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transition where the scalar field condenses. This three dimensional version of the holo-

graphic superconducting phase transition occurs even though the pure gravity solutions

are locally AdS3. This is in addition to the first order Hawking-Page-like phase transitions

between different locally AdS3 handlebodies. This implies that the Rényi entropies of holo-

graphic CFTs will undergo phase transitions as the Rényi parameter is varied, as long as

the theory possesses a scalar operator which is lighter than a certain critical dimension.

We show that this critical dimension has an elegant mathematical interpretation as the

Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to compute

it, analytically near the boundary of moduli space and numerically in the interior of moduli

space. We compare this to a CFT computation generalizing recent work of Belin, Keller

and Zadeh, bounding the critical dimension using higher genus conformal blocks, and find

a surprisingly good match.
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1 Introduction

Three dimensional gravity has proven a remarkably rich testing ground for our ideas about

classical and quantum gravity. Even though Einstein gravity possesses no local degrees of

freedom, three dimensional theories of gravity nevertheless have many of the rich features of

their higher dimensional cousins, including holography [1] and black hole solutions [2] whose

Bekenstein-Hawking entropy can be computed microscopically [3]. Theories of gravity in

AdS3 are dual to two dimensional conformal field theories, allowing one to use CFT methods

to gain insight into classical and quantum gravity in AdS. In this paper we will use CFT

methods to motivate the existence of a new class of phase transitions in three dimensional

gravity. We will then verify their existence directly in classical AdS gravity, and explore

their features.

Our central result is simple, and is easiest to state for AdS3 gravity in Euclidean

signature. Such theories can be defined with a variety of boundary conditions: one can
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take the boundary of (Euclidean) space-time to be any smooth, two dimensional Riemann

surface B. With appropriate boundary conditions [4] the theory will depend only on the

conformal structure of B, so can be studied as a function of the conformal structure moduli

of B. The bulk gravity path integral with these boundary conditions is, via AdS/CFT,

equal to partition function of the dual CFT on the surface B. We will be interested in

gravity theories in the semi-classical limit, where this bulk path integral is dominated

by the classical geometry which minimizes the (appropriately regularized) gravitational

action. For example, when the boundary is a sphere the dominant contribution comes

from Euclidean AdS3, i.e. hyperbolic space H3, which is the unique constant negative

curvature metric on the solid ball which “fills in” the boundary sphere. At higher genus,

however, this path integral can have many saddle points, each of which correspond to a

gravitational solution whose boundary is the surface B. For example, when the boundary

is a torus the bulk saddles are constant negative curvature metrics on a solid donut which

fills in the boundary torus. There are many such saddles, which are distinguished by which

cycle in the boundary torus is contractible in the bulk (see e.g. [5–7]). For example, the

geometry for which the Euclidean time coordinate is contractible is the (Euclidean) BTZ

black hole, while the geometry where the angular coordinate is contractible is interpreted

as the “thermal AdS” geometry used to compute finite temperature observables in a fixed

AdS background. As one varies the moduli of the torus, these two saddles will interchange

dominance in the bulk gravity path integral — this is the three dimensional version of the

Hawking-Page phase transition [8] describing black hole formation in AdS.

We are interested in the case where the boundary B has genus g ≥ 2. Just as in the

torus case, there are many different bulk solutions which give saddle point contributions

to the partition function, and which can be characterized by a choice of cycles of the

boundary surface B which become contractible in the bulk. The simplest of these solutions

are handlebodies, where the bulk solution is the constant negative curvature metric on

a solid genus g surface which fills in the boundary B. There will be phase transitions

where these geometries interchange dominance: these are the higher genus versions of the

Hawking-Page phase transition. As in the torus case, these handlebodies can be regarded

as the Euclidean continuation of AdS3 black holes; they are analytic continuations not of

the BTZ black hole, but instead of multi-boundary black holes in AdS [9, 10], as described

in [11]. In the holographic context, these handlebodies describe contributions to the higher

genus partition functions of holographic CFTs, which can be used to compute entanglement

Rényi entropies [12], to constrain OPE coefficients [13–15], or as models of multi-party

holographic entanglement [16].1

The bulk solutions described above are all locally H3, so can be written as quotients of

hyperbolic space of the form H3/Γ, where Γ is a discrete subgroup of the isometry group

1There are other “non-handlebody” solutions as well [17, 18], which will not concern us in this paper.

Near boundaries of moduli space — i.e. where cycles in the surface B become small — the handlebody

solutions will always dominate [17, 18]. Moreover, one can compute numerically the action of the non-

handlebodies in the interior of moduli space, and — at least in the cases which have been studied — they

are always subdominant compared to handlebodies [19]. We will therefore focus only on handlebodies in

this paper.
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of H3. Indeed, Einstein gravity in three dimensions has no local degrees of freedom, so any

solution of pure Einstein gravity must be locally H3. We are interested in more complicated

theories of gravity, however, which have additional degrees of freedom. In this paper we

will consider theories where we have an additional scalar field φ of mass m2. This means

that the dual CFT has an operator O of dimension ∆, with m2 = ∆(∆ − 2).2 All of the

solutions described above have φ = 0, and are dual to CFT configurations on the Riemann

surface with 〈O〉B = 0.

Our central result is the following: in some regions of moduli space, and for sufficiently

light scalar fields, the handlebody solutions described above are unstable. This is because

the kinetic operator (∇2−m2) will have a negative eigenvalue. Thus the solution with least

action will not be a quotient of AdS, but rather a non-Einstein solution with φ 6= 0. In the

dual CFT, the expectation value of the scalar operator 〈O〉B 6= 0 will be non-zero. This

means that as the moduli are varied there will be phase transitions where these scalar fields

condense. Although the general structure of these φ 6= 0 solutions is quite complicated —

we expect the construction of these solutions to be a difficult numerical problem — we are

able to prove rigorously the existence of the instability.

We will see that these phase transitions have several important features, including:

Instabilities occur only when the dual operator is sufficiently light. In order for

a given handlebody to be unstable, ∆ must be lighter than a certain critical value

∆c which we will compute. The value of ∆c will depend on the conformal structure

moduli as well as on the choice of handlebody. Whenever the dimension ∆ < 2 (i.e.

the bulk scalar φ has m2 < 0) there is some region of moduli space where a given

handlebody will be unstable.3

Instabilities occur only in the interior of moduli space. At the boundary of mod-

uli space one of the handlebody phases will always dominate, and will be stable

against the condensation of any scalar field. In other words, ∆c → 0 for the domi-

nant handlebody as we approach the edge of moduli space. As one moves into the

interior of moduli space ∆c increases so the handlebody becomes more unstable to

condensation of the scalar, until the first-order Hawking-Page transition is reached,

and a topologically distinct handlebody becomes dominant.

For example, if B is a genus g = n − 1 surface constructed as an n-fold cover of the

sphere branched over 4 points, parameterized by their cross-ratio x, the handlebody

which dominates when x → 0 will become more unstable as x is increased. For this

geometry, ∆c is a monotonically increasing function of x.4

Handlebodies become more unstable as the genus increases. Instabilities only oc-

cur when B has genus g ≥ 2. If B is the genus g = n − 1 surface constructed as an

2We are working in units where the AdS radius is ` = 1.
3If we require the handlebody to be invariant under a Z2 time reflection symmetry, so that it can be

Wick rotated to a real Lorenztian solution, then this condition becomes ∆ < 1; this would require that the

scalar field have −1 < m2 < 0 and be quantized with alternate boundary conditions.
4It is important here that we are referring to the handlebody which dominates at small x. For the

handlebody which dominates as x→ 1, ∆c will be monotonically decreasing function of x between 0 and 1.
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n-fold cover of the sphere branched over 4 points, then if we hold the cross-ratio x

of the four points fixed, the corresponding handlebodies will become more unstable

as n is increased. In other words, ∆c is a monotonically increasing function of n. As

we take n→∞ with fixed x, ∆c approaches a finite value which depends on x but is

always greater than 1
2 .

This new phase transition in three dimensional gravity is quite similar to the holo-

graphic superconducting phase transition in higher dimensions [20, 21]. There is, however,

one crucial difference, which is that in the present case the solutions which become unstable

are locally AdS3, and have no external potentials (aside from metric moduli) turned on.

Our instability occurs because of global properties of the handlebody, not due to any local

properties of the metric.5 Although at first sight surprising, our results are a three dimen-

sional version of a famous fact in two dimensions: the spectrum of the hyperbolic Laplacian

on a Riemann surface depends not just on the local structure of the metric (which is always

hyperbolic) but also on the moduli of the Riemann surface. Indeed, this spectrum is the

central object of interest in the study of arithmetic and quantum chaos, and many of our

results are borrowed from this literature.

Our results have important implications for entanglement entropies in two dimensional

conformal field theories. For any state in a two dimensional CFT, one can consider the

reduced density matrix associated to a particular spatial region. The Rényi entropies
1

1−n log Tr ρn can then be used to characterize the spatial entanglement structure of this

state. When the spatial region is collection of intervals, the Rényi entropy is — via the

replica trick — equal to the partition function of a CFT on a higher genus Riemann surface

whose genus depends on n (see e.g. [23]). For example, the Rényi entropy for a pair of

intervals in the vacuum state is equal to the partition function on a genus g = n − 1

Riemann surface. The entanglement entropy is then computed by considering these Rényi

entropies as an analytic function of n, and continuing to n → 1. In this procedure one

assumes that the entropies are analytic functions of n. We have seen, however, that in

holographic CFTs the Rényi entropies can undergo a phase transition as n is varied, at

some finite value of n > 1. Thus the replica method for computing entanglement (von

Neumann) entropies must be treated with care.6 For example, if we consider the Rényi

entropies for a pair of intervals, two handlebodies will interchange dominance precisely

at cross-ratio x = 1/2 [12]; this is also exactly where the Ryu-Takayanagi formula for

entanglement entropy [27] will undergo a phase transition. Our results imply, however,

that if the CFT has a sufficiently light operator then the Rényi entropies will undergo a

phase transition at cross-ratio x < 1/2. For example, the n = 2 Rényi entropy will undergo

a phase transition if the theory has an operator with dimension ∆ < ∆c = 0.189124 · · · .
5A rather similar phenomenon was observed in higher dimensions in [22], where hyperbolic black holes

in AdS4 were observed to undergo similar phase transitions even though the solutions were locally AdS. As

in the present case, the instability only arose because the hyperbolic black hole solutions differed globally

from AdS4. Thus modes of the scalar field which are not normally present (since they are non-normalizable

in global AdS) suddenly become normalizable and lead to a genuine instability of the locally AdS solution.
6Similar phenomena were observed for spherical entangling surfaces in higher dimensional holographic

CFTs in [24, 25], and for the three dimensional O(N) model in [26].
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We note that this instability occurs for values of n which are strictly larger than one —

we do not expect a non-analyticity in a neighborhood of n = 1. It would be interesting to

revisit the arguments of [12, 28–30] in this context.

Our results also make clear a sense in which higher genus CFT partition functions differ

qualitatively from those on the sphere or torus. The torus partition function, for example,

was shown by Hartman, Keller and Stoica to take a universal form at large central charge,

provided one assumes that the spectrum of light states (i.e. those with dimension less than

the central charge) does not grow too quickly [31]. This universal form is precisely that of

a dual three dimensional theory of gravity which has a Hawking-Page transition between

a thermal state and a BTZ black hole, and the sparseness condition is obeyed by any bulk

local quantum field theory and even by string theories with string scale `string . `AdS. At

higher genus, however, we see that additional phase transitions are generic, and occur even

for duals of local quantum field theories in the bulk. Thus at higher genus there is no

analogous “universal partition function” at large central charge.

While our discussion will be entirely in the context of three-dimensional gravity, similar

phenomena will also occur in higher dimensions. The most direct analogue is with locally

AdS spacetimes, to which almost everything generalizes straightforwardly. In particular,

the critical dimension ∆c for an instability can be shown to be equal to the Hausdorff

dimension of an appropriate limit set, just as we will see below for the three dimensional

case.7 This is slightly less natural than in three dimensions, because solutions to Einstein’s

equations need not be locally hyperbolic, so it is not clear when such geometries would dom-

inate the path integral. More generally, the same mechanism of instability can apply, with

global properties of the solution moving the critical mass above the näıve Breitenlohner-

Freedman bound. Heuristically, scalars of negative mass squared can be stable because the

reduction in action from the mass term in a finite region is compensated for by the positive

contribution to the action from the gradient, required to match with the boundary condi-

tions at infinity; it is important here that the volume of a region does not grow faster with

size than its perimeter in negatively curved spaces. Without altering the local curvatures,

nontrivial topology can upset this mechanism for stability by reducing the size of a region’s

boundary, and hence the gradient contribution to the action, for a given volume.

The discussion of the paper will be phrased in terms of the Euclidean solutions, but the

results have interesting implications in Lorentzian signature. The relevant CFT states are

defined by a Euclidean path integral on a Riemann surface with one or more boundaries,

generalizing the familiar examples of the path integral on the disc preparing the vacuum

state, and on the cylinder preparing the thermofield double state on two entangled copies

of the CFT Hilbert space. This defines the state at t = 0, which can be evolved in

Lorentzian time.

To find the semiclassical bulk dual of these states, we must first find the Euclidean

solution that dominates the path integral on the ‘Schottky double’, the closed Riemann

surface formed by gluing the surface to its mirror image along each of the boundaries,

by construction producing a Z2-symmetric surface. The dominant solution is expected to

7Indeed, one can directly reinterpret the results of [22] in this context.
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respect this boundary time-reflection symmetry, so the bulk surface Σ fixed by the reflection

acts as an initial data surface for Lorentzian evolution, and the quantum state of the bulk

fields is the Hartle-Hawking wavefunction on Σ. For one possible solution, the t = 0 slice

Σ is conformal to the original Riemann surface, describing a single-exterior black hole with

topology hidden behind a horizon for a single-boundary case, or a multi-boundary black

hole with an exterior region for each boundary, all joined by a non-traversable wormhole.

Even in pure gravity, there are several phases of the dominant bulk solution, so depending

on the moduli the bulk state can also be disconnected copies of pure AdS (but with fields

in a state different from the vacuum), or something else. For a more detailed review of

these states, see [19, 32–34].

Now, if there is a sufficiently relevant scalar operator in the CFT, there is an additional

second-order phase transition to a dominant bulk solution with a nonzero classical value

for the dual scalar field. This means that the initial data on Σ includes some scalar field

configuration, which will evolve in time. The fact that these states are not stationary

will then be visible even for a classical observer outside any horizon. When the phase

includes a black hole, the scalar outside the horizon will rapidly decay away, falling into

the black hole. A more interesting time evolution occurs when the dual state includes copies

of pure AdS, which may now include some scalar configuration. When the amplitude is

small, as will be the case close to the transition, linearised evolution will suffice, with

the field bouncing around periodically, but eventually nonlinearities will likely become

important, with resonances between different modes. Perhaps the most likely evolution

thereafter is a turbulent cascade to excite higher and higher frequency modes, with the

solution nonetheless being regular for all time, as evidenced by numerical studies of a

massless scalar interacting only gravitationally [35]. This is different from the situation in

higher dimensions, in which a black hole forms after finite time; this cannot occur in three

dimensions, because there is a finite energy threshold between the vacuum and the lightest

black hole.8

In section 2 we will review briefly a few salient features of three dimensional gravity, as

well as the necessary aspects of CFT on Riemann surfaces. In section 3 we will give a CFT

argument for the existence of an instability, inspired by recent results of Belin, Keller and

Zadeh [36]. The main idea is that a free bulk scalar field is dual to a generalized free field in

the boundary CFT, and we can compute the contribution of such a field to the higher genus

CFT partition function. Using the asymptotic value of the OPE coefficients of multi-trace

operators built from a generalized free field, along with higher genus conformal blocks in

the appropriate regime, one can show that these contributions diverge when the field is

sufficiently light, which signals the phase transition. This argument allows us to bound the

critical dimension of the scalar field; for example, for the genus two handlebody relevant

for the computation of the third Rényi entropy of two intervals at cross-ratio x = 1
2 , we

find ∆c ≥ 0.189121 · · · .
In section 4 we will turn to the bulk instability. We will first review how the zero mode

of the instability relates to various notions from the spectral theory of the Laplacian on a

8We would like to thank Benson Way for helpful comments on this aspect.
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general bulk geometryM. We then specialize to the main case of interest, for whichM is a

quotient of hyperbolic space H3 such as a handlebody, and find that the critical dimension

has a rather beautiful mathematical interpretation. The quotient is by a group of Möbius

maps, which has a limit set, a subset of the Riemann sphere (the boundary of Euclidean

AdS3). This limit set has a finite Hausdorff dimension δ > 0, which is sometimes referred

to as the fractal dimension of the limit set. This Hausdorff dimension is precisely equal to

the critical dimension of the scalar field, ∆c = δ. In other words, a scalar is unstable if and

only if its dimension is less than the Hausdorff dimension of the limit set. The calculation

in section 3 can therefore be regarded as a CFT estimate of this Hausdorff dimension,

which provides explicit lower bounds on δ.

In section 5 we turn to the explicit computation of the critical dimension, using an

algorithm of McMullen for computing the Hausdorff dimension. We will use the algorithm

to compute the critical dimension analytically, finding the asymptotic behaviour of δ as the

boundary of moduli space is approached, for the handlebody which dominates the partition

function. We also describe what happens to the instability at large genus. We will also use

the algorithm to efficiently compute the critical dimension numerically. For example, for

the genus two surface described above, the Hausdorff dimension is δ = 0.189124 · · · , close

to our CFT bound. We use the numerical data to provide plots of this critical dimension

as a function of moduli, and as a function of genus.

2 Review of higher genus partition functions in 3D gravity and 2D CFT

In this section we will review the description of higher genus Riemann surfaces, and the

construction of solutions to three-dimensional gravity with such boundaries, which can be

interpreted as saddle points for the higher genus partition function of a holographic CFT.

In particular, we describe a class of symmetric surfaces that we will use as examples. We

will also review the interpretation of these partition functions in terms of Rényi entropies.

2.1 Moduli spaces and handlebodies

We are interested in studying holographic two-dimensional conformal field theories, dual to

three dimensional AdS gravity in Euclidean signature, in particular on a Riemann surface

B of genus g ≥ 2. The partition function of the theory on such a surface, denoted Zg(τ),

will depend on the conformal structure of the surface B. Here τ is a collection of 3g − 3

complex coordinates which parameterize the moduli space Mg of conformal structures on

B. At genus one, τ can be identified with the usual torus modulus. At higher genus there

are various different coordinates which can be used to describe the moduli τ , some of which

we will now describe.9

9Because of the conformal anomaly the partition function will in addition depend on a choice of metric

within a given conformal class. Thus Zg should not — strictly speaking — be regarded a function of τ

alone. This dependence, however, involves only the central charge and not any of the other dynamical data

of the CFT (such as operator dimensions or structure constants), so will not be important for us here.

We will therefore suppress this dependence and simply indicate the dependence on the conformal structure

moduli τ .
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For many purposes in CFT and gravity, the most convenient way to realize a Riemann

surface B is as a quotient of the Riemann sphere C∗ by a Schottky group Γ, B = Ω(Γ)/Γ.

Here Γ is a discrete subgroup of PSL(2,C), which acts on C∗ in the usual way by Möbius

transformations, and Ω(Γ) is the set of points on the Riemann sphere where this group ‘acts

nicely’. More precisely, Ω(Γ) is the set of points z ∈ C∗ which have some neighborhood U

containing no other images of z under the group: γ · z ∈ U for γ ∈ Γ implies that γ is the

identity. Equivalently, if we define the limit set Λ(Γ) to be the set of accumulation points of

the action of Γ on C∗ (a set about which we will have much more to say later), then Ω(Γ) is

just the Riemann sphere with those points removed: Ω(Γ) = C∗ −Λ(Γ). More specifically,

a Schottky group Γ of genus g is a subgroup of PSL(2,C) that is freely generated by g

loxodromic10 elements of PSL(2,C), having as a fundamental domain the exterior of 2g

closed curves (usually circles), such that each of the g generators of Γ maps one of these

boundaries to another in pairs. Intuitively, to obtain a Schottky representation, we can

cut the surface along g disjoint closed loops such that it stays in one piece and becomes

a sphere with 2g holes, flatten it onto the complex plane, and build the Schottky group

from the Möbius maps that glue the surface back together along its g seams. A given

Riemann surface can be written as a Schottky group in many different ways, depending on

the choice of g cycles to cut along. The presentation as a Schottky group is equivalent to

the plumbing construction used in [37]. A more detailed review of Schottky uniformization

can be found in [11, 28, 38]. A slightly different approach to calculations in the Schottky

coordinates was used in [39].

A rather different presentation of the Riemann surface B is as an algebraic curve. In

this case we represent B as the set of solutions to an equation such as

yn =
N∏
k=1

z − uk
z − vk

. (2.1)

Here, B is a genus g = (N − 1)(n − 1) surface, represented as n-fold branched cover over

the Riemann sphere parameterized by the z-plane, with 2N branch points (uk, vk). As

the resulting Riemann surface automatically possesses a Zn symmetry (usually referred

to as replica symmetry) where one permutes the n sheets, one cannot describe a general

point in moduli space Mg using this parameterization. Instead, this equation describes

only a 2N − 3 dimensional slice of moduli space, a family of surfaces with an enhanced

(Zn) automorphism group. Except in special cases one cannot map out the full moduli

space this way.11 The advantage of this approach is that the moduli of this surface are

easy to describe — they are the locations (uk, vk) of the branch points. For physics, this

presentation is natural for describing Rényi entropies (or certain correlation functions in

orbifold theories), with the branch points uk and vk corresponding to the insertion points

of twist and anti-twist operators.

10A loxodromic element γ of PSL(2,C) is one which is conjugate to

(
q 0

0 q−1

)
for some q with 0 < |q| < 1.

11One important special case is the genus two moduli space. Every genus two curve is hyperelliptic, so

can be represented as a 2-fold cover of the sphere branched over 6 points.
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Except at genus one, or in special cases with very high symmetry, it is not possible to

find an explicit map between the moduli of the algebraic curve and Schottky groups, or to

find out whether two Schottky groups represent the same surface, sliced in a different way.

However, the problem of finding a Schottky group associated with a particular algebraic

curve, sometimes called ‘Schottky uniformization’, is equivalent to solving a monodromy

problem, which we now briefly describe.

To do this, we begin by denoting the locations of branch points (uk, vk) as zi (i =

1, . . . , 2N). We would like to find the map w(z) from the algebraic curve coordinate z to

the coordinate w of the complex plane on which the Schottky group acts. But w(z) is

not single-valued, because there are many possible values of w related by elements of the

Schottky group Γ. However, the Schwarzian derivative Tc(z) = S(w)(z) =
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

is single-valued, since the Schottky group consists of Möbius maps. If we take Tc(z) as given,

a simple calculation shows that solving Tc(z) = S(w)(z) for w is equivalent to solving the

ordinary differential equation

ψ′′(z) + Tc(z)ψ(z) = 0, (2.2)

with w(z) = ψ1(z)
ψ2(z) being the ratio of two linearly independent solutions ψ1,2(z) to the ODE.

This is not much use if we know nothing about Tc(z). However, for the Riemann

surface (2.1) Tc(z) can be fixed up to a finite number of parameters, by using the fact that

it is a meromorphic function of z which transforms like a stress-tensor:

Tc(z) =

2N∑
i=1

(
1− n−2

4(z − zi)2
+

γi
z − zi

)
(2.3)

Here, we have assumed that the Schottky group respects the replica symmetry, so Tc(z)

is single-valued in z. The double poles are fixed by demanding smoothness in the y co-

ordinate of eq. (2.1), and the γi are free parameters, called ‘accessory parameters’. It is

also constrained by smoothness at infinity, which demands that Tc(z) decays like 1
z4 . This

imposes three constraints on the γi, leaving 2N − 3 free parameters.

It remains to fix these free parameters. To do this, note that if we go around a closed

curve on the surface, a solution to the ODE will not usually come back to itself, but undergo

monodromy, so the value of w will change by a Möbius map:(
ψ1

ψ2

)
−→

(
a b

c d

)(
ψ1

ψ2

)
, so that w −→ aw + b

cw + d
(2.4)

The monodromies of the ODE form a representation of the fundamental group of the surface

π1(B) by Möbius maps. But in the Schottky representation, not all the closed loops on the

surface should take us to a different w, and a different copy of the fundamental domain

for Γ: the g special loops that bound the fundamental domain should come back to the

same value of w, and so correspond to trivial monodromy of the ODE eq. (2.2) (in fact,

the monodromy matrix around these cycles is always minus the identity).

Imposing these trivial monodromy conditions is precisely enough to fix the 2N − 3

free parameters. Once these parameters are fixed, we may solve eq. (2.2) to find the
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monodromy around g complementary cycles, which give the generators of the Schottky

group Γ. In section 2.3 we go into more detail for a specific example, which we will

subsequently use for analytic and numerical calculations.

This monodromy problem also appears in computations of the semiclassical limit of

Virasoro conformal blocks [40], reviewed in [29, 41], and described in generality for higher

genus blocks in [13].

2.2 Schottky representations, handlebodies, and gravity

The Schottky representation has a very natural interpretation from the bulk point of view.

To see this, note that the Möbius maps acting on the Riemann sphere can be extended into

a bulk hyperbolic space H3, where they act as the orientation-preserving isometries. We

can therefore extend the action of a Schottky group Γ into this bulk, obtaining a quotient

of hyperbolic space with B as its boundary, M = H3/Γ. Representing hyperbolic space in

the upper half-space model, this can be understood as taking the circles that bound the

fundamental domain of the Schottky group and extending them as hemispheres into the

bulk, giving a fundamental domain with the hemispheres identified by the generators of Γ.

A CFT partition function on the surface B can be computed holographically as the

bulk gravity path integral over Euclidean geometries whose conformal boundary is B. Semi-

classically, we just need to compute the action of a solution to the bulk equations of motion

with boundary B, which will depend on the moduli of B. There are an infinite number

of bulk solutions, which in general should include the contribution of matter fields, but a

particularly simple class of solutions are those without matter fields turned on. Since pure

gravity in three dimensions is locally trivial, Einstein’s equations then imply that the bulk

is locally H3, which means that it must be a quotient of hyperbolic space. The Schottky

group quotients therefore provide a large class of solutions to the bulk problem, which are

conjectured to dominate the path integral in pure gravity.

Topologically, the Schottky group quotients are handlebodies, obtained by ‘filling in’

the surface B along a choice of g cycles. These contractible cycles are precisely those we

chose to cut the surface along to construct the Schottky group, or around which we imposed

trivial monodromy. The Schottky group describes the remaining non-contractible cycles, in

the sense that it is topologically interpreted as the fundamental group of the handlebody.

Some geometric properties of the bulk can be read off easily from the Schottky group,

in particular the lengths of closed geodesics. A closed loop is represented topologically as a

conjugacy class in the fundamental group, or equivalently in Γ, and since the eigenvalues of

γ ∈ Γ are independent of the representative of the conjugacy class, the smaller eigenvalue

qγ of γ ∈ SL(2,C) (0 < |qγ | < 1) is naturally associated with a closed curve. Writing

qγ = e−
1
2

(`+iϑ), ` is in fact the length of the closed geodesic, and θ is the amount the

geodesic is twisted by (the angle a normal vector rotates by after parallel transport round

the curve). Explicitly in terms of the trace, this length is

`γ = cosh−1

[∣∣∣∣Tr γ

2

∣∣∣∣2 +

∣∣∣∣∣
(

Tr γ

2

)2

− 1

∣∣∣∣∣
]
. (2.5)
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For more detailed review and discussion, focussing on the Lorentzian versions of these

geometries, see [32].

Because there are many possible Schottky groups corresponding to the same surface B,

we must decide which geometry gives the correct semiclassical bulk dual for given moduli of

the boundary surface (even before considering bulk matter fields). The näıve answer to this,

and the one that reproduces CFT expectations, is that the handlebody with least action

dominates the path integral, so is the dual bulk. It was shown how to compute this action

in [11], from a particular higher-genus ‘Liouville action’ [42], depending crucially on the

IR cutoff imposed on the bulk, and hence on the choice of metric on the boundary surface

within the given conformal class. In a metric appropriate for Rényi entropies, flat away

from conical singularities at branch points zi, and with a bulk preserving replica symmetry,

the derivative of the action with respect to zi is proportional to the accessory parameter

γi [28]. In a constant curvature metric, for general surfaces, a numerical algorithm to

compute the action was given in [19]. As a heuristic, to choose the dominant saddle point,

the g shortest cycles of the surface should be filled in.

Given these tools, one can then attempt to construct the higher genus partition function

Zg(τ) via a bulk path integral, as a sum over geometries. The handlebodies described

above give semi-classical saddle point contributions to this bulk path integral, and the full

partition function should be given be a sum over these semi-classical saddles along with a

set of loop corrections. The loop corrections to these semi-classical contributions can be

computed exactly at genus g = 1 and perturbatively at higher genus (see e.g. [7, 43]). In

pure gravity — i.e. in theories with no degrees of freedom aside from the metric — there

is some hope that one could compute the higher genus partition function exactly [44]. We

will be interested in more general theories, which contain scalar fields in addition to the

metric. In this case the theory has local bulk degrees of freedom, and there is little hope of

an exact computation. Nevertheless, the computations described above give contributions

to the partition function of a holographic CFT which will be valid in the semi-classical

(large c) limit.

2.3 A Zn symmetric family of genus n − 1 surfaces

We now illustrate this general discussion with an example, specifically a family of genus

n − 1 surfaces with an enhanced Zn symmetry. As an algebraic curve, this family of

Riemann surfaces is given by

yn =
z(z − 1)

z − x
. (2.6)

This is the N = 2 case of (2.1), where we have used PSL(2,C) transformations to put

u1 = 0, u2 = 1 and v2 = ∞. The remaining parameter is the cross-ratio x, which is the

modulus of this family of Riemann surfaces. In general x can be any complex number, but

for simplicity (and for the purposes of applications to Rényi entropies, described below)

we will take it to be a real number between zero and one.

To find a Schottky group, or equivalently a bulk geometry, we can now solve the

monodromy problem described above. Choosing to preserve the replica symmetry, the
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most general ansatz for the ODE eq. (2.2) is

Tc(z) =
1− n−2

4

(
1

(z − x)2
+

1

z2
+

1

(z − 1)2
− 2

z(z − 1)

)
− γ x(1− x)

z(z − 1)(z − x)
, (2.7)

where we have imposed the constraints (which are slightly different, because there is a

branch point at infinity), leaving the single accessory parameter γ. To fix this parameter,

we must first choose the cycles around which we impose trivial monodromy. For our

purposes, it suffices to take the cycles surrounding 0 and x; this gives a loop on the z plane

enclosing one zero and one pole of yn, so remains on the same sheet of the branched cover,

forming a closed loop on the surface. There are n of these, one on each sheet, but only

n − 1 of them are in fact independent: the product (in the fundamental group) of the n

loops, described by a loop enclosing z = 0 and z = 1, then moving to the next sheet, and

repeating n times, is topologically trivial. Because we have imposed Zn symmetry already

on our ansatz for Tc(z), imposing trivial monodromy on any one of the sheets is sufficient.

Having chosen the accessory parameters to trivialize the monodromy around these

cycles, we would like to read off the Schottky group. To do this, it is convenient to take

full advantage of the symmetry of the situation, using the automorphisms of the surface

(which are preserved by the handlebody). In the language of the quotient, an (orientation-

preserving) isometry of the bulk is represented by an additional element γ ∈ PSL(2,C) (so

it is an isometry on the covering space H3) that commutes with the group Γ (γΓ = Γγ, so it

has a well-defined action on the quotient). Including some such elements, we can form an

extended group Γ̂, of which Γ forms a normal subgroup. The largest possible Γ̂, including

all elements of γ ∈ PSL(2,C) such that γΓ = Γγ is the normalizer N (Γ) of Γ, and the

isometry group of the bulk is then Isom(M) ' N (Γ)/Γ.

The most obvious extension providing an automorphism is the Zn replica symmetry R,

represented as the monodromy around a loop containing 0. This comes back to a different

sheet, so is not an element of Γ, but we can include it in Γ̂ as an elliptic Möbius map of

order n. From the point of view of the monodromy problem, these elements correspond

to monodromy along curves that may not return to the same point on the surface, but

go between some point and its image under the isometry. Near z = 0, the independent

solutions to the ODE eq. (2.2) look like ψ±(z) ∼ z
n±1
2n , with corrections forming a power

series in z and not affecting the monodromy around zero; choosing these as our basis ψ±
of solutions (w(z) = ψ+(z)

ψ−(z)), the loop around zero, enacting the replica symmetry, acts on

the w coordinate as R : w 7→ e
2πi
n w.

In fact, this family of surfaces automatically has more symmetry, containing an addi-

tional Z2 extending the Zn to a dihedral group D2n.12 From the z coordinate, this can be

understood as a map swapping 0 with 1 and x with ∞, z 7→ x
z , along with reversing the

order of the sheets of the cover. It is straightforward to check that this leaves the ODE

invariant, after transforming ψ as a weight −1
2 field. In terms of the monodromy, this extra

symmetry is enacted by taking the solutions ψ±(z), following the solution from 0 to ∞,

12Even further than this, these surfaces all have another additional Z2 commuting with this dihedral

group, acting as z 7→ x z−1
z−x , which is a hyperelliptic involution of B. We will not make use of this extra

symmetry, but in the parameterization used below, it can be included as w 7→ 1
w

.
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and reading off the coefficients of z
n±1
2n in these solutions near ∞, giving some order two

Möbius map S.

In practice, except for the special case n = 2, finding S requires doing the calculation

numerically, but we can deduce a lot about it, reducing the unknown parameters from the

three numbers specifying a general Möbius map, to just one. Firstly, note that doing S

twice corresponds to going round a loop with trivial topology, which implies that S is order

two, S2 = 1, which means it is specified by its fixed points. Secondly, without altering

the form of R, we can change coordinates by rescaling and rotating in the w plane, and

use this to remove one other parameter of freedom. We will use this freedom to set the

product of the fixed points of S to be unity, which fixes S to act as S : w 7→ w−ζ
ζw−1 for some

(in general complex) ζ.

Now, the extended group Γ̂ is generated by just R and S (in fact, it is the free group

generated by those elements with the only relations being those given by the orders of the

elements: Γ̂ = 〈R,S|Rn = S2 = 1〉), so we are interested in the one-parameter family of

groups generated by one Möbius map of order 2, and one of order n. The actual Schottky

group Γ appears as a normal subgroup of this, generated by the loops that actually return

to the same point on the surface (but are still non-contractible in the bulk), requiring an

even number of S generators to appear, and also for the sheets to map back to themselves,

rather than being permuted. The first of these is the element γ1 = SRSR, taking a loop

round zero by R, then going from 0 to ∞ by S, then a loop round to infinity by R again,

and finally back to the starting point at zero, creating a closed loop surrounding zero and

infinity, or equivalently x and 1. The remaining generators are similar, but starting on a

different sheet, achieved by conjugating with R: γk = R1−kSRSRk. There are n of these,

but they are not all independent, since γ1γ2 · · · γn = 1. Any n−1 of these (a number equal

to the genus) generate Γ. To relate this to the general discussion of symmetries above,

the group of isometries Γ̂/Γ described by this extension is the dihedral group of order 2n,

since modding out by Γ is equivalent to imposing the additional relation γ1 = SRSR = 1,

giving the presentation Γ̂/Γ = 〈R,S|Rn = S2 = SRSR = 1〉 ≡ D2n.

This prescribes the family of Schottky groups we are interested in, parameterized

by ζ = cos θ, though it is important to note that this only describes a Schottky group

when ζ is sufficiently close to one (or θ close to zero). An alternative, more geometric

parameterization is by q, defined as the smaller eigenvalue of γ1 = SRSR ∈ SL(2,C)

(noting that this is independent of the sign chosen for the matrix representatives of S and

R), defined as above so that q = e−
1
2

(`+iϑ) gives the length and twist of a curve in the bulk

geometry. In the case n = 2, q = tan2 θ
2 is the usual elliptic nome of the boundary torus,

lying in the punctured open unit disc, though for larger n it must be contained in a strictly

smaller region.

In practice, to map from any given x to find the corresponding value of ζ (or θ or q),

it is sufficient to compute the trace of any of the γk (all are equal), from the trace of the

monodromy of any loop containing x and 1. It is also possible to solve the monodromy

problem perturbatively in small cross-ratio, as described in [38], and in our parametrisation,

the result to leading order is θ =
√
x
n (1 + O(x)). Real x between 0 and 1 corresponds to

real θ, or 0 < ζ < 1, or 0 < q < 1. Real negative x (or equivalently x > 1) also results
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in a Fuchsian group Γ, and corresponds to ζ > 1 (but bounded by sec π
n so the group

is Schottky).

We can also find different handlebodies for the same surface by trivializing monodromy

around some different cycle, but the only possibilities preserving the replica symmetry are

much the same, the most obvious being to take the loop to surround x and 1 rather

than 0 and x. There is a phase transition between the two corresponding handlebodies at

Re(x) = 1
2 [12].

2.4 Relationship with Rényi entropies

The bulk computation of higher genus partition functions can be applied to the computation

of Rényi entropies in holographic CFTs (see [45] for a review). For a density matrix ρ, the

nth Rényi entropy is defined as

Sn =
1

1− n
log Tr ρn. (2.8)

In the n → 1 limit this becomes the von Neumann entropy S = −Tr(ρ log ρ). In order to

probe the spatial entanglement structure of the theory, we can take ρ to be the reduced

density matrix for a spatial region A in the vacuum state. Then ρ is defined by a Euclidean

path integral on the sphere (with cuts introduced at A), and the Rényi entropy may be

computed by gluing n copies of this sphere together along these cuts. Explicitly, we have

Sn =
1

1− n
log

Zn
Zn1

. (2.9)

Here Zn is the partition function on a manifold Mn, which is the n-fold branched cover

defined by gluing n copies of the original spacetime manifold along A, and the normal-

ization constant Z1 is the sphere partition function. If A consists of N disjoint intervals,

this is precisely the n−fold cover of the sphere branched over 2N points (the endpoints)

described above.

We will focus on the case where A consists of two disjoint intervals [u1, v1] and [u2, v2].

Then the conformal structure of Mn is completely determined by the cross ratio

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
. (2.10)

As this cross-ratio is varied, we sweep out a one (real) dimensional slice of the moduli space

Mn−1 of genus n − 1 dimensional Riemann surfaces. This is precisely the case described

in the previous subsection. There are two handlebodies which compute the pure-gravity

contribution to the Rényi entropies, which exchange dominance at the point x = 1/2.

When n = 2 these saddles are precisely the thermal AdS and Euclidean BTZ black hole

solutions, and the phase transition at x = 1/2 is the usual Hawking-Page phase transition.

The scalar instabilities we describe in this paper will occur for n > 2 when the theory

has an operator of dimension ∆ which is sufficiently light. In particular, we will find that

there are two new phase transitions as x is varied, one at x = xc(∆) < 1/2 and one at

x = 1 − xc(∆), where these two handlebodies will become unstable to the formation of

scalar hair.
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3 The phase transition from CFT

In this section we will make a CFT argument for the instability, by considering the con-

tribution of a generalized free field — the boundary avatar of a free bulk scalar field —

to the higher genus partition function of a CFT with large central charge. The result is

that if the corresponding operator is sufficiently light, then the generalized free partition

function will diverge somewhere in the interior of moduli space. This signals that the

free approximation has broken down, so interactions become important, and the partition

function will undergo a phase transition. We give an analytic lower bound on the critical

dimension ∆c in terms of the Schottky moduli of the surface. As the field becomes lighter,

the phase transition will occur closer to the boundary of moduli space; in particular, for a

sufficiently light field the corresponding bulk phase transition will occur before the usual

“Hawking-Page” transition where (locally Einstein) bulk saddles are interchanged. In the

bulk, this would be interpreted as the condensation of a bulk scalar field in a handlebody

background. The discussion in this section is a refinement of the arguments presented

in [36].

3.1 The partition function and conformal blocks

A higher genus partition function can, at least in principle, be computed from the basic

dynamical data of the CFT, namely the spectrum of dimensions and spins (∆i, si) of

primary operators, along with their three-point coefficients Cijk. To do this, we can insert

a complete set of states on a handle of the surface to reduce the computation to sum

over two-point functions on a surface one genus lower, and repeat this (along with use of

the OPE) until the computation has been reduced to three-point functions on spheres. A

complete decomposition like this can be understood by cutting up the surface into pairs

of pants: any genus g ≥ 2 surface can be decomposed (in many ways) into 2(g − 1)

pairs of pants, joined along a total of 3(g − 1) cuffs. Along each of these cuffs, we can

insert a complete set of states and, by the state-operator correspondence, the amplitude

between three states defined by the path integral on the pair of pants is determined by a

three-point coefficient.

Along with inserting complete sets of states in this way, we can use the fact that the

states are arranged in multiplets of the Virasoro algebra, by summing up all contributions

from a given multiplet appearing in the sums over states. The resulting object, collecting

the contributions from a given primary on each of the 3(g − 1) cuffs along with all their

descendants, is a higher genus conformal block F . This is determined by kinematics alone,

depending only on the scaling dimensions and spins of the primaries chosen, the central

charge, and the moduli of the surface.13 In the partition function this conformal block will

be multiplied by the product of 2(g − 1) OPE coefficients corresponding to the primaries.

Summing over all possible choices of primaries, the result is a general expression for

the partition function of the form

Zg(τ) =
∑
{i}

C
2(g−1)
{i} F({∆i} , c; τ) (3.1)

13The blocks also factorize into the product of holomorphic and antiholomorphic blocks, though we will

not explicitly use this fact here.
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Figure 1. A genus 2 surface, which is cut into two pairs of pants glued together along the three

black circles. Along each of the three circles we can insert a projection onto the descendants of

a primary of dimension ∆i (i = 1, 2, 3) to obtain the block F({∆i}, c; τ). The dual handlebody

is found by ‘filling in’ the surface, as indicated by the shaded disks. The block F({∆i}, c; τ) can

be computed in the bulk in a semi-classical approximation, valid in the limit 1 � ∆i � c, by

computing the action of the network of bulk geodesics indicated in red.

Here the sum is over all choices of the 3(g− 1) primary operators, and C
2(g−1)
{i} denotes the

product of 2(g − 1) OPE coefficients corresponding to the primary operators propagating

down the legs of each pair of pants. This expression may look very different for different

pair-of-pants decompositions of the surface, but the result must be equal whichever decom-

positions is chosen; this is the statement of higher-genus crossing symmetry, which can be

exploited to constrain CFT data [13–15].

In the case g = 2, there are two possible distinct types of decomposition into pairs of

pants, depending on whether we choose to insert a complete set of states on a cycle dividing

the surface into two pieces. Assuming we do not, the decomposition looks like two pairs of

pants joined to one another along each of their three cuffs, as illustrated in figure 1, and

C
2(g−1)
{i} is just C2

ijk, where i, j, k denote the primaries chosen on each of these seams.

In general, it is rather difficult to compute (3.1) explicitly, and even the conformal

blocks cannot be calculated exactly in closed form. It is possible to calculate perturbatively

in moduli of the surface, or using recursion relations exploiting the structure of degenerate

representations [14, 37], or in various semiclassical limits [13, 46]. In particular, one needs to

choose a conformal frame, and to account carefully for the way in which the surface is glued

together from its constituents. Fortunately we will not need to work with this expression

in generality, only requiring the blocks in a particular ‘semiclassical global’ limit.

3.2 Semiclassical global limit of higher genus blocks

We will require the blocks in a limit of large central charge, where the dimensions of

exchanged operators are large also large (with ratios between different ∆i fixed in the

– 16 –



J
H
E
P
0
5
(
2
0
1
8
)
0
8
0

limit), but small compared to c: 1� ∆i � c. This limit has a dual holographic description

in terms of semiclassical gravity coupled to particles in a probe limit, for which only the

global conformal sl(2) subalgebra of the Virasoro algebra is important; hence the name

‘semiclassical global’ blocks.

In this limit the blocks simplify, becoming

F({∆i} , c; τ) = e−cS0(τ)−∆S1({∆i/∆j};τ)+O(1,∆2/c). (3.2)

The functions S0 and S1, depend on the moduli and (in the case of S1) on the ratios

of conformal dimensions, and have semi-classical gravity interpretations which we will

describe below. The fact that the blocks exponentiate in this limit large c limit is most

well known in the case of four-point functions [47], but has not been rigorously proven. It

is, however, physically well-motivated, for example by considering a semiclassical limit of

Liouville theory [41].

First, S0 can be interpreted as the semiclassical vacuum block, i.e. the block for which

all operators are taken to be the identity. It is equal to the on-shell action of the handlebody

where each of the cycles in the pair-of-pants decomposition are chosen to be contractible.14

This depends on a choice of conformal frame (the conformal anomaly precisely takes the

form of a shift in S0), and in general can only be computed exactly by numerics [19, 28, 29].

The frame-independent information contained in S0 is the difference between its value in

different channels, and this data is required to impose crossing symmetry. Luckily, for our

purposes we will only need to express the partition function in one channel, so we can

entirely disregard this piece.

For us, the more important contribution is S1, encoding the dependence on the dimen-

sions. The important point is that in the limit c→∞ with fixed ∆i the contribution of the

Virasoro descendants is unimportant after we factor out the vacuum block contribution S0.

So the block reduces to a ‘global’ block, where only the L−1 descendants are kept [37].15

The gravitational interpretation is clear: as c → ∞, the backreaction from the matter

and the loop corrections from the graviton can be ignored, and we need only the classical

background action.

This global block is still tricky to compute at higher genus, but if we further assume

that the internal dimensions ∆i are large (but still much smaller than c), it simplifies to a

‘semiclassical global’ block. This can be determined by considering a network of geodesics

in the handlebody spacetime, determined by the pair-of-pants decomposition. Specifically,

for each pair of pants, assign a trivalent vertex in the bulk, and join these vertices by

a geodesic for each seam joining the pairs of pants. This geodesic is interpreted as the

worldline of a particle of mass mi ∼ ∆i, determined by the dimension of the primary

operator assigned to the corresponding cuff of the pants decomposition, and is assigned

14This only depends on the choice of g cycles, not the full decomposition, which is consistent because of

the fusion rules of the identity: choosing the identity module along g cycles is enough to imply that the

identity must be present in the other 2g − 3.
15What constitutes a global descendant is a little ambiguous for higher-genus surfaces, since it is not

invariant under general conformal transformations. The statement here requires a Schottky, or plumbing

frame, for which all transition maps are Möbius maps.
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an action ∆i`i, where `i is the length of that geodesic segment. We finally must specify

the bulk locations of the vertices; these are chosen to minimize the total particle action∑
i ∆i`i. The value of e−min

∑
i ∆i`i at this minimum obeys the semiclassical limit of the

Casimir equations for the global conformal blocks, as shown in [46], so reproduces the

correct moduli dependence of the blocks.16 This limit can be used as a starting point for a

systematic perturbative expansion for the blocks, developed in terms of worldline quantum

field theory coupled to gravity in [48].

The only thing that remains to fix is the overall normalization. The geodesic network

prescription comes with an unambiguous normalization, but rather than being the canonical

one, where we multiply by the appropriate OPE coefficients to find the contribution to

the partition function, it comes with some nontrivial OPE coefficients Ĉ(∆i) built in,

depending on the dimensions of the operators meeting at each vertex. To compute these,

consider taking the pinching limit in which all cuffs of the pairs of pants become small,

suppressing the descendants so only the product of primary three-point functions remains.

The function Ĉ(∆i) can therefore be computed by using a geodesic approximation to a

three-point function, with three geodesics going from the boundary of AdS and meeting at

a trivalent vertex [49]:

Ĉ(∆i) = eP(∆i), where (3.3)

P(∆i) =
1

2
∆1 log

[
(∆1 + ∆2 −∆3)(∆1 + ∆3 −∆2)

∆2 + ∆3 −∆1

]
+ (2 permutations)

+
1

2

(∑
i

∆i

)(
log
∑
i

∆i − log 4

)
−
∑
i

∆i log ∆i

Alternatively, the same result can be obtained from an appropriate limit of the DOZZ

formula [50, 51]. The function P is homogeneous of degree one in the dimensions, so gives

a contribution scaling linearly with dimension in the exponential, as required. We will

make particular use of the special case where all dimensions ∆i are equal to ∆p, for which

P = −3
2 log(4

3)∆p.

In the end, this gives the expressions for the blocks that we will use, applying in the

limit 1� ∆i � c:

F(∆i, c) ∼ exp

−cS0 −min

∑
edges

∆i`i

− ∑
vertices

P(∆i)

 (3.4)

We will apply this result in the specific case of the Z3 symmetric, genus 2 handlebodies, with

time-reflection symmetry, corresponding to the n = 2 version of the example in section 2.3,

with x (or θ) real. The relevant geodesic network for the channel of interest is shown in

red, in figure 1. Furthermore we will take the dimensions of the three internal operators

16For some values of the dimensions and moduli, the action can be minimized when one of more of the

geodesics shrink down to zero size, in which case the block is given instead by some complexified saddle

point. From the bulk point of view, this happens when the leading order amplitude in the large ∆ limit

comes from double-trace contributions, rather than the case we would like to consider, where these are

exponentially suppressed in ∆ relative to the single traces [48].
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to be equal, ∆1 = ∆2 = ∆3 = ∆p. In this case, finding the location of the vertices is

straightforward, since they are fixed completely by symmetry, absolving us of the need

to solve the minimization problem. It is now a simple exercise in hyperbolic geometry to

work out the length of the geodesics connecting the two vertices, finding ` = log
(
cot2 θ

4

)
.

This, along with P = −3
2 log(4

3)∆p as computed above, gives the result we will need for

the block:

Fg=2(∆p, c) ∼ e−cS0

(
4

3
tan2 θ

4

)3∆p

(3.5)

The intuition behind the derivation of this expression relies on the operators in the

internal channels being single trace operators, corresponding to single particle states, in

a theory with semiclassical gravity dual. But because the blocks are kinematic objects,

these restrictions are not required to apply the formula. We will use it in the case where

the internal operators are highly composite multi-traces built from a primary of small

dimension, for which the intuition behind the semiclassical blocks certainly does not hold.

3.3 Applying the blocks to generalized free fields

Consider a scalar O of dimension ∆, dual to a weakly interacting bulk field. As long as

these interactions are unimportant, we can treat O as a generalized free field, which means

that we can sensibly talk about composite ‘multi-trace’ operators built from products of

O and derivatives, :∂#O · · · ∂#O:. In the generalized free approximation, the dimensions

of these products simply add, and they have vanishing connected correlation functions, so

the correlators can be computed by Wick contractions.

Now, let’s try to compute the genus two partition function using the conformal block

decomposition, accounting for such a free bulk scalar field. It is a slightly tricky prospect

accounting for all the possible multi-trace exchanges, so we will make a slightly crude

approximation, taking the contribution only of primary operators :OK: without derivatives,

of dimension K∆, and also taking the same operator to propagate in all three legs. This

gives us a lower bound for the partition function, since the OPE coefficients are real and

the blocks are positive:17

ZGF ≥
∑
K

C2
KKKFg=2(K∆, c) (3.6)

The OPE coefficients appearing can be computed from the combinatorics of the Wick

contractions [36], and for three identical operators : OK :, in the limit of large K, the

result is

CKKK ∼ 23K/2. (3.7)

Putting this together with eq. (3.5) giving the blocks in the appropriate limit, the terms

in the sum for large K look like

C2
KKKFg=2(K∆, c) ∼ 23K

(
4

3
tan2 θ

4

)3K∆

. (3.8)

17To prove this, note that when x is real, the surface can be constructed by gluing a pair of pants directly

to a reflected version of itself. The path integral on the pair of pants defines a state on three copies of the

CFT, and the block (times OPE coefficients) is the expectation value of a projection (a positive operator)

in this state, which is positive by unitarity.
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But now, if ∆ is sufficiently small, these terms grow exponentially, causing the partition

function to diverge! We can therefore put a bound on the critical dimension ∆c at which

ZGF(∆) diverges:

∆c ≥
log 2

log
(

3
4 cot2 θ

4

) . (3.9)

We do not expect this to be exact, since we have dropped the contribution of so many

operators, but we will see later that it becomes asymptotically equal to the correct value

at small θ, corresponding to small x. For cross-ratio x = 1
2 , numerically solving the

monodromy problem described around eq. (2.2), we find the corresponding value θ =

.55128. This gives the bound ∆c ≥ 0.189219 on the critical dimension (accurate to the

number of quoted decimal places), in agreement with the analysis of [36].

A partition function should be well-defined for any surface, so it may seem puzzling to

get a divergent answer. The resolution is that the partition function is not truly divergent,

but our approximations on the spectrum and OPE coefficients do not apply when K is

parametrically large. Even if we do not give a potential to the bulk field, it interacts through

gravity, so the approximation of computing OPE coefficients of multi-trace operators by

Wick contractions will cease to apply when K is of order
√
c, though it could break down

sooner if other interactions become important at a lower energy scale. When we pass the

critical dimension, the sum over blocks will shift from being dominated by the vacuum, to

being dominated by the multi-particle states at a scale set by the interactions. This signals

a second order phase transition, which we will explain from the bulk as condensation of

the scalar field.

4 The bulk instability

We have argued in section 3 that the contribution of a free scalar to the genus two partition

function will diverge for sufficiently small conformal dimension, ∆ < ∆c. This divergence

comes from the contribution of multi-trace states which are dual in the bulk to states with

large particle number. It is therefore natural to expect that the divergence signals an insta-

bility where the bulk scalar field condenses to form a new solution with a nonzero classical

value. This implies the existence of a second-order phase transition, below which the semi-

classical bulk path integral is dominated by a new classical solution of the (nonlinear) bulk

equations of motion: a ‘hairy handlebody’.

The new classical solution will depend on the details of the theory, and in particular the

interactions of the bulk field. These interactions give anomalous dimensions and couplings

to the multi-trace operators in the theory, which become important above the scale of

the interactions.18 In particular, they will modify the asymptotic behaviour of the sum

described in section 3 in such a way as to cure the divergence. The result is that the

partition function will have some non-universal contribution at the interaction scale of the

bulk field.

18This scale could be the Planck scale for a free scalar minimally coupled to gravity, the AdS scale for a

strongly coupled bulk field, or some intermediate energy scale such as the string scale.
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While the full nonlinear solution depends on details of the theory, the onset of the

instability does not, and is sensitive only to the background geometry and the mass of the

scalar field. It is characterized by the appearance at ∆ = ∆c of a zero mode, a nonzero

solution of the linearized bulk wave equation with source-free boundary conditions, which

corresponds to a flat direction in the path integral. In this section, we will show that such

a zero mode exists in quite general circumstances, and characterize the critical dimension

∆c in terms of the bulk geometry.

4.1 The zero mode and spectral theory

In a d-dimensional holographic CFT, a single-trace scalar operator O of dimension ∆ is

dual to a bulk scalar field φ of mass m2 = ∆(∆ − d). The linearized bulk equation of

motion (∇2 −m2)φ = 0 has two linearly independent solutions with different asymptotic

behaviour near the boundary:

φ(x, z) ∼ J(x)zd−∆ + 〈O(x)〉z∆ (4.1)

Here J(x) is a source for the operator O in the CFT, which is fixed as a boundary condi-

tion, and the expectation value 〈O(x)〉, in most circumstances determined uniquely by the

boundary condition J and regularity, describes the ‘response’ of the scalar field in the pres-

ence of the linearized source J . We will be most interested in relevant operators ∆ < d, cor-

responding to masses which are näıvely tachyonic, but above the Breitenlohner-Freedman

(BF) bound, −d2

4 < m2 < 0. In particular, we recall that for −d2

4 < m2 < −d2

4 + 1, there

are two possible choices of boundary condition for the scalar field φ with unitary duals [52].

These two different boundary conditions correspond simply to a choice of which of the two

boundary behaviours in (4.1) one chooses to view as a source, and which as a response.

This linearized Klein-Gordon equation suffices to find leading order correlation func-

tions (ignoring backreaction and other interactions), not just on pure AdS, but any asymp-

totically AdS geometry M obtained altering the boundary geometry or sourcing other

fields, as long as φ = 0 on the background.19 This corner of AdS/CFT therefore reduces

to the theory of the Laplacian on the manifold M. Even for geometries that are locally

AdS, this spectral theory can be rich and interesting, and we will import some ideas and

results from the mathematics literature and explore the physical consequences.

Our key result is that, even in the absence of a source for the operator O, it is possible

for φ to spontaneously acquire a nonzero classical expectation value. The second-order tran-

sition to this behaviour occurs when there is a nonzero solution of the bulk wave equation(
∇2 −∆(∆− d)

)
φ = 0 (4.2)

with vanishing source J = 0. In other words, as we vary the bulk solution M (or the

dimension ∆), the solution will become unstable when there is an eigenfunction of the

Laplacian with boundary condition J = 0 and eigenvalue ∆(∆− d). For a given geometry

19In general, φ could have couplings to curvature or other nonzero fields which modify this linearized

equation, but we will be interested primarily in geometries which are locally AdS. Thus all of these couplings

may be incorporated into an effective bulk mass of the scalar field.
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M, we call the largest dimension for which this occurs the critical dimension ∆c. Reducing

∆ further, this eigenfunction becomes a mode which decreases the action of the solution,

so a given geometry is unstable to condensation of a scalar with ∆ < ∆c.

It is easy to see that the instability cannot happen if ∆ > d. In particular, for a scalar

field with (∇2−m2)φ = 0 we can use the standard argument for negativity of the Laplacian:

0 ≤
∫
M

(∇φ)2 = −
∫
M
φ∇2φ = −m2

∫
M
φ2 =⇒ m2 < 0 (4.3)

Here we have integrated by parts, and used the fact that the fast fall-off conditions (J = 0

and ∆ > d
2) imply that all integrals converge and boundary terms vanish. This instability

is therefore ruled out for an irrelevant operator, but not immediately excluded for relevant

operators, for which the boundary terms do not automatically vanish. We will see that

such instabilities do occur, and are in fact quite generic.

Before giving our first characterization of the onset of the instability in terms of spectral

theory, we should first clarify some mathematical terminology. We are seeking a solution

φ of the equation ∇2φ = ∆(∆−d)φ, with boundary conditions J = 0. In the mathematics

literature, this would be called an eigenfunction of the Laplacian only if ∆ > d
2 , since in

this case the boundary condition J = 0 is equivalent to demanding square-integrability

of the eigenfunction: φ ∈ L2(M). We will also be interested in the alternate quantiza-

tion of the scalar field, corresponding to operators in the range 0 < ∆ < d
2 , where the

boundary condition is imposed on the slowly-decaying mode. The dimension ∆ then corre-

sponds to a resonance of the Laplacian, which is defined as a pole of the resolvent operator

R∆ = (∆(∆ − d) − ∇2)−1, analytically continued in ∆. The resolvent is essentially the

bulk Green’s function (bulk-to-bulk propagator) G∆ on M; to compute the action of the

resolvent on a function, integrate it against G∆, which satisfies the bulk wave equation

with delta-function source:

R∆[φ](y) =

∫
M
dd+1y′G∆(y, y′)φ(y′), (∆(∆− d)−∇2

y)G∆(y, y′) = δ(y, y′) (4.4)

The critical dimension ∆c will therefore show up as a pole in the bulk Green’s function G∆.

Another way to characterize the critical dimension ∆c, is to note that the determinant

of the resolvent det(∆(∆ − d) − ∇2)−1 is precisely the square of the one-loop partition

function of φ. One can therefore find ∆c by looking for a divergence in the one-loop

contribution of a scalar field φ on the background M.

As a final characterisation of ∆c, we can consider the linear response problem of turning

on some small source J(x), solving the bulk wave equation with the corresponding boundary

condition, and reading off the response 〈O〉J . At generic values of ∆, this problem will

have a unique solution, so defines a linear map S∆ : J 7→ 〈O〉J between functions on the

boundary B, known in the mathematics literature as the scattering matrix. If we tune

∆ to the critical dimension ∆c, however, there is an ambiguity, as we can always add a

multiple of the zero mode to the solution. The zero mode therefore also shows up as a pole
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of S∆, a scattering pole.20 In the same way that the resolvent is related to the bulk Green’s

function, the scattering matrix is related to the CFT two-point function 〈O(x1)O(x2)〉B in

the relevant background. This will also diverge as a function of ∆ as the critical dimension

is approached (the familiar divergence in susceptibility at a second-order phase transition),

with a pole at ∆c, signalling the breakdown of the linearized bulk theory when the scalar

becomes unstable.

So far we have been quite general. We will now focus on the case of three dimensions,

where we can make more concrete statements about ∆c.

4.2 Locally hyperbolic spaces

Let us now consider the case where the bulk geometry M is a locally hyperbolic space of

the form M = H3/Γ. We will be primarily interested in the case where M is handlebody,

so we will take Γ to be a Schottky group of genus g > 1. In fact, the results of this section

will apply in greater generality, to non-handlebodies, to some geometries containing conical

defects, as well as to hyperbolic manifolds of general dimension.21

We will consider a bulk scalar propagating on this geometry, and characterize the

relevant spectral theory in terms of properties of the quotient group Γ. We will only

motivate and explain the results here, referring to the appropriate mathematics literature

for more details, precise statements, and proofs.

Consider first computation of the bulk two-point function of φ in the geometry M =

H3/Γ. This can be computed using the method of images, by starting with the two-point

function in H3 and summing over all elements of the group, corresponding to sources at all

image points. The result is

GM∆ (y, y′) =
∑
γ∈Γ

GH3

∆ (y, γ · y′) = − 1

2π

∑
γ∈Γ

e−∆d(y,γ·y′)

1− e−2d(y,γ·y′) (4.5)

where d(y, y′) is the geodesic distance between the points y and y′, with respect to the

H3 metric. Formally, this gives a function invariant under the group Γ, hence well defined

on M, and solves the Klein-Gordon equation with the appropriate source. However, this

function will not be well-defined if the sum over images fails to converge. In particular, if

the number of image points with d(y, γ ·y′) less than some distance d grows rapidly enough

as d→∞ (for some fixed y, y′), then the sum will diverge. More specifically, if the number

of image points with d(y, γ · y′) < d grows like eδd, then the sum will diverge for ∆ < δ. In

fact, this is always the case for some δ > 0, as stated in the following result of Sullivan [53]:

20Scattering poles do not coincide with the resonances for two reasons. The first is that there are also zeros

of the scattering matrix, corresponding to solutions with a source but zero response, which may cancel a

pole, giving a resonance without corresponding pole in S∆. Secondly, the scattering matrix has extra poles at

half-integer values of ∆, even in pure hyperbolic space, related to the logarithms that appear in the boundary

expansion (4.1) when the asymptotic powers differ by an integer, requiring additional counterterms.
21The technical assumptions required are only that Γ is not elementary, which excludes a few simple cases,

most notably the cyclic groups corresponding to the Euclidean BTZ geometry, and that it is geometrically

finite, which is true in physically relevant cases and in particular for the Schottky groups with genus g > 1.

– 23 –



J
H
E
P
0
5
(
2
0
1
8
)
0
8
0

Theorem 1. The series

GM∆ (y, y′) = − 1

2π

∑
γ∈Γ

e−∆d(y,γ·y′)

1− e−2d(y,γ·y′) (4.6)

converges in the right half-plane Re ∆ > δ, where δ > 0, the exponent of convergence of Γ,

is the location of the first resonance of H3/Γ. The Green’s function GM∆ (y, y′) (analytically

continued in ∆) has a pole at ∆ = δ, and the residue of that pole is given by

Res
∆→δ

GM∆ (y, y′) ∝ φ0(y)φ0(y′), (4.7)

where φ0 is the zero mode function, the solution of the free bulk wave equation with source-

free boundary conditions.

As described in the previous section, this pole in the Green’s function, the resonance,

signals the onset of an instability. Thus the critical dimension ∆c equals the exponent

of convergence δ. We emphasize that δ is strictly positive given our assumptions on M,

which implies that any handlebody of genus greater than one will be unstable if there is a

sufficiently light operator in the spectrum.

We may also compute the CFT two-point function of O in this background, by taking

the limit of the bulk Green’s function as the points approach the boundary. The exact

result for the two point function will depend on the conformal frame, which corresponds to

a choice of regulator as we take the points to the boundary, but the convergence properties

of the sum over images will be insensitive to this choice. We can write a general metric on

the boundary as ds2 = e2σ(w)dwdw̄, where w is the complex coordinate on which Γ acts by

Möbius maps. The conformal factor σ is defined on the regular set Ω of Γ, and defines a

metric on the quotient manifold B = Ω/Γ under the condition σ(γ(w)) = σ(w)− log |γ′(w)|
for all Möbius maps γ ∈ Γ. The bulk computation of the two-point function on B gives a

sum over images:

〈O(w)O(w′)〉B = e−∆σ(w)e−∆σ(w′)
∑
γ∈Γ

|γ′(w)|∆

|γ(w)− w′|2∆
. (4.8)

In the summation on the right hand side, the denominator corresponds to the two-point

function on the plane, and the numerator is the conformal factor appropriate for each image.

Once again, this sum converges in the right half-plane Re ∆ > δ, and the divergence in the

two-point function signals the onset of a second-order phase transition. In the mathematical

literature, this CFT two-point function appears as the kernel of the scattering matrix [54].

This sum can be used to gain some intuition about the relationship between the ex-

ponent of convergence δ and the geometry of the group Γ. The first thing to note is that

the tail of the sum, which controls the divergence, is closely related to the limit set Λ of

the group Γ. The limit set is the set of points where the images γ(w) accumulate, for

any starting point w. More precisely, a point is in Λ if every neighbourhood of that point

contains infinitely many of the images γ(w). These are the places where the quotient by Γ

acts ‘badly’, which we must remove to form the regular set Ω = C∗ − Λ, so we obtain the
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nice quotient space B = Ω/Γ. The tail of the sum is controlled by the limit set, since only

a finite number of terms in the sum will lie outside of any arbitrarily small neighbourhood

of Λ. In the simple case of BTZ, Γ is the cyclic group consisting of the maps γn(w) = q2nw

for n ∈ Z, and Λ consists of the two points 0 and ∞. In most other cases, however, Λ is

much more complicated.

For any limit point (that is, element of the limit set), there is a sequence of images of

our starting point w that approach it, say γn(w) for some γn ∈ Γ (which are independent of

w). As n increases, γn will usually be a longer and longer word built out of the generators.

For the images to tend to some limit, the γn must eventually start with the same string

of generators, because if they don’t, they would map w to places that are separated by

some finite distance: as the sequence γn goes on, the words built out of the generators get

longer and longer, and only change later and later on in the string. More precisely, the kth

letter of the word γn is constant after some sufficiently large n, for any k. For each limit

point, we can in this way construct a unique semi-infinite word built from the generators

of the group, a sort of decimal expansion, but using Möbius maps instead of digits. Such

words are in one-to-one correspondence with elements of Λ. For g ≥ 2, this set is not only

infinite, but uncountable. The ‘rational numbers’ in the analogy with decimals consist of

strings of generators that eventually repeat, and are in one-to-one correspondence with the

primitive elements P of the group Γ, that is, elements that cannot be written as γn for any

n > 1 (excepting the identity), corresponding to the attractive fixed point of that element.

The resulting set Λ, which controls the tail of the sum over the group, has a rich and

beautiful fractal structure. For Fuchsian groups, generated by matrices with real entries,

the limit set is a subset of the real line, and closely resembles (indeed, topologically, is

homeomorphic to) a Cantor set. Allowing more general Schottky groups, the limit set

moves into the complex plane, forming a twisting, intricate, self-similar pattern. Several

examples arising when investigating the 3rd Rényi entropy of two intervals are illustrated

in figure 2. For many more images of limit sets, and a playful semi-popular account of the

mathematics involved, we encourage a foray into [55].

Secondly, we note that the size of the terms in the sum (4.8) is controlled primarily

by the factor |γ′(w)|∆, which describes how things scale under the action of γ (in the

flat or round metric on the Riemann sphere, not the metric pulled back from B). Given

some small set near w, the characteristic length of its image under γ is scaled by |γ′(w)|,
and its area is scaled by |γ′(w)|2, so it is natural generalise this, and say that |γ′(w)|∆

characterises the scaling in a ∆-dimensional notion of measure, where ∆ can be any positive

real number. The convergence of the sum is therefore determined by the trade-off between

the accumulation of many points at the limit set, and the shrinking of ∆-dimensional

measure associated to images at those points. The critical dimension will occur when

these two effects precisely balance, which is when the limit set itself can be assigned a

∆-dimensional measure invariant under Γ. Hopefully this discussion makes plausible the

following theorem of Patterson [56], Sullivan [53, 57] and Bishop-Jones [58], the precise

statement of which uses the notion of Hausdorff dimension, a non-integer dimension defined

for fractals in metric spaces.
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(a) q = .8 + .3i, δ ≈ 1.09. (b) q = .8 + .44i, δ ≈ 1.29.

Figure 2. The limit sets for two of the Z3 symmetric genus two Schottky groups that arise when

investigating n = 3 Rényi entropies. The parameter q defining the groups is an eigenvalue of one of

the generators as specified in section 2.3. We give the value of the Hausdorff dimension δ for these

two limit sets, computed using the methods of section 5.

Theorem 2 (Patterson-Sullivan). The exponent of convergence δ is equal to the Hausdorff

dimension of the limit set Λ of Γ:

δ = H. dim(Λ) (4.9)

This result connecting spectral theory and fractal geometry is certainly beautiful, which

would be justification enough to include it in a mathematics paper, but amazingly enough

it is also useful. Firstly, it gives us a new tool to intuit how the critical dimension ∆c

depends on the geometry, particularly in certain limits. But more importantly, it provides

a method to accurately and efficiently compute δ for any group Γ, which is far better than

näıvely solving the bulk Laplace equation numerically, or the method of extracting δ from

the asymptotics of the terms in the sums introduced above. We will discuss an algorithm

to compute δ in section 5.1, and use it to present both numerical and analytic results.

4.3 Divergence of the partition function

In this section we will offer one final perspective on the phase transition, to make a direct

connection with the CFT argument discussed in section 3. In that section we summed up

the contributions to the partition function from of a generalized free field, using the global

limit of higher genus blocks with the spectrum. From the bulk point of view, this object

is precisely the one-loop partition function of the bulk scalar field φ:

ZGF = Z1-loop =
1√

det (m2 −∇2)
. (4.10)

This makes it apparent that the zero mode should again be visible as a zero eigenvalue

of the operator ∇2 − m2 (defined with suitable boundary conditions). In this way, the

calculations of section 3 put a lower bound on ∆c.
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The bulk computation of this one-loop partition proceeds much as the Green’s function

computation given above. In particular, one can compute this one-loop determinant using

heat kernel methods and a sum over images [59]. For higher genus surfaces this one-loop

determinant can be written as an infinite product

Z
H3/Γ
1-loop(∆) =

1√
ζΓ(∆)

, where ζΓ(∆) ≡
∏
γ∈P

∞∏
n,n̄=0

(
1− q∆+2n

γ q̄∆+2n̄
γ

)
. (4.11)

Here, qγ is the smaller eigenvalue of γ, as previously introduced. The product is over

primitive conjugacy classes γ ∈ P of the group Γ; these are conjugacy classes of elements

which cannot be written as a power γn of another element with n > 1, and qγ is the smaller

of the eigenvalues of γ when written as an SL(2,C) matrix. Note that this definition counts

γ−1 separately from γ, so that terms come in matching pairs. We have written the one-

loop partition function terms of the Selberg zeta function ζΓ associated to the group Γ, as

defined in [54].22 We note that the product in (4.11) converges in the same right half-plane

Re ∆ > δ as the image sums we have already introduced. In fact, the Selberg zeta function

can be analytically continued to an entire function, with zeros precisely at the eigenvalues

and resonances of the Laplacian onM, as expected [60]. In particular, the first resonance,

corresponding to the phase transition of interest, leads to the one-loop partition function

diverging as (∆ − ∆c)
−1/2. This is the divergence found from the CFT analyses of [36]

and section 3.

The product (4.11) has a simple geometric interpretation in terms of the closed

geodesics on the bulk manifold M = H3/Γ. Since Γ is the fundamental group of M,

its conjugacy classes are in one-to one correspondence with homotopy classes of closed

loops in the bulk, and in a hyperbolic manifold, there is a unique closed geodesic in each

class. The primitive conjugacy classes P correspond to prime geodesics that do not trace

over their image multiple times. The geometric parameters associated to a closed geodesic

are its length `γ , and its twist θγ , the angle through which a normal vector gets rotated

after being parallely transported around the curve, and are related to the associated con-

jugacy class of Γ by q2
γ = e−`γ+iθγ . The convergence of the product is therefore controlled

by the asymptotics of the length spectrum of the bulk manifold. A precise statement of

this is given by the prime geodesic theorem, so called because of its close analogy with the

prime number theorem (provable using the analytic properties of the Selberg and Riemann

zeta functions respectively):

Theorem 3 (Prime geodesic theorem). The prime geodesic counting function πM(`), de-

fined as the number of prime geodesics of length at most `, satisfies the asymptotic formula

πM(`) ∼ eδ`

δ`
as `→∞. (4.12)

22There are several closely related definitions of the Selberg zeta function. The definition we have given

is appropriate for hyperbolic three-manifolds where Γ is a Kleinian group; another, more common definition

is in the context of hyperbolic surfaces, where Γ is a Fuchsian group, so qγ is real, and the product over n̄

is absent.
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In this way, the instability of the scalar field is controlled by the asymptotic properties

of the spectrum of very long geodesics. This relation between the spectrum of the Laplacian

and the lengths of closed geodesics is a special case of the Selberg trace formula (or an

appropriate generalization).

Consideration of the partition function leads to an alternative approach to the compu-

tation of δ, which we will not pursue further here, by numerically computing the Selberg

zeta function, which can be done efficiently (though not directly from the product defini-

tion), and locating its zeros.

4.4 When Γ is Fuchsian

In the case when the group Γ is Fuchsian, i.e. when all elements are in SL(2,R) and so

fix the real line (perhaps after conjugation with some Möbius map, for example fixing

the unit circle instead), the discussion simplifies somewhat. Instead of requiring the full

three dimensional geometry, all the main results discussed here can be reduced to the two-

dimensional slice Σ fixed by complex conjugation. In this section we briefly describe this

reduction and its consequences.

Fuchsian groups are, in many circumstances, the most physically interesting cases,

primarily because they correspond to geometries that have a real Lorentzian description.

Interpreting the action of complex conjugation as a time-reversal symmetry, the slice Σ

fixed by time-reversal has vanishing extrinsic curvature, and hence can be interpreted as

an initial Cauchy surface for Lorentzian evolution. Very explicitly, the Euclidean bulk M
can be written as

ds2 = dχ2 + cosh2 χ dΣ2 (4.13)

where dΣ2 is the hyperbolic metric on the χ = 0 slice Σ. The Lorentzian geometry (or,

rather, a patch of it) is obtained by analytic continuation χ→ it. This gives a locally AdS3

solution to the equations of motion in an FRW-like coordinate system, where the spatial

slices have constant negative curvature.

It is important to note that while all Fuchsian groups have a reflection symmetry, and

corresponding Lorentzian interpretation, the converse is not true: a non-Fuchsian Schottky

group may have a time-reflection symmetry and good Lorentzian continuation. To take one

example, the pure entangled state on three copies of the CFT obtained by the path integral

on a pair of pants is, for certain moduli, dual in the Lorentzian section to disconnected

copies of pure AdS and BTZ [19], but the corresponding (connected) Euclidean geometry

is not described by a Fuchsian group.

The bulk metric is not static, so to simplify the Laplacian it is not as straightforward

as choosing a time-independent ansatz. But it is not much harder than that; instead, look

for a separable eigenfunction F (σ, χ) = f(σ)g(χ), finding that if f is an eigenfunction of

the Laplacian on the χ = 0 slice with eigenvalue ∆(∆ − 1), and obeys the correct AdS

boundary conditions, then

F (σ, χ) = (sechχ)∆ f(σ) (4.14)

is an eigenfunction of the full handlebody Laplacian with eigenvalue ∆(∆ − 2), with the

correct boundary conditions. From this, the critical dimension of the handlebody is deter-
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mined by the bottom of the spectrum of the slice Σ, and computing the actual profile of

the zero mode is no longer a three-dimensional problem.

5 Results for the critical dimension ∆c

We have seen that a scalar field on a handlebody H3/Γ will be unstable if the dimension

is sufficiently small: ∆ < ∆c. We now turn to an explicit computation of the critical

dimension ∆c, which will be a function of the moduli. A direct approach, where one

studies the Laplacian directly on the geometry of interest, is a complicated numerical task.

Our approach will be to instead use theorem 2 to calculate ∆c from the Hausdorff dimension

of the limit set of Γ.

Using this, we will obtain analytic results for ∆c near the boundary of moduli space, as

well as analytic bounds on ∆c in the interior of moduli space. We will also obtain accurate

numerical results. Our main tool will be an algorithm due to McMullen [61], which we

now describe.

5.1 McMullen’s algorithm

This section is somewhat technical and is not necessary to understand the results described

in later sections. Readers who are not interested in the details of how the results are

obtained can safely skip to section 5.2.

To begin, will we need to introduce an additional structure on the limit set Λ: a

Γ-invariant δ-dimensional measure µ. A measure µ (though we will not give a precise

definition here) allows us to integrate functions on the limit set, in particular assigning a

number µ(E) =
∫
E dµ ≥ 0 to subsets E ⊆ Γ, providing a measure of the ‘content’ of E.

We require the additional property that it transforms as a δ-dimensional density under

element of the group:23

µ(γ(E)) =

∫
E
|γ′|δdµ for γ ∈ Γ (5.1)

A nontrivial measure with this property exists when, and only when δ equals the Hausdorff

dimension of Λ (in which case it is unique, up to normalization, for Schottky groups). The

only feature of the right hand side that we require is that it is bounded by the measure of

the set µ(E), times the extrema of the integrand |γ′|δ:

µ(E) inf
w∈E
|γ′(w)|δ ≤ µ(γ(E)) ≤ µ(E) sup

w∈E
|γ′(w)|δ (5.2)

McMullen’s algorithm works by splitting the limit set into a finite number of disjoint

pieces Ei, and attempting to approximate (or bound) the value of the measure µ on each of

these pieces, µi = µ(Ei). For a detailed explicitly worked example of this and the following,

see figure 3. We begin by imposing (5.1). Specifically, suppose we have some Möbius map

23Here, |γ′| computes the local scaling of lengths under the map γ; we may use any metric on the

boundary Riemann sphere for this purpose, for example a round metric, and the result for δ is insensitive

to this choice. For practical computations the flat metric is often most convenient, in which case |γ′| is the

absolute value of the derivative of the Möbius map. It is then simplest to require that the point at infinity

is not in Λ, which we will implicitly assume.
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g−1h−1

g−1h

Figure 3. An example of computing the transition matrix for McMullen’s algorithm, in the case

of a Kleinian group freely generated by two loxodromic elements g, h, so that C∗/Γ is a genus two

surface. In the figure, we have drawn a fundamental domain for Γ, the exterior of the four outermost

circles (those corresponding to g−1, h−1 are not shown in their entirety). Break the limit set into

the four pieces Eγ contained in each of these circles, labelled by γ = g, h, g−1, h−1 corresponding

to the element of the group that maps the fundamental domain to the interior of the circle, and

choose points wγ ∈ Eγ , for example the attractive fixed point of γ. The piece of the limit set Eg
can be broken up into three disjoint pieces, inside the circles labelled g2, gh and gh−1, which are

the images under g of Eg, Eh and Eh−1 respectively. The scalings of these limit sets under the

action of g go into the top row of the transition matrix:

T =


|g′(wg)| |g′(wh)| 0 |g′(wh−1)|
|h′(wg)| |h′(wh)| |h′(wg−1)| 0

0 |(g−1)′(wh)| |(g−1)′(wg−1)| |(g−1)′(wh−1)|
|(h−1)′(wg)| 0 |(h−1)′(wg−1)| |(h−1)′(wh−1)|


The other three rows repeat the same exercise for the other three regions, and finding δ such that

the spectral radius of T δ is unity gives an approximation for the Hausdorff dimension. This can be

refined by breaking the limit set up into the 3 × 4n−1 regions Eγ labelled by words of length n in

g, h, g−1, h−1, and applying the δ-invariance imposed by considering the preimage of Eγ under the

first element (g, h, g−1, or h−1) appearing in the word γ. Then T will be a sparse matrix, with three

nonzero elements in each row and column, and the algorithm has error decreasing exponentially

with n. The figure includes labels for words of length two, but also shows the images of circles

under words of length three (unlabelled).

γi ∈ Γ, and one of the pieces Ei, whose preimage under γi is the union of some pieces

Ej1 , Ej2 , . . . Ejn (one of which may be Ei itself):

Ei =
n⋃
k=1

γ(Ejk) (5.3)

If we pick some points zj ∈ Ej , then (5.1) implies that

µi ≈
n∑
k=1

|γ′i(wjk)|δµjk . (5.4)
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This is not an exact equality because the scale factor |γ′i| is not constant on the limit set.

However, by taking the Ei to be small |γ′i| will be approximately constant, so the error

will be small. To be more precise, we may replace the factors of |γ′i(wj)| by upper or

lower bounds on this scaling over the set Ej , and use eq. (5.2) to replace the approximate

equation by inequalities.

With an appropriately chosen partition {Ei} and maps γi, a similar argument can be

repeated for every i. Our approximate formula (5.4) can then be written in terms of a

square matrix T , the transition matrix, whose entries Tij are equal to |γ′i(zj)| for each of

the Ej in the preimage γ−1
i (Ei), and zero otherwise. Invariance of the measure is then the

statement that µi is a unit eigenvector of T δ, where the power is taken element-wise. Since

the matrix T δ has nonnegative entries it is guaranteed to have a unique eigenvector with

positive components; furthermore this is the eigenvector with largest eigenvalue.24 If µ is

to satisfy the invariance criterion, this eigenvalue should be one. Thus to find the Hausdorff

dimension, we find the value of δ such that the largest eigenvalue of T δ equals one.25 An

analogous result holds when we replace the approximate equations by inequalities, so by

choosing upper or lower bounds on the transition matrix elements, we can obtain rigorous

bounds on δ.

For a given partition {Ei} of the limit set this gives an estimate for δ, and to obtain

a more accurate estimate we can refine the partition into a larger number of pieces. With

an appropriate refinement, the result converges rapidly to the Hausdorff dimension, and

in practice it is sufficient to use a rather coarse partition of Λ. Although this discussion is

rather abstract, the explicit implementation of this algorithm is quite straightforward; see

figure 3 for a simple example.

5.2 Analytic results

Our first analytic results are for Fuchsian groups; this includes the surfaces described

in section 2.3 with real cross-ratio 0 < x < 1. In this case we note that the limit points

must all lie on the real axis of the w-plane, corresponding to the slice fixed by time-

reflection symmetry. Since Λ is a subset of the one-dimensional line, it must have dimension

δ ≤ 1. Thus ∆c ≤ 1. So the only potentially unstable fields are those with ∆ < 1, which

correspond to bulk scalars which are quantized using alternate boundary conditions.

In the rest of this section we will focus on the case of the genus g = n−1 surfaces with

Zn symmetry, described in section 2.3, relevant for computing the nth Rényi entropy of a

pair of intervals. We begin by applying the above algorithm in this case at the coarsest

level of approximation, to obtain analytic bounds. These are especially useful at the edge

of moduli space where x → 0, because in this limit the different pieces of the limit set

become well-separated and small, so the scale factor does not vary much over it. These

bounds thus become tighter and tighter as x→ 0.

24This is the Perron-Frobenius theorem. Since some of the entries of T are zero, we must also require

that T is irreducible. This means, roughly speaking, that when we apply T repeatedly all of the regions Ei
will eventually mix.

25This δ exists and is unique since the spectral radius of T δ decreases monotonically as δ increases from

zero to infinity.
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As described in section 2.3, we can extend the group Γ to Γ̂, generated by R : w 7→
e2πi/nw and S : w 7→ w−ζ

ζw−1 , by including a dihedral group of holomorphic automorphisms.

This extension of the group does not alter the limit set, and a Γ-invariant measure con-

structed on it will also be invariant under Γ̂. Using this, we will divide the limit set into

n pieces, all related by the Zn symmetry R, and hence having equal measure, and use the

mapping under S to constrain the dimension of this measure. This is somewhat simpler

than using the original presentation of Γ such as in figure 3.

There are n pieces of the limit set Ek, each centred at a root of unity e2πik/n, with

size of order θ2 for small θ, and related to each other by R. A simple way to show this is

by constructing a fundamental domain for Γ̂, bounded by the radial lines from the origin

at angles ±πi/n, related by action of R, and a circle Cn mapped to itself by S, centred at

sec θ with radius tan θ (recall ζ = cos θ). Then En is the part of the limit set inside this

circle, and the remaining Ek are inside corresponding circles Ck = Rk(Cn) obtained by

rotations by angle 2πk/n. This immediately bounds the size of the limit set by the size of

the circles Ck, of order θ, which is a sufficiently strong result for our immediate purposes.26

By the Zn symmetry, and the fact that the action of R doesn’t scale (|R′| = 1), the sets

Ek must all have equal measure µk = µ. We can then apply the action of S, which maps

E1, E2, · · · , En−1 onto En. The amount by which Ek scales under S can be computed from

S′(e2πik/n +O(θ2)) =
θ2

(e2πik/n − 1)2
+O(θ4) (5.5)

so eq. (5.4), equating the sum of the scaled measures of E1, E2, · · · , En−1 to the measure

of En, gives us
n−1∑
k=1

(
θ

2 sin πk
n

)2δ

= 1 +O(θ2). (5.6)

This requires δ to tend to zero as θ goes to zero, and solving to leading order for small δ,

we get the result that

δ ∼ log(n− 1)

2 log |θ|−1
+O

(
1

(log |θ|)2

)
as θ → 0 (5.7)

with the first corrections coming from solving the equation to higher order in δ, rather

than the order θ2 variation of the scaling relation giving the correction to eq. (5.6). With

only minor modifications, this derivation continues to apply if we allow θ to be complex,

which is why we have included the modulus in the result. The case n = 3, with real θ, was

treated in [61], though instead of using S, that paper uses a reflection, which requires θ to

be real.27

To facilitate comparison between different values of n, we write this in terms of the

cross-ratio x. With the monodromy methods outlined in section 2.3, the map from x to

26To obtain an improved bound, note that En must be contained in a smaller set, namely the union of

the interiors of S(Ck), which is concentrated in a region with size of order θ2.
27For comparison, the parameter θ used in that paper is half of the θ used here.
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the Schottky parameter θ can be computed as a series expansion, with the leading order

result that θ =
√
x
n (1 +O(x)):

δ =
log(n− 1)

log |x|−1
+O

(
1

(log |x|)2

)
as x→ 0 (5.8)

Note that this is the asymptotic behaviour for fixed n as x→ 0, but clearly must break

down if n is parametrically large. In the first instance, it is not self-consistent if nx is of

order one, since in that case the leading order term in the expansion would be of order one.

But we can take a different order of limits to understand what happens at large n.

Starting with the scaling relation eq. (5.6) at small fixed x, and näıvely taking the

large n limit term by term, we arrive at

2

∞∑
k=1

(√
x

2πk

)2δ

≈ 1 (5.9)

where the factor of two is to count contributions both from fixed k and fixed n − k. The

first thing to notice is that the tail of the series decays as k−2δ, so convergence of the sum

immediately requires δ > 1
2 . Summing the series, we arrive at

1

2

(
4π2

x

)δ
≈ ζ(2δ) (5.10)

from which we see that the left hand side is large for small x, since δ cannot be small. The

zeta function must therefore be close to the pole at δ = 1
2 , and we can find a perturba-

tive solution:

lim
n→∞

δ =
1

2
+

√
|x|

2π
+O(x) (5.11)

This result should be interpreted as the limit of δ as n→∞, for fixed but small x. It turns

out this näıve argument is, in essence, correct, and can be made completely precise by

repeating the argument for the group generated by one parabolic element and one elliptic

element of order 2, equivalent to Theorem 3.6 of [61] (for real cross-ratio). In fact, the

result that the Hausdorff dimension does not go to zero as x → 0 is a consequence of a

general result, that δ > 1
2 whenever the group in question contains a parabolic element

(Corollary 2.2 in [62]).

This Schottky group with R parabolic, instead of elliptic order n, corresponds to the

‘n = ∞’ version of the geometry described in section 2.3. This complex one-dimensional

family of Kleinian groups is known in the mathematics literature as the ‘Riley slice’ of

Schottky space. It is a little tricky to think about the n → ∞ limit of the handlebody,

bounded by a Riemann surface of infinite genus, but it is rather simpler to understand

the geometry after taking a quotient by the Zn replica symmetry, as suggested in [30].

The boundary of this geometry is just the original Riemann sphere, and the bulk has

conical defects, of opening angle 2π/n, going from 0 to x and from 1 and ∞. Taking a

formal analytic continuation of the geometry to n = 1, the conical defects become the

Ryu-Takayanagi surface, lying on geodesics [30], but we are taking the opposite limit, in

which the defects become cusps, in particular receding to infinite proper distance.
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At this point, let us pause briefly to understand the physical consequences. This result

means that the x → 0 and n → ∞ limits of the critical dimension do not commute, so

that while for any fixed n, any dimension of scalar will be stable for sufficiently small x,

if there is a scalar of dimension less than 1/2, it will be subject to the phase transition

for any cross ratio, if n is taken sufficiently large. Note that this is all in a limit where

we have taken c to infinity first, and new behaviour dominated by quantum corrections

may take over when n is parametrically large in c. In particular, the large n limit of the

Rényi entropy is controlled by the largest eigenvalue of the reduced density matrix, or the

‘ground state energy’ of the modular Hamiltonian HA = − log ρA, but it is unclear whether

the semiclassical description is sensitive to a single lowest eigenvalue, or a dense collection

of parametrically many low-lying eigenvalues of HA.

To conclude the discussion of analytic results, let us briefly describe the other limit

of the geometry, when x → 1, corresponding to the horizon sizes of the multi-boundary

wormhole becoming small. This limit is of less direct physical interest, since it is well past

the first-order phase transition of the partition function, so is not the dominant saddle-point

geometry, but is nonetheless useful to hone intuition. In the case that x is real, so Γ is a

Fuchsian group, it is sufficient to describe the bulk geometry in terms of the two-dimensional

hyperbolic surface making up the t = 0 slice. In this limit, it is helpful to separate the

geometry into the exterior pieces, lying between each boundary and a horizon, and the

‘convex core’ or ‘causal shadow’ region linking them together, bounded by the n horizons.

In the x→ 1 limit, the horizons become very small, and the centre of the geometry recedes

down a long, narrowing neck. The core then approximates the geometry of the negatively

curved metric on some compact surface with punctures, though the punctures do not quite

pinch off, rather reaching a minimum radius at the narrow horizons where they join to the

exterior funnels. On such a surface, the critical dimension approaches one, the maximal

eigenvalue of the Laplacian (on the t = 0 slice, not the Laplacian in the three-dimensional

bulk: see section 4.4) being small and positive. The corresponding eigenfunction is roughly

constant on the convex core, and small in the exterior funnels, with an interpolation over

the long, narrow necks connecting them. The asymptotic behaviour of ∆c in this limit can

be computed by directly approximating this Laplace eigenfunction (the zero mode of the

instability) [63].

Taking x→ 1 through complex values is much more complicated, so we will not be able

to say much about it. Schottky space, perhaps parameterized in this case by the values

of ζ corresponding to some complex x, itself has a complicated fractal boundary, and the

features of the handlebody depend sensitively on how this boundary is approached. This

is a deep and beautiful subject, but goes far beyond the scope of this article. In any case,

the numerical computations we describe next show that it is possible to obtain dimensions

δ > 1 in this limit, for example the limit sets illustrated in figure 2.

5.3 Numerical results

These analytic results are very useful to understand the behaviour of the critical dimension

at the edges of moduli space, and as genus is varied, but McMullen’s algorithm is also useful
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Figure 4. The critical dimension ∆c = δ as a function of cross-ratio x for the handlebodies corre-

sponding to the Rényi entropies of a pair of intervals. From top to bottom, the curves correspond

to genus 2, 3, 4, 5, 6, and finally the n → ∞ result in black. The shading visible on the right side

of the plot indicates the bounds achieved by applying McMullen’s algorithm at the crudest level

of approximation.

to quickly compute the Hausdorff dimension numerically, to many digits of precision. We

conclude by presenting the results of these computations.

Firstly, figure 4 plots the Hausdorff dimension as a function of cross-ratio x for various

values of n, including also the limit as n → ∞. With this parameterization, for generic

values of x, the convergence of the algorithm is remarkably rapid. Indeed, the plot includes

shaded regions to indicate the rigorous bounds obtained by applying the algorithm at the

crudest level. These are computed by numerically solving the equation eq. (5.6), but

replacing the terms on the left hand side with upper or lower bounds for |S′(w)|δ over

w ∈ Ek, rather than the estimates used there. The allowed regions for δ are in many

cases not even visible until x is rather close to 1. Refining further, the algorithm gives

results with ten or more digits of precision in a fraction of a second on a laptop of modest

specifications. In fact, by far the larger source of computing time and error comes from

the conversion between the cross-ratio and Schottky variables, rather than the algorithm

to compute δ from the group generators.

A physically motivated value to consider is at the boundary with the Hawking-Page

phase transition x = 1
2 , which will give the maximum value of ∆c within this class of ge-

ometries, while in the dominant phase. At genus 2 (n = 3), this value is ∆c = 0.189124003,

which is rather close to (and the correct side of) the bound ∆c ≥ 0.18912109 obtained

in section 3 from refining the CFT methods of [36]. Staying at x = 1
2 and increasing the
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Figure 5. The critical dimension for the x = 1
2 Rényi surface as a function of replica number n.

The asymptote is the computed limit as n→∞. On the right is a log-log plot showing convergence

to this value.

genus, we find that the critical dimension increases rapidly at first, before slowly approach-

ing the limiting value ∆c → 0.599 as n→∞, as shown in figure 5.

In our last plot, figure 6, we indicate how the Hausdorff dimension behaves for complex

values of the cross-ratio, for genus two. Note that this is invariant under inversion in the

circle of unit radius centred at one. This is because the extended groups Γ̂ corresponding

to these geometries are the same, though Γ consists of different subgroups in each case.

From the geometric point of view, taking the Zn quotient of the handlebody gives the

same geometry, with conical defects at the fixed points, though the original geometries are

distinct (being branched around the defects in different ways). This relates a cross-ratio

0 < x < 1 with a negative cross-ratio − x
1−x , which corresponds to swapping the location of

twist and anti-twist operators, relevant for computing Rényi negativity of two disjoint in-

tervals [64]. The correspondence between the geometries implies a correspondence between

the classical limits of Rényi entropy and Rényi negativity for two intervals, and taking an

analytic continuation to n = 1, the logarithmic negativity of two intervals must vanish (to

leading order in c) in the regime x < 1
2 where this geometry dominates the path integral.

Finally, it is interesting to ask what the largest possible value of ∆c could be for a

geometry that dominates the path integral. A lower bound (precluding surprising new

symmetry-breaking phases that dominate the path integral) comes from our numerics for

the infinite genus limit, giving examples where ∆c as large as .599 can be achieved. An

interesting result that may bound this in the other direction comes from [65], showing in

particular that every Riemann surface admits a uniformization by a Schottky group of

Hausdorff dimension less than one. As a heuristic, matching our expectations in limits

of moduli space, the dominant saddle-point seems to be that with minimal Hausdorff

dimension, so this is suggestive, though not conclusive, that there may never be a dominant

geometry with ∆c > 1.

Acknowledgments

We are very grateful to A. Belin, C. Keller and I. Zadeh for useful conversations. We

acknowledge the support of the Natural Sciences and Engineering Research Council of

Canada (NSERC), funding reference number SAPIN/00032-2015. This work was supported

– 36 –



J
H
E
P
0
5
(
2
0
1
8
)
0
8
0

Figure 6. The Hausdorff dimension of the Z3 symmetric genus two handlebody, as a function of

the (complex) cross-ratio x. Note that the Hausdorff dimension goes to zero at the origin (x = 0)

and approaches one as x→ 1− along the real axis.

in part by a grant from the Simons Foundation (385602, A.M.). This work was performed

in part at the Aspen Center for Physics, which is supported by National Science Foundation

grant PHY-1607611.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
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