

1 **Defining the transcriptional and post-transcriptional landscapes of**
2 ***Mycobacterium smegmatis* in aerobic growth and hypoxia**

3 M. Carla Martini¹, Ying Zhou¹, Huaming Sun², Scarlet S. Shell^{1,2*}

4

5 1. Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA,
6 USA.

7 2. Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute,
8 Worcester, MA, USA.

9

10 **Correspondence:**

11 Dr. Scarlet Shell

12 sshell@wpi.edu

13

14 **Keywords:** Tuberculosis, *Mycobacterium smegmatis*, transcription start sites (TSSs), RNA
15 cleavage, RNA processing and decay, hypoxia, transcriptome, leaderless translation.

16 **Abstract**

17
18 The ability of *Mycobacterium tuberculosis* to infect, proliferate, and survive during long periods
19 in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-
20 wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5'-
21 end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome
22 organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase
23 growth and under hypoxia, a physiologically relevant stress condition. Using the model organism
24 *Mycobacterium smegmatis*, we identified 6,090 transcription start sites (TSSs) with high
25 confidence during log phase growth, of which 67% were categorized as primary TSSs for
26 annotated genes, and the remaining were classified as internal, antisense or orphan, according to
27 their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and
28 of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site.
29 This indicates that like *M. tuberculosis*, *M. smegmatis* can initiate translation through multiple
30 mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur
31 at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-
32 wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward
33 mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene
34 expression. We show that in low oxygen, a condition associated with the host environment during
35 infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is
36 markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA
37 half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of
38 which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests
39 that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged
40 mycobacteria. Taken together, our data provide a foundation for further study of both
41 transcriptional and posttranscriptional regulation in mycobacteria.

42
43 **Introduction**

44
45 Tuberculosis is a disease of global concern caused by *Mycobacterium tuberculosis* (Mtb). This
46 pathogen has the ability to infect the human lungs and survive there for long periods, often by
47 entering into non-growing states. During infection, Mtb must overcome a variety of stressful
48 conditions, including nutrient starvation, low pH, oxygen deprivation and the presence of reactive
49 oxygen species. Consequently, the association of Mtb with its host and the adaptation to the
50 surrounding environment requires rigorous control of gene expression.

51
52 As the slow growth rate and pathogenicity of Mtb present logistical challenges in the laboratory,
53 many aspects of its biology have been studied in other mycobacterial species. One of the most
54 widely used models is *Mycobacterium smegmatis*, a non-pathogenic fast-growing bacterium.
55 While there are marked differences between the genomes of Mtb and *M. smegmatis*, such as the
56 highly represented PE/PPE-like gene category and other virulence factors present in Mtb and
57 poorly represented or absent in *M. smegmatis*, these organisms have at least 2,117 orthologous
58 genes (Prasanna & Mehra, 2013) making *M. smegmatis* a viable model to address certain questions
59 about the fundamental biology of mycobacteria. Indeed, studies using *M. smegmatis* have revealed
60 key insights into relevant aspects of Mtb biology including the Sec and ESX secretion systems
61 involved in transport of virulence factors (Coros *et al.*, 2008, Rigel *et al.*, 2009), bacterial survival

62 during anaerobic dormancy (Dick *et al.*, 1998, Bagchi *et al.*, 2002, Trauner *et al.*, 2012, Pecsi *et*
63 *al.*, 2014) and the changes induced during nutrient starvation (Elharar *et al.*, 2014, Wu *et al.*, 2016,
64 Hayashi *et al.*, 2018). However, the *M. smegmatis* transcriptome has been less extensively studied
65 than that of Mtb.

66
67 Identification of transcription start sites (TSSs) is an essential step towards understanding how
68 bacteria organize their transcriptomes and respond to changing environments. Genome-wide TSS
69 mapping studies have been used to elucidate the general transcriptomic features in many bacterial
70 species, leading to the identification of promoters, characterization of 5' untranslated regions (5'
71 UTRs), identification of RNA regulatory elements and transcriptional changes in different
72 environmental conditions (examples include (Albrecht *et al.*, 2009, Mitschke *et al.*, 2011, Cortes
73 *et al.*, 2013, Schlueter *et al.*, 2013, Dinan *et al.*, 2014, Ramachandran *et al.*, 2014, Sass *et al.*, 2015,
74 Shell *et al.*, 2015b, Thomason *et al.*, 2015, Berger *et al.*, 2016, Čuklina *et al.*, 2016, D'arrigo *et al.*,
75 2016, Heidrich *et al.*, 2017, Li *et al.*, 2017). To date, two main studies have reported the
76 transcriptomic landscape in Mtb during exponential growth and carbon starvation (Cortes *et al.*,
77 2013, Shell *et al.*, 2015b). These complementary studies revealed that, unlike most bacteria, a
78 substantial percentage (~25%) of the transcripts are leaderless, lacking a 5' UTR and consequently
79 a Shine-Dalgarno ribosome-binding site. In addition, a number of previously unannotated ORFs
80 encoding putative small proteins were found (Shell *et al.*, 2015b), showing that the transcriptional
81 landscape can be more complex than predicted by automated genome annotation pipelines. Thus,
82 TSS mapping is a powerful tool to gain insight into transcriptomic organization and identify novel
83 genes. Less is known about the characteristics of the *M. smegmatis* transcriptome. A recent study
84 reported a number of *M. smegmatis* TSSs in normal growth conditions (Li *et al.* 2017). However,
85 this work was limited to identification of primary gene-associated TSSs and lacked an analysis of
86 internal and antisense TSSs, as well as characterization of promoter regions and other relevant
87 transcriptomic features. In addition, Potgieter and collaborators (2016) validated a large number
88 of annotated ORFs using proteomics and were able to identify 63 previously unannotated
89 leaderless ORFs.

90
91 To achieve a deeper characterization of the *M. smegmatis* transcriptional landscape, we combined
92 5'-end-mapping and RNAseq expression profiling under two different growth conditions. Here we
93 present an exhaustive analysis of the *M. smegmatis* transcriptome during exponential growth and
94 hypoxia. Unlike most transcriptome-wide TSS analyses, our approach allowed us to study not only
95 the transcriptome organization in different conditions, but also the frequency and distribution of
96 RNA cleavage sites on a genome wide scale. Whereas regulation at the transcriptional level is
97 assumed to be the main mechanism that modulates gene expression in bacteria, post-transcriptional
98 regulation is a key step in the control of gene expression and has been implicated in the response
99 to host conditions and virulence in various bacterial pathogens (Kulesekara *et al.*, 2006, Mraheil
100 *et al.*, 2011, Heroven *et al.*, 2012, Schifano *et al.*, 2013, Holmqvist *et al.*, 2016). Here we show
101 that the predominant RNA cleavage sequence motif in *M. smegmatis* is distinct from what has
102 been reported for other bacteria. We also show that RNA cleavage decreases during adaptation to
103 hypoxia, suggesting that RNA cleavage may be a refinement mechanism contributing to the
104 regulation of gene expression in harsh conditions.

105
106 **Materials and methods**
107

108 **Strains and growth conditions used in this study.**

109 *M. smegmatis* strain mc²155 was grown in Middlebrook 7H9 supplemented with ADC (Albumin
110 Dextrose Catalase, final concentrations 5 g/L bovine serum albumin fraction V, 2 g/L dextrose,
111 0.85 g/L sodium chloride, and 3 mg/L catalase), 0.2% glycerol and 0.05% Tween 80. For the
112 exponential phase experiment (Dataset 1), 50 ml conical tubes containing 5 ml of 7H9 were
113 inoculated with *M. smegmatis* to have an initial OD=0.01. Cultures were grown at 37°C and 250
114 rpm. Once cultures reached an OD of 0.7 – 0.8, they were frozen in liquid nitrogen and stored at -
115 80°C until RNA purification. For hypoxia experiments (Dataset 2), a protocol similar to the Wayne
116 model (Wayne & Hayes, 1996) was implemented. Briefly, 60 ml serum bottles (Wheaton, product
117 number 223746, actual volume to top of rim 73 ml) were inoculated with 36.5 ml of *M. smegmatis*
118 culture with an initial OD=0.01. The bottles were sealed with rubber caps (Wheaton, W224100-
119 181 Stopper, 20mm) and aluminum caps (Wheaton, 20 mm aluminum seal) and cultures were
120 grown at 37 °C and 125 rpm to generate hypoxic conditions. Samples were taken at an early stage
121 of oxygen depletion when growth had slowed but not completely stopped (15 hours) and at a later
122 stage when a methylene blue indicator dye was fully decolorized and growth had ceased (24 hours).
123 These time points were experimentally determined according to growth curve experiments (see
124 **Figure S1**). 15 ml of each culture were sampled and frozen immediately in liquid nitrogen until
125 RNA extraction.

126

127 **RNA extraction**

128 RNA was extracted as follows: frozen cultures stored at -80°C were thawed on ice and centrifuged
129 at 4,000 rpm for 5 min at 4 °C. The pellets were resuspended in 1 ml Trizol (Life Technologies)
130 and placed in tubes containing Lysing Matrix B (MP Bio). Cells were lysed by bead-beating twice
131 for 40 sec at 9 m/sec in a FastPrep 5G instrument (MP Bio). 300 µl chloroform was added and
132 samples were centrifuged for 15 minutes at 4,000 rpm at 4°C. The aqueous phase was collected
133 and RNA was purified using Direct-Zol RNA miniprep kit (Zymo) according to the manufacturer's
134 instructions. Samples were then treated with DNase Turbo (Ambion) for one hour and purified
135 with an RNA Clean & Concentrator-25 kit (Zymo) according to the manufacturer's instructions.
136 RNA integrity was checked on 1% agarose gels and concentrations were determined using a
137 Nanodrop instrument. Prior to library construction, 5 µg RNA was used for rRNA depletion using
138 Ribo-Zero rRNA Removal Kit (Illumina) according to the manufacturer's instructions.

139

140 **Construction of 5'-end-mapping libraries**

141 After rRNA depletion, RNA samples from each biological replicate were split in three, in order to
142 generate two 5'-end differentially treated libraries and one RNAseq expression library (next
143 section). RNA for library 1 ("converted" library) was treated either with RNA 5'
144 pyrophosphohydrolase RPPH (NEB) (exponential phase experiment, Dataset 1), or with 5'
145 polyphosphatase (Epicentre) (hypoxia experiment, Dataset 2), in order to remove the native 5'
146 triphosphates of primary transcripts, whereas RNA for Library 2 ("non-converted" library) was
147 subject to mock treatment. Thus, the converted libraries capture both 5' triphosphates (converted
148 to monophosphates) and native 5' monophosphate transcripts, while non-converted libraries
149 capture only native 5' monophosphates (see scheme in **Figure S2.A**). Library construction was
150 performed as described by Shell et al (Shell et al., 2015a). A detailed scheme showing the
151 workflow of 5'-end libraries construction, the primers and adapters used in each step, and
152 modifications to the protocol are shown in **Figure S2.B**.

153

154 **Construction of RNAseq expression libraries**
 155 One third of each rRNA-depleted RNA sample was used to construct RNAseq expression libraries.
 156 KAPA stranded RNA-Seq library preparation kit and NEBNext Ultra RNA library prep kit for
 157 Illumina (NEB) were used for Dataset 1 and Dataset 2, respectively, according to manufacturer's
 158 instructions. The following major modifications were introduced into the protocols: *i*) For RNA
 159 fragmentation, in order to obtain fragments around 300 nt, RNA was mixed with the corresponding
 160 buffer and placed at 85°C for 6 minutes (Dataset 1), or at 94°C for 12 minutes (Dataset 2). *ii*) For
 161 library amplification, 10 or 19-23 PCR cycles were used for Dataset 1 and Dataset 2, respectively.
 162 The number of cycles was chosen according to the amount of cDNA obtained for each sample.
 163 After purification, DNA concentration was measured in a Qubit instrument before sequencing.
 164

165 **Libraries sequencing and quality assessment**
 166 For 5'-end-mapping libraries from Dataset 1, Illumina MiSeq paired-end sequencing producing
 167 100 nt reads was used. For 5' end directed libraries from Dataset 2 as well as for all expression
 168 libraries, Illumina HiSeq 2000 paired-end sequencing producing 50 nt reads was used. Sequencing
 169 was performed at the UMass Medical School Deep Sequencing Core Facility. Quality of the
 170 generated fastq files was checked using FastQC.
 171

172 **Identification of 5' ends and discrimination between transcription start sites (TSSs) and**
 173 **cleavage sites (CSs)**
 174 Paired-end reads generated from 5'-end-directed libraries were mapped to the *M. smegmatis*
 175 mc²155 NC_008596 reference genome. In order to reduce noise from the imprecision of
 176 transcriptional initiation, only the coordinate with the highest coverage in each 5 nt window was
 177 used for downstream analyses. For read filtering, different criteria were used for the 2 datasets
 178 according to the library depth and quality (see **Figure S3**). In order to discriminate between TSSs
 179 and CSs, the ratio of the coverage in converted/non-converted libraries for each detected 5' end
 180 was calculated. To focus our analyses on the 5'ends that are relatively abundant in their local
 181 genomic context, we employed a filter based on the ratio of 5' end coverage to expression library
 182 coverage in the preceding 100nt. 5' ends for which this ratio was ≤ 0.05 were removed. After this
 183 filter, 15,720 5' ends remained and were further analyzed using a Gaussian mixture modelling to
 184 differentiate TSSs from CSs with a high confidence in Dataset 1 (**Figure 1A**). For this analysis,
 185 we used the iterative expectation maximization (EM) algorithm in the mixtools package (Benaglia
 186 *et al.*, 2009) for R (version 1.1.0) to fit the mixture distributions.
 187

188 **Analysis of expression libraries**
 189 Reads were aligned to the *Mycobacterium smegmatis* str. mc²155 reference genome (Accession
 190 number NC_008596) using Burrows-Wheeler Aligner (Li & Durbin, 2009). For comparison of
 191 gene expression levels according to presence or absence of Shine-Dalgarno sequences, RPKMs
 192 were calculated for all genes. The DEseq2 pipeline was used to evaluate the changes in gene
 193 expression in hypoxia (Love *et al.*, 2014).
 194

195 **Transcription start sites categorization**
 196 For analysis in **Figure 1D**, TSSs were classified as follows: those coordinates located ≤ 500 bp
 197 upstream from an annotated gene were considered to be primary TSSs (pTSS). Coordinates located
 198 within an annotated gene were classified as internal (iTSS) or N-associated internal TSSs (N-
 199 iTSSs) if they were located within the first 25% of the annotated coding sequence. N-iTSSs were

200 considered for reannotation as a pTSSs only if their associated gene lacked a pTSS. TSSs located
 201 on the antisense strand of a coding sequence, 5' UTR, or 3' UTR were considered as antisense
 202 (aTSS). 5' UTRs boundaries were assigned after assignment of pTSSs to genes annotated in the
 203 *mc²155* reference genome (accession number NC_008596). When a gene had more than one pTSS,
 204 the longest of the possible 5' UTRs was used for assignment of aTSSs. In the case of genes for
 205 which we did not identify a pTSS, we considered a hypothetical leader sequence of 50 bp for
 206 assignment of aTSSs. For assignment of aTSSs in 3' UTRs, we arbitrarily considered a sequence
 207 of 50 bp downstream the stop codon of the gene to be the 3' UTR. Finally, TSSs not belonging to
 208 any of the above-mentioned categories were classified as orphan (oTSSs).

209

210 ***Operon prediction***

211 Adjacent genes with the same orientation were considered to be co-transcribed if there were at
 212 least 5 spanning reads between the upstream and the downstream gene in at least one of the
 213 replicates in the expression libraries from Dataset 1. After this filtering, a downstream gene was
 214 excluded from the operon if: 1) it had a TSS \leq 500 bp upstream the annotated start codon on the
 215 same strand, and/or 2) had a TSS within the first 25% of the gene on the same strand, and/or 3) the
 216 upstream gene had a TSS within the last 50-100% of the coding sequence. Finally, the operon was
 217 assigned only if the first gene had a primary TSS with a confidence \geq 95% according to the
 218 Gaussian mixture modeling.

219

220 ***Cleavage sites categorization***

221 For CS categorization in **Figure 4D**, we established stringent criteria in order to determine the
 222 frequency of CSs in each location category relative to the amount of the genome comprising that
 223 location category. For 3' UTR regions, we considered only CSs that were located between 2
 224 convergent genes. To assess frequency relative to the whole genome, we considered the sum of all
 225 regions located between two convergent genes. For 5' UTRs we considered all CSs located
 226 between 2 divergent genes, and the sum of all leader lengths for genes having a pTSS whose
 227 upstream gene is in the opposite strand (divergent) determined in this study was used for assessing
 228 relative frequency. For 5' ends corresponding to cleavages between co-transcribed genes we used
 229 the operon structures determined in this study, and the sum of all their intergenic regions was used
 230 for assessing relative frequency. Finally, for CSs located within coding sequences all genes were
 231 considered, as all of them produced reads in the expression libraries. The sum of all coding
 232 sequences in NC_008596 genome was used for assessing relative frequency, after subtracting
 233 overlapping regions to avoid redundancy.

234

235 ***5' RACE (Rapid Amplification of cDNA Ends)***

236 For validation of TSSs and CSs, RNA samples from *M. smegmatis* were split in two and treated
 237 with or without RPPH (NEB) in order to remove the native 5' triphosphates of primary transcripts
 238 or not, respectively. Then, an adapter oligo SSS1016
 239 (CTGGAGCACGAGGACACTGACATGGACTGAAGGAGTrArGrArArA, where nts preceded
 240 by "r" are ribonucleotides and the rest of the oligo is composed of deoxyribonucleotides) was
 241 ligated to the RNA 5' ends using T4 RNA ligase (NEB). Prior to ligation, 8 μ l of RNA sample
 242 were combined with 1 μ l of 1 μ g/ μ l adapter oligo and incubated at 65 °C for 10 min. For ligation,
 243 the 9 μ l of RNA-oligo mix were combined with: 10 μ l 50% PEG8000, 3 μ l 10X ligase buffer, 3 μ l
 244 10 mM ATP, 3 μ l DMSO, 1 μ l Murine RNase inhibitor (NEB), and 1 μ l T4 ligase (NEB). Ligation

245 reactions were incubated at 20 °C overnight and then cleaned using RNA Clean and Concentrator
246 25 kit (Zymo). Both RPPH-treated and mock-treated samples were used for cDNA synthesis.
247 Reactions in absence of reverse transcriptase were performed to control for genomic DNA
248 contamination. For amplification of specific 5' ends, PCR was done using a forward primer
249 SSS1017 binding to the adapter oligo (CTGGAGCACGAGGACACTGA) and a reverse (specific)
250 primer binding near the predicted 5' end (see **Table S1**). For PCRs, a touchdown protocol in which
251 the annealing temperature was reduced 1 °C every cycle was performed as follows: i) initial step
252 of DNA denaturalization at 95 °C for 5 min, ii) 17 cycles of 95 °C for 30 sec, 72 °C to 55 °C
253 (touchdown) for 20 sec and 68 °C for 25 sec, iii) 20 cycles of 95 °C for 30 sec, 55 °C for 20 sec
254 and 68 °C for 25 sec and iv) a final elongation step at 68 °C for 5 min. Each amplified fragment
255 was sequenced using the specific primer. A TSS or CS was validated if i) the 5' end position
256 coincided with that mapped the 5' end libraries and ii) the PCR product was more abundant in the
257 RPPH than in the no RPPH treatment (TSS) or the PCR product was equally abundant in the RPPH
258 than in the no RPPH treatment (CS).

259 For validation of the MSMEG_0063 promoter, an *M. smegmatis* mutant strain lacking the region
260 comprising the genes MSMEG_0062-MSMEG_0066 was transformed with either of the 3
261 following constructs: i) Wt promoter, which has the gene MSMEG_0063 with the native predicted
262 promoter region and the downstream genes MSMEG_0064-MSMEG_0066, ii) Δpromoter, in
263 which the predicted promoter region for MSMEG_0063 was deleted, and iii) Mutated promoter,
264 in which two point mutations were introduced in the predicted -10 region of the MSMEG_0063
265 promoter. These constructs were inserted in the L5 site of the *M. smegmatis* genome.

266 **Results**

267

268 **1. Mapping, annotation, and categorization of transcription start sites**

269 In order to study the transcriptome structure of *M. smegmatis*, RNAs from triplicate cultures in
 270 exponential phase were used to construct 5' end mapping libraries (Dataset 1) according to our
 271 previously published methodologies (Shell *et al.*, 2015a, Shell *et al.*, 2015b) with minor
 272 modifications. Briefly, our approach relies on comparison of adapter ligation frequency in a
 273 dephosphorylated (converted) library and an untreated (non-converted) library for each sample.
 274 The converted libraries capture both 5' triphosphate and native 5' monophosphate-bearing
 275 transcripts, while the non-converted libraries capture only native 5' monophosphate-bearing
 276 transcripts (**Figure S2**). Thus, assessing the ratios of read counts in the converted/non-converted
 277 libraries permits discrimination between 5' triphosphate ends (primary transcripts from
 278 transcription start sites) and 5' monophosphate ends (cleavage sites). By employing a Gaussian
 279 mixture modeling analysis (**Figure 1A**) we were able to identify 5,552 TSSs in *M. smegmatis* with
 280 an observed probability of being a TSS ≥ 0.95 (high confidence TSSs, **Table S2**). A second filtering
 281 method allowed us to obtain 222 additional TSSs from Dataset 1 (**Figure S3**). A total of 5,774
 282 TSSs were therefore obtained from Dataset 1. In addition, data from separate libraries constructed
 283 as controls for the hypoxia experiment (Dataset 2) in Section 8 were also included in this analysis
 284 to obtain TSSs. After noise filtering (**Figure S3**), 4,736 TSSs from Dataset 2 were identified. The
 285 union of the two datasets yielded a total of 6,090 non-redundant high confidence TSSs, of which
 286 4,420 were detected in both datasets (**Figure S4, Table S2**).

287

288 Although not all 5' ends could be classified with the Gaussian mixture modeling, we were able to
 289 assign 57% of the 5' ends in Dataset 1 to one of the two 5' end populations with high confidence
 290 (5,552 TSSs and 3,344 CSs). To validate the reliability of the Gaussian mixture modeling used to
 291 classify 5' ends, we performed two additional analyses. First, according to previous findings in
 292 *Mtb* (Cortes *et al.*, 2013) and other well studied bacteria (Sass *et al.*, 2015, Berger *et al.*, 2016,
 293 Čuklina *et al.*, 2016, D'arrigo *et al.*, 2016), we anticipated that TSSs should be enriched for the
 294 presence of the ANNNT -10 promoter consensus motif in the region upstream. Evaluation of the
 295 presence of appropriately-spaced ANNNT sequences revealed that 5' ends with higher
 296 probabilities of being TSSs are enriched for this motif, whereas for those 5' ends with low
 297 probabilities of being TSSs (and thus high probabilities of being CSs) have ANNNT frequencies
 298 similar to that of the *M. smegmatis* genome as a whole (**Figure 1B**). Secondly, we predicted that
 299 TSSs should show enrichment for A and G nts at the +1 position, given the reported preference
 300 for bacterial RNA polymerases to initiate transcription with these nts (Lewis & Adhya, 2004,
 301 Mendoza-Vargas *et al.*, 2009, Mitschke *et al.*, 2011, Cortes *et al.*, 2013, Shell *et al.*, 2015b,
 302 Thomason *et al.*, 2015, Berger *et al.*, 2016). Thus, we analyzed the base enrichment in the +1
 303 position for the 5' ends according the *p*-value in the Gaussian mixture modeling (**Figure 1C**).
 304 These results show a clear increase in the percentage of G and A bases in the position +1 as the
 305 probability of being a TSS increases, while the percentage of sequences having a C at +1 increases
 306 as the probability of being a TSS decreases. These two analyses show marked differences in the
 307 sequence contexts of TSSs and CSs and further validate the method used for categorization of 5'
 308 ends.

309

310 To study the genome architecture of *M. smegmatis*, the 6,090 TSSs were categorized according to
 311 their genomic context (**Figure 1D and 1E, Table S2**). TSSs located ≤ 500 nt upstream of an

312 annotated gene start codon in the *M. smegmatis* str. mc²155 (accession NC_008596) reference
 313 genome were classified as primary TSSs (pTSS). TSSs within annotated genes on the sense strand
 314 were denoted as internal (iTSS). When an iTSS was located in the first quarter of an annotated
 315 gene, it was sub-classified as N-terminal associated TSS (N-iTSS), and was further examined to
 316 determine if it should be considered a primary TSS (see below). TSSs located on the antisense
 317 strand either within a gene or within a 5' UTR or 3' UTR were grouped as antisense TSSs (aTSSs).
 318 Finally, TSSs located in non-coding regions that did not meet the criteria for any of the above
 319 categories were classified as orphan (oTSSs). When a pTSS also met the criteria for classification
 320 in another category, it was considered to be pTSS for the purposes of downstream analyses. A total
 321 of 4,054 distinct TSSs met the criteria to be classified as pTSSs for genes transcribed in exponential
 322 phase. These pTSSs were assigned to 3,043 downstream genes, representing 44% of the total
 323 annotated genes (**Table S3**). This number is lower than the total number of genes expressed in
 324 exponential phase, in large part due to the existence of polycistronic transcripts (see operon
 325 prediction below). Interestingly, 706 (23%) of these genes have at least two pTSSs and 209 (7%)
 326 have three or more, indicating that transcription initiation from multiple promoters is common in
 327 *M. smegmatis*. We used 5' RACE to confirm seven selected pTSSs (Table S1), all of which
 328 mapped to the same position by both methods. Four of these were novel TSSs not reported by Li
 329 *et al.* (2017).

330
 331 A total of 995 iTSSs (excluding the iTSSs that were also classified as a pTSS of a downstream
 332 gene, see **Figure S5** for classification workflow) were identified in 804 (12%) of the annotated
 333 genes, indicating that transcription initiation within coding sequences is common in *M. smegmatis*.
 334 iTSSs are often considered to be pTSSs of downstream genes, to be spurious events yielding
 335 truncated transcripts, or to be consequences of incorrect gene start annotations. However, there is
 336 evidence supporting the hypothesis that iTSSs are functional and highly conserved among closely
 337 related bacteria (Shao *et al.*, 2014), highlighting their potential importance in gene expression.
 338

339 We were also able to detect antisense transcription in 12.5 % of the *M. smegmatis* genes. Antisense
 340 transcription plays a role in modulation of gene expression by controlling transcription, RNA
 341 stability, and translation (Morita *et al.*, 2005, Kawano *et al.*, 2007, Andre *et al.*, 2008, Fozo *et al.*,
 342 2008, Giangrossi *et al.*, 2010) and has been found to occur at different rates across bacterial genera,
 343 ranging from 1.3% of genes in *Staphylococcus aureus* to up to 46% of genes in *Helicobacter pylori*
 344 (Beaume *et al.*, 2010, Sharma *et al.*, 2010). Of the 1,006 aTSSs identified here (excluding those
 345 that were primarily classified as pTSSs), 881 are within coding sequences, 120 are within 5' UTRs
 346 and 72 are located within 3' UTRs (note that some aTSS are simultaneously classified in more
 347 than one of these three subcategories, **Figure S6**). While we expect that many of the detected
 348 antisense transcripts have biological functions, it is difficult to differentiate antisense RNAs with
 349 regulatory functions from transcriptional noise. In this regard, Lloréns-Rico and collaborators
 350 (2016) reported that most of the antisense transcripts detected using transcriptomic approaches are
 351 a consequence of transcriptional noise, arising at spurious promoters throughout the genome. To
 352 investigate the potential significance of the *M. smegmatis* aTSSs, we assessed the relative impact
 353 of each aTSS on local antisense expression levels by comparing the read depth upstream and
 354 downstream of each aTSS in our RNAseq expression libraries. We found 318 aTSSs for which
 355 expression coverage was \geq 10-fold higher in the 100 nt window downstream of the TSS compared
 356 to the 100 nt window upstream (**Table S4**). Based on the magnitude of the expression occurring
 357 at these aTSS, we postulate that they could represent the 5' ends of candidate functional antisense

358 transcripts rather than simply products of spurious transcription. However, further work is needed
 359 to test this hypothesis. Finally, 78 oTSSs were detected across the *M. smegmatis* genome. These
 360 TSSs may be the 5' ends of non-coding RNAs or mRNAs encoding previously unannotated ORFs.
 361

362 Out of the 995 iTSSs identified, 457 were located within the first quarter of an annotated gene (N-
 363 iTSSs). In cases where we could not predict a pTSS with high confidence, we considered the
 364 possibility that the start codon of the gene was misannotated and the N-iTSS was in fact the
 365 primary TSS. Although we do not discount the possibility that functional proteins can be produced
 366 when internal transcription initiation occurs far downstream of the annotated start codon, we only
 367 considered N-iTSSs candidates for gene start reannotation when there was a start codon (ATG,
 368 GTG or TTG) in-frame with the annotated gene in the first 30% of the annotated sequence. In this
 369 way, we suggest re-annotations of the start codons of 213 coding sequences (see **Figure S5, Table**
 370 **S5**). These N-iTSSs were considered to be pTSSs (N-iTSSs → pTSSs) for all further analyses
 371 described in this work.
 372

373 **2. Operon prediction**

374 To predict operon structure, we combined 5' end libraries and RNAseq expression data. We
 375 considered two or more genes to be co-transcribed if (1) they had spanning reads that overlapped
 376 both the upstream and downstream gene in the expression libraries, (2) at least one TSS was
 377 detected in the 5' end-directed libraries for the first gene of the operon, and (3) the downstream
 378 gene(s) lacked pTSSs and iTSSs (for more detail, see Materials and Methods). Thus, we were able
 379 to identify and annotate 294 operons with high confidence across the *M. smegmatis* genome (**Table**
 380 **S6**). These operons are between 2 and 4 genes in length and comprise a total of 638 genes. Our
 381 operon prediction methodology has some limitations. For example, operons not expressed in
 382 exponential growth phase could not be detected in our study. Furthermore, internal promoters
 383 within operons can exist, leading to either monocistronic transcripts or suboperons (Guell *et al.*,
 384 2009, Paletta & Ohman, 2012, Skliarova *et al.*, 2012). We limited our operon predictions to genes
 385 that appear to be exclusively co-transcribed, excluding those cases in which an internal gene in an
 386 operon can be alternatively transcribed from an assigned pTSS. Finally, our analysis did not
 387 capture operons in which the first gene lacked a high-confidence pTSS. Despite these limitations,
 388 our approach allowed us to successfully identify new operons as well as previously described
 389 operons. Previously reported operons that were captured by our predictions included the *furA-katG*
 390 (MSMEG_6383-MSMEG_6384) operon involved in oxidative stress response (Milano *et al.*,
 391 2001), the *vapB-vapC* (MSMEG_1283-MSMEG_1284) Toxin–Antitoxin module (Robson *et al.*,
 392 2009) operon, and the *ClpP1-ClpP2* (MSMEG_4672-MSMEG_4673) operon involved in protein
 393 degradation (Raju *et al.*, 2012).
 394

395 **3. Characterization of *M. smegmatis* promoters reveals features conserved in *M. tuberculosis***

396 Most bacterial promoters have two highly conserved regions, the -10 and the -35, that interact with
 397 RNA polymerase via sigma factors. However, it was reported that the -10 region is necessary and
 398 sufficient for transcription initiation by the housekeeping sigma factor SigA in mycobacteria, and
 399 no SigA -35 consensus motifs were identified in previous studies (Cortes *et al.*, 2013, Newton-
 400 Foot & Gey van Pittius, 2013, Zhu *et al.*, 2017, Li *et al.*, 2017). To characterize the core promoter
 401 motifs in *M. smegmatis* on a global scale we analyzed the 50 bp upstream of the TSSs. We found
 402 that 4,833 of 6,090 promoters analyzed (79%) have an ANNNT motif located between positions -
 403 6 to -13 upstream the TSSs (**Figure 2A**). In addition, 63% of the promoters with ANNNT motifs

404 have a thymidine preceding this sequence (TANNNT). This motif is similar to that previously
 405 described in a transcriptome-wide analysis for Mtb (Cortes *et al.*, 2013) and for most bacterial
 406 promoters that are recognized by the σ^{70} housekeeping sigma factor (Ramachandran *et al.*, 2014,
 407 Sass *et al.*, 2015, Berger *et al.*, 2016, Čuklina *et al.*, 2016, D'arrigo *et al.*, 2016). However, no
 408 apparent bias towards specific bases in the NNN region was detected in our study or in Mtb, while
 409 in other bacteria such as *E. coli*, *S. enterica*, *B. cenocepacia*, *P. putida*, and *B. subtilis* an A/T
 410 preference was observed in this region (Jarmer *et al.*, 2001, Ramachandran *et al.*, 2014, Sass *et al.*,
 411 2015, Berger *et al.*, 2016, D'arrigo *et al.*, 2016). We were unable to detect a consensus motif in the
 412 -35 region either using MEME server (Bailey *et al.*, 2015) or manually assessing the possible base-
 413 enrichment in the -35 region. Analysis of the sequences in the immediate vicinity of TSSs revealed
 414 that G and A are the most frequent bases at the +1 position, and C is considerably more abundant
 415 at -1 (**Figure 2B**).

416 Interestingly, we identified several alternative motifs in the -10 promoter regions of transcripts
 417 lacking the ANNNT motif (**Figure 2A**). One of these, (G/C)NN(G/C)NN(G/C), is likely the
 418 signature of *M. smegmatis*' codon bias in the regions upstream of iTSSs. The other three sequences
 419 are candidate binding sites for alternative sigma factors, which are known to be important in
 420 regulation of transcription under diverse environmental conditions. However, the identified
 421 consensus sequences differ substantially from those previously described in mycobacteria (Raman
 422 *et al.*, 2001, Raman *et al.*, 2004, Sun *et al.*, 2004, Lee *et al.*, 2008a, Lee *et al.*, 2008b, Song *et al.*,
 423 2008, Veyrier *et al.*, 2008, Humpel *et al.*, 2010, Gaudion *et al.*, 2013). The TSSs having these
 424 sigma factor motifs and the associated genes are listed in **Table S7**. We next examined the
 425 relationship between promoter sequence and promoter strength, as estimated by the read depths in
 426 the 5' end converted libraries. As shown in **Figure 2C**, the expression levels of transcripts with
 427 ANNNT -10 motifs are on average substantially higher than those lacking this sequence. In
 428 addition, promoters with the full TANNNT motif are associated with more highly abundant
 429 transcripts compared to those having a VANNNT sequence, where V is G, A or C. These results
 430 implicate TANNNT as the preferred -10 sequence for the housekeeping sigma factor, SigA, in *M.*
 431 *smegmatis*. As shown in **Figure 2C**, expression levels of transcripts having the motif 2 in **Figure**
 432 **2A** were significantly increased when compared to the total pool of transcripts lacking the ANNNT
 433 motif.

435
 436 **4. Leaderless transcription is a prominent feature of the *M. smegmatis* transcriptome**
 437 5' UTRs play important roles in post-transcriptional regulation and translation, as they may contain
 438 regulatory sequences that can affect mRNA stability and/or translation efficiency. Whereas in most
 439 bacteria 5' UTR-bearing ("leadered") transcripts predominate, this is not the case for Mtb, in which
 440 near one quarter of the transcripts have been reported to be leaderless (Cortes *et al.*, 2013, Shell *et*
 441 *al.*, 2015b). To investigate this feature in *M. smegmatis*, we analyzed the 5' UTR lengths of all
 442 genes that had at least one pTSS. We found that for 24% of the transcripts the TSS coincides with
 443 the translation start site or produces a leader length \leq 5 nt, resulting in leaderless transcripts (**Figure**
 444 **3A**). This is less than the 40% reported for *M. smegmatis* in a smaller TSS-mapping study (Li *et*
 445 *al.*, 2017), and suggests that the proportions of leaderless transcripts are in fact similar for *M.*
 446 *smegmatis* and Mtb. A total of 1,099 genes (including those re-annotated in section 1) have
 447 leaderless transcripts, and 155 of those (14%) are also transcribed as leadered mRNAs from
 448 separate promoters. Two of the pTSSs we validated by 5' RACE (Table S1) belong to leaderless
 449 transcripts. For leadered transcripts, the median 5' UTR length was 69 nt. Interestingly, 15% of

450 the leaders are > 200 nt, suggesting that these sequences may contain potential regulatory elements.
 451 We then sought to compare the leader lengths of *M. smegmatis* genes with the leader lengths of
 452 their homologs in Mtb. For this analysis we used two independent pTSS mapping Mtb datasets
 453 obtained from Cortes et al, 2013 and Shell et al, 2015b (**Figure 3B**). To avoid ambiguities, we
 454 used only genes that had a single pTSS in both species. Our results show a statistically significant
 455 correlation of leader lengths between species, suggesting that similar genes conserve their
 456 transcript features and consequently may have related regulatory mechanisms. Additionally,
 457 comparison of leaderless transcription in *M. smegmatis* and Mtb revealed that 62% or 73% of the
 458 genes that are only transcribed as leaderless in *M. smegmatis* also lack a 5' UTR in MTB, according
 459 to Cortes et al, 2013 or Shell et al, 2015b, respectively (**Table S8**). We next assessed if leaderless
 460 transcripts are associated with particular gene categories, and found the distribution across
 461 categories was uneven (**Figure 3C**). The three categories “DNA metabolism,” “Amino acid
 462 biosynthesis,” and “Biosynthesis of cofactors, prosthetic groups and carriers” were significantly
 463 enriched in leaderless transcripts (p -value < 0.05, hypergeometric test), while “Signal
 464 transduction,” “Transcription,” and “Transport and binding proteins” appear to have fewer
 465 leaderless transcripts.

466
 467 We next evaluated the presence of the Shine-Dalgarno ribosome-binding site (SD) upstream of
 468 leadered coding sequences. For this analysis, we considered those leaders containing at least one
 469 of the three tetramers AGGA, GGAG or GAGG (core sequence AGGAGG) in the region -6 to -
 470 17 relative to the start codon to possess canonical SD motifs. We found that only 47% of leadered
 471 coding sequences had these canonical SD sequences. Thus, considering also the leaderless RNAs,
 472 a large number of transcripts lack canonical SD sequences, suggesting that translation initiation
 473 can occur through multiple mechanisms in *M. smegmatis*. We further compared the relative
 474 expression levels of leaderless and leadered coding sequences subdivided by SD status. Genes
 475 expressed as both leadered and leaderless transcripts were excluded from this analysis. We found
 476 that on average, expression levels were significantly higher for those genes with canonical SD
 477 sequences than for those with leaders but lacking this motif and for those that were leaderless
 478 (**Figure 3D**). Together, these data suggest that genes that are more efficiently translated have also
 479 higher transcript levels. Similar findings were made in Mtb, where proteomic analyses showed
 480 increased protein levels for genes with SD sequences compared to those lacking this motif (Cortes
 481 et al., 2013).
 482

483 **5. Identification of novel leaderless ORFs in the *M. smegmatis* genome**

484 As GTG or ATG codons are sufficient to initiate leaderless translation in mycobacteria (Shell et
 485 al., 2015b, Potgieter et al., 2016), we used this feature to look for unannotated ORFs in the *M.*
486 smegmatis NC_008596 reference genome. Using 1,579 TSSs that remained after pTSS assignment
 487 and gene reannotation using N-iTSSs (see **Figure S5**) we identified a total of 66 leaderless ORFs
 488 encoding putative proteins longer than 30 amino acids, 5 of which were previously identified (Shell
 489 et al., 2015b). 83% of these ORFs were predicted in other annotations of the *M. smegmatis* mc²155
 490 or MKD8 genome (NC_018289.1, (Gray et al., 2013)), while 10 of the remaining ORFs showed
 491 homology to genes annotated in other mycobacterial species and *Helobdella robusta* and two
 492 ORFs did not show homology to any known protein. The TSS of ORF15 was validated by
 493 5'RACE. These results show that automatic annotation of genomes can be incomplete and
 494 highlight the utility of transcriptomic analysis for genome (re)annotation. Detailed information on
 495 these novel putative ORFs is provided in **Table S9**.

496

497 **6. Endonucleolytic RNA cleavage occurs at a distinct sequence motif and is common in mRNA
498 regulatory regions**499 As our methodology allows us to precisely map RNA cleavage sites in addition to TSSs, we sought
500 to analyze the presence and distribution of cleavage sites in the *M. smegmatis* transcriptome.
501 mRNA processing plays a crucial role in regulation of gene expression, as it is involved in mRNA
502 maturation, stability and degradation (Arraiano *et al.*, 2010). Mixture modeling identified 3,344
503 CSs with a posterior probability ≥ 0.9 (high confidence CSs) (Figure 1A, Table S10). To determine
504 the sequence context of the CSs, we used the regions flanking the 5' ends to generate a sequence
505 logo (Figure 4A). There was a strong preference for a cytosine in the +1 position (present in more
506 than the 90% of the CSs) (Figure 4B), suggesting that it may be structurally important for RNase
507 recognition and/or catalysis.

508

509 Cleaved 5' ends can represent either degradation intermediates or transcripts that undergo
510 functional processing/maturation. In an attempt to investigate CS function, we classified them
511 according to their locations within mRNA transcripts (Figure 4C, Table S10). We found that,
512 after normalizing to the proportion of the expressed transcriptome that is comprised by each
513 location category, cleaved 5' ends are more abundant within 5' UTRs and intergenic regions of
514 operons than within coding sequences and 3' UTRs (Figure 4D). Stringent criteria were used in
515 these analyses to avoid undesired bias (Figure 4C and Materials and Methods). While one would
516 expect the CSs associated with mRNA turnover to be evenly distributed throughout the transcript,
517 enrichment of CSs within the 5' UTRs as well as between two co-transcribed genes may be
518 indicative of cleavages associated with processing and maturation. Alternatively, these regions
519 may be more susceptible to RNases due to lack of associated ribosomes. Here we predicted with
520 high confidence that at least 101 genes have one or more CSs in their 5' UTRs (Table S11).

521

522 We detected cleaved 5' ends within the coding sequences of 18% of *M. smegmatis* genes, ranging
523 from 1 to over 40 sites per gene. We analyzed the distribution of CSs within coding sequences
524 (Figure S7), taking into consideration the genomic context of the genes. When analyzing the
525 distribution of CSs within the coding sequences of genes whose downstream gene has the same
526 orientation, we observed an increase in CS frequency in the region near the stop codon (Figure
527 S7.A). However, when only coding sequences having a downstream gene on the opposite strand
528 (convergent) were considered, the distribution of CSs through the coding sequences was
529 significantly different (p -value < 0.0001 , Kolmogorov-Smirnov D test) with the CSs more evenly
530 distributed throughout the coding sequence (Figure S7.B). This suggests that the cleavage bias
531 towards the end of the genes observed in Figure S7.A may be due to the fact that many of these
532 CSs are actually occurring in the 5' UTRs of the downstream genes. In cases where the TSS of a
533 given gene occurs within the coding sequence of the preceding gene, a CS may map to both the
534 coding sequence of the upstream gene and the 5' UTR of the downstream gene. In these cases, we
535 cannot determine in which of the two transcripts the cleavage occurred. However, cleavages may
536 also occur in polycistronic transcripts. We therefore assessed the distributions of CSs in the
537 operons predicted above. The distribution of CSs in genes co-transcribed with a downstream gene
538 showed a slight increase towards the last part of the gene (Figure S7.C). This may reflect cases in
539 which polycistronic transcripts are cleaved near the 3' end of an upstream gene, as has been
540 reported for the *furA-katG* operon, in which a cleavage near the stop codon of *furA* was described
541 (Milano *et al.*, 2001, Sala *et al.*, 2008, Taverniti *et al.*, 2011). The *furA-katG* cleavage was

542 identified in our dataset, located 1 nt downstream of the previously reported position. A similar
 543 enrichment of CSs towards stop codons was also observed in a recent genome-wide RNA cleavage
 544 analysis in *Salmonella enterica* (Chao *et al.*, 2017), although in this case the high frequency of
 545 cleavage may be also attributed to the U preference of RNase E in this organism, which is highly
 546 abundant in these regions.
 547

548 **7. Prediction of additional TSSs and CSs based on sequence context**

549 The sequence contexts of TSSs (Figure 2B) and CSs (Figure 4A) were markedly different, as G
 550 and A were highly preferred in the TSS +1 position whereas C was highly preferred in the CS +1
 551 position, and TSSs were associated with a strong overrepresentation of ANNNT -10 sites while
 552 CSs were not. These sequence-context differences not only provide validation of our methodology
 553 for distinguishing TSSs from CSs, as discussed above, but also provide a means for making
 554 improved predictions of the nature of 5' ends that could not be categorized with high confidence
 555 based on their converted/non-converted library coverage alone. Taking advantage of these
 556 differences, we sought to obtain a list of additional putative TSSs and CSs. Thus, of the 5' ends
 557 that were not classified with high confidence by mixture modeling, we selected those that had an
 558 appropriately positioned ANNNT motif upstream and a G or an A in the +1 position and classified
 559 them as TSSs with medium confidence (Table S12). In the same way, 5' ends with a C in the +1
 560 position and lacking the ANNNT motif in the region upstream were designated as medium
 561 confidence CSs (Table S13). In this way, we were able to obtain 576 and 4,838 medium
 562 confidence TSSs and CSs, respectively. Additional validation of a medium confidence TSS was
 563 performed for gene MSMEG_0063 using 5'RACE. We were able to corroborate that, as predicted,
 564 transcription of this gene is initiated 139 bp upstream the coding sequence and that either deletion
 565 or mutation of the predicted -10 promoter region dramatically decreased transcription initiation
 566 (Figure S8). These results support the value of TSS prediction based on -10 promoter region motif
 567 and base composition at +1 position, and highlight the importance of the -10 ANNNT promoter
 568 motif for mycobacterial transcription. Three medium confidence CSs (86927+, 87293+ and
 569 5038902-) were also validated using 5' RACE. Although we are aware of the limitations of these
 570 predictions, these lists of medium confidence 5' ends provide a resource that may be useful for
 571 guiding further studies. 5' ends that did not meet the criteria for high or medium confidence TSSs
 572 or CSs are reported in Table S14.
 573

574 **8. The transcriptional landscape changes in response to oxygen limitation**

575 We sought to study the global changes occurring at the transcriptomic level in oxygen limitation
 576 employing a system similar to the Wayne model (Wayne & Hayes, 1996) (see Materials and
 577 Methods). Two timepoints were experimentally determined in order to evaluate transcriptomic
 578 changes during the transition into hypoxia (Figure S1). A different enzyme was used for
 579 conversion of 5' triphosphates to 5' monophosphates in these 5'-end libraries, and it appeared to
 580 be less effective than the enzyme used for the 5' end libraries in Dataset 1. As a consequence, our
 581 ability to distinguish TSSs from CSs *de novo* in these datasets was limited. However, we were able
 582 to assess changes in abundance of the 5' ends classified as high-confidence TSSs or CSs in Dataset
 583 1, as well as identify a limited number of additional TSSs and CSs with high confidence (Figure
 584 S4, Table S3). Corresponding RNAseq expression libraries revealed that, as expected, a large
 585 number of genes were up and downregulated in response to oxygen limitation (Figure S9, Table
 586 S15). We next investigated the transcriptional changes in hypoxia by assessing the relative
 587 abundance of TSSs in these conditions. We found 318 high-confidence TSSs whose abundance

588 varied substantially between exponential phase and hypoxia (**Table S16**). A robust correlation was
 589 observed between the pTSS peak height in the 5'-end-directed libraries and RNA levels in the
 590 expression libraries for hypoxia (**Figure S10**). In an attempt to identify promoter motifs induced
 591 in hypoxia, we analyzed the upstream regions of those TSSs whose abundance increased (fold
 592 change ≥ 2 , adjusted *p*-value ≤ 0.05). Interestingly, we detected a conserved GGGTA motif in the -
 593 10 region of 56 promoters induced in hypoxia using MEME (**Figure 5A, Table S16**). This motif
 594 was reported as the binding site for alternative sigma factor SigF (Rodrigue *et al.*, 2007, Hartkoorn
 595 *et al.*, 2010, Humpel *et al.*, 2010). Additionally, the extended -35 and -10 SigF motif was found in
 596 44 of the 56 promoter sequences. (**Figure 5A, Table S16**). SigF was shown to be induced in
 597 hypoxia at the transcript level in *Mtb* (Iona *et al.*, 2016) and highly induced at the protein level
 598 under anaerobic conditions using the Wayne model in *M. bovis* BCG strain and *Mtb* (Michele *et*
 599 *al.*, 1999) (Galagan *et al.*, 2013). In *M. smegmatis*, SigF was shown to play a role under oxidative
 600 stress, heat shock, low pH and stationary phase (Gebhard *et al.*, 2008, Humpel *et al.*, 2010, Singh
 601 *et al.*, 2015) and *sigF* RNA levels were detected in exponential phase at a nearly comparable level
 602 to *sigA* (Singh & Singh, 2008). Here, we did not detect significant changes in expression of the
 603 *sigF* gene in hypoxia at the transcript level. However, this is consistent with reported data showing
 604 that *sigF* transcript levels remain unchanged under stress conditions in *M. smegmatis* (Gebhard *et*
 605 *al.*, 2008), as it was postulated that SigF is post-transcriptionally modulated via an anti-sigma
 606 factor rather than through *sigF* transcription activation (Beaucher *et al.*, 2002). We noted that, in
 607 the case of TSSs whose abundance was reduced in hypoxia, almost the totality of the promoters
 608 contains the -10 ANNNT σ^{70} binding motif. We then examined the presence of SigF motif in the
 609 regions upstream of 5' ends that were not classified as high confidence TSSs. We speculate that
 610 5' ends associated with this motif may be potential TSSs triggered by hypoxia. We found 96
 611 additional putative TSSs that were (1) overrepresented in hypoxia and (2) associated with
 612 appropriately-spaced SigF motifs (**Table S17**). Three of the hypoxia-induced genes with SigF
 613 motifs (MSMEG_3460, MSMEG_4195 and MSMEG_5329) have homologous genes induced in
 614 hypoxia in *Mtb* (Park *et al.*, 2003, Rustad *et al.*, 2008).

615
 616 It is well known that under anaerobic conditions mycobacteria induce the DosR regulon, a set of
 617 genes implicated in stress tolerance (Rosenkrands *et al.*, 2002, O'Toole *et al.*, 2003, Park *et al.*,
 618 2003, Roberts *et al.*, 2004, Rustad *et al.*, 2008, Honaker *et al.*, 2009, Leistikow *et al.*, 2010). The
 619 DosR transcriptional regulator was highly upregulated at both hypoxic timepoints in the expression
 620 libraries (13 and 18-fold at 15 and 24 hours, respectively, **Figure S9**) and 30 out of the 49 DosR-
 621 activated genes (Berney *et al.*, 2014) were upregulated in our dataset. Thus, we hypothesized that
 622 the DosR binding motif should be present in a number of regions upstream the TSSs that were
 623 upregulated in hypoxia. Analysis of the 200 bp upstream the TSSs using the CentriMo tool for
 624 local motif enrichment analysis (Bailey & Machanick, 2012) allowed us to detect putative DosR
 625 motifs in 13 or 53 promoters, depending on whether a stringent (GGGACTTNNNGNCCCT) or a
 626 weak (RRGNCYWNNGNMM) consensus sequence was used as input (Lun *et al.*, 2009, Berney
 627 *et al.*, 2014, Gomes *et al.*, 2014) (**Table S16**). At least two of the 13 genes downstream of these
 628 TSSs were previously reported to have DosR motifs by Berney and collaborators (Berney *et al.*,
 629 2014) and RegPrecise Database (Novichkov *et al.*, 2013) and two others are homologs of genes in
 630 the *Mtb* DosR regulon that were not previously described in *M. smegmatis* as regulated by DosR
 631 (**Table S16**).
 632

633 We then used CentriMo to search for DosR motifs in the regions upstream of 5' ends that were not
 634 classified as high confidence TSSs, given that TSSs derived from hypoxia-specific promoters may
 635 have been absent from Dataset 1. We found 36 putative TSSs associated with 20 different genes
 636 (**Table S18**), of which 11 have been shown to have DosR binding motifs (Berney *et al.*, 2014).
 637 Five of these are homologs of genes in the Mtb DosR regulon.

638

639 **9. *M. smegmatis* decreases RNA cleavage under oxygen limitation**

640 There is evidence that mycobacterial mRNA is broadly stabilized under hypoxia and other stress
 641 conditions (Rustad *et al.*, 2013, Ignatov *et al.*, 2015). Thus, we anticipated that RNA cleavage
 642 should be reduced under hypoxia as a strategy to stabilize transcripts. We compared the relative
 643 abundance of each high confidence CS in stress and in exponential phase (**Figure 5B**) and found
 644 that RNA cleavage is significantly reduced in both hypoxia 15h and 24h on a global scale (**Figure**
 645 **5C**). In contrast, relative abundance of TSSs did not decrease in these conditions, indicating that
 646 the reduction in CSs is not an artefact of improper normalization (**Figure 5B**). When the ratios of
 647 CSs abundance in hypoxia/normal growth of individual genes were analyzed, we observed the
 648 same behavior (**Figure S11**). These results indicate that the number of cleavage events per gene
 649 decreases during adaptation to hypoxia, which could contribute to the reported increases in half-
 650 life (Rustad *et al.*, 2013).

651

652 **Discussion**

653

654 In recent years, genome-wide transcriptome studies have been widely used to elucidate the genome
 655 architecture and modulation of transcription in different bacterial species (Albrecht *et al.*, 2009,
 656 Mendoza-Vargas *et al.*, 2009, Mitschke *et al.*, 2011, Cortes *et al.*, 2013, Schlüter *et al.*, 2013,
 657 Dinan *et al.*, 2014, Ramachandran *et al.*, 2014, Innocenti *et al.*, 2015, Sass *et al.*, 2015, Thomason
 658 *et al.*, 2015, Berger *et al.*, 2016, Ćuklina *et al.*, 2016, D'arrigo *et al.*, 2016, Heidrich *et al.*, 2017,
 659 Li *et al.*, 2017, Zhukova *et al.*, 2017). Here we combined 5'-end-directed libraries and RNAseq
 660 expression libraries to shed light on the transcriptional and post-transcriptional landscape of *M. smegmatis*
 661 in different physiological conditions.

662

663 The implementation of two differentially treated 5'-end libraries followed by Gaussian mixture
 664 modeling analysis allowed us to simultaneously map and classify 5' ends resulting from
 665 nucleolytic cleavage and those resulting from primary transcription with high confidence. We were
 666 able to classify 57% of the 5' ends in Dataset 1 with high confidence. In addition, we elaborated a
 667 list of medium confidence TSSs and CSs (**Tables S12** and **S13**). These lists constitute a valuable
 668 resource for the research community.

669

670 Analysis of TSS mapping data allowed us to identify over 4,000 primary TSSs and to study the
 671 transcript features in *M. smegmatis*. The high proportion of leaderless transcripts, the lack of a
 672 consensus SD sequence in half of the leadered transcripts, and the absence of a conserved -35
 673 consensus sequence indicate that the transcription-translation machineries are relatively robust in
 674 *M. smegmatis*. These findings are consistent with a recent study that mapped a 2,139 TSSs in *M.*
 675 *smegmatis* (Li *et al.*, 2017). The apparent robustness of translation is shared with Mtb, where 25%
 676 of the transcripts lack a leader sequence (Cortes *et al.*, 2013, Shell *et al.*, 2015b). In addition, high
 677 abundances of transcripts lacking 5' UTRs have been reported in other bacteria including
 678 *Corynebacterium diphtheriae*, *Leptospira interrogans*, *Borrelia burgdorferi*, and *Deinococcus*

679 *deserti*, the latter having 60% leaderless transcripts (de Groot *et al.*, 2014, Adams *et al.*, 2017,
 680 Zhukova *et al.*, 2017, Wittchen *et al.*, 2018). Considering the high proportion of leaderless
 681 transcripts and the large number of leadered transcripts that lack a SD sequence (53%), it follows
 682 that an important number of transcripts are translated without canonical interactions between the
 683 mRNA and anti-Shine-Dalgarno sequence, suggesting that *M. smegmatis* has versatile
 684 mechanisms to address translation. A computational prediction showed that the presence of SD
 685 can be very variable between prokaryotes, ranging from 11% in Mycoplasma to 91% in Firmicutes
 686 (Chang *et al.*, 2006). Cortes *et al* (2013) reported that the 55% of the genes transcribed with a 5'
 687 UTR lack the SD motif. The correlation of leader lengths for homologous genes in *M. smegmatis*
 688 and *M. tuberculosis* (**Figure 3B**) suggests that some genes may share additional UTR-associated
 689 regulatory features, although further work is required to investigate the possible regulatory roles
 690 of 5' UTRs in both species.

691
 692 To begin to understand the role of RNA cleavage in mycobacteria, we identified and classified
 693 over 3,000 CSs throughout the *M. smegmatis* transcriptome, presenting the first report of an RNA
 694 cleavage map in mycobacteria. The most striking feature of the CSs was a cytidine in the +1
 695 position, which was true in over 90% of the cases. While the RNases involved in global RNA
 696 decay in mycobacteria have not been yet elucidated, some studies have implicated RNase E as a
 697 major player in RNA processing and decay (Kovacs *et al.*, 2005, Zeller *et al.*, 2007, Csanadi *et al.*,
 698 2009, Taverniti *et al.*, 2011), given its central role in other bacteria such as *E. coli* and its
 699 essentiality for survival in both *M. smegmatis* and Mtb (Sassetti *et al.*, 2003, Sassetti & Rubin,
 700 2003, Griffin *et al.*, 2011, Taverniti *et al.*, 2011, DeJesus *et al.*, 2017). It is therefore possible that
 701 mycobacterial RNase E, or other endonucleases with dominant roles, favor cytidine in the +1
 702 position. Interestingly, the sequence context of cleavage found here is different from that described
 703 for *E. coli*, for which the consensus sequence is (A/G)N₁AU (Mackie, 2013) or *S. enterica*, in
 704 which a marked preference for uridine at the +2 position and AU-rich sequences are important for
 705 RNase E cleavage (Chao *et al.*, 2017).

706
 707 RNA cleavage is required for maturation of some mRNAs (Li & Deutscher, 1996, Condon *et al.*,
 708 2001, Gutgsell & Jain, 2010, Moores *et al.*, 2017). Therefore, the observation that CSs are enriched
 709 in 5' UTRs and intergenic regions suggests that processing may play roles in RNA maturation,
 710 stability, and translation for some transcripts in *M. smegmatis*. A high abundance of processing
 711 sites around the translation start site was also observed in *P. aeruginosa* and *S. enterica* in
 712 transcriptome-wide studies (Chao *et al.*, 2017, Gill *et al.*, 2018), suggesting that 5' UTR cleavage
 713 may be a widespread post-transcriptional mechanism for modulating gene expression in bacteria.

714
 715 Regulation of RNA decay and processing plays a crucial role in adaptation to environmental
 716 changes. We present evidence showing that RNA cleavage is markedly reduced in conditions that
 717 result in growth cessation. It was previously demonstrated that in low oxygen concentrations
 718 mycobacteria reduce their RNA levels (Ignatov *et al.*, 2015) and mRNA half-life is strikingly
 719 increased (Rustad *et al.*, 2013), likely as a mechanism to maintain adequate transcript levels in the
 720 cell without the energy expenditures that continuous transcription would require. While several
 721 traits are involved in the regulation of transcript abundance and stability, the observation that
 722 cleavage events are pronouncedly reduced in these conditions pinpoint this mechanism as a
 723 potential way to control RNA stability under stress. In agreement with this hypothesis, RNase E
 724 was modestly but significantly decreased at the transcript level in early and late hypoxia (fold

725 change = 0.63 and 0.56, respectively, *p*-value adjusted <0.05), suggesting that reducing the RNase
726 E abundance in the cell may be a strategy to increase transcript half-life. Further study is needed
727 to better understand the relationship between transcript processing and RNA decay in normoxic
728 growth as well as stress conditions.

729

730 Hypoxic stress conditions were also characterized by major changes in the TSSs. 5'-end-mapping
731 libraries revealed that over 300 TSSs varied substantially when cultures were limited in oxygen.
732 We found that 56 transcripts triggered in hypoxia contain the SigF promoter binding motif,
733 indicating that this sigma factor plays a substantial role in the *M. smegmatis* hypoxia response.
734 While previous work revealed increased expression of SigF itself in hypoxia in Mtb (Galagan *et*
735 *al.*, 2013, Iona *et al.*, 2016, Yang *et al.*, 2018), this is the first report demonstrating the direct
736 impact of SigF on specific promoters in hypoxic conditions in mycobacteria. Further work is
737 needed to better understand the functional consequences of SigF activation in both organisms in
738 response to hypoxia.

739

740 The work reported here represents the most complete *M. smegmatis* transcriptome map to date.
741 We have almost doubled the number of mapped TSSs, and report the presence and locations of
742 internal and antisense TSSs as well as primary TSSs. Comparison of TSSs used in log phase and
743 hypoxia revealed a signature of SigF activity in hypoxia, which has not been previously reported.
744 We report the presence of locations of thousands of RNA cleavage sites, which reveals for the first
745 time the consensus sequence recognized by the major mycobacterial RNase(s) that produces
746 monophosphorylated 5' ends. Cleavage sites are enriched in 5' UTRs and intergenic regions,
747 suggesting that these locations are more accessible to RNases and/or subject to regulation by RNA
748 processing. Cleaved RNAs are relatively less abundant in hypoxic *M. smegmatis* cultures,
749 suggesting that RNase activity is reduced as part of the phenotypic transition into hypoxia-induced
750 growth arrest.

751

752 Acknowledgements

753

754 This work was supported by NSF CAREER award 1652756 to SSS. We are grateful to Zheyang
755 Wu and Thomas Ioerger for helpful advice on the mixture modeling and Michael Chase for helpful
756 advice on other aspects of our data analysis pipeline. We thank Todd Gray and Keith Derbyshire
757 for the kind gift of the msmeg_0062-msmeg_0066 deletion strain used for promoter validation.
758 We thank members of the Shell lab for technical assistance and helpful discussions. All Illumina
759 sequencing was performed by the UMass Medical School Deep Sequencing Core.

760

761 Author contributions

762

763 MM, YZ, and SS conceived and designed the experiments. MM and YZ performed the
764 experiments. MM, HS, and SS analyzed the data. MM and SS wrote the manuscript.

765

766 Conflict of interest statement

767

768 The authors have no conflicts of interest to declare.

769 **References**

770

771 Adams PP, Flores Avile C, Popitsch N, Bilusic I, Schroeder R, Lybecker M & Jewett MW (2017) In vivo
772 expression technology and 5' end mapping of the *Borrelia burgdorferi* transcriptome identify novel RNAs
773 expressed during mammalian infection. *Nucleic acids research* **45**: 775-792.

774

775 Albrecht M, Sharma CM, Reinhardt R, Vogel J & Rudel T (2009) Deep sequencing-based discovery of the
776 *Chlamydia trachomatis* transcriptome. *Nucleic acids research* **38**: 868-877.

777

778 Andre G, Even S, Putzer H, Burguiere P, Croux C, Danchin A, Martin-Verstraete I & Soutourina O (2008) S-
779 box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of *Clostridium*
780 *acetobutylicum*. *Nucleic Acids Res* **36**: 5955-5969.

781

782 Arraiano CM, Andrade JM, Domingues S, *et al.* (2010) The critical role of RNA processing and degradation
783 in the control of gene expression. *FEMS microbiology reviews* **34**: 883-923.

784

785 Bagchi G, Das TK & Tyagi JS (2002) Molecular analysis of the dormancy response in *Mycobacterium*
786 *smegmatis*: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and
787 chaperone α -crystallin homologues. *FEMS microbiology letters* **211**: 231-237.

788

789 Bailey TL & Machanick P (2012) Inferring direct DNA binding from ChIP-seq. *Nucleic Acids Res* **40**: e128.

790

791 Bailey TL, Johnson J, Grant CE & Noble WS (2015) The MEME Suite. *Nucleic Acids Res* **43**: W39-49.

792

793 Beaucher J, Rodrigue S, Jacques PE, Smith I, Brzezinski R & Gaudreau L (2002) Novel *Mycobacterium*
794 tuberculosis anti-sigma factor antagonists control sigmaF activity by distinct mechanisms. *Mol Microbiol*
795 **45**: 1527-1540.

796

797 Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P, Gaspin C, Romby P, Schrenzel J & Francois P (2010)
798 Cartography of methicillin-resistant *S. aureus* transcripts: detection, orientation and temporal expression
799 during growth phase and stress conditions. *PLoS One* **5**: e10725.

800

801 Benaglia T, Chauveau D, Hunter DR & Young D (2009) mixtools: An R Package for Analyzing Finite Mixture
802 Models. *Journal of Statistical Software* **32**: 1-29.

803

804 Berger P, Knödler M, Förstner KU, Berger M, Bertling C, Sharma CM, Vogel J, Karch H, Dobrindt U &
805 Mellmann A (2016) The primary transcriptome of the *Escherichia coli* O104: H4 pAA plasmid and novel
806 insights into its virulence gene expression and regulation. *Scientific reports* **6**: 35307.

807

808 Berney M, Greening C, Conrad R, Jacobs WR, Jr. & Cook GM (2014) An obligately aerobic soil bacterium
809 activates fermentative hydrogen production to survive reductive stress during hypoxia. *Proceedings of the*
810 *National Academy of Sciences of the United States of America* **111**: 11479-11484.

811

812 Chang B, Halgamuge S & Tang SL (2006) Analysis of SD sequences in completed microbial genomes: non-
813 SD-led genes are as common as SD-led genes. *Gene* **373**: 90-99.

814

815 Chao Y, Li L, Girodat D, *et al.* (2017) In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding
816 and Non-coding RNA Pathways. *Molecular cell* **65**: 39-51.

817
818 Condon C, Brechemier-Baey D, Beltchev B, Grunberg-Manago M & Putzer H (2001) Identification of the
819 gene encoding the 5S ribosomal RNA maturase in *Bacillus subtilis*: mature 5S rRNA is dispensable for
820 ribosome function. *RNA (New York, NY)* **7**: 242-253.

821
822 Coros A, Callahan B, Battaglioli E & Derbyshire KM (2008) The specialized secretory apparatus ESX-1 is
823 essential for DNA transfer in *Mycobacterium smegmatis*. *Molecular microbiology* **69**: 794-808.

824
825 Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R & Young DB (2013) Genome-wide mapping
826 of transcriptional start sites defines an extensive leaderless transcriptome in *Mycobacterium tuberculosis*.
827 *Cell reports* **5**: 1121-1131.

828
829 Crooks GE, Hon G, Chandonia JM & Brenner SE. (2004) WebLogo: a sequence logo generator. *Genome*
830 *research*, **14(6)** 1188-1190.

831
832 Csanadi A, Faludi I & Miczak A (2009) MSMEG_4626 ribonuclease from *Mycobacterium smegmatis*.
833 *Molecular biology reports* **36**: 2341-2344.

834
835 Čuklina J, Hahn J, Imakaev M, Omasits U, Förstner KU, Ljubimov N, Goebel M, Pessi G, Fischer H-M &
836 Ahrens CH (2016) Genome-wide transcription start site mapping of *Bradyrhizobium japonicum* grown
837 free-living or in symbiosis—a rich resource to identify new transcripts, proteins and to study gene
838 regulation. *BMC genomics* **17**: 302.

839
840 D'arrigo I, Bojanovič K, Yang X, Holm Rau M & Long KS (2016) Genome-wide mapping of transcription start
841 sites yields novel insights into the primary transcriptome of *Pseudomonas putida*. *Environmental*
842 *microbiology* **18**: 3466-3481.

843
844 de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J & Blanchard
845 L (2014) RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-
846 tolerant bacterium *Deinococcus deserti*. *Genome biology and evolution* **6**: 932-948.

847
848 DeJesus MA, Gerrick ER, Xu W, et al. (2017) Comprehensive Essentiality Analysis of the *Mycobacterium*
849 *tuberculosis* Genome via Saturating Transposon Mutagenesis. *MBio* **8**.

850
851 Dick T, Lee BH & Murugasu-Oei B (1998) Oxygen depletion induced dormancy in *Mycobacterium*
852 *smegmatis*. *FEMS microbiology letters* **163**: 159-164.

853
854 Dinan AM, Tong P, Lohan AJ, Conlon KM, Miranda-CasoLuengo AA, Malone KM, Gordon SV & Loftus BJ
855 (2014) Relaxed selection drives a noisy noncoding transcriptome in members of the *Mycobacterium*
856 *tuberculosis* complex. *MBio* **5**: e01169-01114.

857
858 Elharar Y, Roth Z, Hermelin I, Moon A, Peretz G, Shenkerman Y, Vishkautzan M, Khalaila I & Gur E (2014)
859 Survival of mycobacteria depends on proteasome-mediated amino acid recycling under nutrient
860 limitation. *The EMBO journal* **33**: 1802-1814.

861
862 Fozo EM, Kawano M, Fontaine F, Kaya Y, Mendieta KS, Jones KL, Ocampo A, Rudd KE & Storz G (2008)
863 Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. *Mol Microbiol* **70**: 1076-1093.

864

865 Galagan JE, Minch K, Peterson M, *et al.* (2013) The *Mycobacterium tuberculosis* regulatory network and
866 hypoxia. *Nature* **499**: 178-183.

867

868 Gaudion A, Dawson L, Davis E & Smollett K (2013) Characterisation of the *Mycobacterium tuberculosis*
869 alternative sigma factor SigG: its operon and regulon. *Tuberculosis (Edinburgh, Scotland)* **93**: 482-491.

870

871 Gebhard S, Humpel A, McLellan AD & Cook GM (2008) The alternative sigma factor SigF of *Mycobacterium*
872 *smegmatis* is required for survival of heat shock, acidic pH and oxidative stress. *Microbiology (Reading,*
873 *England)* **154**: 2786-2795.

874

875 Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B & Falconi M (2010) A novel antisense RNA
876 regulates at transcriptional level the virulence gene *icsA* of *Shigella flexneri*. *Nucleic Acids Res* **38**: 3362-
877 3375.

878

879 Gill EE, Chan LS, Winsor GL, *et al.* (2018) High-throughput detection of RNA processing in bacteria. *BMC*
880 *Genomics* **19**: 223.

881

882 Gomes AL, Abeel T, Peterson M, Azizi E, Lyubetskaya A, Carvalho L & Galagan J (2014) Decoding ChIP-seq
883 with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative
884 interaction. *Genome research* **24**: 1686-1697.

885

886 Gray TA, Palumbo MJ & Derbyshire KM (2013) Draft Genome Sequence of MKD8, a Conjugal Recipient
887 *Mycobacterium smegmatis* Strain. *Genome announcements* **1**: e0014813.

888

889 Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ & Sasseotti CM (2011) High-resolution
890 phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. *PLoS*
891 *pathogens* **7**: e1002251.

892

893 Guell M, van Noort V, Yus E, *et al.* (2009) Transcriptome complexity in a genome-reduced bacterium.
894 *Science (New York, NY)* **326**: 1268-1271.

895 Gutgsell NS & Jain C (2010) Coordinated regulation of 23S rRNA maturation in *Escherichia coli*. *J Bacteriol*
896 **192**: 1405-1409.

897

898 Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT & White O (2001) TIGRFAMs: a protein
899 family resource for the functional identification of proteins. *Nucleic Acids Res* **29**: 41-43.

900

901 Hartkoorn RC, Sala C, Magnet SJ, Chen JM, Pojer F & Cole ST (2010) Sigma factor F does not prevent
902 rifampin inhibition of RNA polymerase or cause rifampin tolerance in *Mycobacterium tuberculosis*. *J*
903 *Bacteriol* **192**: 5472-5479.

904

905 Hayashi JM, Richardson K, Melzer ES, Sandler SJ, Aldridge BB, Siegrist MS & Morita YS (2018) Stress-
906 induced reorganization of the mycobacterial membrane domain. *mBio* **9**: e01823-01817.

907

908 Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C & Vogel J (2017) The primary transcriptome of *Neisseria*
909 *meningitidis* and its interaction with the RNA chaperone Hfq. *Nucleic acids research* **45**: 6147-6167.

910

911 Heroven A, Sest M, Pisano F, Scheb-Wetzel M, Böhme K, Klein J, Münch R, Schomburg D & Dersch P (2012)
912 Crp induces switching of the CsrB and CsrC RNAs in *Yersinia pseudotuberculosis* and links nutritional status
913 to virulence. *Frontiers in cellular and infection microbiology* **2**: 158.

914

915 Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R & Vogel J (2016) Global RNA
916 recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo.
917 **35**: 991-1011.

918

919 Honaker RW, Leistikow RL, Bartek IL & Voskuil MI (2009) Unique roles of DosT and DosS in DosR regulon
920 induction and *Mycobacterium tuberculosis* dormancy. *Infection and immunity* **77**: 3258-3263.

921

922 Humpel A, Gebhard S, Cook GM & Berney M (2010) The SigF regulon in *Mycobacterium smegmatis* reveals
923 roles in adaptation to stationary phase, heat, and oxidative stress. *J Bacteriol* **192**: 2491-2502.

924

925 Ignatov DV, Salina EG, Fursov MV, Skvortsov TA, Azhikina TL & Kaprelyants AS (2015) Dormant non-
926 culturable *Mycobacterium tuberculosis* retains stable low-abundant mRNA. *BMC Genomics* **16**: 954.

927

928 Innocenti N, Golumbeanu M, Fouquier d'Herouel A, et al. (2015) Whole-genome mapping of 5' RNA ends
929 in bacteria by tagged sequencing: a comprehensive view in *Enterococcus faecalis*. *RNA (New York, NY)* **21**:
930 1018-1030.

931

932 Iona E, Pardini M, Mustazzolu A, Piccaro G, Nisini R, Fattorini L & Giannoni F (2016) *Mycobacterium*
933 tuberculosis gene expression at different stages of hypoxia-induced dormancy and upon resuscitation.
934 *Journal of microbiology (Seoul, Korea)* **54**: 565-572.

935

936 Jarmer H, Larsen TS, Krogh A, Saxild HH, Brunak S & Knudsen S (2001) Sigma A recognition sites in the
937 *Bacillus subtilis* genome. *Microbiology (Reading, England)* **147**: 2417-2424.

938

939 Kawano M, Aravind L & Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin
940 evolved from an antitoxin. *Mol Microbiol* **64**: 738-754.

941

942 Kovacs L, Csanadi A, Megyeri K, Kaberdin VR & Miczak A (2005) Mycobacterial RNase E-associated
943 proteins. *Microbiology and immunology* **49**: 1003-1007.

944

945 Kulesekara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M & Hayakawa Y
946 (2006) Analysis of *Pseudomonas aeruginosa* diguanylate cyclases and phosphodiesterases reveals a role
947 for bis-(3'-5')-cyclic-GMP in virulence. *Proceedings of the National Academy of Sciences* **103**: 2839-2844.

948

949 Lee JH, Karakousis PC & Bishai WR (2008a) Roles of SigB and SigF in the *Mycobacterium tuberculosis* sigma
950 factor network. *J Bacteriol* **190**: 699-707.

951

952 Lee JH, Geiman DE & Bishai WR (2008b) Role of stress response sigma factor SigG in *Mycobacterium*
953 tuberculosis. *J Bacteriol* **190**: 1128-1133.

954

955 Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K & Voskuil MI (2010) The *Mycobacterium*
956 tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring
957 dormancy. *J Bacteriol* **192**: 1662-1670.

958

959 Lewis DE & Adhya S (2004) Axiom of determining transcription start points by RNA polymerase in
960 *Escherichia coli*. *Mol Microbiol* **54**: 692-701.

961

962 Li H & Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform.
963 *Bioinformatics (Oxford, England)* **25**: 1754-1760.

964

965 Li X, Mei H, Chen F, Tang Q, Yu Z, Cao X, Andongma BT, Chou S-H & He J (2017) Transcriptome landscape
966 of *Mycobacterium smegmatis*. *Frontiers in microbiology* **8**: 2505.

967

968 Li Z & Deutscher MP (1996) Maturation pathways for *E. coli* tRNA precursors: a random multienzyme
969 process in vivo. *Cell* **86**: 503-512.

970

971 Llorens-Rico V & Cano J (2016) Bacterial antisense RNAs are mainly the product of transcriptional noise.
972 **2**: e1501363.

973

974 Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq
975 data with DESeq2. *Genome Biology* **15**: 550.

976

977 Lun DS, Sherrid A, Weiner B, Sherman DR & Galagan JE (2009) A blind deconvolution approach to high-
978 resolution mapping of transcription factor binding sites from ChIP-seq data. *Genome Biol* **10**: R142.

979

980 Mackie GA (2013) RNase E: at the interface of bacterial RNA processing and decay. *Nature reviews
981 Microbiology* **11**: 45-57.

982

983 Mao F, Dam P, Chou J, Olman V & Xu Y. (2008) DOOR: a database for prokaryotic operons. *Nucleic acids
984 research*, **37**(suppl_1), D459-D463.

985

986 Mendoza-Vargas A, Olvera L, Olvera M, *et al.* (2009) Genome-wide identification of transcription start
987 sites, promoters and transcription factor binding sites in *E. coli*. *PLoS One* **4**: e7526.

988

989 Michele TM, Ko C & Bishai WR (1999) Exposure to antibiotics induces expression of the *Mycobacterium*
990 *tuberculosis* *sigF* gene: implications for chemotherapy against mycobacterial persistors. *Antimicrobial
991 agents and chemotherapy* **43**: 218-225.

992

993 Milano A, Forti F, Sala C, Riccardi G & Ghisotti D (2001) Transcriptional regulation of *furA* and *katG* upon
994 oxidative stress in *Mycobacterium smegmatis*. *J Bacteriol* **183**: 6801-6806.

995

996 Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voß B, Steglich C, Wilde A & Vogel J (2011)
997 An experimentally anchored map of transcriptional start sites in the model cyanobacterium *Synechocystis*
998 sp. PCC6803. *Proceedings of the National Academy of Sciences* **108**: 2124-2129.

999

1000 Moores A, Riesco AB, Schwenk S & Arnvig KB (2017) Expression, maturation and turnover of *DrrS*, an
1001 unusually stable, DosR regulated small RNA in *Mycobacterium tuberculosis*. **12**: e0174079.

1002

1003 Morita T, Maki K & Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA
1004 destabilization mediated by bacterial noncoding RNAs. *Genes & development* **19**: 2176-2186.

1005

1006 Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T
1007 & Chakraborty T (2011) The intracellular sRNA transcriptome of *Listeria monocytogenes* during growth in
1008 macrophages. *Nucleic acids research* **39**: 4235-4248.

1009

1010 Newton-Foot M & Gey van Pittius NC (2013) The complex architecture of mycobacterial promoters.
1011 *Tuberculosis (Edinburgh, Scotland)* **93**: 60-74.

1012

1013 Novichkov PS, Kazakov AE, Ravcheev DA, et al. (2013) RegPrecise 3.0--a resource for genome-scale
1014 exploration of transcriptional regulation in bacteria. *BMC Genomics* **14**: 745.

1015

1016 O'Toole R, Smeulders MJ, Blokpoel MC, Kay EJ, Lougheed K & Williams HD (2003) A two-component
1017 regulator of universal stress protein expression and adaptation to oxygen starvation in *Mycobacterium*
1018 *smegmatis*. *Journal of bacteriology* **185**: 1543-1554.

1019

1020 Paletta JL & Ohman DE (2012) Evidence for two promoters internal to the alginate biosynthesis operon in
1021 *Pseudomonas aeruginosa*. *Current microbiology* **65**: 770-775.

1022

1023 Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK & Sherman DR (2003)
1024 Rv3133c/dosR is a transcription factor that mediates the hypoxic response of *Mycobacterium*
1025 *tuberculosis*. *Molecular microbiology* **48**: 833-843.

1026

1027 Pecsi I, Hards K, Ekanayaka N, Berney M, Hartman T, Jacobs WR & Cook GM (2014) Essentiality of succinate
1028 dehydrogenase in *Mycobacterium smegmatis* and its role in the generation of the membrane potential
1029 under hypoxia. *MBio* **5**: e01093-01014.

1030

1031 Potgieter MG, Nakedi KC, Ambler JM, Nel AJ, Garnett S, Soares NC, Mulder N & Blackburn JM (2016)
1032 Proteogenomic Analysis of *Mycobacterium smegmatis* using high resolution mass spectrometry. *Frontiers*
1033 in microbiology **7**: 427.

1034

1035 Prasanna AN & Mehra S (2013) Comparative phylogenomics of pathogenic and non-pathogenic
1036 mycobacterium. *PLoS One* **8**: e71248.

1037

1038 Raju RM, Unnikrishnan M, Rubin DH, Krishnamoorthy V, Kandror O, Akopian TN, Goldberg AL & Rubin EJ
1039 (2012) *Mycobacterium tuberculosis* ClpP1 and ClpP2 function together in protein degradation and are
1040 required for viability in vitro and during infection. *PLoS pathogens* **8**: e1002511.

1041

1042 Ramachandran VK, Shearer N & Thompson A (2014) The primary transcriptome of *Salmonella enterica*
1043 serovar *Typhimurium* and its dependence on ppGpp during late stationary phase. *PLoS One* **9**: e92690.

1044

1045 Raman S, Hazra R, Dascher CC & Husson RN (2004) Transcription regulation by the *Mycobacterium*
1046 *tuberculosis* alternative sigma factor SigD and its role in virulence. *J Bacteriol* **186**: 6605-6616.

1047

1048 Raman S, Song T, Puyang X, Bardarov S, Jacobs WR, Jr. & Husson RN (2001) The alternative sigma factor
1049 SigH regulates major components of oxidative and heat stress responses in *Mycobacterium tuberculosis*.
1050 *J Bacteriol* **183**: 6119-6125.

1051

1052 Rigel NW, Gibbons HS, McCann JR, McDonough JA, Kurtz S & Braunstein M (2009) The accessory SecA2
1053 system of mycobacteria requires ATP binding and the canonical SecA1. *Journal of Biological Chemistry*
1054 **284**: 9927-9936.

1055

1056 Roberts DM, Liao RP, Wisedchaisri G, Hol WG & Sherman DR (2004) Two sensor kinases contribute to the
1057 hypoxic response of *Mycobacterium tuberculosis*. *The Journal of biological chemistry* **279**: 23082-23087.

1058

1059 Robson J, McKenzie JL, Cursons R, Cook GM & Arcus VL (2009) The vapBC operon from *Mycobacterium*
1060 *smegmatis* is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation.
1061 *Journal of molecular biology* **390**: 353-367.

1062

1063 Rodrigue S, Brodeur J, Jacques PE, Gervais AL, Brzezinski R & Gaudreau L (2007) Identification of
1064 mycobacterial sigma factor binding sites by chromatin immunoprecipitation assays. *J Bacteriol* **189**: 1505-
1065 1513.

1066

1067 Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Clifton III E & Andersen P (2002) Hypoxic response of
1068 *Mycobacterium tuberculosis* studied by metabolic labeling and proteome analysis of cellular and
1069 extracellular proteins. *Journal of bacteriology* **184**: 3485-3491.

1070

1071 Rustad TR, Harrell MI, Liao R & Sherman DR (2008) The enduring hypoxic response of *Mycobacterium*
1072 *tuberculosis*. *PLoS One* **3**: e1502.

1073

1074 Rustad TR, Minch KJ, Brabant W, Winkler JK, Reiss DJ, Baliga NS & Sherman DR (2013) Global analysis of
1075 mRNA stability in *Mycobacterium tuberculosis*. *Nucleic Acids Res* **41**: 509-517.

1076

1077 Sala C, Forti F, Magnoni F & Ghisotti D (2008) The katG mRNA of *Mycobacterium tuberculosis* and
1078 *Mycobacterium smegmatis* is processed at its 5' end and is stabilized by both a polypurine sequence and
1079 translation initiation. *BMC molecular biology* **9**: 33.

1080

1081 Sass AM, Van Acker H, Förstner KU, Van Nieuwerburgh F, Deforce D, Vogel J & Coenye T (2015) Genome-
1082 wide transcription start site profiling in biofilm-grown *Burkholderia cenocepacia* J2315. *BMC genomics* **16**:
1083 775.

1084

1085 Sasse CM & Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection.
1086 *Proceedings of the National Academy of Sciences of the United States of America* **100**: 12989-12994.

1087

1088 Sasse CM, Boyd DH & Rubin EJ (2003) Genes required for mycobacterial growth defined by high density
1089 mutagenesis. *Mol Microbiol* **48**: 77-84.

1090

1091 Schifano JM, Edifor R, Sharp JD, Ouyang M, Konkimalla A, Husson RN & Woychik NA (2013) Mycobacterial
1092 toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site. *Proceedings of*
1093 *the National Academy of Sciences* **110**: 8501-8506.

1094

1095 Schlüter J-P, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR & Becker A (2013) Global
1096 mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium
1097 *Sinorhizobium meliloti* 1021. *BMC genomics* **14**: 156.

1098

1099 Shao W, Price MN, Deutschbauer AM, Romine MF & Arkin AP (2014) Conservation of transcription start
1100 sites within genes across a bacterial genus. *MBio* **5**: e01398-01314.

1101

1102 Sharma CM, Hoffmann S, Darfeuille F, *et al.* (2010) The primary transcriptome of the major human
1103 pathogen *Helicobacter pylori*. *Nature* **464**: 250-255.

1104

1105 Shell SS, Chase MR, Ioerger TR & Fortune SM (2015a) RNA sequencing for transcript 5'-end mapping in
1106 mycobacteria. *Methods in molecular biology (Clifton, NJ)* **1285**: 31-45.

1107

1108 Shell SS, Wang J, Lapierre P, Mir M, Chase MR, Pyle MM, Gawande R, Ahmad R, Sarracino DA & Ioerger TR
1109 (2015b) Leaderless transcripts and small proteins are common features of the mycobacterial translational
1110 landscape. *PLoS genetics* **11**: e1005641.

1111

1112 Singh AK & Singh BN (2008) Conservation of sigma F in mycobacteria and its expression in *Mycobacterium*
1113 *smegmatis*. *Current microbiology* **56**: 574-580.

1114

1115 Singh AK, Dutta D, Singh V, Srivastava V, Biswas RK & Singh BN (2015) Characterization of *Mycobacterium*
1116 *smegmatis* sigF mutant and its regulon: overexpression of SigF antagonist (MSMEG_1803) in *M.*
1117 *smegmatis* mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress.
1118 *MicrobiologyOpen* **4**: 896-916.

1119

1120 Skliarova SA, Kreneva RA, Perumov DA & Mironov AS (2012) [The characterization of internal promoters
1121 in the *Bacillus subtilis* riboflavin biosynthesis operon]. *Genetika* **48**: 1133-1141.

1122

1123 Song T, Song SE, Raman S, Anaya M & Husson RN (2008) Critical role of a single position in the -35 element
1124 for promoter recognition by *Mycobacterium tuberculosis* SigE and SigH. *J Bacteriol* **190**: 2227-2230.

1125

1126 Sun R, Converse PJ, Ko C, Tyagi S, Morrison NE & Bishai WR (2004) *Mycobacterium tuberculosis* ECF sigma
1127 factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. *Mol*
1128 *Microbiol* **52**: 25-38.

1129

1130 Taverniti V, Forti F, Ghisotti D & Putzer H (2011) *Mycobacterium smegmatis* RNase J is a 5'-3' exo-
1131 /endoribonuclease and both RNase J and RNase E are involved in ribosomal RNA maturation. *Mol*
1132 *Microbiol* **82**: 1260-1276.

1133

1134 Thomason MK, Bischler T, Eisenbart SK, Förstner KU, Zhang A, Herbig A, Nieselt K, Sharma CM & Storz G
1135 (2015) Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense
1136 RNAs in *Escherichia coli*. *Journal of bacteriology* **197**: 18-28.

1137

1138 Trauner A, Lougheed KE, Bennett MH, Hingley-Wilson SM & Williams HD (2012) The dormancy regulator
1139 DosR controls ribosome stability in hypoxic mycobacteria. *Journal of Biological Chemistry* *jbc*. M112.
1140 364851.

1141

1142 Veyrier F, Said-Salim B & Behr MA (2008) Evolution of the mycobacterial SigK regulon. *J Bacteriol* **190**:
1143 1891-1899.

1144

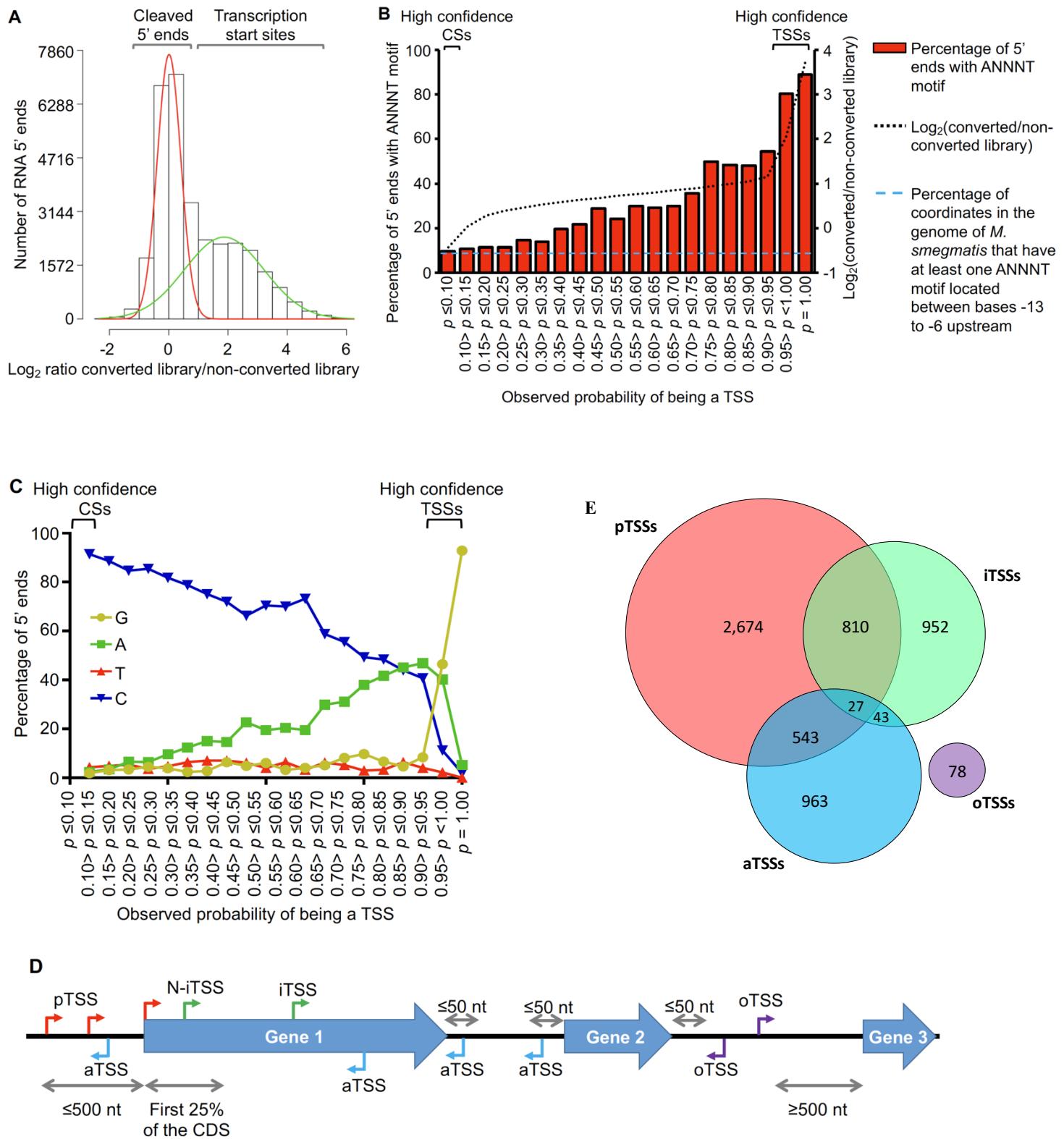
1145 Wayne LG & Hayes LG (1996) An in vitro model for sequential study of shiftdown of *Mycobacterium*
1146 tuberculosis through two stages of nonreplicating persistence. *Infection and immunity* **64**: 2062-2069.

1147
1148 Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J & Tauch A (2018) Transcriptome
1149 sequencing of the human pathogen *Corynebacterium diphtheriae* NCTC 13129 provides detailed insights
1150 into its transcriptional landscape and into DtxR-mediated transcriptional regulation. *BMC Genomics* **19**:
1151 82.
1152
1153 Wu M-L, Gengenbacher M & Dick T (2016) Mild nutrient starvation triggers the development of a small-
1154 cell survival morphotype in mycobacteria. *Frontiers in microbiology* **7**: 947.
1155
1156 Yang H, Sha W, Liu Z, *et al.* (2018) Lysine acetylation of DosR regulates the hypoxia response of
1157 *Mycobacterium tuberculosis*. *Emerging microbes & infections* **7**: 34.
1158
1159 Zeller ME, Csanadi A, Miczak A, Rose T, Bizebard T & Kaberdin VR (2007) Quaternary structure and
1160 biochemical properties of mycobacterial RNase E/G. *The Biochemical journal* **403**: 207-215.
1161
1162 Zhu Y, Mao C, Ge X, Wang Z, Lu P, Zhang Y, Chen S & Hu Y (2017) Characterization of a Minimal Type of
1163 Promoter Containing the -10 Element and a Guanine at the -14 or -13 Position in Mycobacteria. *J Bacteriol*
1164 **199**.
1165
1166 Zhukova A, Fernandes LG, Hugon P, *et al.* (2017) Genome-Wide Transcriptional Start Site Mapping and
1167 sRNA Identification in the Pathogen *Leptospira interrogans*. *Front Cell Infect Microbiol* **7**: 10.
1168
1169

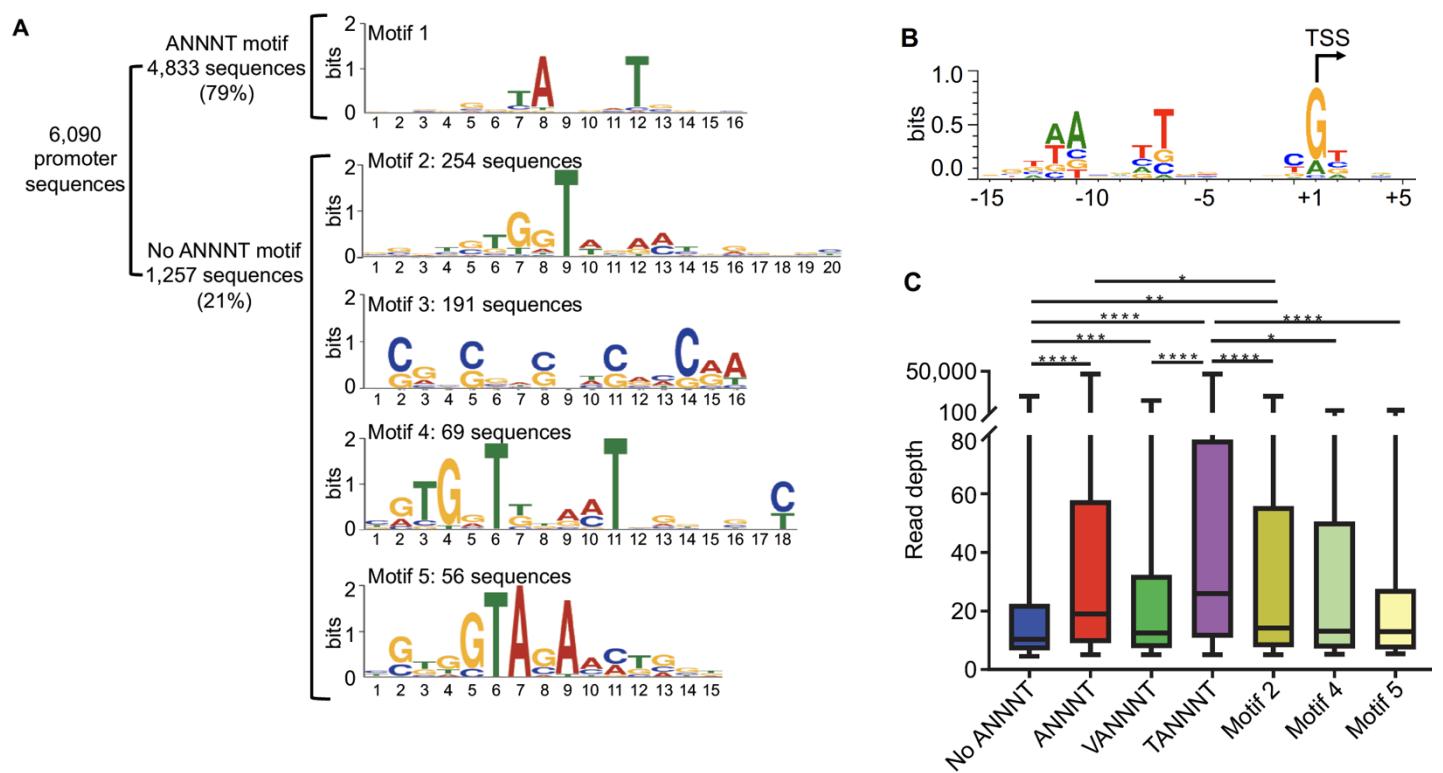
1170 **Figure legends**

1171
Figure 1. Mapping and categorization of transcription start sites in *M. smegmatis*. A) Diagram
 1172 showing the ratios of coverage in the converted/non-converted libraries for each coordinate.
 1173 Gaussian mixture modeling was used to discriminate between TSSs and CSs. For this analysis, the
 1174 15,720 coordinates from Dataset 1 were used. **B)** Abundance of the ANNNT promoter motif
 1175 located between bases -13 to -6 upstream of the 15,720 coordinates. The light blue dashed line
 1176 indicates the percentage of coordinates in the genome of *M. smegmatis* that have at least one
 1177 ANNNT motif located between bases -13 to -6 upstream (9.7%). **C)** Base frequency at the +1
 1178 position among the 15,720 5' ends from Dataset 1. **D)** Categories for TSS annotation based on the
 1179 genomic context. TSSs were classified according to their relative position to genes as primary
 1180 (pTSSs, red), internal (iTSSs, green), antisense (aTSSs, light blue) and orphan (oTSSs, violet). **E)**
 1181 Distribution of TSSs among the different categories.
 1182

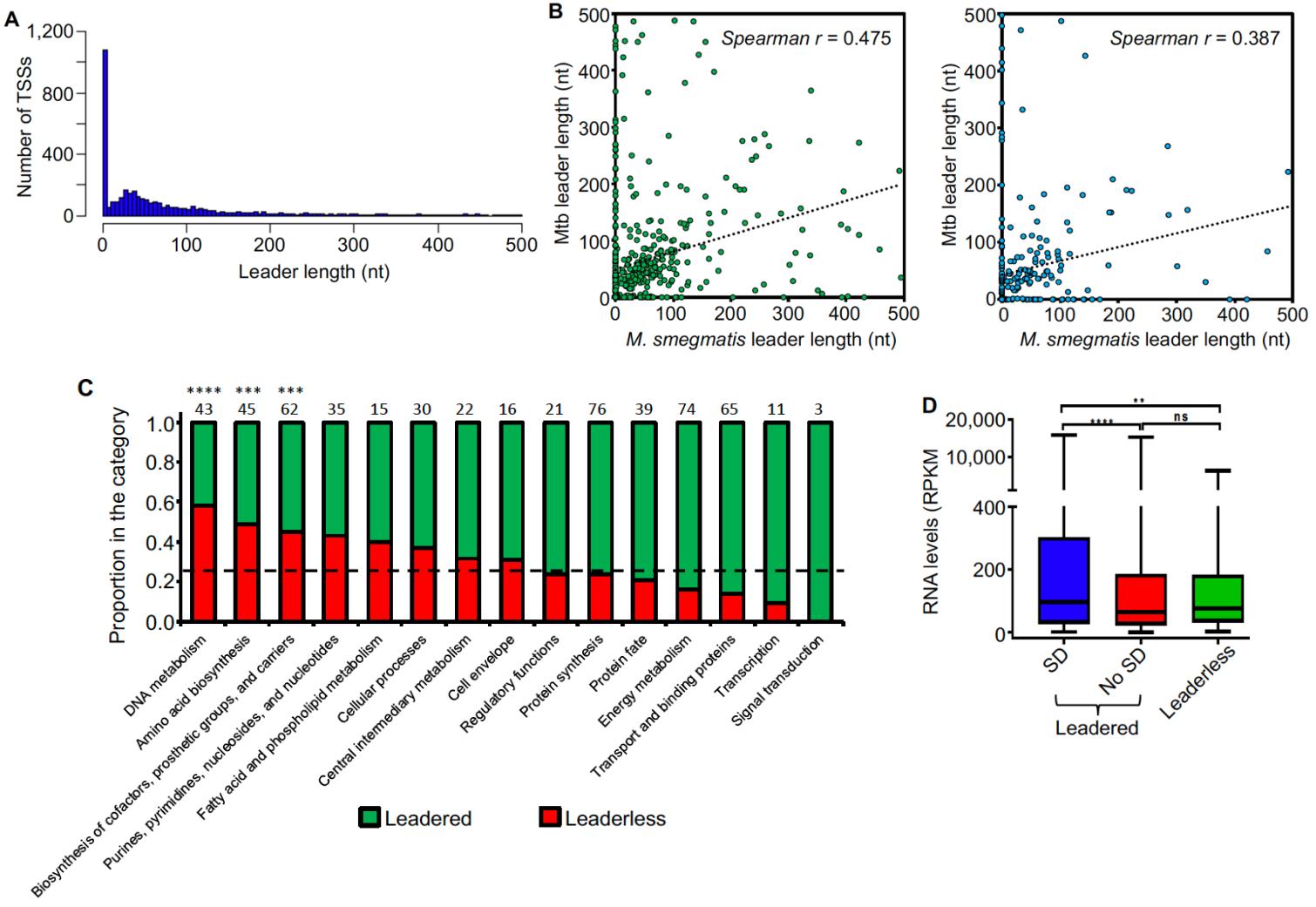
1183
Figure 2. *M. smegmatis* promoter -10 regions are dominated by the ANNNT motif. A) Identification of promoter motifs. Consensus motifs were identified by using MEME. The 20 nt
 1184 upstream the 6,090 TSSs were used for the initial analysis. Those sequences lacking an ANNNT -
 1185 10 motif between positions -13 and -6 (1,257) were used to identify other conserved promoter
 1186 sequences. Motif 2 (20 nt length) and Motif 4 (18 nt length) are located immediately upstream of
 1187 the TSS (at the -1 position), while the spacing of Motif 5 varies from -4 to -1 relative to the TSS,
 1188 with -3 being the dominant position (75% of the motifs). **B)** The sequences flanking 3,500
 1189 randomly chosen TSSs were used to create a sequence logo by WebLogo 3 (Crooks et al, 2004),
 1190 revealing the two dominant spacings for the ANNNT motif and base preferences in the immediate
 1191 vicinity of the TSS. **C)** Comparison of apparent promoter activity for different motifs. Mean
 1192 normalized read depth in the converted libraries from Dataset 1 was compared for TSSs having or
 1193 lacking the ANNNT motif in the -10 region, and ANNNT-associated TSSs were further subdivided
 1194 into those containing the extended TANNNT motif or conversely the VANNNT sequence (where
 1195 V = A, G or C). Motifs 2, 4 and 5 in Figure 2A are also included. ****p <0.0001, ***p <0.001,
 1196 **p <0.01, *p <0.05 (Kruskal-Wallis test with post-test for multiple comparisons).
 1197

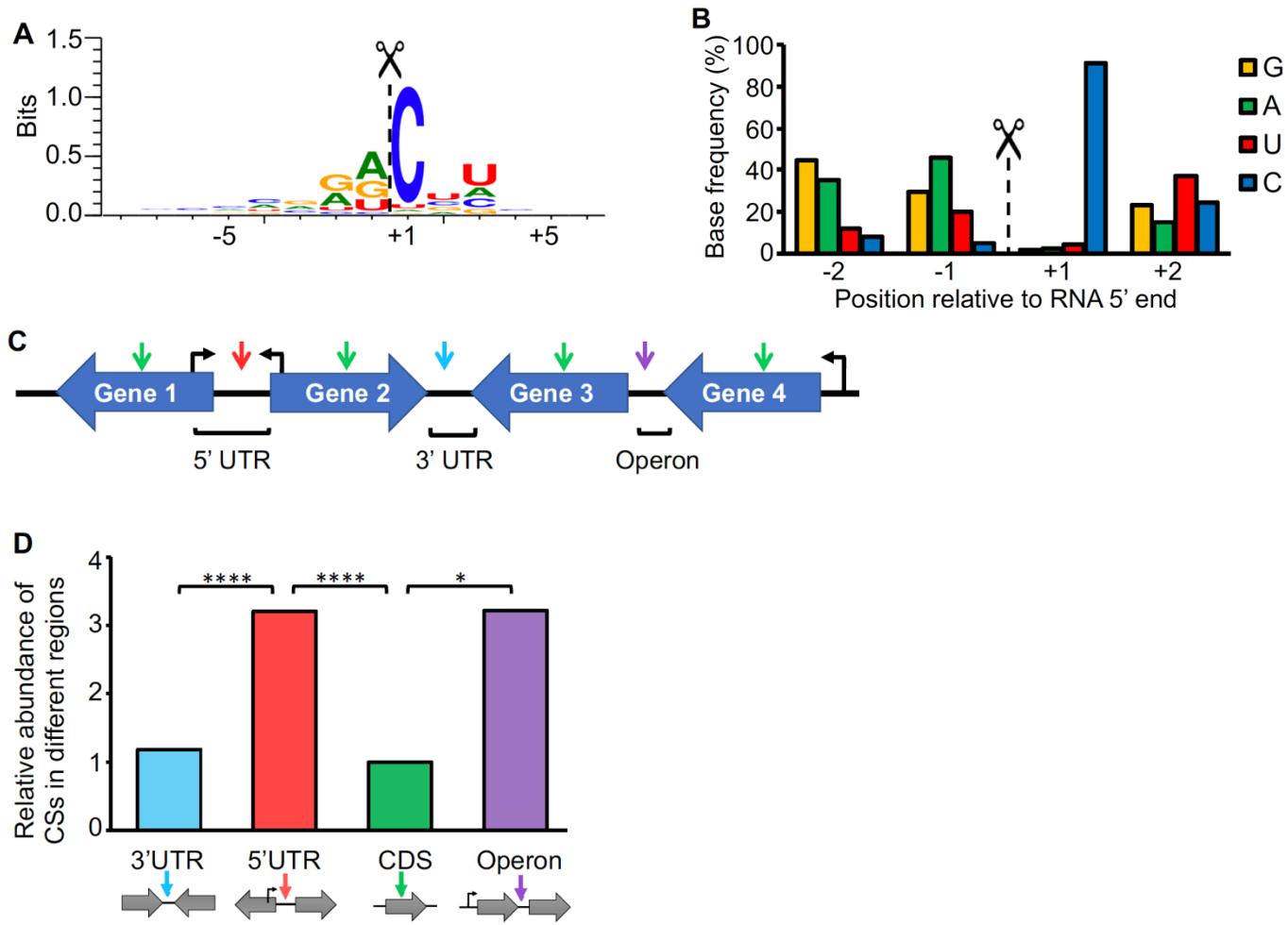

1198
Figure 3. Leader features are conserved in mycobacteria. A) Leader length distribution. The
 1199 4,054 pTSSs and the pTSSs of the 213 reannotated genes (N-iTSSs → pTSSs) were used. **B)**
 1200 Leader length correlation between *M. smegmatis* and Mtb genes. The leader sequences of genes
 1201 having a single unique pTSS in both species (leader length ≥ 0 and ≤ 500 nt) were used. 508
 1202 homologous genes in Cortes et al, 2013 (left figure) and 251 homologous genes in Shell et al,
 1203 2015 (right figure) were used. When a gene in *M. smegmatis* had more than one homolog in Mtb,
 1204 that with the highest identity was considered. Spearman r p-value <0.00001 in both cases. **C)**
 1205 Distribution of leaderless transcripts among different functional TIGRFam functional categories
 1206 (Haft et al., 2001). 557 genes having TIGRFam categories were used for this analysis. Genes
 1207 having both leadered and leaderless transcripts were excluded. The black dashed line indicates
 1208 the expected proportion of leaderless genes (25%) according to the global analysis performed in
 1209 this study. The numbers above each bar indicate the total number of genes used for this analysis
 1210 in each category (leaderless + leadered). ****p <0.0001, ***p <0.001 (Chi-Square test with
 1211 Bonferroni correction for multiple comparisons). **D)** RNA levels vary according to leader status.
 1212 Mean expression levels were compared for genes expressed with leaders containing a canonical
 1213 SD sequence (SD) or not (No SD) or lacking leaders (leaderless). Gene expression was
 1214

1216 quantified by RNAseq. Genes were classified as containing an SD sequence if at least one of the
 1217 three tetramers AGGA, GGAG or GAGG (core sequence AGGAGG) were present in the region
 1218 -6 to -17 nt relative to the start codon. rRNAs, tRNAs, sRNAs, and genes expressed as both
 1219 leadered and leaderless transcripts were excluded. ***p <0.0001; **p <0.005; ns: not
 1220 significant. (Kruskal-Wallis test with post-test for multiple comparisons).


1221
 1222 **Figure 4. Cleavage site positions are biased with respect to sequence context and genetic**
 1223 **location.** **A)** Sequence context of cleavage sites. The sequences flanking the 3,344 high-confidence
 1224 CSs were used to create the sequence logo with WebLogo 3 (Crooks et al, 2004). **B)** Base
 1225 preference for RNA cleavage. The base frequencies for the -2 to +2 positions were determined. **C)**
 1226 Cleavage site categories based on the genetic context. CSs are denoted with arrows. 5' UTR: the
 1227 CS is within the leader of a gene, and the genes upstream and downstream of the CS are divergent
 1228 (Gene 1 and Gene 2, red arrow). CDS: The CS is within a coding sequence (green arrow). 3' UTR:
 1229 the genes upstream and downstream of the CS are convergent (Gene 2 and Gene 3, light blue
 1230 arrow). Operon: The CS is between two genes with the same orientation and the first gene in the
 1231 operon has a pTSS according to Table S6 (violet arrow). **D)** Distribution of cleavage sites. The
 1232 frequency of CSs in each location was normalized to the proportion of the genome that the location
 1233 category comprised. The proportions were then normalized to the CDS category, which was set as
 1234 1. ***p <0001, *p <0.01 (Chi-square test).

1235
 1236 **Figure 5. The transcriptional landscape substantially changes upon oxygen limitation.** **A)**
 1237 TSSs significantly increased or decreased in hypoxia. 132 TSSs were overrepresented (upper
 1238 panel) and 186 were underrepresented (lower panel) in different hypoxia stages. The upstream
 1239 regions of these TSSs were used to search for promoter motifs using MEME. **B)** The mean
 1240 normalized read depths for each 5' end in the non-converted libraries were compared between
 1241 hypoxia and normoxia. Graphics show the Log₂ of the ratios of read depth for each CSs at 15 h
 1242 (upper left) and 24 h (upper right), and the Log₂ of the ratios of the read depth for each TSSs at 15
 1243 h (lower left) and 24 h (lower right) compared to normoxia. **C)** Normalized read depth at high-
 1244 confidence cleavage sites under normoxia and the transition into hypoxia. ***p <0.0001, ***p
 1245 <0.001, ns: not significant (Non-parametric Wilcoxon matched-pairs signed rank test).


1246
 1247
 1248


Figure 1

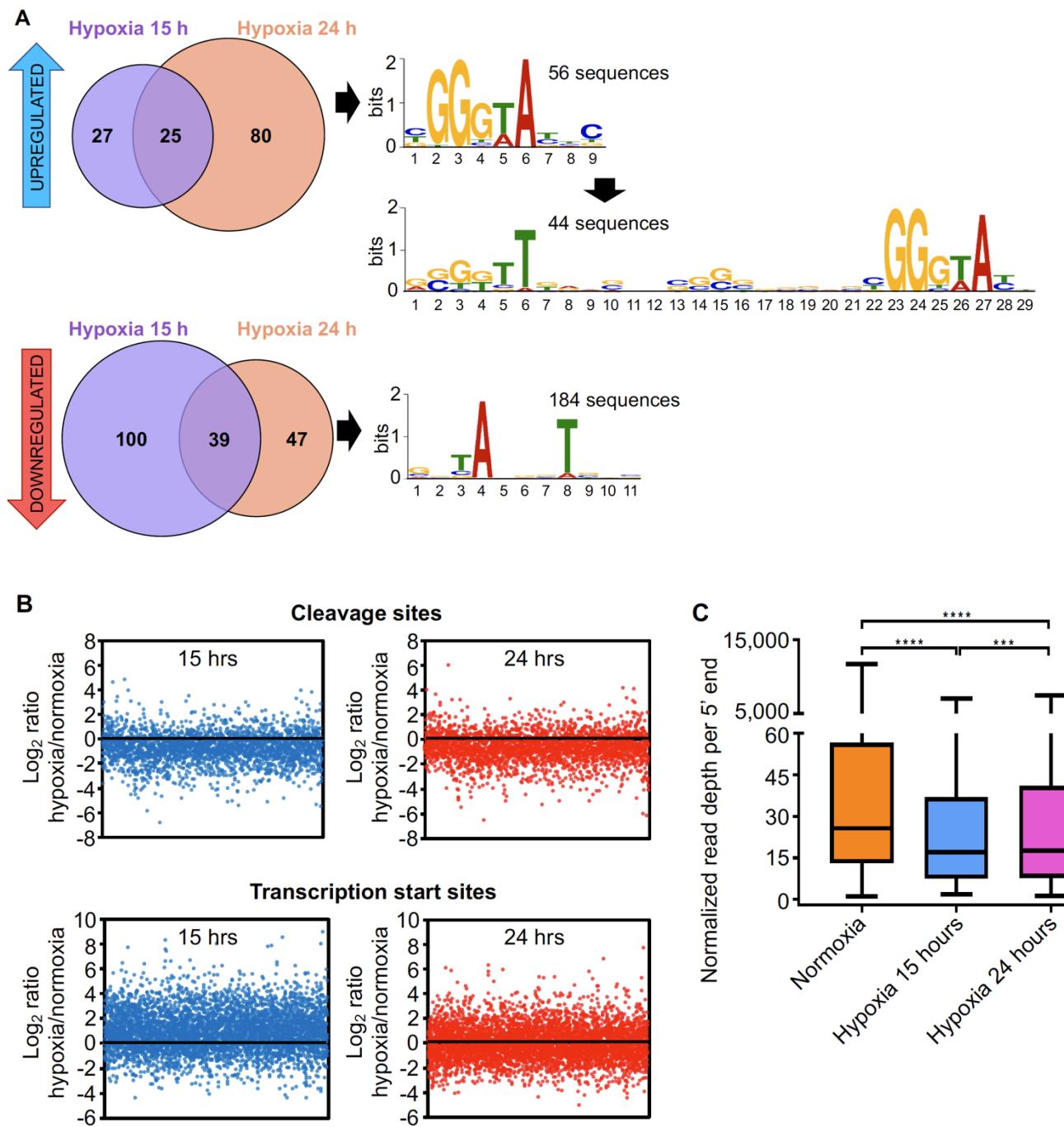

Figure 2

Figure 3

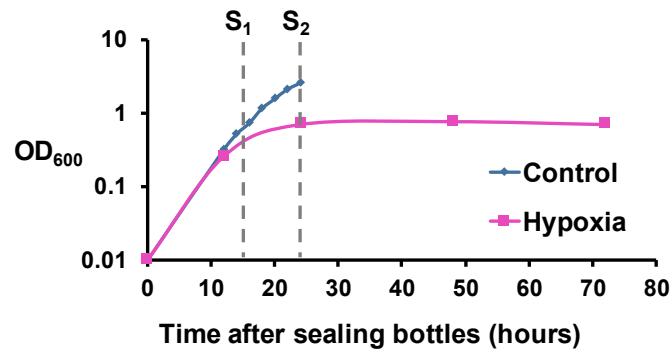


Figure 4

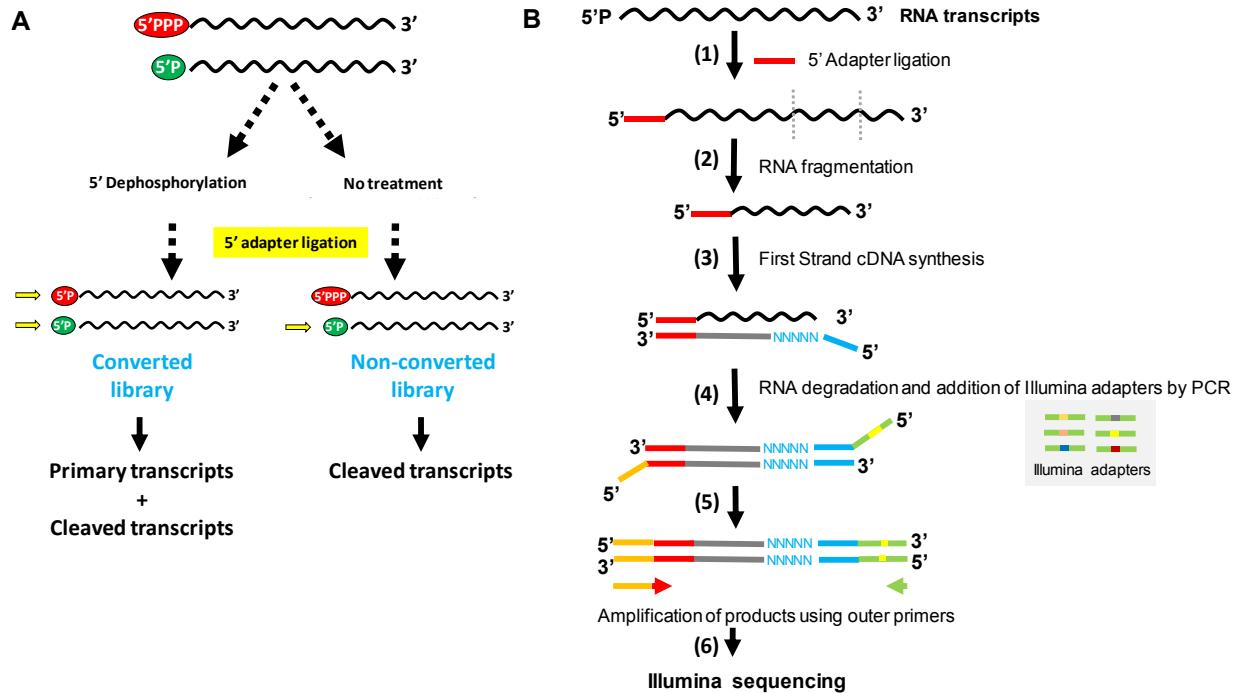
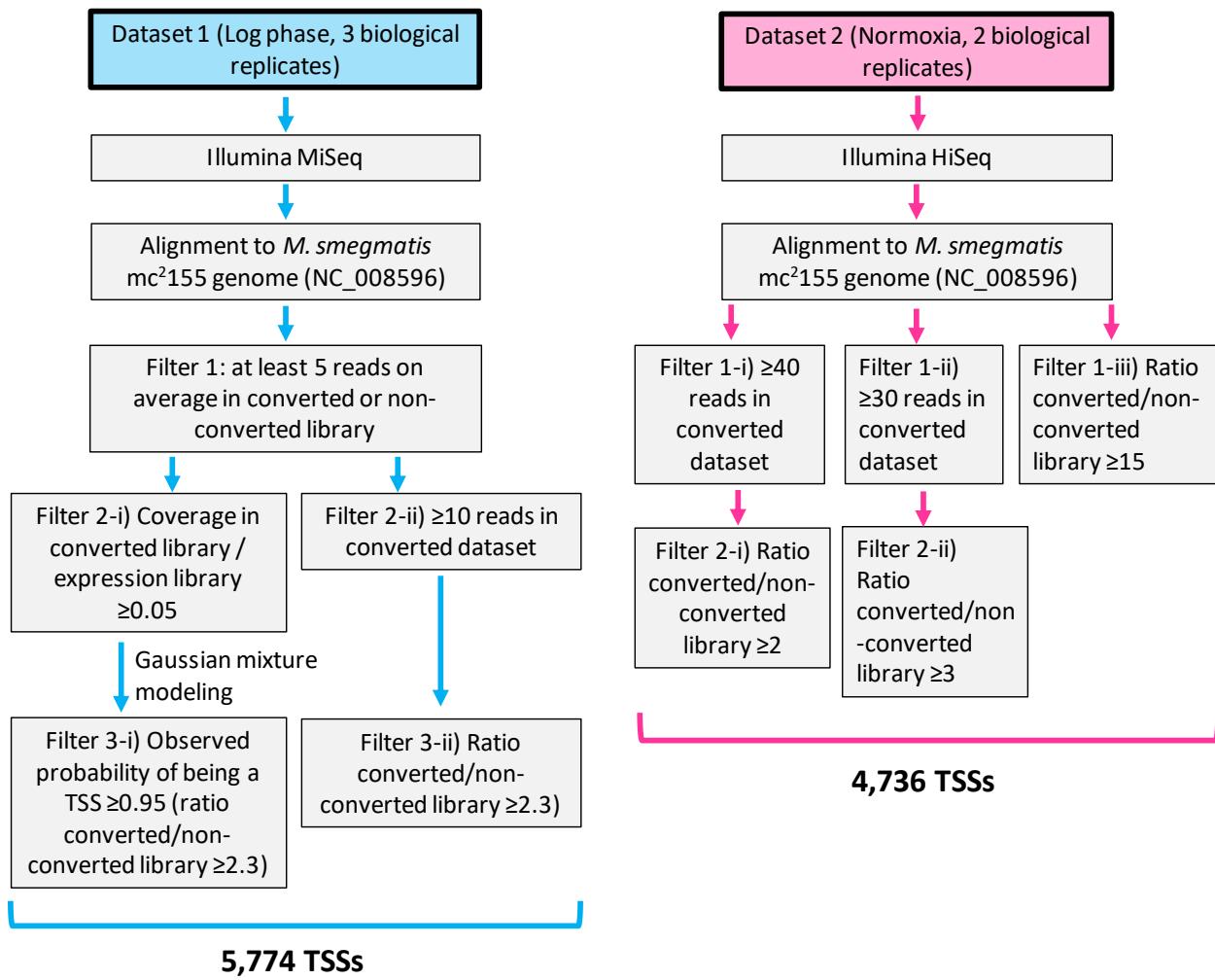
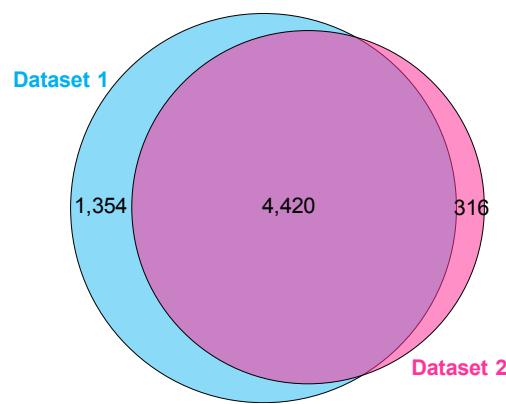
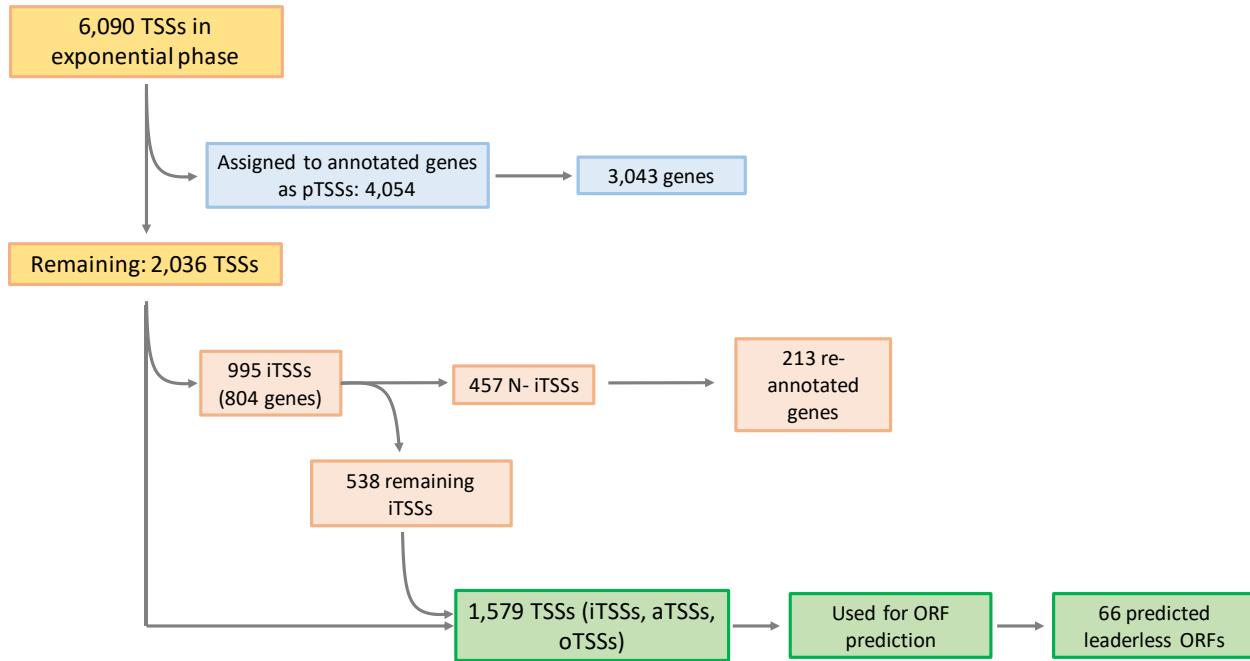
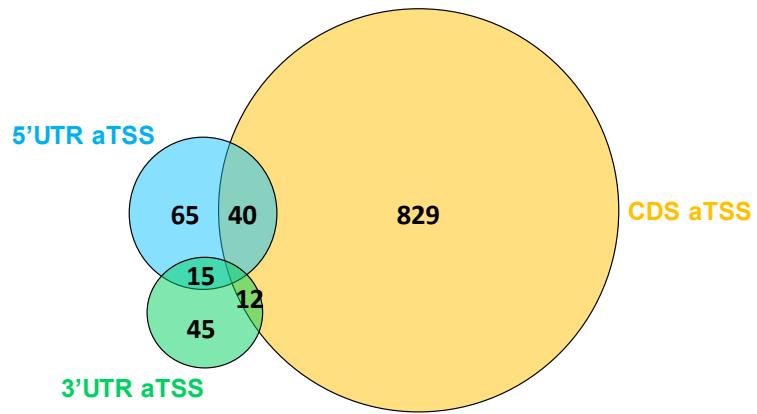


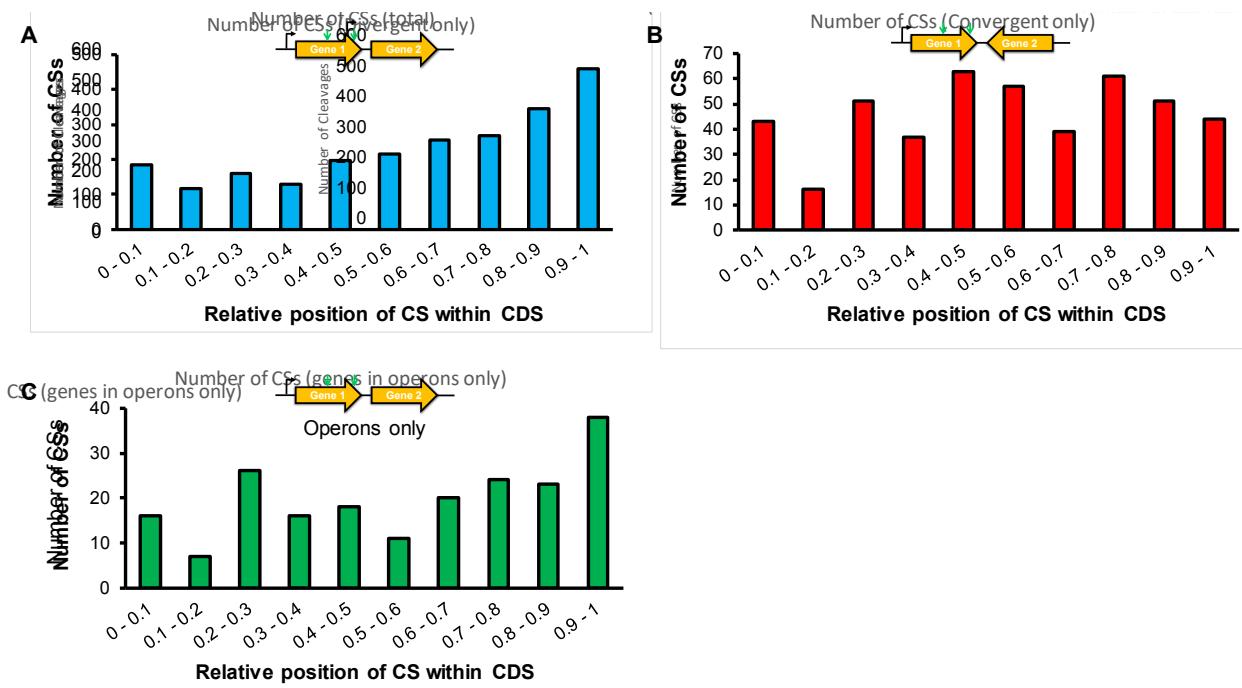
Figure 5

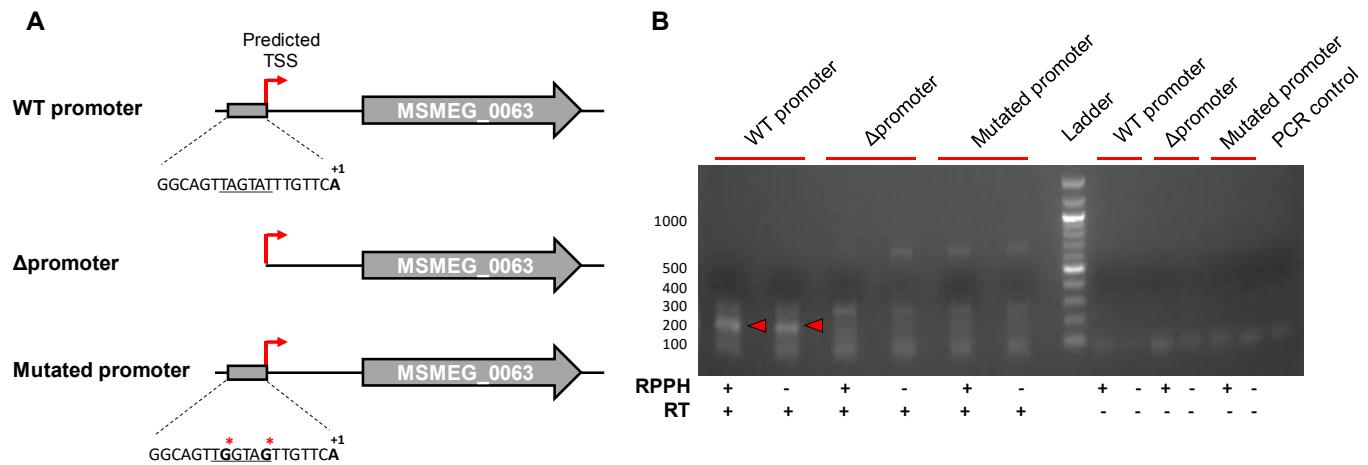

Supplementary Figures

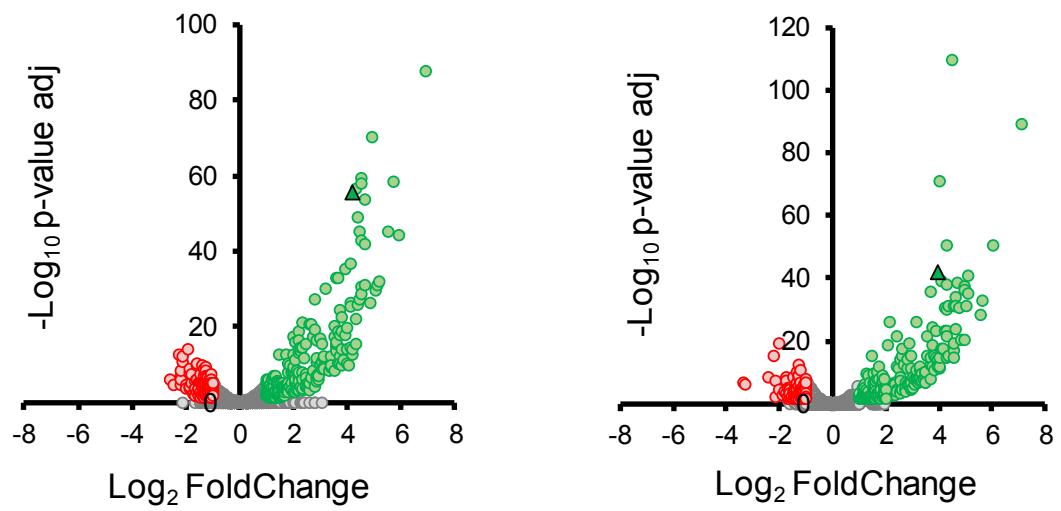

Supplementary Figure 1. Hypoxia model similar to the Wayne model. Cultures were grown in sealed flasks to produce a gradual reduction in oxygen. Samples were taken at 15 (S1) and 24 (S2) hours after bottles were sealed. For control, cultures were sampled at an OD = 0.8.

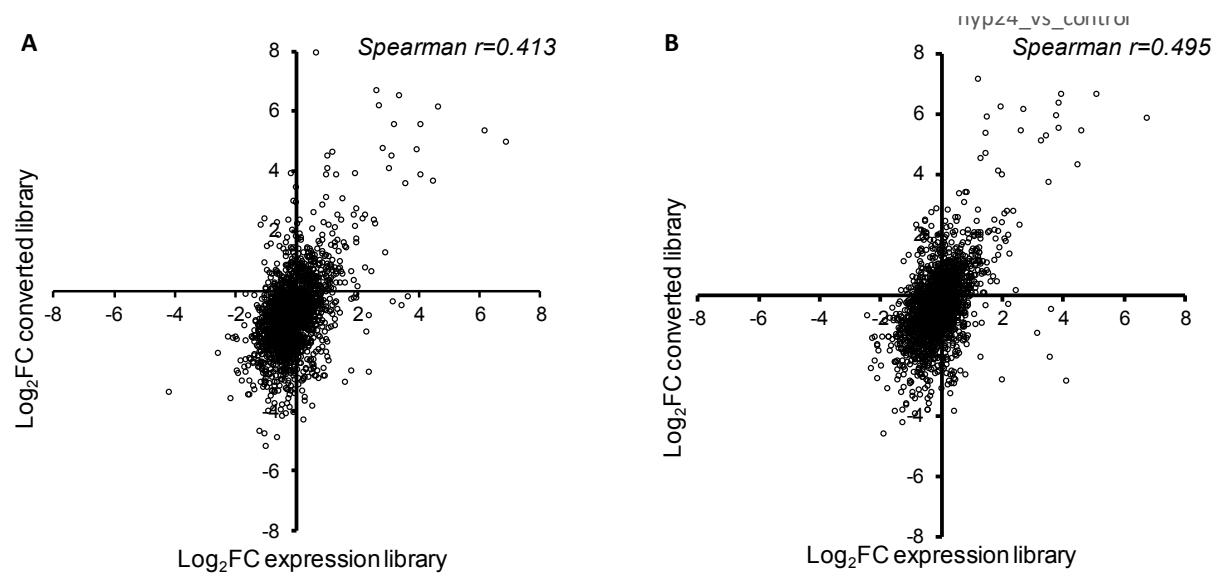

Figure S2. Construction of 5'-end-directed libraries. **A)** RNA samples were split in two parts and treated differentially. RNA for Library 1 (converted) was treated with RPPH to convert triphosphates in monophosphates, allowing the capture of 5' end that are primary transcripts or cleaved RNAs. RNA for Library 2 (non-converted) was mock-treated, allowing the capture of cleaved transcripts. **B)** Workflow of 5'-end-directed libraries. After RPPH or 5' polyphosphatase treatment, adapter SSS392 (TCCCTACACGACGCTCTCCGAUCU) was ligated to the 5' monophosphate ends (1). Then, RNA was fragmented by heating at 85°C for 6 min (log phase experiment) or at 94°C for 11 min (hypoxia experiment) (2) and first strand cDNA synthesis was carried out using the degenerate primer SSS397 (CTGGAGTTCAGACGTGTGCTCTCCGATCTNNNNNN) (3). RNA was then degraded and DNA was amplified using universal adapter sequence SSS398 (AATGATACGGCGACCACCGAGATCTACACTCTTCCCTACACGACGCTCTC) and primers bearing Illumina indexes (4). Adapter-bearing products were PCR-amplified using outer primers SSS401 (AATGATACGGCGACCACCGAGATC) and SSS402 (CAAGCAGAAGACGGCATACGAGAT) to enrich for full-length fragments. 4 (log phase experiment) or 16 (hypoxia experiment) PCR cycles were performed (5). Finally, libraries were sequenced using Illumina technology (6).

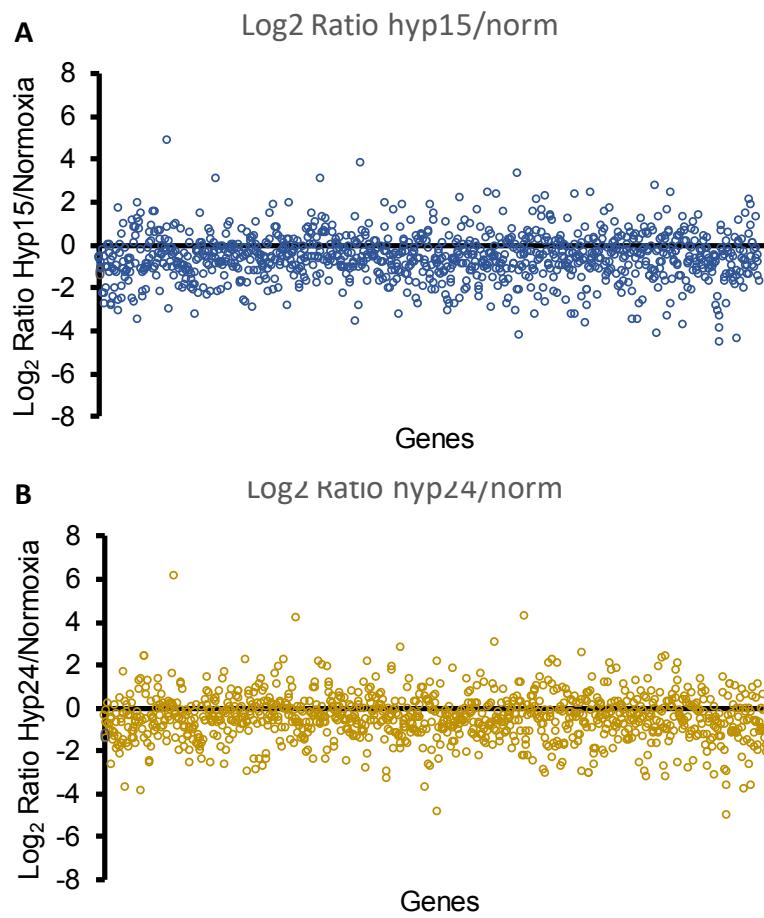

Figure S3. Workflow for noise filtering and TSS prediction in the different datasets.
 Normoxia refers to the control (log phase) used in the hypoxia experiment.


Supplementary Figure 4. TSSs identified in the different datasets. Dataset 1: exponential phase (5,774 TSSs), Dataset 2: Normoxia (4,736 TSSs).


Figure S5. Workflow used for TSS classification. A complete scheme of the procedure used to classify TSSs is shown. TSSs located within 0-500 nt upstream of an annotated coding sequence were classified as pTSSs. TSSs located within annotated coding sequences were classified as iTSSs. iTSSs located within the first 25% of an annotated coding sequence were subclassified as N-iTSSs. When a gene lacked a pTSS, had an N-iTSS, and had an in-frame start codon downstream of the N-iTSS and within the first 30% of the coding sequence, the start codon of the gene was re-annotated. aTSSs (TSSs located on the antisense strand of a coding sequence, 5' UTR, or 3' UTR) and oTSSs (TSSs not belonging to any of the above-mentioned categories) were assigned as described in Figure 1D and Materials and Methods.


Figure S6. Distribution of antisense TSSs. The 1,006 aTSSs were classified according to their positions in 5' UTRs, 3' UTRs, and CDSs (coding sequences).


Supplementary Figure 7. Cleavage sites distribution within genes according to coding sequence context. The number of cleavage sites according to the relative position in the coding sequence is represented considering **A)** only coding sequences whose downstream gene is in the same strand, **B)** only coding sequences whose downstream gene is in the opposite strand (convergent), and **C)** only genes having a downstream gene transcribed as an operon. The CS distribution is significantly different between graphics A and B (p -value <0.0001 , Kolmogorov Smirnov D test).


Figure S8. Validation of a medium confidence pTSS. A) Constructs used to validate the medium confidence pTSS of MSMEG_0063 were cloned into pJEB402 plasmid and integrated in the L5 site in the genome of an *M. smegmatis* strain lacking *msmeg_0062-msmeg_0066*. The *WT promoter* construct has the wildtype promoter region; *Δpromoter* has a deletion of the region upstream of the predicted pTSS; and *mutated promoter* has a replacement of two bases (red asterisks) in the -10 promoter region (underlined sequence). **B)** 1% agarose gel showing the 5' RACE amplification products. The red arrows indicate the band corresponding to the predicted pTSS. At the bottom is indicated whether the RNA samples were treated with pyrophosphohydrolase (RPPH) prior to adapter ligation and whether cDNA synthesis with reverse transcriptase (RT) was performed. PCR control: water.

Supplementary Figure 9. Gene expression levels in RNAseq expression libraries in hypoxia.
 Changes in transcript levels were obtained by DEseq analysis, comparing each indicated condition to the control experiment. Genes upregulated (245 or 266 at 15 or 24 h, respectively) and downregulated 106 or 158 at 15 or 24 h, respectively) with a fold change ≥ 2 and a corrected p value ≤ 0.05 are highlighted in green and red, respectively. The triangle indicates expression of MSMEG_5244 (*dosR*) gene.

Supplementary Figure 10. Correlation between expression data and 5' end-directed libraries data in hypoxia. The X axis represents the Log₂ of the fold change in the expression libraries from hypoxia/normoxia datasets and the Y axis represents the Log₂ of the fold change in the peak height in hypoxia/normoxia 5' end-directed libraries. The analysis was done for hypoxia at 15 hours (**A**) and 24 hours (**B**). Genes having only one pTSS were used. The correlation is significant in both cases, with a p -value <0.00001 .

Supplementary Figure 11. Changes in RNA cleavage within coding sequences in hypoxic conditions. The number of cleavage events within each coding sequence was compared through the different conditions. The Log₂ of the ratio of the number of cleavages in hypoxia/control are shown. Each dot represents a specific gene. **A)** Hypoxia 15 hours, **B)** Hypoxia 24 hours.