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Abstract

The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods
in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-
wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5’-
end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome
organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase
growth and under hypoxia, a physiologically relevant stress condition. Using the model organism
Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high
confidence during log phase growth, of which 67% were categorized as primary TSSs for
annotated genes, and the remaining were classified as internal, antisense or orphan, according to
their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and
of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site.
This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple
mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur
at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-
wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward
mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene
expression. We show that in low oxygen, a condition associated with the host environment during
infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is
markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA
half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of
which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests
that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged
mycobacteria. Taken together, our data provide a foundation for further study of both
transcriptional and posttranscriptional regulation in mycobacteria.

Introduction

Tuberculosis is a disease of global concern caused by Mycobacterium tuberculosis (Mtb). This
pathogen has the ability to infect the human lungs and survive there for long periods, often by
entering into non-growing states. During infection, Mtb must overcome a variety of stressful
conditions, including nutrient starvation, low pH, oxygen deprivation and the presence of reactive
oxygen species. Consequently, the association of Mtb with its host and the adaptation to the
surrounding environment requires rigorous control of gene expression.

As the slow growth rate and pathogenicity of Mtb present logistical challenges in the laboratory,
many aspects of its biology have been studied in other mycobacterial species. One of the most
widely used models is Mycobacterium smegmatis, a non-pathogenic fast-growing bacterium.
While there are marked differences between the genomes of Mtb and M. smegmatis, such as the
highly represented PE/PPE-like gene category and other virulence factors present in Mtb and
poorly represented or absent in M. smegmatis, these organisms have at least 2,117 orthologous
genes (Prasanna & Mehra, 2013) making M. smegmatis a viable model to address certain questions
about the fundamental biology of mycobacteria. Indeed, studies using M. smegmatis have revealed
key insights into relevant aspects of Mtb biology including the Sec and ESX secretion systems
involved in transport of virulence factors (Coros et al., 2008, Rigel et al., 2009), bacterial survival
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during anaerobic dormancy (Dick ef al., 1998, Bagchi et al., 2002, Trauner et al., 2012, Pecsi et
al.,2014) and the changes induced during nutrient starvation (Elharar ez al., 2014, Wu et al., 2016,
Hayashi et al., 2018). However, the M. smegmatis transcriptome has been less extensively studied
than that of Mtb.

Identification of transcription start sites (TSSs) is an essential step towards understanding how
bacteria organize their transcriptomes and respond to changing environments. Genome-wide TSS
mapping studies have been used to elucidate the general transcriptomic features in many bacterial
species, leading to the identification of promoters, characterization of 5° untranslated regions (5’
UTRs), identification of RNA regulatory elements and transcriptional changes in different
environmental conditions (examples include (Albrecht et al., 2009, Mitschke et al., 2011, Cortes
et al., 2013, Schliiter et al., 2013, Dinan et al., 2014, Ramachandran et al., 2014, Sass et al., 2015,
Shell et al., 2015b, Thomason et al., 2015, Berger et al., 2016, Cuklina et al., 2016, D'arrigo et al.,
2016, Heidrich et al., 2017, Li et al., 2017). To date, two main studies have reported the
transcriptomic landscape in Mtb during exponential growth and carbon starvation (Cortes et al.,
2013, Shell et al., 2015b). These complementary studies revealed that, unlike most bacteria, a
substantial percentage (~25%) of the transcripts are leaderless, lacking a 5 UTR and consequently
a Shine-Dalgarno ribosome-binding site. In addition, a number of previously unannotated ORFs
encoding putative small proteins were found (Shell ez al., 2015b), showing that the transcriptional
landscape can be more complex than predicted by automated genome annotation pipelines. Thus,
TSS mapping is a powerful tool to gain insight into transcriptomic organization and identify novel
genes. Less is known about the characteristics of the M. smegmatis transcriptome. A recent study
reported a number of M. smegmatis TSSs in normal growth conditions (Li et al. 2017). However,
this work was limited to identification of primary gene-associated TSSs and lacked an analysis of
internal and antisense TSSs, as well as characterization of promoter regions and other relevant
transcriptomic features. In addition, Potgieter and collaborators (2016) validated a large number
of annotated ORFs using proteomics and were able to identify 63 previously unannotated
leaderless ORFs.

To achieve a deeper characterization of the M. smegmatis transcriptional landscape, we combined
5’-end-mapping and RNAseq expression profiling under two different growth conditions. Here we
present an exhaustive analysis of the M. smegmatis transcriptome during exponential growth and
hypoxia. Unlike most transcriptome-wide TSS analyses, our approach allowed us to study not only
the transcriptome organization in different conditions, but also the frequency and distribution of
RNA cleavage sites on a genome wide scale. Whereas regulation at the transcriptional level is
assumed to be the main mechanism that modulates gene expression in bacteria, post-transcriptional
regulation is a key step in the control of gene expression and has been implicated in the response
to host conditions and virulence in various bacterial pathogens (Kulesekara et al., 2006, Mraheil
et al., 2011, Heroven et al., 2012, Schifano et al., 2013, Holmqvist et al., 2016). Here we show
that the predominant RNA cleavage sequence motif in M. smegmatis is distinct from what has
been reported for other bacteria. We also show that RNA cleavage decreases during adaptation to
hypoxia, suggesting that RNA cleavage may be a refinement mechanism contributing to the
regulation of gene expression in harsh conditions.

Materials and methods
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Strains and growth conditions used in this study.

M. smegmatis strain mc?155 was grown in Middlebrook 7H9 supplemented with ADC (Albumin
Dextrose Catalase, final concentrations 5 g/L. bovine serum albumin fraction V, 2 g/L dextrose,
0.85 g/L sodium chloride, and 3 mg/L catalase), 0.2% glycerol and 0.05% Tween 80. For the
exponential phase experiment (Dataset 1), 50 ml conical tubes containing 5 ml of 7H9 were
inoculated with M. smegmatis to have an initial OD=0.01. Cultures were grown at 37°C and 250
rpm. Once cultures reached an OD of 0.7 — 0.8, they were frozen in liquid nitrogen and stored at -
80°C until RNA purification. For hypoxia experiments (Dataset 2), a protocol similar to the Wayne
model (Wayne & Hayes, 1996) was implemented. Briefly, 60 ml serum bottles (Wheaton, product
number 223746, actual volume to top of rim 73 ml) were inoculated with 36.5 ml of M. smegmatis
culture with an initial OD=0.01. The bottles were sealed with rubber caps (Wheaton, W224100-
181 Stopper, 20mm) and aluminum caps (Wheaton, 20 mm aluminum seal) and cultures were
grown at 37 °C and 125 rpm to generate hypoxic conditions. Samples were taken at an early stage
of oxygen depletion when growth had slowed but not completely stopped (15 hours) and at a later
stage when a methylene blue indicator dye was fully decolorized and growth had ceased (24 hours).
These time points were experimentally determined according to growth curve experiments (see
Figure S1). 15 ml of each culture were sampled and frozen immediately in liquid nitrogen until
RNA extraction.

RNA extraction

RNA was extracted as follows: frozen cultures stored at -80°C were thawed on ice and centrifuged
at 4,000 rpm for 5 min at 4 °C. The pellets were resuspended in 1 ml Trizol (Life Technologies)
and placed in tubes containing Lysing Matrix B (MP Bio). Cells were lysed by bead-beating twice
for 40 sec at 9 m/sec in a FastPrep 5G instrument (MP Bio). 300 pl chloroform was added and
samples were centrifuged for 15 minutes at 4,000 rpm at 4°C. The aqueous phase was collected
and RNA was purified using Direct-Zol RNA miniprep kit (Zymo) according to the manufacturer’s
instructions. Samples were then treated with DNase Turbo (Ambion) for one hour and purified
with an RNA Clean & Concentrator-25 kit (Zymo) according to the manufacturer’s instructions.
RNA integrity was checked on 1% agarose gels and concentrations were determined using a
Nanodrop instrument. Prior to library construction, 5 pg RNA was used for rRNA depletion using
Ribo-Zero rRNA Removal Kit (Illumina) according to the manufacturer’s instructions.

Construction of 5’-end-mapping libraries

After rRNA depletion, RNA samples from each biological replicate were split in three, in order to
generate two 5’-end differentially treated libraries and one RNAseq expression library (next
section). RNA for library 1 (“converted” library) was treated either with RNA 5'
pyrophosphohydrolase RPPH (NEB) (exponential phase experiment, Dataset 1), or with 5’
polyphosphatase (Epicentre) (hypoxia experiment, Dataset 2), in order to remove the native 5’
triphosphates of primary transcripts, whereas RNA for Library 2 (“non-converted” library) was
subject to mock treatment. Thus, the converted libraries capture both 5’ triphosphates (converted
to monophosphates) and native 5° monophosphate transcripts, while non-converted libraries
capture only native 5’ monophosphates (see scheme in Figure S2.A). Library construction was
performed as described by Shell et al (Shell et al., 2015a). A detailed scheme showing the
workflow of 5’-end libraries construction, the primers and adapters used in each step, and
modifications to the protocol are shown in Figure S2.B.
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Construction of RNAseq expression libraries

One third of each rRNA-depleted RNA sample was used to construct RNAseq expression libraries.
KAPA stranded RNA-Seq library preparation kit and NEBNext Ultra RNA library prep kit for
Illumina (NEB) were used for Dataset 1 and Dataset 2, respectively, according to manufacturer’s
instructions. The following major modifications were introduced into the protocols: i) For RNA
fragmentation, in order to obtain fragments around 300 nt, RNA was mixed with the corresponding
buffer and placed at 85°C for 6 minutes (Dataset 1), or at 94°C for 12 minutes (Dataset 2). ii) For
library amplification, 10 or 19-23 PCR cycles were used for Dataset 1 and Dataset 2, respectively.
The number of cycles was chosen according to the amount of cDNA obtained for each sample.
After purification, DNA concentration was measured in a Qubit instrument before sequencing.

Libraries sequencing and quality assessment

For 5’-end-mapping libraries from Dataset 1, [llumina MiSeq paired-end sequencing producing
100 nt reads was used. For 5” end directed libraries from Dataset 2 as well as for all expression
libraries, [llumina HiSeq 2000 paired-end sequencing producing 50 nt reads was used. Sequencing
was performed at the UMass Medical School Deep Sequencing Core Facility. Quality of the
generated fastq files was checked using FastQC.

Identification of 5° ends and discrimination between transcription start sites (TSSs) and
cleavage sites (CSs)

Paired-end reads generated from 5’-end-directed libraries were mapped to the M. smegmatis
mc?155 NC 008596 reference genome. In order to reduce noise from the imprecision of
transcriptional initiation, only the coordinate with the highest coverage in each 5 nt window was
used for downstream analyses. For read filtering, different criteria were used for the 2 datasets
according to the library depth and quality (see Figure S3). In order to discriminate between TSSs
and CSs, the ratio of the coverage in converted/non-converted libraries for each detected 5° end
was calculated. To focus our analyses on the 5’ends that are relatively abundant in their local
genomic context, we employed a filter based on the ratio of 5° end coverage to expression library
coverage in the preceding 100nt. 5° ends for which this ratio was <0.05 were removed. After this
filter, 15,720 5° ends remained and were further analyzed using a Gaussian mixture modelling to
differentiate TSSs from CSs with a high confidence in Dataset 1 (Figure 1A). For this analysis,
we used the iterative expectation maximization (EM) algorithm in the mixtools package (Benaglia
et al., 2009) for R (version 1.1.0) to fit the mixture distributions.

Analysis of expression libraries

Reads were aligned to the Mycobacterium smegmatis str. mc?155 reference genome (Accession
number NC_008596) using Burrows-Wheeler Aligner (Li & Durbin, 2009). For comparison of
gene expression levels according to presence or absence of Shine-Dalgarno sequences, RPKMs
were calculated for all genes. The DEseq2 pipeline was used to evaluate the changes in gene
expression in hypoxia (Love ef al., 2014).

Transcription start sites categorization

For analysis in Figure 1D, TSSs were classified as follows: those coordinates located < 500 bp
upstream from an annotated gene were considered to be primary TSSs (pTSS). Coordinates located
within an annotated gene were classified as internal (iTSS) or N-associated internal TSSs (N-
iTSSs) if they were located within the first 25% of the annotated coding sequence. N-iTSSs were
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considered for reannotation as a pTSSs only if their associated gene lacked a pTSS. TSSs located
on the antisense strand of a coding sequence, 5 UTR, or 3’ UTR were considered as antisense
(aTSS). 5> UTRs boundaries were assigned after assignment of pTSSs to genes annotated in the
mc?155 reference genome (accession number NC 008596). When a gene had more than one pTSS,
the longest of the possible 5> UTRs was used for assignment of aTSSs. In the case of genes for
which we did not identify a pTSS, we considered a hypothetical leader sequence of 50 bp for
assignment of aTSSs. For assignment of aTSSs in 3’ UTRs, we arbitrarily considered a sequence
of 50 bp downstream the stop codon of the gene to be the 3° UTR. Finally, TSSs not belonging to
any of the above-mentioned categories were classified as orphan (0TSSs).

Operon prediction

Adjacent genes with the same orientation were considered to be co-transcribed if there were at
least 5 spanning reads between the upstream and the downstream gene in at least one of the
replicates in the expression libraries from Dataset 1. After this filtering, a downstream gene was
excluded from the operon if: 1) it had a TSS < 500 bp upstream the annotated start codon on the
same strand, and/or 2) had a TSS within the first 25% of the gene on the same strand, and/or 3) the
upstream gene had a TSS within the last 50-100% of the coding sequence. Finally, the operon was
assigned only if the first gene had a primary TSS with a confidence > 95% according to the
Gaussian mixture modeling.

Cleavage sites categorization

For CS categorization in Figure 4D, we stablished stringent criteria in order to determine the
frequency of CSs in each location category relative to the amount of the genome comprising that
location category. For 3° UTR regions, we considered only CSs that were located between 2
convergent genes. To assess frequency relative to the whole genome, we considered the sum of all
regions located between two convergent genes. For 5> UTRs we considered all CSs located
between 2 divergent genes, and the sum of all leader lengths for genes having a pTSS whose
upstream gene is in the opposite strand (divergent) determined in this study was used for assessing
relative frequency. For 5’ ends corresponding to cleavages between co-transcribed genes we used
the operon structures determined in this study, and the sum of all their intergenic regions was used
for assessing relative frequency. Finally, for CSs located within coding sequences all genes were
considered, as all of them produced reads in the expression libraries. The sum of all coding
sequences in NC 008596 genome was used for assessing relative frequency, after subtracting
overlapping regions to avoid redundancy.

5’ RACE (Rapid Amplification of cDNA Ends)

For validation of TSSs and CSs, RNA samples from M. smegmatis were split in two and treated
with or without RPPH (NEB) in order to remove the native 5’ triphosphates of primary transcripts
or not, respectively. Then, an adapter oligo SSS1016
(CTGGAGCACGAGGACACTGACATGGACTGAAGGAGTrArGrArArA, where nts preceded
by “r” are ribonucleotides and the rest of the oligo is composed of deoxyribonucleotides) was
ligated to the RNA 5’ ends using T4 RNA ligase (NEB). Prior to ligation, 8 ul of RNA sample
were combined with 1 pl of 1 pg/ ul adapter oligo and incubated at 65 °C for 10 min. For ligation,
the 9 ul of RNA-oligo mix were combined with: 10 pl 50% PEG8000, 3 ul 10X ligase buffer, 3 ul
10 mM ATP, 3 ul DMSO, 1 pl Murine RNase inhibitor (NEB), and 1 pl T4 ligase (NEB). Ligation



245
246
247
248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264
265

Martini et al 2019

reactions were incubated at 20 °C overnight and then cleaned using RNA Clean and Concentrator
25 kit (Zymo). Both RPPH-treated and mock-treated samples were used for cDNA synthesis.
Reactions in absence of reverse transcriptase were performed to control for genomic DNA
contamination. For amplification of specific 5° ends, PCR was done using a forward primer
SSS1017 binding to the adapter oligo (CTGGAGCACGAGGACACTGA) and a reverse (specific)
primer binding near the predicted 5’ end (see Table S1). For PCRs, a touchdown protocol in which
the annealing temperature was reduced 1 °C every cycle was performed as follows: 1) initial step
of DNA denaturalization at 95 °C for 5 min, ii) 17 cycles of 95 °C for 30 sec, 72 °C to 55 °C
(touchdown) for 20 sec and 68 °C for 25 sec, iii) 20 cycles of 95 °C for 30 sec, 55 °C for 20 sec
and 68 °C for 25 sec and iv) a final elongation step at 68 °C for 5 min. Each amplified fragment
was sequenced using the specific primer. A TSS or CS was validated if 1) the 5’ end position
coincided with that mapped the 5° end libraries and ii) the PCR product was more abundant in the
RPPH than in the no RPPH treatment (TSS) or the PCR product was equally abundant in the RPPH
than in the no RPPH treatment (CS).

For validation of the MSMEG 0063 promoter, an M. smegmatis mutant strain lacking the region
comprising the genes MSMEG 0062-MSMEG 0066 was transformed with either of the 3
following constructs: i) Wt promoter, which has the gene MSMEG 0063 with the native predicted
promoter region and the downstream genes MSMEG 0064-MSMEG 0066, ii) Apromoter, in
which the predicted promoter region for MSMEG 0063 was deleted, and iii) Mutated promoter,
in which two point mutations were introduced in the predicted -10 region of the MSMEG_ 0063
promoter. These constructs were inserted in the L5 site of the M. smegmatis genome.
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Results

1. Mapping, annotation, and categorization of transcription start sites

In order to study the transcriptome structure of M. smegmatis, RNAs from triplicate cultures in
exponential phase were used to construct 5° end mapping libraries (Dataset 1) according to our
previously published methodologies (Shell et al.,, 2015a, Shell et al, 2015b) with minor
modifications. Briefly, our approach relies on comparison of adapter ligation frequency in a
dephosphorylated (converted) library and an untreated (non-converted) library for each sample.
The converted libraries capture both 5’ triphosphate and native 5’ monophosphate-bearing
transcripts, while the non-converted libraries capture only native 5° monophosphate-bearing
transcripts (Figure S2). Thus, assessing the ratios of read counts in the converted/non-converted
libraries permits discrimination between 5’ triphosphate ends (primary transcripts from
transcription start sites) and 5’ monophosphate ends (cleavage sites). By employing a Gaussian
mixture modeling analysis (Figure 1A) we were able to identify 5,552 TSSs in M. smegmatis with
an observed probability of being a TSS >0.95 (high confidence TSSs, Table S2). A second filtering
method allowed us to obtain 222 additional TSSs from Dataset 1 (Figure S3). A total of 5,774
TSSs were therefore obtained from Dataset 1. In addition, data from separate libraries constructed
as controls for the hypoxia experiment (Dataset 2) in Section 8 were also included in this analysis
to obtain TSSs. After noise filtering (Figure S3), 4,736 TSSs from Dataset 2 were identified. The
union of the two datasets yielded a total of 6,090 non-redundant high confidence TSSs, of which
4,420 were detected in both datasets (Figure S4, Table S2).

Although not all 5’ ends could be classified with the Gaussian mixture modeling, we were able to
assign 57% of the 5° ends in Dataset 1 to one of the two 5’ end populations with high confidence
(5,552 TSSs and 3,344 CSs). To validate the reliability of the Gaussian mixture modeling used to
classify 5’ ends, we performed two additional analyses. First, according to previous findings in
Mtb (Cortes et al., 2013) and other well studied bacteria (Sass et al., 2015, Berger et al., 2016,
Cuklina et al., 2016, D'arrigo et al., 2016), we anticipated that TSSs should be enriched for the
presence of the ANNNT -10 promoter consensus motif in the region upstream. Evaluation of the
presence of appropriately-spaced ANNNT sequences revealed that 5° ends with higher
probabilities of being TSSs are enriched for this motif, whereas for those 5’ ends with low
probabilities of being TSSs (and thus high probabilities of being CSs) have ANNNT frequencies
similar to that of the M. smegmatis genome as a whole (Figure 1B). Secondly, we predicted that
TSSs should show enrichment for A and G nts at the +1 position, given the reported preference
for bacterial RNA polymerases to initiate transcription with these nts (Lewis & Adhya, 2004,
Mendoza-Vargas et al., 2009, Mitschke et al., 2011, Cortes et al., 2013, Shell et al., 2015b,
Thomason et al., 2015, Berger et al., 2016). Thus, we analyzed the base enrichment in the +1
position for the 5’ ends according the p-value in the Gaussian mixture modeling (Figure 1C).
These results show a clear increase in the percentage of G and A bases in the position +1 as the
probability of being a TSS increases, while the percentage of sequences having a C at +1 increases
as the probability of being a TSS decreases. These two analyses show marked differences in the
sequence contexts of TSSs and CSs and further validate the method used for categorization of 5°
ends.

To study the genome architecture of M. smegmatis, the 6,090 TSSs were categorized according to
their genomic context (Figure 1D and 1E, Table S2). TSSs located <500 nt upstream of an
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annotated gene start codon in the M. smegmatis str. mc?155 (accession NC_008596) reference
genome were classified as primary TSSs (pTSS). TSSs within annotated genes on the sense strand
were denoted as internal (iTSS). When an iTSS was located in the first quarter of an annotated
gene, it was sub-classified as N-terminal associated TSS (N-iTSS), and was further examined to
determine if it should be considered a primary TSS (see below). TSSs located on the antisense
strand either within a gene or within a 5° UTR or 3” UTR were grouped as antisense TSSs (aTSSs).
Finally, TSSs located in non-coding regions that did not meet the criteria for any of the above
categories were classified as orphan (0TSSs). When a pTSS also met the criteria for classification
in another category, it was considered to be pTSS for the purposes of downstream analyses. A total
of 4,054 distinct TSSs met the criteria to be classified as pTSSs for genes transcribed in exponential
phase. These pTSSs were assigned to 3,043 downstream genes, representing 44% of the total
annotated genes (Table S3). This number is lower than the total number of genes expressed in
exponential phase, in large part due to the existence of polycistronic transcripts (see operon
prediction below). Interestingly, 706 (23%) of these genes have at least two pTSSs and 209 (7%)
have three or more, indicating that transcription initiation from multiple promoters is common in
M. smegmatis. We used 5° RACE to confirm seven selected pTSSs (Table S1), all of which
mapped to the same position by both methods. Four of these were novel TSSs not reported by Li
et al. (2017).

A total of 995 iTSSs (excluding the iTSSs that were also classified as a pTSS of a downstream
gene, see Figure S5 for classification workflow) were identified in 804 (12%) of the annotated
genes, indicating that transcription initiation within coding sequences is common in M. smegmatis.
iTSSs are often considered to be pTSSs of downstream genes, to be spurious events yielding
truncated transcripts, or to be consequences of incorrect gene start annotations. However, there is
evidence supporting the hypothesis that iTSSs are functional and highly conserved among closely
related bacteria (Shao ef al., 2014), highlighting their potential importance in gene expression.

We were also able to detect antisense transcription in 12.5 % of the M. smegmatis genes. Antisense
transcription plays a role in modulation of gene expression by controlling transcription, RNA
stability, and translation (Morita et al., 2005, Kawano et al., 2007, Andre et al., 2008, Fozo et al.,
2008, Giangrossi et al., 2010) and has been found to occur at different rates across bacterial genera,
ranging from 1.3% of genes in Staphylococcus aureus to up to 46% of genes in Helicobacter pylori
(Beaume et al., 2010, Sharma et al., 2010). Of the 1,006 aTSSs identified here (excluding those
that were primarily classified as pTSSs), 881 are within coding sequences, 120 are within 5 UTRs
and 72 are located within 3’ UTRs (note that some aTSS are simultaneously classified in more
than one of these three subcategories, Figure S6). While we expect that many of the detected
antisense transcripts have biological functions, it is difficult to differentiate antisense RNAs with
regulatory functions from transcriptional noise. In this regard, Lloréns-Rico and collaborators
(2016) reported that most of the antisense transcripts detected using transcriptomic approaches are
a consequence of transcriptional noise, arising at spurious promoters throughout the genome. To
investigate the potential significance of the M. smegmatis aTSSs, we assessed the relative impact
of each aTSS on local antisense expression levels by comparing the read depth upstream and
downstream of each aTSS in our RNAseq expression libraries. We found 318 aTSSs for which
expression coverage was >10-fold higher in the 100 nt window downstream of the TSS compared
to the 100 nt window upstream (Table S4). Based on the magnitude of the expression occurring
at these aTSS, we postulate that they could represent the 5’ ends of candidate functional antisense



358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

Martini et al 2019

transcripts rather than simply products of spurious transcription. However, further work is needed
to test this hypothesis. Finally, 78 oTSSs were detected across the M. smegmatis genome. These
TSSs may be the 5° ends of non-coding RNAs or mRNAs encoding previously unannotated ORFs.

Out of the 995 iTSSs identified, 457 were located within the first quarter of an annotated gene (N-
iTSSs). In cases where we could not predict a pTSS with high confidence, we considered the
possibility that the start codon of the gene was misannotated and the N-iTSS was in fact the
primary TSS. Although we do not discount the possibility that functional proteins can be produced
when internal transcription initiation occurs far downstream of the annotated start codon, we only
considered N-iTSSs candidates for gene start reannotation when there was a start codon (ATG,
GTG or TTG) in-frame with the annotated gene in the first 30% of the annotated sequence. In this
way, we suggest re-annotations of the start codons of 213 coding sequences (see Figure S5, Table
S5). These N-iTSSs were considered to be pTSSs (N-iTSSs = pTSSs) for all further analyses
described in this work.

2. Operon prediction

To predict operon structure, we combined 5’ end libraries and RNAseq expression data. We
considered two or more genes to be co-transcribed if (1) they had spanning reads that overlapped
both the upstream and downstream gene in the expression libraries, (2) at least one TSS was
detected in the 5 end-directed libraries for the first gene of the operon, and (3) the downstream
gene(s) lacked pTSSs and iTSSs (for more detail, see Materials and Methods). Thus, we were able
to identify and annotate 294 operons with high confidence across the M. smegmatis genome (Table
S6). These operons are between 2 and 4 genes in length and comprise a total of 638 genes. Our
operon prediction methodology has some limitations. For example, operons not expressed in
exponential growth phase could not be detected in our study. Furthermore, internal promoters
within operons can exist, leading to either monocistronic transcripts or suboperons (Guell et al.,
2009, Paletta & Ohman, 2012, Skliarova ef al., 2012). We limited our operon predictions to genes
that appear to be exclusively co-transcribed, excluding those cases in which an internal gene in an
operon can be alternatively transcribed from an assigned pTSS. Finally, our analysis did not
capture operons in which the first gene lacked a high-confidence pTSS. Despite these limitations,
our approach allowed us to successfully identify new operons as well as previously described
operons. Previously reported operons that were captured by our predictions included the furd-katG
(MSMEG_6383-MSMEG 6384) operon involved in oxidative stress response (Milano et al.,
2001), the vapB-vapC (MSMEG _1283-MSMEG 1284) Toxin—Antitoxin module (Robson et al.,
2009) operon, and the ClpP1-ClpP2 (MSMEG_4672-MSMEG_4673) operon involved in protein
degradation (Raju et al., 2012).

3. Characterization of M. smegmatis promoters reveals features conserved in M. tuberculosis

Most bacterial promoters have two highly conserved regions, the -10 and the -35, that interact with
RNA polymerase via sigma factors. However, it was reported that the -10 region is necessary and
sufficient for transcription initiation by the housekeeping sigma factor SigA in mycobacteria, and
no SigA -35 consensus motifs were identified in previous studies (Cortes et al., 2013, Newton-
Foot & Gey van Pittius, 2013, Zhu et al., 2017, Li et al., 2017). To characterize the core promoter
motifs in M. smegmatis on a global scale we analyzed the 50 bp upstream of the TSSs. We found
that 4,833 of 6,090 promoters analyzed (79%) have an ANNNT motif located between positions -
6 to -13 upstream the TSSs (Figure 2A). In addition, 63% of the promoters with ANNNT motifs
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have a thymidine preceding this sequence (TANNNT). This motif is similar to that previously
described in a transcriptome—wide analysis for Mtb (Cortes et al., 2013) and for most bacterial
promoters that are recognized by the ¢’ housekeeping sigma factor (Ramachandran et al., 2014,
Sass et al., 2015, Berger et al., 2016, Cuklina et al., 2016, D'arrigo et al., 2016). However, no
apparent bias towards specific bases in the NNN region was detected in our study or in Mtb, while
in other bacteria such as E. coli, S. enterica, B. cenocepacia, P. putida, and B. subtillis an A/T
preference was observed in this region (Jarmer et al., 2001, Ramachandran et al., 2014, Sass et al.,
2015, Berger et al., 2016, D'arrigo et al., 2016). We were unable to detect a consensus motif in the
-35 region either using MEME server (Bailey ef al., 2015) or manually assessing the possible base-
enrichment in the -35 region. Analysis of the sequences in the immediate vicinity of TSSs revealed
that G and A are the most frequent bases at the +1 position, and C is considerably more abundant
at -1 (Figure 2B).

Interestingly, we identified several alternative motifs in the -10 promoter regions of transcripts
lacking the ANNNT motif (Figure 2A). One of these, (G/C)NN(G/C)NN(G/C), is likely the
signature of M. smegmatis’ codon bias in the regions upstream of iTSSs. The other three sequences
are candidate binding sites for alternative sigma factors, which are known to be important in
regulation of transcription under diverse environmental conditions. However, the identified
consensus sequences differ substantially from those previously described in mycobacteria (Raman
et al., 2001, Raman et al., 2004, Sun et al., 2004, Lee et al., 2008a, Lee et al., 2008b, Song et al.,
2008, Veyrier et al., 2008, Humpel et al., 2010, Gaudion et al., 2013). The TSSs having these
sigma factor motifs and the associated genes are listed in Table S7. We next examined the
relationship between promoter sequence and promoter strength, as estimated by the read depths in
the 5” end converted libraries. As shown in Figure 2C, the expression levels of transcripts with
ANNNT -10 motifs are on average substantially higher than those lacking this sequence. In
addition, promoters with the full TANNNT motif are associated with more highly abundant
transcripts compared to those having a VANNNT sequence, where V is G, A or C. These results
implicate TANNNT as the preferred -10 sequence for the housekeeping sigma factor, SigA, in M.
smegmatis. As shown in Figure 2C, expression levels of transcripts having the motif 2 in Figure
2A were significantly increased when compared to the total pool of transcripts lacking the ANNNT
motif.

4. Leaderless transcription is a prominent feature of the M. smegmatis transcriptome

5’ UTRs play important roles in post-transcriptional regulation and translation, as they may contain
regulatory sequences that can affect mRNA stability and/or translation efficiency. Whereas in most
bacteria 5 UTR-bearing (“leadered”) transcripts predominate, this is not the case for Mtb, in which
near one quarter of the transcripts have been reported to be leaderless (Cortes ef al., 2013, Shell et
al., 2015b). To investigate this feature in M. smegmatis, we analyzed the 5> UTR lengths of all
genes that had at least one pTSS. We found that for 24% of the transcripts the TSS coincides with
the translation start site or produces a leader length <5 nt, resulting in leaderless transcripts (Figure
3A). This is less than the 40% reported for M. smegmatis in a smaller TSS-mapping study (Li et
al., 2017), and suggests that the proportions of leaderless transcripts are in fact similar for M.
smegmatis and Mtb. A total of 1,099 genes (including those re-annotated in section 1) have
leaderless transcripts, and 155 of those (14%) are also transcribed as leadered mRNAs from
separate promoters. Two of the pTSSs we validated by 5 RACE (Table S1) belong to leaderless
transcripts. For leadered transcripts, the median 5° UTR length was 69 nt. Interestingly, 15% of
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the leaders are > 200 nt, suggesting that these sequences may contain potential regulatory elements.
We then sought to compare the leader lengths of M. smegmatis genes with the leader lengths of
their homologs in Mtb. For this analysis we used two independent pTSS mapping Mtb datasets
obtained from Cortes et al, 2013 and Shell et al, 2015b (Figure 3B). To avoid ambiguities, we
used only genes that had a single pTSS in both species. Our results show a statistically significant
correlation of leader lengths between species, suggesting that similar genes conserve their
transcript features and consequently may have related regulatory mechanisms. Additionally,
comparison of leaderless transcription in M. smegmatis and Mtb revealed that 62% or 73% of the
genes that are only transcribed as leaderless in M. smegmatis also lack a 5> UTR in MTB, according
to Cortes et al, 2013 or Shell et al, 2015b, respectively (Table S8). We next assessed if leaderless
transcripts are associated with particular gene categories, and found the distribution across
categories was uneven (Figure 3C). The three categories “DNA metabolism,” “Amino acid
biosynthesis,” and “Biosynthesis of cofactors, prosthetic groups and carriers” were significantly
enriched in leaderless transcripts (p-value < 0.05, hypergeometric test), while “Signal
transduction,” “Transcription,” and “Transport and binding proteins” appear to have fewer
leaderless transcripts.

We next evaluated the presence of the Shine-Dalgarno ribosome-binding site (SD) upstream of
leadered coding sequences. For this analysis, we considered those leaders containing at least one
of the three tetramers AGGA, GGAG or GAGG (core sequence AGGAGQG) in the region -6 to -
17 relative to the start codon to possess canonical SD motifs. We found that only 47% of leadered
coding sequences had these canonical SD sequences. Thus, considering also the leaderless RNAs,
a large number of transcripts lack canonical SD sequences, suggesting that translation initiation
can occur through multiple mechanisms in M. smegmatis. We further compared the relative
expression levels of leaderless and leadered coding sequences subdivided by SD status. Genes
expressed as both leadered and leaderless transcripts were excluded from this analysis. We found
that on average, expression levels were significantly higher for those genes with canonical SD
sequences than for those with leaders but lacking this motif and for those that were leaderless
(Figure 3D). Together, these data suggest that genes that are more efficiently translated have also
higher transcript levels. Similar findings were made in Mtb, where proteomic analyses showed
increased protein levels for genes with SD sequences compared to those lacking this motif (Cortes
et al.,2013).

5. Identification of novel leaderless ORFs in the M. smegmatis genome

As GTG or ATG codons are sufficient to initiate leaderless translation in mycobacteria (Shell et
al., 2015b, Potgieter et al., 2016), we used this feature to look for unannotated ORFs in the M.
smegmatis NC_008596 reference genome. Using 1,579 TSSs that remained after pTSS assignment
and gene reannotation using N-iTSSs (see Figure S5) we identified a total of 66 leaderless ORFs
encoding putative proteins longer than 30 amino acids, 5 of which were previously identified (Shell
et al., 2015b). 83% of these ORFs were predicted in other annotations of the M. smegmatis mc*155
or MKD8 genome (NC 018289.1, (Gray et al., 2013)), while 10 of the remaining ORFs showed
homology to genes annotated in other mycobacterial species and Helobdella robusta and two
ORFs did not show homology to any known protein. The TSS of ORFI15 was validated by
5’RACE. These results show that automatic annotation of genomes can be incomplete and
highlight the utility of transcriptomic analysis for genome (re)annotation. Detailed information on
these novel putative ORFs is provided in Table S9.
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6. Endonucleolytic RNA cleavage occurs at a distinct sequence motif and is common in mRNA
regulatory regions

As our methodology allows us to precisely map RNA cleavage sites in addition to TSSs, we sought
to analyze the presence and distribution of cleavage sites in the M. smegmatis transcriptome.
mRNA processing plays a crucial role in regulation of gene expression, as it is involved in mRNA
maturation, stability and degradation (Arraiano ef al., 2010). Mixture modeling identified 3,344
CSs with a posterior probability >0.9 (high confidence CSs) (Figure 1A, Table S10). To determine
the sequence context of the CSs, we used the regions flanking the 5’ ends to generate a sequence
logo (Figure 4A). There was a strong preference for a cytosine in the +1 position (present in more
than the 90% of the CSs) (Figure 4B), suggesting that it may be structurally important for RNase
recognition and/or catalysis.

Cleaved 5’ ends can represent either degradation intermediates or transcripts that undergo
functional processing/maturation. In an attempt to investigate CS function, we classified them
according to their locations within mRNA transcripts (Figure 4C, Table S10). We found that,
after normalizing to the proportion of the expressed transcriptome that is comprised by each
location category, cleaved 5’ ends are more abundant within 5> UTRs and intergenic regions of
operons than within coding sequences and 3° UTRs (Figure 4D). Stringent criteria were used in
these analyses to avoid undesired bias (Figure 4C and Materials and Methods). While one would
expect the CSs associated with mRNA turnover to be evenly distributed throughout the transcript,
enrichment of CSs within the 5> UTRs as well as between two co-transcribed genes may be
indicative of cleavages associated with processing and maturation. Alternatively, these regions
may be more susceptible to RNases due to lack of associated ribosomes. Here we predicted with
high confidence that at least 101 genes have one or more CSs in their 5 UTRs (Table S11).

We detected cleaved 5’ ends within the coding sequences of 18% of M. smegmatis genes, ranging
from 1 to over 40 sites per gene. We analyzed the distribution of CSs within coding sequences
(Figure S7), taking into consideration the genomic context of the genes. When analyzing the
distribution of CSs within the coding sequences of genes whose downstream gene has the same
orientation, we observed an increase in CS frequency in the region near the stop codon (Figure
S7.A). However, when only coding sequences having a downstream gene on the opposite strand
(convergent) were considered, the distribution of CSs through the coding sequences was
significantly different (p-value <0.0001, Kolmogorov-Smirnov D test) with the CSs more evenly
distributed throughout the coding sequence (Figure S7.B). This suggests that the cleavage bias
towards the end of the genes observed in Figure S7.A may be due to the fact that many of these
CSs are actually occurring in the 5' UTRs of the downstream genes. In cases where the TSS of a
given gene occurs within the coding sequence of the preceding gene, a CS may map to both the
coding sequence of the upstream gene and the 5° UTR of the downstream gene. In these cases, we
cannot determine in which of the two transcripts the cleavage occurred. However, cleavages may
also occur in polycistronic transcripts. We therefore assessed the distributions of CSs in the
operons predicted above. The distribution of CSs in genes co-transcribed with a downstream gene
showed a slight increase towards the last part of the gene (Figure S7.C). This may reflect cases in
which polycistronic transcripts are cleaved near the 3’ end of an upstream gene, as has been
reported for the furA-katG operon, in which a cleavage near the stop codon of fur4 was described
(Milano et al., 2001, Sala et al., 2008, Taverniti et al., 2011). The furA-katG cleavage was
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identified in our dataset, located 1 nt downstream of the previously reported position. A similar
enrichment of CSs towards stop codons was also observed in a recent genome-wide RNA cleavage
analysis in Salmonella enterica (Chao et al., 2017), although in this case the high frequency of
cleavage may be also attributed to the U preference of RNase E in this organism, which is highly
abundant in these regions.

7. Prediction of additional TSSs and CSs based on sequence context

The sequence contexts of TSSs (Figure 2B) and CSs (Figure 4A) were markedly different, as G
and A were highly preferred in the TSS +1 position whereas C was highly preferred in the CS +1
position, and TSSs were associated with a strong overrepresentation of ANNNT -10 sites while
CSs were not. These sequence-context differences not only provide validation of our methodology
for distinguishing TSSs from CSs, as discussed above, but also provide a means for making
improved predictions of the nature of 5’ ends that could not be categorized with high confidence
based on their converted/non-converted library coverage alone. Taking advantage of these
differences, we sought to obtain a list of additional putative TSSs and CSs. Thus, of the 5* ends
that were not classified with high confidence by mixture modeling, we selected those that had an
appropriately positioned ANNNT motif upstream and a G or an A in the +1 position and classified
them as TSSs with medium confidence (Table S12). In the same way, 5’ ends with a C in the +1
position and lacking the ANNNT motif in the region upstream were designated as medium
confidence CSs (Table S13). In this way, we were able to obtain 576 and 4,838 medium
confidence TSSs and CSs, respectively. Additional validation of a medium confidence TSS was
performed for gene MSMEG 0063 using 5’RACE. We were able to corroborate that, as predicted,
transcription of this gene is initiated 139 bp upstream the coding sequence and that either deletion
or mutation of the predicted -10 promoter region dramatically decreased transcription initiation
(Figure S8). These results support the value of TSS prediction based on -10 promoter region motif
and base composition at +1 position, and highlight the importance of the -10 ANNNT promoter
motif for mycobacterial transcription. Three medium confidence CSs (86927+, 87293+ and
5038902-) were also validated using 5> RACE. Although we are aware of the limitations of these
predictions, these lists of medium confidence 5’ ends provide a resource that may be useful for
guiding further studies. 5 ends that did not meet the criteria for high or medium confidence TSSs
or CSs are reported in Table S14.

8. The transcriptional landscape changes in response to oxygen limitation

We sought to study the global changes occurring at the transcriptomic level in oxygen limitation
employing a system similar to the Wayne model (Wayne & Hayes, 1996) (see Materials and
Methods). Two timepoints were experimentally determined in order to evaluate transcriptomic
changes during the transition into hypoxia (Figure S1). A different enzyme was used for
conversion of 5’ triphosphates to 5 monophosphates in these 5’-end libraries, and it appeared to
be less effective than the enzyme used for the 5° end libraries in Dataset 1. As a consequence, our
ability to distinguish TSSs from CSs de novo in these datasets was limited. However, we were able
to assess changes in abundance of the 5’ ends classified as high-confidence TSSs or CSs in Dataset
1, as well as identify a limited number of additional TSSs and CSs with high confidence (Figure
S4, Table S3). Corresponding RNAseq expression libraries revealed that, as expected, a large
number of genes were up and downregulated in response to oxygen limitation (Figure S9, Table
S15). We next investigated the transcriptional changes in hypoxia by assessing the relative
abundance of TSSs in these conditions. We found 318 high-confidence TSSs whose abundance
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varied substantially between exponential phase and hypoxia (Table S16). A robust correlation was
observed between the pTSS peak height in the 5’-end-directed libraries and RNA levels in the
expression libraries for hypoxia (Figure S10). In an attempt to identify promoter motifs induced
in hypoxia, we analyzed the upstream regions of those TSSs whose abundance increased (fold
change >2, adjusted p-value <0.05). Interestingly, we detected a conserved GGGTA motif in the -
10 region of 56 promoters induced in hypoxia using MEME (Figure 5A, Table S16). This motif
was reported as the binding site for alternative sigma factor SigF (Rodrigue et al., 2007, Hartkoorn
et al., 2010, Humpel et al., 2010). Additionally, the extended -35 and -10 SigF motif was found in
44 of the 56 promoter sequences. (Figure 5A, Table S16). SigF was shown to be induced in
hypoxia at the transcript level in Mtb (Iona ef al., 2016) and highly induced at the protein level
under anaerobic conditions using the Wayne model in M. bovis BCG strain and Mtb (Michele et
al., 1999) (Galagan et al., 2013). In M. smegmatis, SigF was shown to play a role under oxidative
stress, heat shock, low pH and stationary phase (Gebhard et al., 2008, Humpel ef al., 2010, Singh
et al.,2015) and sigF" RNA levels were detected in exponential phase at a nearly comparable level
to sigA (Singh & Singh, 2008). Here, we did not detect significant changes in expression of the
sigF gene in hypoxia at the transcript level. However, this is consistent with reported data showing
that sigF transcript levels remain unchanged under stress conditions in M. smegmatis (Gebhard et
al., 2008), as it was postulated that SigF is post-transcriptionally modulated via an anti-sigma
factor rather than through sigF" transcription activation (Beaucher ef al., 2002). We noted that, in
the case of TSSs whose abundance was reduced in hypoxia, almost the totality of the promoters
contains the -10 ANNNT 67° binding motif. We then examined the presence of SigF motif in the
regions upstream of 5 ends that were not classified as high confidence TSSs. We speculate that
5’ ends associated with this motif may be potential TSSs triggered by hypoxia. We found 96
additional putative TSSs that were (1) overrepresented in hypoxia and (2) associated with
appropriately-spaced SigF motifs (Table S17). Three of the hypoxia-induced genes with SigF
motifs (MSMEG 3460, MSMEG 4195 and MSMEG_5329) have homologous genes induced in
hypoxia in Mtb (Park et al., 2003, Rustad et al., 2008).

It is well known that under anaerobic conditions mycobacteria induce the DosR regulon, a set of
genes implicated in stress tolerance (Rosenkrands et al., 2002, O'Toole et al., 2003, Park et al.,
2003, Roberts et al., 2004, Rustad et al., 2008, Honaker et al., 2009, Leistikow et al., 2010). The
DosR transcriptional regulator was highly upregulated at both hypoxic timepoints in the expression
libraries (13 and 18-fold at 15 and 24 hours, respectively, Figure S9) and 30 out of the 49 DosR-
activated genes (Berney et al., 2014) were upregulated in our dataset. Thus, we hypothesized that
the DosR binding motif should be present in a number of regions upstream the TSSs that were
upregulated in hypoxia. Analysis of the 200 bp upstream the TSSs using the CentriMo tool for
local motif enrichment analysis (Bailey & Machanick, 2012) allowed us to detect putative DosR
motifs in 13 or 53 promoters, depending on whether a stringent (GGGACTTNNGNCCCT ) or a
weak (RRGNCYWNNGNMM) consensus sequence was used as input (Lun ef al., 2009, Berney
et al., 2014, Gomes et al., 2014) (Table S16). At least two of the 13 genes downstream of these
TSSs were previously reported to have DosR motifs by Berney and collaborators (Berney et al.,
2014) and RegPrecise Database (Novichkov et al., 2013) and two others are homologs of genes in
the Mtb DosR regulon that were not previously described in M. smegmatis as regulated by DosR
(Table S16).
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We then used CentriMo to search for DosR motifs in the regions upstream of 5’ ends that were not
classified as high confidence TSSs, given that TSSs derived from hypoxia-specific promoters may
have been absent from Dataset 1. We found 36 putative TSSs associated with 20 different genes
(Table S18), of which 11 have been shown to have DosR binding motifs (Berney et al., 2014).
Five of these are homologs of genes in the Mtb DosR regulon.

9. M. smegmatis decreases RNA cleavage under oxygen limitation

There is evidence that mycobacterial mRNA is broadly stabilized under hypoxia and other stress
conditions (Rustad et al., 2013, Ignatov et al., 2015). Thus, we anticipated that RNA cleavage
should be reduced under hypoxia as a strategy to stabilize transcripts. We compared the relative
abundance of each high confidence CS in stress and in exponential phase (Figure 5B) and found
that RNA cleavage is significantly reduced in both hypoxia 15h and 24h on a global scale (Figure
5C). In contrast, relative abundance of TSSs did not decrease in these conditions, indicating that
the reduction in CSs is not an artefact of improper normalization (Figure SB). When the ratios of
CSs abundance in hypoxia/normal growth of individual genes were analyzed, we observed the
same behavior (Figure S11). These results indicate that the number of cleavage events per gene
decreases during adaptation to hypoxia, which could contribute to the reported increases in half-
life (Rustad et al, 2013).

Discussion

In recent years, genome-wide transcriptome studies have been widely used to elucidate the genome
architecture and modulation of transcription in different bacterial species (Albrecht et al., 2009,
Mendoza-Vargas et al., 2009, Mitschke et al., 2011, Cortes et al., 2013, Schliiter et al., 2013,
Dinan et al., 2014, Ramachandran et al., 2014, Innocenti et al., 2015, Sass et al., 2015, Thomason
et al., 2015, Berger et al., 2016, Cuklina et al., 2016, D'arrigo et al., 2016, Heidrich et al., 2017,
Li et al., 2017, Zhukova et al., 2017). Here we combined 5’-end-directed libraries and RNAseq
expression libraries to shed light on the transcriptional and post-transcriptional landscape of M.
smegmatis in different physiological conditions.

The implementation of two differentially treated 5’-end libraries followed by Gaussian mixture
modeling analysis allowed us to simultaneously map and classify 5’ ends resulting from
nucleolytic cleavage and those resulting from primary transcription with high confidence. We were
able to classify 57% of the 5* ends in Dataset 1 with high confidence. In addition, we elaborated a
list of medium confidence TSSs and CSs (Tables S12 and S13). These lists constitute a valuable
resource for the research community.

Analysis of TSS mapping data allowed us to identify over 4,000 primary TSSs and to study the
transcript features in M. smegmatis. The high proportion of leaderless transcripts, the lack of a
consensus SD sequence in half of the leadered transcripts, and the absence of a conserved -35
consensus sequence indicate that the transcription-translation machineries are relatively robust in
M. smegmatis. These findings are consistent with a recent study that mapped a 2,139 TSSs in M.
smegmatis (Li et al., 2017). The apparent robustness of translation is shared with Mtb, where 25%
of the transcripts lack a leader sequence (Cortes et al., 2013, Shell et al., 2015b). In addition, high
abundances of transcripts lacking 5° UTRs have been reported in other bacteria including
Corynebacterium diphtheria, Leptospira interrogans, Borrelia burgdorferi, and Deinococcus
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deserti, the latter having 60% leaderless transcripts (de Groot et al., 2014, Adams et al., 2017,
Zhukova et al., 2017, Wittchen et al., 2018). Considering the high proportion of leaderless
transcripts and the large number of leadered transcripts that lack a SD sequence (53%), it follows
that an important number of transcripts are translated without canonical interactions between the
mRNA and anti-Shine-Dalgarno sequence, suggesting that M. smegmatis has versatile
mechanisms to address translation. A computational prediction showed that the presence of SD
can be very variable between prokaryotes, ranging from 11% in Mycoplasma to 91% in Firmicutes
(Chang et al., 2006). Cortes et al (2013) reported that the 55% of the genes transcribed with a 5’
UTR lack the SD motif. The correlation of leader lengths for homologous genes in M. smegmatis
and M. tuberculosis (Figure 3B) suggests that some genes may share additional UTR-associated
regulatory features, although further work is required to investigate the possible regulatory roles
of 5’ UTRs in both species.

To begin to understand the role of RNA cleavage in mycobacteria, we identified and classified
over 3,000 CSs throughout the M. smegmatis transcriptome, presenting the first report of an RNA
cleavage map in mycobacteria. The most striking feature of the CSs was a cytidine in the +1
position, which was true in over 90% of the cases. While the RNases involved in global RNA
decay in mycobacteria have not been yet elucidated, some studies have implicated RNase E as a
major player in RNA processing and decay (Kovacs ef al., 2005, Zeller et al., 2007, Csanadi et al.,
2009, Taverniti et al., 2011), given its central role in other bacteria such as E. coli and its
essentiality for survival in both M. smegmatis and Mtb (Sassetti et al., 2003, Sassetti & Rubin,
2003, Griffin et al., 2011, Taverniti et al., 2011, Delesus et al., 2017). It is therefore possible that
mycobacterial RNase E, or other endonucleases with dominant roles, favor cytidine in the +1
position. Interestingly, the sequence context of cleavage found here is different from that described
for E. coli, for which the consensus sequence is (A/G)N|AU (Mackie, 2013) or S. enterica, in
which a marked preference for uridine at the +2 position and AU-rich sequences are important for
RNase E cleavage (Chao et al., 2017).

RNA cleavage is required for maturation of some mRNAs (Li & Deutscher, 1996, Condon et al.,
2001, Gutgsell & Jain, 2010, Moores et al., 2017). Therefore, the observation that CSs are enriched
in 5 UTRs and intergenic regions suggests that processing may play roles in RNA maturation,
stability, and translation for some transcripts in M. smegmatis. A high abundance of processing
sites around the translation start site was also observed in P. aeruginosa and S. enterica in
transcriptome-wide studies (Chao et al., 2017, Gill et al., 2018), suggesting that 5° UTR cleavage
may be a widespread post-transcriptional mechanism for modulating gene expression in bacteria.

Regulation of RNA decay and processing plays a crucial role in adaptation to environmental
changes. We present evidence showing that RNA cleavage is markedly reduced in conditions that
result in growth cessation. It was previously demonstrated that in low oxygen concentrations
mycobacteria reduce their RNA levels (Ignatov et al., 2015) and mRNA half-life is strikingly
increased (Rustad et al., 2013), likely as a mechanism to maintain adequate transcript levels in the
cell without the energy expenditures that continuous transcription would require. While several
traits are involved in the regulation of transcript abundance and stability, the observation that
cleavage events are pronouncedly reduced in these conditions pinpoint this mechanism as a
potential way to control RNA stability under stress. In agreement with this hypothesis, RNase E
was modestly but significantly decreased at the transcript level in early and late hypoxia (fold
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change = 0.63 and 0.56, respectively, p-value adjusted <0.05), suggesting that reducing the RNase
E abundance in the cell may be a strategy to increase transcript half-life. Further study is needed
to better understand the relationship between transcript processing and RNA decay in normoxic
growth as well as stress conditions.

Hypoxic stress conditions were also characterized by major changes in the TSSs. 5’-end-mapping
libraries revealed that over 300 TSSs varied substantially when cultures were limited in oxygen.
We found that 56 transcripts triggered in hypoxia contain the SigF promoter binding motif,
indicating that this sigma factor plays a substantial role in the M. smegmatis hypoxia response.
While previous work revealed increased expression of SigF itself in hypoxia in Mtb (Galagan et
al., 2013, Tona et al., 2016, Yang et al., 2018), this is the first report demonstrating the direct
impact of SigF on specific promoters in hypoxic conditions in mycobacteria. Further work is
needed to better understand the functional consequences of SigF activation in both organisms in
response to hypoxia.

The work reported here represents the most complete M. smegmatis transcriptome map to date.
We have almost doubled the number of mapped TSSs, and report the presence and locations of
internal and antisense TSSs as well as primary TSSs. Comparison of TSSs used in log phase and
hypoxia revealed a signature of SigF activity in hypoxia, which has not been previously reported.
We report the presence of locations of thousands of RNA cleavage sites, which reveals for the first
time the consensus sequence recognized by the major mycobacterial RNase(s) that produces
monophosphorylated 5’ ends. Cleavage sites are enriched in 5 UTRs and intergenic regions,
suggesting that these locations are more accessible to RNases and/or subject to regulation by RNA
processing. Cleaved RNAs are relatively less abundant in hypoxic M. smegmatis cultures,
suggesting that RNase activity is reduced as part of the phenotypic transition into hypoxia-induced
growth arrest.
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Figure legends

Figure 1. Mapping and categorization of transcription start sites in M. smegmatis. A) Diagram
showing the ratios of coverage in the converted/non-converted libraries for each coordinate.
Gaussian mixture modeling was used to discriminate between TSSs and CSs. For this analysis, the
15,720 coordinates from Dataset 1 were used. B) Abundance of the ANNNT promoter motif
located between bases -13 to -6 upstream of the 15,720 coordinates. The light blue dashed line
indicates the percentage of coordinates in the genome of M. smegmatis that have at least one
ANNNT motif located between bases -13 to -6 upstream (9.7%). C) Base frequency at the +1
position among the 15,720 5 ends from Dataset 1. D) Categories for TSS annotation based on the
genomic context. TSSs were classified according to their relative position to genes as primary
(pTSSs, red), internal (iTSSs, green), antisense (aTSSs, light blue) and orphan (0TSSs, violet). E)
Distribution of TSSs among the different categories.

Figure 2. M. smegmatis promoter -10 regions are dominated by the ANNNT motif. A)
Identification of promoter motifs. Consensus motifs were identified by using MEME. The 20 nt
upstream the 6,090 TSSs were used for the initial analysis. Those sequences lacking an ANNNT -
10 motif between positions -13 and -6 (1,257) were used to identify other conserved promoter
sequences. Motif 2 (20 nt length) and Motif 4 (18 nt length) are located immediately upstream of
the TSS (at the -1 position), while the spacing of Motif 5 varies from -4 to -1 relative to the TSS,
with -3 being the dominant position (75% of the motifs). B) The sequences flanking 3,500
randomly chosen TSSs were used to create a sequence logo by WebLogo 3 (Crooks et al, 2004),
revealing the two dominant spacings for the ANNNT motif and base preferences in the immediate
vicinity of the TSS. C) Comparison of apparent promoter activity for different motifs. Mean
normalized read depth in the converted libraries from Dataset 1 was compared for TSSs having or
lacking the ANNNT motif in the -10 region, and ANNNT-associated TSSs were further subdivided
into those containing the extended TANNNT motif or conversely the VANNNT sequence (where
V =A, G or C). Motifs 2, 4 and 5 in Figure 2A are also included. ****p <0.0001, ***p <0.001,
**p <0.01, *p <0.05 (Kruskal-Wallis test with post-test for multiple comparisons).

Figure 3. Leader features are conserved in mycobacteria. A) Leader length distribution. The
4,054 pTSSs and the pTSSs of the 213 reannotated genes (N-iTSSs=>pTSSs) were used. B)
Leader length correlation between M. smegmatis and Mtb genes. The leader sequences of genes
having a single unique pTSS in both species (leader length >0 and <500 nt) were used. 508
homologous genes in Cortes et al, 2013 (left figure) and 251 homologous genes in Shell et al,
2015 (right figure) were used. When a gene in M. smegmatis had more than one homolog in Mtb,
that with the highest identity was considered. Spearman r p-value <0.00001 in both cases. C)
Distribution of leaderless transcripts among different functional TIGRfam functional categories
(Haft et al., 2001). 557 genes having TIGRfam categories were used for this analysis. Genes
having both leadered and leaderless transcripts were excluded. The black dashed line indicates
the expected proportion of leaderless genes (25%) according to the global analysis performed in
this study. The numbers above each bar indicate the total number of genes used for this analysis
in each category (leaderless + leadered). ****p <0.0001, ***p <0.001 (Chi-Square test with
Bonferroni correction for multiple comparisons). D) RNA levels vary according to leader status.
Mean expression levels were compared for genes expressed with leaders containing a canonical
SD sequence (SD) or not (No SD) or lacking leaders (leaderless). Gene expression was
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quantified by RNAseq. Genes were classified as containing an SD sequence if at least one of the
three tetramers AGGA, GGAG or GAGG (core sequence AGGAGG) were present in the region
-6 to -17 nt relative to the start codon. rRNAs, tRNAs, sSRNAs, and genes expressed as both
leadered and leaderless transcripts were excluded. ****p <0.0001; **p <0.005; ns: not
significant. (Kruskal-Wallis test with post-test for multiple comparisons).

Figure 4. Cleavage site positions are biased with respect to sequence context and genetic
location. A) Sequence context of cleavage sites. The sequences flanking the 3,344 high-confidence
CSs were used to create the sequence logo with WebLogo 3 (Crooks et al, 2004). B) Base
preference for RNA cleavage. The base frequencies for the -2 to +2 positions were determined. C)
Cleavage site categories based on the genetic context. CSs are denoted with arrows. 5° UTR: the
CS is within the leader of a gene, and the genes upstream and downstream of the CS are divergent
(Gene 1 and Gene 2, red arrow). CDS: The CS is within a coding sequence (green arrow). 3’ UTR:
the genes upstream and downstream of the CS are convergent (Gene 2 and Gene 3, light blue
arrow). Operon: The CS is between two genes with the same orientation and the first gene in the
operon has a pTSS according to Table S6 (violet arrow). D) Distribution of cleavage sites. The
frequency of CSs in each location was normalized to the proportion of the genome that the location
category comprised. The proportions were then normalized to the CDS category, which was set as
1. ****p <0001, *p <0.01 (Chi-square test).

Figure 5. The transcriptional landscape substantially changes upon oxygen limitation. A)
TSSs significantly increased or decreased in hypoxia. 132 TSSs were overrepresented (upper
panel) and 186 were underrepresented (lower panel) in different hypoxia stages. The upstream
regions of these TSSs were used to search for promoter motifs using MEME. B) The mean
normalized read depths for each 5’ end in the non-converted libraries were compared between
hypoxia and normoxia. Graphics show the Log> of the ratios of read depth for each CSs at 15 h
(upper left) and 24 h (upper right), and the Log> of the ratios of the read depth for each TSSs at 15
h (lower left) and 24 h (lower right) compared to normoxia. C) Normalized read depth at high-
confidence cleavage sites under normoxia and the transition into hypoxia. ****p <0.0001, ***p
<0.001, ns: not significant (Non-parametric Wilcoxon matched-pairs signed rank test).
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Supplementary Figures
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Supplementary Figure 1. Hypoxia model similar to the Wayne model . Cultures were grown
in sealed flasks to produce a gradual reduction in oxygen. Samples were taken at 15 (S1) and 24
(S2) hours after bottles were sealed. For control, cultures were sampled at an OD = 0.8.
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Figure S2. Construction of 5’-end-directed libraries. A) RNA samples were split in two parts
and treated differentially. RNA for Library 1 (converted) was treated with RPPH to convert
triphosphates in monophosphates, allowing the capture of 5° end that are primary transcripts or
cleaved RNAs. RNA for Library 2 (non-converted) was mock-treated, allowing the capture of
cleaved transcripts. B) Workflow of 5’-end-directed libraries. After RPPH or 5° polyphosphatase
treatment, adapter SSS392 (TCCCTACACGACGCTCTTCCGAUCU) was ligated to the 5’
monophosphate ends (1). Then, RNA was fragmented by heating at 85°C for 6 min (log phase
experiment) or at 94°C for 11 min (hypoxia experiment) (2) and first strand cDNA synthesis was
carried out using the degenerate primer SSS397
(CTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN) (3). RNA was then degraded and
DNA was amplified using universal adapter sequence SSS398
(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC)  and
primers bearing Illumina indexes (4). Adapter-bearing products were PCR-amplified using outer
primers SSS401 (AATGATACGGCGACCACCGAGATC) and SSS402
(CAAGCAGAAGACGGCATACGAGAT) to enrich for full-length fragments. 4 (log phase
experiment) or 16 (hypoxia experiment) PCR cycles were performed (5). Finally, libraries were
sequenced using [llumina technology (6).
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Supplementary Figure 4. TSSs identified in the different datasets. Dataset 1: exponential phase
(5,774 TSSs), Dataset 2: Normoxia (4,736 TSSs).



6,090 TSSs in
exponential phase

\ Assigned to annotated genes
—_— 4
as pTSSs: 4,054 3,043 genes

Remaining: 2,036 TSSs

995 iTSSs

k _i R ————
(804 genes) T 57 N-T55s

538 remaining
iTSSs

213 re-
annotated
genes

L. 1,579 TSSs (iTSSs, aTSSs,

oTSSs)

Used for ORF
prediction

66 predicted
leaderless ORFs

Figure S5. Workflow used for TSS classification. A complete scheme of the procedure used to
classify TSSs is shown. TSSs located within 0-500 nt upstream of an annotated coding sequence
were classified as pTSSs. TSSs located within annotated coding sequences were classified as
iTSSs. iTSSs located within the first 25% of an annotated coding sequence were subclassified as

N-i1TSSs. When a gene lacked a pTSS, had an N-1TSS, and had an in-frame start codon downstream

of the N-iTSS and within the first 30% of the coding sequence, the start codon of the gene was re-
annotated. aTSSs (TSSs located on the antisense strand of a coding sequence, 5’ UTR, or 3’ UTR)
and oTSSs (TSSs not belonging to any of the above-mentioned categories) were assigned as

described in Figure 1D and Materials and Methods.
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Figure S6. Distribution of antisense TSSs. The 1,006 aTSSs were classified according to their
positions in 5° UTRs, 3” UTRs, and CDSs (coding sequences).
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Figure S8. Validation of a medium confidence pTSS. A) Constructs used to validate the medium
confidence pTSS of MSMEG 0063 were cloned into pJEB402 plasmid and integrated in the L5
site in the genome of an M. smegmatis strain lacking msmeg 0062-msmeg 0066. The WT
promoter construct has the wildtype promoter region; Apromoter has a deletion of the region
upstream of the predicted pTSS; and mutated promoter has a replacement of two bases (red
asterisks) in the -10 promoter region (underlined sequence). B) 1% agarose gel showing the 5’
RACE amplification products. The red arrows indicate the band corresponding to the predicted
pTSS. At the bottom is indicated whether the RNA samples were treated with
pyrophosphohydrolase (RPPH) prior to adapter ligation and whether cDNA synthesis with reverse
transcriptase (RT) was performed. PCR control: water.
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Supplementary Figure 9. Gene expression levels in RNAseq expression libraries in hypoxia.
Changes in transcript levels were obtained by DEseq analysis, comparing each indicated
condition to the control experiment. Genes upregulated (245 or 266 at 15 or 24 h, respectively)
and downregulated 106 or 158 at 15 or 24 h, respectively) with a fold change >2 and a corrected

p value < 0.05 are highlighted in green and red, respectively. The triangle indicates expression of
MSMEG 5244 (dosR) gene.
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Supplementary Figure 10. Correlation between expression data and 5’ end-directed libraries
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