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ABSTRACT

The success of Mycobacterium tuberculosis (Mtb) as a human pathogen is due in part to its
ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering non-
growing states. In these low-metabolic states, Mtb can tolerate antibiotics and develop
genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for
survival. Numerous bacteria, including Mtb, have been shown to reduce their rates of mRNA
degradation under growth limitation and stress. While the existence of this response appears to
be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain
unknown. To better understand the biology of non-growing mycobacteria, we sought to identify
the mechanistic basis of mRNA stabilization in the non-pathogenic model Mycobacterium
smegmatis. We found that mRNA half-life was responsive to energy stress, with carbon
starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly
reversed when hypoxia-adapted cultures were re-exposed to oxygen, even in the absence of new
transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor
did transcript abundance. This led us to hypothesize that metabolic changes during growth
cessation impact the activity of degradation proteins, increasing mRNA stability. Indeed,
bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had
opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results
indicate that mRNA stability in mycobacteria is not directly regulated by growth status, but

rather is dependent on the status of energy metabolism.

IMPORTANCE

The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mtb

survives in part by entering non-growing states in which it is metabolically less active, and thus
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less susceptible to antibiotics. Basic knowledge on how Mtb survives during these low-metabolic
states is incomplete, and we hypothesize that optimized energy resource management is
important. Here we report that slowed mRNA turnover is a common feature of mycobacteria
under energy stress, but is not dependent on the mechanisms that have generally been postulated
in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a
drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability
responds to metabolic status rather than to growth rate per se. Our findings suggest a need to re-
orient studies of global mRNA stabilization to identify novel mechanisms that are presumably

responsible.

INTRODUCTION

Most bacteria periodically face environments that are unfavorable for growth. To overcome such
challenges, bacteria must tune their gene expression and energy usage. Regulation of mRNA
turnover can contribute to both of these. However, the mechanisms by which mRNA turnover is

carried out and regulated remain poorly understood, particularly in mycobacteria.

During infection, the human pathogen Mycobacterium tuberculosis (Mtb) faces not only the
immune response and antibiotics, but also non-optimal microenvironments such as hypoxia and
starvation (1, 2). Regulation of mRNA turnover appears to contribute to adaptation to such
conditions. A global study of mRNA decay in Mtb showed a dramatic increase in transcriptome
stability (increased mRNA half-lives) in response to hypoxia, compared to aerobic growth (3).
This suggests that mRNA stabilization contributes to energy conservation in the energy-limited

environments that Mtb encounters during infection. Similar responses have been shown for other
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bacteria under conditions that slow or halt growth, including carbon deprivation, stationary
phase, and temperature shock (4-13). However, the mechanisms responsible for global regulation

of mRNA stability in prokaryotes remain unknown.

A conventional model for RNA decay in E. coli starts with endonucleolytic cleavage by RNase
E, particularly in 5 monophosphorylated mRNAs (14-16). The resulting fragments are further
cleaved by RNase E, producing fragments that are fully degraded by exonucleases such as
PNPase, RNase II, and RNase R (17, 18). mRNA degradation is coordinated by formation of a
complex known as the degradosome. In E. coli, RNase E serves as the scaffold for degradosomes
containing RNA helicases, the glycolytic enzyme enolase, and PNPase (19-23). Other organisms
that encode RNase E form similar degradosomes (24, 25). In bacteria lacking RNase E, other
endonucleases assume the scaffold function (26-28). Mycobacteria encode RNase E, but efforts
to define the mycobacterial degradosome have produced inconsistent results (29, 30). It is
unclear if degradosome reorganization or dissolution contribute to the global regulation of
mRNA degradation in any bacteria. Interestingly, the importance of degradosome formation in
E. coli varies depending on the carbon sources provided, suggesting links between RNA
degradation and metabolic capabilities (31). Furthermore, the chaperones DnaK and CsdA

associate with degradosomes in E. coli under certain stresses (20, 32, 33).

Global transcript stabilization in stressed bacteria could plausibly result from reduced RNase
abundance, reduced RNase activity, and/or reduced accessibility of transcripts to degradation
proteins. In E. coli multiple stressors upregulate RNase R, possibly to mitigate ribosome
misassembly (34, 35), and RNase III levels decrease under cold-shock and stationary phase (36).
Surprisingly, protein levels for most putative RNA degradation proteins in Mtb remain unaltered

under hypoxic conditions (37), suggesting that mRNA degradation is not necessarily regulated at
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the level of RNase abundance in mycobacteria. However, there is evidence that RNase activity
may be regulated. For example, proteins such as RraA and RraB can alter the function of the
RNase E-based degradosome in E. coli (38). Translating ribosomes can mask mRNA cleavage
sites and stabilize mRNAs (39). In Caulobacter crescentus, subcellular localization of mRNA
degradation proteins may affect global mRNA stability (40, 41). Furthermore, in some
actinomycetes, PNPase might be regulated by the stringent response alarmones guanosine-3'-
diphosphate-5'-triphosphate (pppGpp) and/or guanosine-3',5' -bisphosphate (ppGpp), collectively
referred to as (p)ppGpp (42, 43). Many bacteria synthesize (p)ppGpp in response to energy stress
(44-47), where it generally facilitates adaptation by upregulating stress-associated genes and
downregulating those associated with growth (46, 48-52). (p)ppGpp was reported to inhibit the
activity of PNPase in two actinomycetes, Streptomyces coelicolor and Nonomuraea (42, 43),
suggesting that the stringent response could directly stabilize mRNA as part of a broader

response to energy starvation.

Another explanation for stress-induced transcript stabilization could be that reduced transcript
abundance directly leads to increased transcript stability. mRNA abundance and half-life were
reported to be inversely correlated in multiple bacteria including Mtb (3, 8, 53, 54), and mRNA
abundance is lower on a per-cell basis for most transcripts in non-growing bacteria.
Nevertheless, the causal relationships between translation, mRNA abundance, RNase expression,

and mRNA stability in non-growing bacteria remain largely untested.

Given the importance of adaptation to energy starvation for mycobacteria, we sought to
investigate the mechanisms by which mRNA stability is globally regulated. Here we show that
the global mRNA stabilization response occurs also in Mycobacterium smegmatis—a non-

pathogenic model commonly used to study the basic biology of mycobacteria —under hypoxia
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and carbon starvation. Remarkably, we found that hypoxia-induced mRNA stability is rapidly
reversible, with re-aeration causing immediate mRNA destabilization even in the absence of
protein synthesis. As expected, transcript levels from hypoxic cells were lower on a per-cell basis
compared to those from aerated cultures. However, our data are inconsistent with a model in
which mRNA abundance dictates degradation rate as has been shown for log-phase E. coli (53)
and Lactococcus lactis (54). Instead, our findings support the idea that mRNA stability is rapidly
tuned in response to alterations in energy metabolism. This effect does not require the stringent
response or changes in abundance of RNA degradation proteins, and can be decoupled from

growth status.

RESULTS

mRNA is stabilized as a response to carbon starvation and hypoxic stress in Mycobacterium

smegmatis

The mRNA pools of E. coli and other well-studied bacteria were reported to be globally
stabilized during conditions of stress, resulting in increased mRNA half-lives (3-13). Rustad et
al. reported a similar phenomenon in Mtb under hypoxia and cold shock (3). We sought to
establish M. smegmatis as a model for study of the mechanistic basis of mRNA stabilization in
mycobacteria under stress conditions. We therefore subjected M. smegmatis to hypoxia and
carbon starvation, and measured mRNA half-lives for a subset of genes by blocking transcription
with rifampicin (RIF) and measuring mRNA abundance at multiple time-points using
quantitative PCR (qPCR). We used a variation of the Wayne model (55) to produce a gradual
transition from aerated growth to hypoxia-induced growth arrest by sealing cultures in vials with

defined headspace ratios and allowing them to slowly deplete the available oxygen (Fig. 1A-B).
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We tested a set of mRNAs that included leadered and leaderless transcripts, monocistronic and
polycistronic transcripts, and transcripts with both relatively short and relatively long half-lives
in log phase. We observed that all of the analyzed transcripts had increased half-lives under
hypoxia when compared to log phase normoxic cultures and, similarly, transcripts were more
stable in carbon starvation than in rich media (Fig. 1C-D). Thus, M. smegmatis appears to be a
suitable model for investigating the mechanisms of stress-induced mRNA stabilization in
mycobacteria. To ensure that the apparent mRNA stabilization was not an artifact of reduced RIF
activity in non-growing cells, we confirmed that RIF indeed blocked transcription in hypoxia-
arrested M. smegmatis (Fig. 1E). We noted that transcripts became progressively more stable as
oxygen levels dropped and growth ceased; 40 hours after sealing the vials, mRNA half-lives
were too long to reliably measure by our methodology. We sought to focus our studies on the
mechanisms that underlie the initial mRNA stabilization process during the transition into
hypoxia-induced growth arrest. We therefore conducted most of our subsequent experiments 18-
24 hours after sealing the vials, when growth had nearly ceased and transcripts were 9-fold to 25-
fold more stable than during log phase. We refer to these conditions as 18 h hypoxia and 24 h

hypoxia.
(p)ppGpp does not contribute to mRNA stabilization in hypoxia or carbon starvation

Given recent reports that (p)ppGpp could directly inhibit the enzymatic activity of the
exoribonuclease PNPase (42, 43), we wondered whether mRNA stabilization as observed in
carbon starvation and hypoxia is regulated by (p)ppGpp in mycobacteria. We obtained a double
mutant strain of M. smegmatis (56) that lacks both genes implicated in the production of
(p)ppGpp (Arel Asas?2), and compared the mRNA half-lives of a subset of genes to those of wild

type mc?155 under hypoxia, log phase normoxia, and carbon starvation. The Arel Asas?2 strain
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had a growth defect during adaptation to hypoxia and carbon starvation (Fig. 2A and 2C), as
predicted (57). However, we found no significant decrease in mRNA stabilization in the mutant
strain (Fig. 2B and 2D), indicating that the mRNA stabilization observed under hypoxia and
carbon starvation is independent from the stringent response. Interestingly, the mutant strain
displayed increased mRNA stabilization for a few transcripts under carbon starvation conditions,

which could be an indirect consequence of altered transcription rates (see discussion).

Hypoxia-induced mRNA stability is reversible and independent of mRNA abundance

We wondered if the observed stress-induced transcript stabilization could be reversed by
restoration of a favorable growth environment. To test this, we prepared 18 h hypoxia cultures,
opened the vials and agitated them for 2 min to re-expose the bacteria to oxygen before blocking
transcription with RIF and sampling thereafter (Fig. 3A, top). We found that, for all transcripts
tested, half-lives were significantly decreased compared to those observed under hypoxia and
similar to those observed in log phase (Fig. 3B). While the mechanisms of stress-induced mRNA
stabilization are largely unknown, multiple studies have reported inverse correlations between
mRNA abundance and half-life in bacteria (3, 8, 53, 54). mRNA abundance was decreased for
most transcripts tested in hypoxia-adapted M. smegmatis. We therefore considered the possibility
that the dramatic increase in mRNA degradation upon re-exposure to oxygen was triggered by a
burst of transcription. Indeed, we found increased expression levels for three of five genes tested
after two minutes of re-aeration, showing that transcription is rapidly induced upon return to a
favorable environment (Fig. 3C). To test the idea that mRNA is destabilized by re-aeration as a
consequence of a transcriptional burst and/or increased mRNA abundance, we modified our re-
aeration experiment by blocking transcription with RIF one minute prior to re-aeration (Fig. 3A,

bottom). Surprisingly, every transcript tested was destabilized by re-aeration despite the absence
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of new transcription. For most transcripts, the re-aeration half-lives were indistinguishable
regardless of whether RIF was added prior to opening the vials or two minutes after (Fig. 3B).
Our results therefore do not support the idea that changes in mRNA abundance alone can explain

the mRNA stabilization and destabilization observed in response to changes in energy status.

We wanted to further explore if mRNA abundance alone could influence transcript degradation.
We obtained a strain encoding dCas9 and a non-specific sgRNA under control of an ATc-
inducible promoter (58) and compared the dCas9 transcript stability under hypoxia and normoxia
after ATc induction or at basal levels. We found that despite a 34-fold transcript upregulation
following ATc induction, the half-life of dCas9 mRNA was not significantly different from the
uninduced control in log phase. Under hypoxia, its 28-fold upregulation was associated with an
increase in dCas9 mRNA half-life compared to the no-drug control (Fig. 3D and 3E). Together,
our results show that increased mRNA abundance does not necessarily result in a faster decay

rate.

mRNA stability is modulated independently of RNase protein levels

Another potential explanation for increased mRNA degradation after re-aeration is the up-
regulation of mRNA degradation proteins such as RNase E. To assess the role of a sudden burst
in protein levels we used two approaches. First, we constructed strains encoding FLAG-tagged
RNase E, cMyc-tagged PNPase, or cMyc-tagged msmeg_1930 (predicted RNA helicase). We
determined protein levels by western blotting in log phase, 18 h hypoxia, and after 18 h hypoxia
followed by 2 min re-aeration. Levels of all three of these predicted RNA degradation proteins

remained unchanged in the three conditions (Fig. 4A).
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Because we do not know all of the proteins that contribute to mRNA degradation in
mycobacteria, our second approach was to test the global importance of translation in re-
aeration-induced mRNA destabilization. We blocked translation with chloramphenicol (CAM) in
18 h hypoxia cultures and then added RIF. Samples were collected for cultures that remained
under hypoxia as well as those that were re-aerated for 2 min (Fig. 4B). For three of the five
genes tested, we found that CAM caused increased mRNA stability in hypoxia. This is consistent
with CAM’s mechanism of action and published work (59-61). CAM inhibits elongation by
preventing peptidyl transfer (62-64) and causing ribosomal stalling (65). Global stabilization of
mRNA pools has been reported when elongation inhibitors, but not initiation inhibitors, are used
for example in log phase cultures of E. coli (65) or in yeast (66). We hypothesize that stalled
ribosomes may increase mRNA stability by masking RNase cleavage sites. However, despite the
stabilization caused by CAM itself, we observed mRNA destabilization in response to re-
aeration (Fig. 4C). These results suggest that re-aeration-induced destabilization does not require
synthesis of new RNA degradation proteins. Taken together, our data suggest that tuning of
protein levels is not the primary explanation for mRNA stabilization during early adaptation to

hypoxia.
mRNA stability is modulated in response to changes in metabolic status

The rapidity of mRNA destabilization following re-aeration suggested that mRNA degradation is
tightly regulated in response to changes in energy metabolism. We tested this hypothesis by
treating log phase cultures with 5 ug'-mL! bedaquiline (BDQ), a potent inhibitor of the ATP
synthase FoF1 (67). We used minimal media that contained acetate as the only carbon source
(MMA) in order to make the respiratory chain the sole source of ATP synthesis. After 30 min

exposure, intracellular ATP levels were reduced by more than 90% compared to cells treated

10
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with vehicle (DMSO), without affecting viability (Fig. SA and 5B). We then measured half-lives
for a set of transcripts under these conditions. mRNA half-lives were dramatically increased in
BDQ-treated cells for most of the genes we tested (Fig. 5C), indicating that mRNA degradation

rates are rapidly altered in response to changes in energy metabolism status.

We then wondered if we could increase mRNA degradation rates by increasing intracellular ATP
levels. To test this, we treated M. smegmatis cultures with isoniazid (INH) a pro-drug that
interferes with the synthesis of mycolic acids, and also leads to an accumulation of intracellular
ATP due to increased oxidative phosphorylation (68). We exposed M. smegmatis to 500 ug-mL™!
INH for 6.5 hours to confirm that we had achieved bacteriostasis (M. smegmatis doubling time in
MMA media is ~six hours). As shown in Fig. 5D, INH caused a dramatic increase in
intracellular ATP after 6.5 h without affecting cell viability (Fig. SE). Remarkably, mRNA half-
lives were significantly decreased in response to INH (Fig. 5F). To our knowledge, this is the
first report of bacterial mRNA being destabilized rather than stabilized in response to a growth-
impairing stressor. Our results indicate that mRNA stability is regulated not in response to
growth status per se, but rather to energy metabolism. Although we interpreted ATP levels as a
reflection of metabolic status in our INH and BDQ assays, the coupling between mRNA
degradation and metabolic status does not appear to be mediated by ATP directly. We measured
ATP levels in cultures during the transition to hypoxia-induced growth arrest, and found that
although ATP levels ultimately decrease in hypoxia as has been reported elsewhere (69, 70),

mRNA stabilization precedes the drop in ATP levels (Fig. 5G).

DISCUSSION

11
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Stressors that cause bacteria to slow or stop growth are typically associated with increased
mRNA stability (3-9, 11-13). Many of these same stressors reduce energy availability (69, 70),
requiring reductions in energy consumption and optimization of resource allocation. We
speculate that the decreased mRNA turnover that accompanies such conditions may be an energy
conservation mechanism. For Mtb, hypoxia can lead to generation of bacterial subpopulations
with varying degrees of antibiotic tolerance (71-73), facilitating bacterial survival and the
acquisition of drug resistance-conferring mutations. Understanding the mechanisms that support
the transitions into non-growing states, and subsequent survival in these states, is therefore a

priority.

The transcriptome of Mtb has been shown to be stabilized under cold shock and hypoxia (3).
Here, we found that M. smegmatis also dramatically stabilized its mRNA in response to carbon
starvation and hypoxia. For the first time, to our knowledge, we tested the speed at which this
stabilization is reversed in mycobacteria upon restoration of energy availability. Remarkably,
mRNAs are rapidly destabilized within minutes of re-aeration of hypoxic cultures, suggesting
that tuning of mRNA degradation rates is an early step in the response to changing energy

availability.

The most straightforward explanation for stress-induced mRNA stabilization would seem to be
downregulation of the mRNA degradation machinery. Indeed, RNase E is downregulated at the
transcript level under hypoxia, and abundance of cleaved RNAs is reduced (74). However, we
found that protein levels were unchanged for RNase E and two other proteins predicted to be
core components of the mRNA degradation machinery. This is largely consistent with what was
reported for Mtb in a quantitative proteomics study (37), although in that case there was an

apparent reduction in levels of an RNA helicase. To address this question in a more agnostic
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fashion, we tested the importance of translation for transcript destabilization upon re-exposure of
hypoxic cultures to oxygen. However, re-aeration triggered increased transcript degradation even
in the absence of new protein synthesis. Regulation of degradation protein levels therefore does
not appear to contribute to mRNA stabilization during the initial response to energy stress.
However, we found that upon longer periods of hypoxia, transcripts were stabilized to a greater
extent than what we observed 18 hours after sealing the vials. This suggests that mRNA
stabilization progressively increases, and may involve multiple mechanisms. As this work
focused on the initial transition into hypoxia-induced growth arrest, we cannot discount the
possibility that downregulation of the RNA degradation machinery is important for further

mRNA stabilization in later hypoxia stages.

Interestingly, we found greater mRNA stabilization in hypoxic cultures treated with CAM. This
may result from stalled ribosomes (62, 64) masking RNase cleavage sites. Furthermore, the burst
of transcription upon re-aeration is blocked by the presence of CAM, causing up to a four-fold
decrease in transcript abundance in the CAM treated cultures when compared to the vehicle
treated cultures. This is consistent with the idea that transcription and translation are physically
coupled, and blocking translation therefore prevents RNA polymerase from efficiently carrying
out transcript elongation, as was reported for E. coli (75-79). The results obtained from the Arel
Asas? strain are also consistent with the idea that the presence of ribosomes affects mRNA
stability. Under carbon starvation this strain had rRNA levels three-fold higher than the WT
strain, consistent with the known role of (p)ppGpp in downregulating ribosome biogenesis (80-
82). Interestingly, some transcripts were hyperstabilized in the Arel Asas2 strain under carbon
starvation, showing virtually no degradation (Fig. 2D). We speculate that the observed mRNA

hyperstabilization could be the caused by increased ribosome abundance, resulting in augmented
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mRNA-ribosome associations that ultimately protect transcripts from RNases. Alternatively, the
increased abundance of rRNA could protect mRNA indirectly by providing alternative targets

that compete for interaction with RNases (65).

Transcript abundance has been found to be inversely correlated with mRNA stability in
exponentially growing bacteria (3, 8, 53, 54, 83), and experimental manipulation of transcription
rates of subsets of genes affected their degradation rates (3, 54). Together, these studies suggest
that high rates of transcription inherently increase degradation rates. We report here that during
oxygen depletion transcript levels are reduced in M. smegmatis, which led us to ask if increased
transcript half-lives under stress are a direct result of reduced mRNA levels. However, our data
are inconsistent with this idea; mRNA is rapidly destabilized upon re-aeration even in the
absence of new transcription. We note that one study reported a weak positive correlation
between mRNA abundance and stability in log phase E. coli (12), while another reported mRNA
abundance to be positively correlated with stability in carbon-starved Lactococcus lactis (8).
Together, these observations and our own suggest that the relationship between mRNA stability
and abundance is not yet fully understood and may be fundamentally different in growth-arrested

bacteria.

The rapid reversibility of hypoxia-induced mRNA stabilization suggests that mRNA decay and
energy metabolic status are closely linked. Consistent with this, we have shown that drug-
induced energy stress causes mRNA stabilization, while mRNA decay is increased by a drug that
induces a hyperactive metabolic state. To our knowledge this is the first demonstration that the
rate of bacterial mRNA degradation can be decoupled from growth rate, and suggests that
mRNA decay is controlled by energy status rather than growth rate per se. The mechanism by

which energy status and mRNA decay are coupled remains elusive; the stringent response is not

14



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

required, and the stabilization of mRNA during adaptation to hypoxia precedes a decrease in
ATP levels. Our data are consistent with two general (non-exclusive) models: mRNA decay
could be regulated by protection of transcripts from RNase attack, and/or by direct regulation of
the activity of the RNases. Possible explanations that fall within one or both of these frameworks
include changes in ribosome occupancy, the presence of other RNA-binding proteins, regulation
of the subcellular localization of mRNAs and/or the RNA degradation machinery, and altered

degradosome composition. These possibilities should be investigated in future work.

METHODS
Strains and culture conditions

Mycobacterium smegmatis strain mc?155 or derivatives (Table 1) were grown in rich medium,
Middlebrook 7H9 with ADC (Albumin Dextrose Catalase, final concentrations 5 g'L"! BSA
fraction V [BSA], 2 g-L! dextrose, 0.85 g-L! NaCl, and 3 mg-L"! catalase), 0.2% glycerol and
0.05% Tween 80 at 200 rpm and 37°C to an ODeoo of ~0.8, unless specified otherwise. For
hypoxic cultures, we modified the Wayne model (55). Bacteria were cultured in 30.5 x 58 mm
serum bottles (Wheaton, 223687, 20 mL) using rich medium and an initial ODgo0=0.01. Bottles
were sealed with a vial crimper (Wheaton, W225303) using rubber stoppers (Wheaton,
W224100-181) and aluminum seals (Wheaton, 224193-01). Oxygen levels were qualitatively

monitored using methylene blue.

For carbon starvation cultures, cells were grown to log phase (ODgo0=0.8) in rich medium,

pelleted and rinsed three times with carbon starvation medium (Middlebrook 7H9 with 5 g-L!

15
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BSA, 0.85 g-L! NaCl, 3 mg-L! catalase, and 0.05 % Tyloxapol) at 4°C, then resuspended in

carbon starvation medium to ODgoo= 0.8 and incubated at 200 rpm, 37°C.

The RNase E-tagged strain (SS-M_0296) was built using a two-step process. Plasmid pSS250
was derived from pJM1 (84) and contained 1 kb of the sequence upstream and downstream of
the rne (msmeg_4626) start codon, with the sequence encoding 6xHis-3xFLAG-TEV-4xGly
inserted after the start codon. Constructs were built using NEBuilder HiFi (E2621). Integrants
were selected with 200 ug-mL! hygromycin and confirmed by sequencing. Counter-selection
with 15% sucrose was followed by PCR screening to identify isolates that underwent second

crossovers resulting in loss of the plasmid and retention of tagged rne.

The PNPase-tagged strain (SS-M_0412) was built by inserting a second copy of pnp
(msmeg_2656) with an N-terminal c-Myc-4xGly and its predicted native promoter and 5° UTR
at the Giles phage integration site (plasmid pSS282) into strain SS-M_0296. The RNA helicase-
tagged strain (SS-M_0416) was constructed in a similar way but using a C-terminal 4xGly-c-

Myc tag on msmeg_1930 (plasmid pSS285).

RNA extraction and determination of mRNA stability

Biological triplicate cultures were treated with rifampicin (RIF) to a final concentration of 150
ug-mL™! to halt transcription and RNA was extracted at various time-points thereafter. For
exponential and carbon starvation cultures, 7 mL were collected per replicate and time-point and
snap-frozen in liquid nitrogen (LN2). For hypoxic samples, degassed RIF was injected using a
30G needle, and all samples were sacrificially collected per time-point and replicate (7 mL) and

snap-frozen in LN2 within 6 seconds of unsealing.

16



357  Samples were stored at -80°C and thawed on ice immediately before RNA extraction. Cells were
358 pelleted at 4°C, resuspended in 1 mL TRIzol (Invitrogen), transferred to 2 mL disruption tubes
359  (OPS Diagnostics 100 um zirconium lysing matrix, molecular grade), and lysed using a

360  FastPrep-24 5G (MP) (3 cycles of 7 m-s™! for 30 s, 2 min on ice between cycles). 300 uL

361  chloroform was added, samples centrifuged 15 min at 21,130 x g and 4°C, and RNA recovered
362  from the aqueous layer and purified with a Direct-zol RNA MiniPrep kit according to the

363  manufacturer’s instructions with in-column DNase treatment. Agarose gels were used to verify

364  RNA integrity.

365  For cDNA synthesis, 600 ng of total RNA were mixed with 0.83 pL 100 mM tris pH 7.5 and
366 0.17 uL 3 mg'mL! Random Primers (NEB) in 5.25 uL, denatured at 70°C for 10 min and snap-
367 cooled. Reverse transcription was performed for 5 hours at 42°C using 100 U ProtoScript® II
368  Reverse Transcriptase (NEB), 10 U RNase Inhibitor (Murine, NEB), 0.5 mM each dANTP mix
369 and 5 mM DTT in a final volume of 10 pL. RNA was degraded with 5 pL each 0.5 mM EDTA
370 and 1 N NaOH at 65°C for 15 min, followed by 12.5 pL of 1 M Tris-HCI pH 7.5. cDNA was
371  purified using the MinElute PCR Purification Kit (Qiagen) according to the manufacturer

372 instructions. mRNA abundance (4) over time (¢) was determined for different genes (primers in
373  Table 2) by quantitative PCR (qPCR) using iTag SYBR Green (Bio-Rad) with 400 pg of cDNA
374  and 0.25 uM each primer in 10 pL reactions, with 40 cycles of 15 s at 95°C and 1 min at 61°C
375  (Applied Biosystems 7500). Abundance was expressed as the -Cr (reflecting the log,A(t)).

376  Linear regression was performed on -Cr values versus time where the negative reciprocal of the
377  best-fit slope estimates mRNA half-life (see supplemental materials, Text S1 and Fig. S1). In

378 many cases the decay curves were biphasic, with a rapid period of decay followed by a period of
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slow or undetectable decay. In these cases, only the initial, steeper slope was used for calculation

of half-lives.

mRNA stability during re-aeration and translational inhibition

Translation was halted by 150 pg'-mL™! chloramphenicol, rifampicin was added 1 min later, and
samples collected starting 1 min after that. For re-aeration experiments, 18 h hypoxia cultures
were opened, the contents transferred to 50 mL conical tubes, and triplicate samples taken 2, 7,
12, 17, and 32 min after opening the bottles and snap-frozen in LN2. Rifampicin was added
either 1 min before (transcription inhibition during hypoxia) or 2 min after opening the bottles

(transcription inhibition after re-aeration).

Bedaquiline and isoniazid treatments

Cultures were grown to ODsoo ~1.0 in rich medium, rinsed twice in Minimal Media Acetate wash
(final concentrations: 0.5 g-L"! L-asparagine, 1 g-L'! KH2PO4, 2.5 g'L"! Na,HPOs4, 0.5 g-L!
MgSO4+7H20, 0.5 mg-L! CaCl,, 0.1 mg-L-! ZnSOs4, 0.1% CH3COONa, 0.05% tyloxapol, pH
7.5) at 4°C, resuspended in Minimal Media Acetate with ferric ammonium citrate (MMA,
Minimal Media Acetate wash + 50 mg-L™! ferric ammonium citrate) to ODes0o=0.07, and grown
for 24 hours to ODgoo ~0.8. To remove the extracellular ATP, 30 minutes before drug treatment
cells were pelleted and rinsed in pre-warmed Minimal Media Acetate wash, resuspended in pre-
warmed MMA, and returned to the incubator. Bedaquiline (BDQ), isoniazid (INH), or their
vehicles were added to final concentrations of 5 pg-mL! or 500 ug'mL!, respectively. Samples
were taken 30 min after adding BDQ, or 6.5 h after adding INH for half-life and ATP

determination.
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For half-life measurements, BDQ cultures were sampled 0, 3, 6, 9, 12, 15 and 21 min after
adding RIF and INH cultures were sampled 0, 4, 8 and 12 min after adding RIF. RNA
extractions were performed as above with the following modifications: cell disruption was
performed using 2 mL tubes prefilled with Lysing Matrix B (MP) and 3 cycles of 10 m's™! for 40
s; RNA was recovered from the aqueous layer by isopropanol precipitation and resuspension in
H>0; samples were treated with 5 U of TURBO™ DNase (Ambion) in presence of 80 U of
RNase Inhibitor, Murine (NEB) for 1 hour at 37°C with agitation. RNA was purified with an

RNeasy Mini Kit (Qiagen) according to the manufacturer’s specifications.

Intracellular ATP estimation

ATP was estimated by BacTiter-Glo (Promega). For BDQ or INH treatments, 1 mL of culture
was pelleted at ~21°C for 1 min at 21,130 x g, the supernatant removed and cells resuspended in
1 mL of pre-warmed MMA containing BDQ, INH, or vehicle to match the prior treatment
condition. Immediately after, 20 pL samples were transferred to a white 384-well plate (Greiner
bio-one) containing 80 pL of BacTiter-Glo reagent and mixed for 5 minutes at room
temperature. Luminescence was measured in a VICTOR? plate reader (PerkinElmer)
(intracellular ATP). We included controls for the supernatant collected (extracellular ATP),

media + drug/vehicle (background), and ATP standards for constructing standard curves.

To estimate intracellular ATP in normoxia and hypoxia cultures, 20 pL samples were collected
at 37°C and immediately combined with the reagent to measure total ATP (intracellular +
extracellular). From the same cultures, 1 mL samples were syringe-filtered (PES 0.2 um) and the
filtrate combined with the reagent to measure extracellular ATP. Luminescence was measured as

above. Intracellular ATP was calculated by subtracting the extracellular ATP values from the
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total ATP values. Hypoxia samples were sacrificially harvested per time-point/replicate and

combined with the reagent in <6 seconds.
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FIGURE LEGENDS

Figure 1

Transcript half-lives are increased in response to hypoxia and carbon starvation stress. (A)
Growth kinetics for M. smegmatis under hypoxia using a variation of the Wayne model (55),
showing OD stabilization at 18-24 hours. Oxygen depletion was assessed qualitatively by
methylene blue discoloration. (B) M. smegmatis was sealed in vials to produce a hypoxic
environment, at 18 hours transcription was inhibited with RIF and samples collected thereafter.
Transcript half-lives for the indicated genes were measured for M. smegmatis mc?155 after
blocking transcription with 150 pg'mL! RIF. RNA samples were collected (C) during log phase
normoxia, and hypoxia (18 hours after closing the bottles); or (D) during log phase in 7H9
supplemented with ADC, glycerol, and Tween 80 (rich media) or 7H9 with Tyloxapol only
(carbon starvation, 24 hours). Degradation rates were compared using linear regression (n=3),
and half-lives were determined by the reciprocal of the best-fit slope. Error bars: 95% CI. ***
p<0.001; **** p<0.0001. When a slope of zero was included in the 95% CI (indicating no
degradation), the upper limit for half-life was unbounded, indicated by a clipped error bar with a
double line. (E) RIF blocks overexpression of an ATc-inducible gene (r7a4) in hypoxic cultures.
40 h after sealing bottles, cultures were treated with 50 ng'mL"! ATc and/or 150 ug'mL! RIF or
the drug vehicle (DMSO) for 1 h. Expression levels (qPCR) are displayed relative to no drugs
(DMSO) treatment. ATc, RIF and DMSO solutions were degassed prior to addition. Error bars:

SD.
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Figure 2

Transcript stabilization in hypoxia and carbon starvation is not dependent on the stringent
response. (A) Growth kinetics for M. smegmatis mc?155 (WT) and Arel, Asas2 strains cultured
in 7H9 in flasks sealed at time 0. (B) Transcript half-lives for a set of genes 24 hours after
sealing the hypoxia bottles (arrow in A). RNA samples were collected after blocking
transcription with 150 pg-mL"!' RIF (degassed). (C) Bacteria were grown to log phase in 7H9
supplemented with ADC, glycerol, and Tween 80, then transferred to 7H9 supplemented with
Tyloxapol only at time 0. (D) Transcript stability for a set of genes 22 hours after transfer to
carbon starvation media (arrow in C). In A and C, the mean and SD of triplicate cultures is
shown. In B and D, half-lives were compared using linear regression analysis (n=3). Error bars:
95% CI. **** p<(.0001, n.s. p>0.05. In cases where no degradation was observed or when the

upper 95% CI limit was unbounded, the bar or upper error bar were clipped, respectively.

Figure 3

Hypoxia-induced mRNA stability is reversible and independent of mRNA abundance. (A)
M. smegmatis was sealed in vials for 18 hours to produce a hypoxic environment, then re-
exposed to oxygen for two minutes before transcription was inhibited RIF (top) or injected with
RIF one minute prior to opening the vials and re-exposing to oxygen (bottom). (B) Transcript
half-lives for a set of genes are displayed for log phase normoxia cultures, hypoxia (18 h), and
re-aeration with RIF added either before or after opening the vials. Half-lives were compared by
linear regression analysis (n=3). (C) Expression levels of transcripts in hypoxia (18 h) or 2 min
re-aeration relative to the expression levels in log phase normoxia cultures (percentage). Error

bars: SD. (D) Expression levels of transcripts in hypoxia (18 h) or log phase normoxia after
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being treated with 200 ng'mL"! ATc for 1 h or 10 min, respectively, to induce dCas9
overexpression, relative to the expression levels in a H>O vehicle treatment (percentage). Error
bars: SD. (E) Transcript half-lives for dCas9 and sigA for log phase normoxia and hypoxia (18 h)
after induction of dCas9 with ATc or vehicle treatment as shown in D. In B and E, degradation
rates were compared using linear regression (n=3), and half-lives were determined by the
reciprocal of the best-fit slope. Error bars: 95% CI. * p<0.05, ** p<0.01, **** p<0.0001, n.s.

p>0.05. RIF added to hypoxic cultures was degassed prior to addition.

Figure 4

mRNA stability is regulated independently of degradation protein levels. (A) Western
blotting for FLAG-tagged RNase E, and c-Myc-tagged PNPase or RNA helicase (msmeg_ 1930)
in M. smegmatis in log phase normoxia, hypoxia (18 h), and 2 min re-aeration. Samples were
normalized to total protein level, which were similar on a per-OD basis in all conditions. (B)
Translation was inhibited in hypoxic cultures by 150 pg-mL"! CAM 1 min before adding 150
ug'mL! RIF. RNA was harvested at time points beginning 2 min after adding CAM. (C)
Transcript half-lives for samples from hypoxic cultures with the drug vehicle (ethanol), hypoxic
cultures after translation inhibition, and 2 min re-acration after translation inhibition.
Degradation rates were compared using linear regression (n=3), and half-lives were determined
by the reciprocal of the best-fit slope. Error bars: 95% CI. n.s., p>0.05, * p<0.05, *** p<0.001,
*A#% p<0.0001. Drugs and drug vehicles added to the hypoxic cultures were degassed prior to

addition.
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727  Figure S

728  mRNA stability is modulated in response to changes in metabolic status. (A) M. smegmatis
729  was cultured in MMA media for 22 hours to ODsoo 0.8 before being treated with 5 pg-mL!' BDQ
730  or the vehicle (DMSO) for 30 min. Intracellular ATP was determined using the BacTiter-Glo kit.
731 (B) Growth kinetics for M. smegmatis from panel A in presence of BDQ. (C) Transcript half-
732 lives for a sub-set of transcripts collected during intracellular ATP depletion (30 min with BDQ)
733 or at the basal levels (30 min with DMSO). (D) As in panel A, but for M. smegmatis treated with
734 500 pg-mL"! INH or the vehicle (H20) for 6.5 hours. (E) Growth kinetics for M. smegmatis from
735  panel D in presence of INH. (F) Transcript half-lives for a sub-set of transcripts after 6.5 h of
736 INH or vehicle treatment. (G) Growth kinetics for M. smegmatis transitioning into hypoxia, and
737  intracellular ATP levels at different stages. Bottles were sealed at time 0. The dotted line

738  represents the time at which transcript stability analysis were made for the hypoxia (18 h)

739  condition for Figures 1-4. In C and F, half-lives were compared using linear regression analysis
740  (n=3). Error bars: 95% CI. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. ATP was

741  measured in biological triplicate cultures and is representative of at least two independent

742  experiments.

743
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746

747

748

749

TABLES

TABLE 1

Strains used and sources

Strain

Characteristics

Reference or source

mc?155

M. smegmatis, WT

(85)

SS-M 0072

SS-M 0296

SS-M 0412

SS-M_0416

AVeIMsm

SS-M 0203

mc?155 derivative transformed with plasmid
pSS162, containing an ATc-inducible copy of rraA.
mc?155 in which the native copy of RNase E (rne) is
N-terminally tagged with 6xHis-3XxFLAG-TEV-
4xGly linker
(CACCACCACCACCACCACGATTACAAGGAT
CACGATGGCGATTACAAGGATCATGACATC
GACTATAAGGACGATGACGATAAGGAGAAC
CTGTACTTCCAGGGCGGCGGCGGC).
SS-M_0296 derivative containing a second copy of
PNPase (msmeg_2656) with its predicted native
promoter and 5° UTR, and N-terminally tagged with
c-Myc-4xGly-linker
(GAGCAGAAGCTGATCTCGGAAGAGGACCTC
GGCGGCGGCGGC) contained on Giles-integrating
plasmid pSS282 (HygR).

SS-M_0296 derivative containing a second copy of
RNA helicase (msmeg_1930) with its predicted
native promoter and 5° UTR, and C-terminally
tagged with 4x Gly linker-c-Myc
(GGCGGCGGCGGCGAGCAGAAGCTGATCTCG
GA) contained on a Giles-integrating plasmid
pSS285 (HygR).

mc?155 derivative, Arel Asas2

mc?155 derivative transformed with plasmid
pJR962, containing an ATc regulated dCas?9.

This work

This work

This work

This work

(56)
(58)
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750 TABLE 2

751  Primers for gPCR

Primer name Gene Directionality Sequence 5’ — 3’
SSS903 atpB (msmeg_4942) Forward TGTTCGTGTTCGTCTGCTAC
SSS904 atpB (msmeg_4942) Reverse CGGCTTGGCGAGTTCTT
SSS909 atpE (msmeg_4941) Forward GGGTAACGCGCTGATCTC
SSS910 atpE (msmeg_4941) Reverse GAAGGCCAGGTTGATGAAGTA
SSS1241 dCas9 Forward GACAAGTCGAAGTTCCTGATGTA
SSS1242 dCas9 Reverse GATCTGCTTGTTCGGGTAGTT
SSS537 esxB (msmeg_0065) Forward GGTGAGGACACAGGGAAATAAG
SSS538 esxB (msmeg_0065) Reverse CGGAGATGCGCTCGAAAT
SSS856 katG (msmeg_6384) Forward GGCCCAATCAGCTCAATCT
SSS857 katG (msmeg_6384) Reverse CGGACCGGTAGTCGAAATC
SSS706 rnj (msmeg 2685)  Forward TCATCCTCTCATCGGGTTTC
SSS707 rnj (msmeg 2685)  Reverse TTCGCGCTCAACCTTCT
SSS697 rrad (msmeg_6439) Forward AACTACGGCGGCAAGAT
SSS698 rrad (msmeg_6439) Reverse GTCGAGAGGATCGACTTCAG
JR273 (58) sigA (msmeg_2758) Forward GACTACACCAAGGGCTACAAG
JR274 (58) sigA (msmeg_2758) Reverse TTGATCACCTCGACCATGTG

752

753

754  SUPPLEMENTAL METHODS

755  The supplemental methods (Text S1) provide additional detail about the methodology used to

756  measure mRNA half-lives.

757

758  SUPPLEMENTAL FIGURE LEGENDS

759  Supplemental Figure 1

760 mRNA decay curves for an example gene, rraA. x axis denotes time after transcription was
761  blocked by addition of RIF. (A) —Cr versus time data for rraA4 giving a half-life estimate of 0.935
762  minutes. (B) Estimated mRNA abundance for rra4 relative to the time of RIF addition, giving a
763 half-life estimate of 0.935 minutes.
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