we are integrating over metrics (and other bulk fields)
which at the Euclidean AdS boundary have n copies of the sources preparing the state,
as in figure 3. The unprojected path integral is then obtained by

Z, = / dAZ,(A) (2.33)
In the semiclassical limit we have
Zo(A) e e T9n (A (2.34)
so we are interested in semiclassically evaluating the integral
7, = / dAeTon ()], (2.35)

The saddle point for this integral will be precisely the value A,, for which the opening
angle ¢; is 2w /n, since ultimately in doing the integral over A we are just doing the
full gravitational path integral in a different order and the saddle point g¢(A,) must
be smooth and obey the Einstein equation at vz. Moreover using the cosmic brane
method [12, 26], we then immediately see that the refined Renyi entropies are given by

~ A,

S0 =10 (2.36)
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Since A,, is now a nontrivial function of n, we see that §n, and thus S,,, will be as well.
From this point of view the entire n-dependence of the Renyi entropies arises from the
shifting of the saddle point value of A in (2.35) as we change n.

This discussion generalizes in a simple way to fixed-a states as well, we can also
write

Z, = Z Zn (&), (2.37)

and since Z,(&) again leads to n-independent Renyi entropies we can view the n-
dependence of the full Renyi entropies as coming from the shifting of the saddle point
in the “sum” over a as we change n.

3 A quantum error-correction interpretation

In AdS/CFT the above gravitational discussion is all happening in the bulk, and must
be embedded into the dual CFT some way. Most states in the CFT will contain large
black holes which in particular have swallowed whatever region we might be interested
in. In [17] it was emphasized that the quantum structure of perturbative general
relativity should be understood in AdS/CFT as holding only in a code subspace, Hcoge,
of the full CFT Hilbert space. This subspace is not unique, since we may be willing to
tolerate some black holes which are far away from whatever physics we are considering,
and if we are ambitious we may even try to include the microstates of some black
holes within the code subspace degrees of freedom [20, 55, 56]. We may also want
to exclude bulk degrees of freedom such as heavy matter fields which are describable
within effective field theory. In general one can think of the choice of code subspace as
being similar to the choice of a renormalization scheme: we choose it as is convenient
for the particular problem we have in mind. In fact this is more than analogy: doing
renormalization group flow in the bulk is one example of changing our choice of code
subspace. For this paper we will take our code subspace to be the linear span of the
set of states which can be prepared by a bulk Euclidean path integral with an O(G°)
number of boundary sources of low scaling dimension.

Any state in this code subspace should obey the quantum Ryu-Takayanagi formula,
which says that any bulk state p prepared by a bulk path integral should have a dual
CFT state p with the property that for any boundary subregion R we have [31, 54]'

S(pr) = Tr (pLr) + S(pr). (3.1)

12From now on we view CFT states and operators as encoded quantities and denote them with tildes;
this is slightly different from our notation in previous sections. Note that these tildes are completely
different from those in refined Renyi entropies S,,.
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Here Lg is an operator localized on the HRT surface vz which at leading order in G is
just A[yr|/(4G), and S(p,) is the entropy of p restricted to the algebra of operators in
the entanglement wedge Wx. Lp is required to be in the center of that algebra, and
indeed this follows from the construction of section 2.1 since the area of v is determined
by its induced metric. The von Neumann entropy of a state p on a subalgebra M, which
is a generalization of the definition for a subfactor, is given in terms of the diagonal
blocks of p in the decomposition (2.7). Indeed we can represent each diagonal block of
P aS PapProra, With Trp. 7. =1 and > p, = 1, and the entropy is then (see [20] for
more on this definition)

S(pr) == Palogpa+ > 1aS(pr)- (3.2)

One of the main results of [20] was that the quantum Ryu-Takayanagi formula (3.1)
can hold in all states of a code subspace Hcoge C Hr ® Hyp if and only if the encoding
map has a very specific form, which generalizes that of the quantum circuit shown in
figure 1. Indeed if we algebraically decompose the code subspace H.oqe as in equation
(2.7), we can choose a basis |a,7j) as in figure 2. The result then is that the quantum
RT formula requires Hzr and Hy to decompose as

Hr = o (Hry @ Hpz) © Ha,
My = B (Hﬁi ® M ) © Hr,, (3.3)

where Hp = H,, and Hﬁl = Hr,, and moreover that our complete basis for H.oqe
must be obtainable as

0,77) = UnUg (J i)y, © v ) @ ) gage ) (3.4)

for some unitaries Ug, Uxz on Hpr and Hy and some set of states |xo). In [20] codes
with this structure were called “operator algebra quantum error-correcting codes with
complementary recovery”, since the structure (3.4) also holds if and only if all operators
in the Wpg algebra can be represented on R and all operators in its commutant (the
W algebra) can be represented on R. By taking the partial trace, (3.4) immediately
implies that for any bulk state p on H..q. We have

PR = ZanR (PR @ Xr2) U]];a (3.5)

where ppi has the same matrix elements as the state p,, appearing in the computation
of the von Neumann entropy of the state p on the algebra of operators in Wx and
Xrz = Trgz[Xa)(Xal- Computing the von Neumann entropy of both sides of (3.5)
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and using (3.2), we recover the quantum Ryu-Takayanagi formula (3.1) with the “area
operator” given by

Lr=>_ S(xr2)lrura- (3.6)

Showing that this is the only way for (3.1) to be satisfied is somewhat harder, and was
the main content of [20].

With equation (3.5) in hand, it is a simple matter to consider also Renyi entropies.
Indeed we have immediately that

Tr(p}) Zp”Tr )Tr (X2 )- (3.7)

Just as in the quantum RT formula, in the semiclassical limit the “bulk” contribution
from Tr(p}! ) will be subleading so the Renyi entropy for all states in the code subspace
should obey

Zp”Tr XR2 (3.8)

Our proposal is that this equation is a CFT representation of equation (2.37). Note in
particular if we project onto a state of definite o then we are left just with Tr(x%. ),
so we learn that the n-independence at fixed o we uncovered on the gravity side has

a striking interpretation for holographic codes: the states |xo) .52 must have a flat

RZR.
entanglement spectrum on R? for all a. For tensor network codes such as that in
figure 1 this was a consequence of the fact that this state was a tensor product of
maximally entangled EPR pairs on the links of the network, but now we see it is a
general property of holographic states at fixed a.

We point out for completeness that the statements made above can also be seen
from the refined Renyi entropies §n(ﬁR) defined in Eq. (2.25). To see this we now
derive a general formula for §n(ﬁR) that holds in any operator algebra quantum error-
correcting code with complementary recovery and for any state in the code subspace.
We will see that it gives a nice code interpretation of the cosmic brane prescrip-
tion (2.26) for refined Renyi entropies. To do this we first note that S, (pz) is simply the
von Neumann entropy of the density matrix pg, = pg/Trpk which by using Eq. (3.5)
can be written as

poIr (Prél ® X?gg)
2 PETr (Prs © Xz )

ﬁR,n = ZPanR (pR}l,n ® XRgé,n) U}T@ Pan = (39)

[0}

with pg1 , = PRy /Trp%}l and x R3n defined similarly. Similar to the derivation of the
quantum RT formula (3.1) from Eq. (3.5), we find its generalization to the refined
Renyi entropies to be

Sulfm) = Tr (pLaa) + Sulor) (3.10)
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with the “Renyi area operator” L, defined as

pan

XR2 raTao (311)

and the refined Renyi entropy of p restricted to the algebra of operators in the entan-
glement wedge Wx given by

pr = _Zpanlogpan+zpan pra (312)

In the semiclassical limit, Eq. (3.10) is dominated by the first term on the right hand
side which becomes
Z Za pZTr (p%a ® X%g‘)sn(XRg)
pan XR2 = n n n :
Z[j pﬁTr (pR}a ® XR?)

(3.13)

Semiclassically, S, (pr) is given by S, (Xrz) with the saddle-point value & that domi-
nates the sums over a of n-fold traces in Eq. (3.13). This is (almost) precisely what
the cosmic brane prescription (2.26) requires: the conical defect geometry created by
the cosmic brane is exactly the Z, quotient of the (replica-symmetric) saddle-point
geometry dominating the n-fold gravitational path integral [which is the bulk version
of the n-fold traces in Eq. (3.13)], with the same induced metric & on g before or
after the quotient. Here we say “almost” because the gravitational prescription (2.26)
gives the area of the conical defect which can be determined from its induced metric &
regardless of n, whereas Eq. (3.13) gives gn(x R2 ) which appears to possibly depend on

n. The resolution of this puzzle is that §n(x Ri) must in fact be independent of n at
least to leading order semiclassically! We can also see this flat entanglement spectrum
of x rz2 by comparing Eq. (3.13) for a fixed-« state with n-independent Renyi entropies
found on the gravity side.

There is a point about this connection which may at first seem confusing: our bulk
path integral construction in figure 3 looks like we are computing the Renyi entropy
only using the bulk degrees of freedom, but in the holographic interpretation that we
have just given to the calculation we threw out the bulk contribution and the Renyi
entropy came entirely from the states |y, ). What happened? The issue is that although
the bulk construction in figure 3 resembles a bulk Renyi entropy calculation, strictly
speaking it cannot be interpreted as such without a cutoff; otherwise the circle contracts
and there is no trace interpretation in the bulk. This is the same miracle by which the
Euclidean path integral is able to compute the black hole entropy correctly without
knowing the microscopic theory of quantum gravity. In the CFT calculation we have
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those microstates in hand in the form of |x,), and the calculation is dominated by
them. In the bulk calculation this UV information instead goes into the infrared value
of Newton’s constant (G, which finds its way into the answer via the evaluation of the
action on the semiclassical saddle point.

4 An exponentiated JLMS formula?

There is an interesting interplay between the n-independence of Renyi entropies in fixed-
a states and the JLMS formula relating bulk and boundary modular Hamiltonians. To
understand this relation, we first note that from (3.5) we have

Kj = —logpr=— Z Ur (log(papry) ® Inz + Ipy ®log xpz) U (4.1)

Using the expression
Fe= Z UrUr (IR}XE; ® |XO‘><X04|R3R21> U};U% (4.2)

for the projection operator onto H.oqe, by direct calculation one can derive a version of
the JLMS formula [18, 20]

P. (f(g ® Jﬁ) P = (ER + f(;?) P, (4.3)
where L. r is the encoded area operator

L= UnlUg (S(xm) Ly @ IXa) (Xal gz ) URU (4.4)

and I?{B is the encoded bulk modular Hamiltonian
K=Y UglUz (—10g(paprr) ® Izt @ [Xa) (Xl peme ) ULUL. (4.5)
r RVER S\ PaPR} R, Xa)\Xe R2 R, R¥R

Now, given a modular Hamiltonian, it is natural to exponentiate it to generate
modular flow [57]. Since the JLMS formula (4.3) gives a relation between bulk and
boundary modular Hamiltonians, one may ask if we can exponentiate it into an equation

of the form _ o
PesKR¥IR p — ¢is(CrtKD) p (4.6)

which would say that we could compute the bulk modular evolution of a state in the
code subspace using the boundary modular evolution. Unfortunately however (4.6)
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only follows from (4.3) if P. and K 7 ® I are commuting quantum operators, and from
a coding point of view there is no reason to expect this to be the case. Indeed it is not
hard to show that they will commute if and only if for all a we have

[Xa) (Xa|l0g X Rz = 10g XR2 |Xa){(Xal- (4.7)

Now however we learn something interesting: (4.7) holds if and only if the nonzero
eigenvalues of ypz are all equal, which is precisely the structure we found at leading
order in GG in section 2.2! In other words, the flat entanglement spectrum at fixed
a which we found in gravity is closely related to the question of whether or not the
exponentiated version (4.6) of the JLMS formula is valid, at least at leading order in
G.

We can make this connection between the exponentiated JLMS formula and a flat
entanglement spectrum at fixed o more explicit. Indeed let |Ja> be some encoded state
which has support only when a@ = &. Using our formulae for P, and K # we have

<i[;@|6—is(l}§®1§)Pceis(kg®fﬁ)|q:/;&> — Ty (ngz‘s) Tr (X}%Eis> ' (4.8)

Equation (4.6) would imply that the left hand side of this equation is one, while on
the right-hand side this in general would only be true for s = 0. The objects on the
right-hand side are just the exponentials of the Renyi entropies of gz analytically
continued to complex n, so for equation (4.6) to hold through any particular order in
G we thus need these Renyi entropies to be n-independent to that order.'® We suspect
that our flatness result can be extended at least to O(G®) on the gravity side, but we
leave a detailed study for future work.

In quantum error correction language, what we have learned is that the modular
Hamiltonian K 7 is a “logical” operator whose action preserves H oqe. This is somewhat
puzzling from the point of view of the CFT, where for generic regions R it is only the
“full” modular operator K PRIz —Ig® I?% which preserves the set of low energy
states. And indeed we note that a calculation similar to that leading to (4.7) tells us
that [IN(]’; @Ig—Ip® I?%, P.] will vanish if and only if

[Xa) (Xal(log xRz —log xz2 ) + (10g X7z —log Xkz)|Xa) (Xal =0, (4.9)

which is true for any |x,) since the first and second terms vanish identically. Thus the
modular flow operation on operators generated by K5 ® Iz — I ® K% will always send

13Tn testing this approximate flatness, the closeness of the right hand side of (4.8) to one is perhaps
a better diagnostic of the accuracy of (4.6) than is (4.7), since the former is a numerical relation and
the latter is an operator equation.
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1 as needed for the proposal of [36]. Nonetheless

logical operators to logical operators!
it seems that the stronger condition (4.6) also holds, at least to leading order in G.

How this is compatible with the CFT picture is a question we leave for future work.

5 Discussion

In this paper we argued that states which are prepared by Euclidean gravitational path
integrals have the property that, if we project them onto eigenstates of fixed area for
the HRT surface yg, we obtain a state whose Renyi entropies are independent of n at
leading order O(1/G) in Newton’s constant G. We further argued that the same is true
for states where we act with a projection onto a definite value of the entire induced
metric on yr. We then gave the latter result an interpretation within quantum error
correction as a flat entanglement spectrum for the states |y,) appearing in equation
(3.4). Finally we argued that this flatness leads to a somewhat surprising strengthening
(4.6) of the relationship [18, 20] between bulk and boundary modular Hamiltonians.
It would be interesting to develop a more detailed understanding of how our fixed-
area states are realized in the CFT. In specific simple cases we can give a rough picture,
at least to leading order in the bulk Newton constant G. Note for example that flat-
spectrum states arise in any microcanonical ensemble, where all states in a given energy
range AF = [E, Es] enter with equal weight. Starting with a thermofield-double state
|4} on a pair of CFTs, taking the two CFTs to be respectively R and R, and project-
ing onto fixed HRT-area A thus yields a state |¢)) 4 that, up to normalization, seems
likely to resemble the microcanonical double state |¢)mico = €23 ponw [EVRIE)L
(see e.g. [58]), where |E)g 1 denote eigenstates of the right- and left-CFTs and with
AFE an appropriate small-but-not-exponentially-small range of energies centered on a
Schwarzschild-AdS black hole of the desired area. Indeed, since the conical singularities
of our fixed-area saddles make no contribution to the induced metric on the surface
of time-symmetry'®, comparing with the results of [58] one sees immediately that our
fixed-area projection and the microcanonical double are described by semi-classical bulk
saddles that coincide on this surface, and which thus define the same Lorentz-signature
bulk solution. The same is true for any Renyi copy of the states. As a result, (Renyi)

4 An immediate corollary is that the modular flow generated by K % ® I alone will always preserve
the set of logical operators supported on R, even if this flow does not preserve H oqe-

15This interesting fact is critical to the idea that they prepare standard states, which in particular
satisfy the usual Hamiltonian and momentum constraints. It can be seen geometrically, or from the
fact that the associated cosmic brane lies entirely inside the surface of time-symmetry, so that its stress
tensor has no components normal to the surface. Since the constraints are precisely the components of
the bulk equations of motion that involve such normals, the brane stress tensor makes no contribution.
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entropies and light fields in [1))nicro agree with those in the desired fixed-area state at
the level of bulk classical solutions.

However, the two states 1)) 4 and |¢) miero Will differ beyond this order. In particu-
lar, the fixed-area state will have additional contributions from certain terms obtained
from |¢) micro by acting separately on either side with unitaries that preserve the code
subspace on which the HRT-area operator is defined. Since the density of states is an
increasing function of energy, such unitaries typically raise the total energy on either
side. In the bulk, such terms describe copies of the microcanonical black hole (and
in particular with the same HRT-area) with additional matter or gravitational waves
on either side of the HRT surface. The restriction to unitaries that preserve the code
subspace should allow only an O(1) number of such terms within any small range of
energies. As a result, one expects the entanglement entropy of |¢)) 4 to differ from that
of 1) micro Only at the level of O(1) corrections. Indeed, since each additional such
term has the same entropy S = A/4G as states in AE, terms in which the energy
has been raised by dE > T are highly suppressed by the Boltzmann factor of the
original thermofield-double state |¢)). One may think of them as describing subleading
saddles that contribute to [1) 4. And terms in which the energy has been raised only
by 0E < T can be described by the same leading-order bulk saddle as [1))yicro, but
with the associated state of bulk quantum fields differing by O(1) excitations. In this
sense, fixed-area projections of the thermofield-double state |1)) are just microcanonical
double states at leading order in G.

Fixed HRT-area states defined by projecting a generic state [¢) should thus be
similarly close to microcanonical-double states defined by projecting |¢) onto spectral
intervals AK defined by its modular Hamiltonian K on R. However, when OR = OR
is non-empty, one should understand these states to be somewhat singular as their
UV structure clearly differs significantly from that of the CFT vacuum. And as above
small discrepancies will remain. Of course, it should be possible to map the HRT-area
operator (and thus its spectral projections) to the CFT using the methods of e.g. [36]
and hence to construct fixed HRT-area states directly in the CF'T. However it remains
unclear to us whether the result will takes an elegant form, and in particular whether it
admits a natural generalization to non-holographic CFTs. These are important points
to address in future investigations.

The flatness we found at leading order in G in fixed-area states is a striking result.
Perhaps the most important task following up on this work is thus to use gravitational
arguments to understand how far this flatness extends in the expansion in G. This
may also shed light on the meaning of the strengthened JLMS relation (4.6). Another
interesting project would be to study in more detail how Renyi entropies behave in the
tensor networks constructed in [33] which have center degrees of freedom on the links.
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It would also be interesting to establish similar results in higher-derivative theories of
gravity, and it would be enlightening to work out the conical geometries in section 2.2
in some more detail in simple examples. We are optimistic that the recent interplay
between quantum gravity and quantum information theory has yet more to teach us.
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