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Abstract
Identification of influential nodes is an important step in understanding and controlling the dynamics
of information, traffic, and spreading processes in networks. As a result, a number of centrality mea-
sures have been proposed and used across different application domains. At the heart of many of these
measures lies an assumption describing the manner in which traffic (of information, social actors, parti-
cles, etc.) flows through the network. For example, some measures only count shortest paths while others
consider random walks. This paper considers a spreading process in which a resource necessary for tran-
sit is partially consumed along the way while being refilled at special nodes on the network. Examples
include fuel consumption of vehicles together with refueling stations, information loss during dissemina-
tion with error-correcting nodes, and consumption of ammunition of military troops while moving. We
propose generalizations of the well-known measures of betweenness, random-walk betweenness, and Katz
centralities to take such a spreading process with consumable resources into account. In order to vali-
date the results, experiments on real-world networks are carried out by developing simulations based on
well-known models such as Susceptible-Infected-Recovered and congestion with respect to particle hop-
ping from vehicular flow theory. The simulation-based models are shown to be highly correlated with the
proposed centrality measures.
Reproducibility: Our code and experiments are available at https://github.com/hmwesigwa/soc_
centrality

Keywords: network centrality, Katz centrality, betweenness centrality, random-walk betweenness centrality, consumable
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1. Introduction
Spreading processes are ubiquitous throughout science, nature, and society (Strogatz, 2001;
Tao et al., 2006; Pastor-Satorras & Vespignani, 2001). These include spreading of infectious dis-
eases (Keeling & Rohani, 2011), computer viruses (Kephart et al., 1997), cascading failures
(Motter, 2004), traffic congestion (Li et al., 2015), opinion spreading (Liu et al., 2007; Bettencourt
et al., 2006), and reaction-diffusion processes (Colizza et al., 2007). Understanding a nodes’
spreading influence is fundamental for a wide variety of applications such as epidemiology
(Diekmann & Heesterbeek, 2000; Keeling & Rohani, 2011), viral marketing (Watts et al., 2007;
Leskovec et al., 2007a), collective dynamics (Albert & Barabási, 2002; Boccaletti et al., 2006; Barrat
et al., 2008) and robustness of networks (Albert et al., 2000; Newman, 2003; Cohen et al., 2001),
and so forth. Whereas many centrality measures were originally developed for social networks,
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some of them have subsequently been adapted to quantify the importance of nodes in epidemi-
ological spreading processes (Kitsak et al., 2010; Ghosh & Lerman, 2012; Šikić et al., 2013; Bae
& Kim, 2014). This is partly due to the fact that most centralilty measures have simple assump-
tions, thus these measures are often intuitive and interpretable for a given application. Moreover,
most popular centrality measures are based on variants of paths and eigenvector computations
which explain paradigms in spreading models. Popular centrality measures include degree, close-
ness, betweenness, current-flow, PageRank, eigenvector, and Katz centralities (Freeman, 1978;
Newman, 2005; Brandes & Fleischer, 2005; Page et al., 1999; Bonacich, 1987, 1991; Katz, 1953).
All these measures make an implicit assumption about the process in which a commodity (e.g.,
information, vehicles, or infection) flows in the network. Typically, closeness and betweenness
assume flow on geodesic paths, while PageRank, eigenvector, and Katz centrality model flow via
random walks. The extent to which a centrality measure can be interpreted for a given application
depends on whether or not the assumed flow characteristics are a good representation of what is
actually flowing in the network.

In this work, we consider a flow process in which a resource essential for flow is consumed
along the way and can be refilled at specially assigned nodes in order to ensure that a flow process
is not terminated. For example, a vehicle consumes fuel as it travels in a network that has refueling
station nodes. In another domain, information requires updating or refreshing while it moves
over the network. For example, in real information and social networks, rumors and gossips often
die out if not refreshed (Moreno et al., 2004) and forgetting rates are considered in models (Zhao
et al., 2013). Not much of the existing work models well-known concepts on networks by taking
into account consumable resources.

For simplicity, we model the resource consumption as a discrete process that limits the number
of steps the flow process can take without refilling the resource. For a graph underlying network
of interest, G= (V , E), the parameter κ represents the number of steps a process can take without
a consumed resource being refilled, and � ⊂V represents the refilling nodes. One of the most
intuitive and important modern applications of this process is the in-motion recharging of electric
vehicle batteries that is anticipated to be broadly implemented in future. We borrow terminology
from the charge level of batteries for electric vehicles and refer to the currently available resource
as the state of charge (SOC). Thus, κ represents the full SOC value. In the next section, a list of
related real-word applications is given.

1.1 Our contribution
In this work, we study a process where a commodity (such as information and traffic) is flowing
(or spreading) in a network while consuming a resource necessary for flow and being refilled
at special nodes. We give a list of potential applications that have a similar flow (or spreading)
process. In order to estimate a nodes’ spreading influence, we generalize the measures of Katz,
betweenness, and random-walk betweenness centralities (RWBC) (including its generalization
for directed graphs) and show how they can be computed. Lastly, we present different models
to simulate the spreading processes and show that the generalized centrality measures are highly
correlated with the simulation-based models.

2. Applications
Transportation networks: A natural and motivating application of such a process is in trans-
portation networks, in particular, road networks. Let a node in a road network represent a road
segment. An edge between two road segments exists if they are physically adjacent to each other
(as prolongation of each other or with a real intersection). In this case,� ⊂V represents the nodes
with refueling stations, and κ - the maximum distance a vehicle can travel without refueling. In
particular, we can also consider electric vehicle road networks equipped with wireless charging
lanes, where a whole lane can be turned into a charging infrastructure. This technology has
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378 H. Ushijima-Mwesigwa et al.

seen tremendous growth over the last couple of years with test sites already in place (Jang et al.,
2012). However, setting up this technology will come with a heavy price tag for a city with a
limited budget, thus tools must be developed to analyze these networks beforehand. While several
research studies have carried out for identifying the optimal locations for the deployment of
wireless charging lanes (Riemann et al., 2015; Chen et al., 2016; Ushijima-Mwesigwa et al., 2017;
Khan et al., 2018, 2019), these studies often make different assumptions while solving different
optimization objectives and constraints. Having an independent tool to analyze the network is
thus also necessary in order for deployment strategies to be compared.

Peer-to-peer networks: Peer-to-peer (P2P) information exchange systems (Basu et al., 2013)
have gained popularity over the past two decades. One of the challenges in P2P systems is search-
ing for content on the network. Gnutella is a popular open and decentralized file-sharing protocol
in P2P networks (Wang et al., 2007). The Gnutella protocol works as follows (Ripeanu & Foster,
2002):

1. A node (computer) v connects to the Gnutella network by connecting to a set of one or
more nodes, U, already in the network. Then v announces its existence to all nodes in U.

2. The nodes in U announce to all their neighbors that v has joined the network, which also
announce to their neighbors, and so forth.

3. Once all nodes are aware of v’s existence, it can make a query on the network.

Popular methods of message propagation for a given query issued by a node include such meth-
ods as flood-based and random-walks routing algorithms (Tsoumakos & Roussopoulos, 2006). A
global time-to-live (TTL) parameter represents the maximum number of steps (also known as
hops) a query can take before it gets discarded. In a flood-based routing algorithm, a querying
node contacts all its neighbors, who then contact all their neighbors, and so forth. The process
stops after each message has taken TTL number of steps. This simplistic method produces a huge
overhead by contacting many nodes. In the random-walks routing algorithm, the querying node
randomly chooses a subset of its neighbors and sends each of them k messages, for some k. Each
of these messages starts its own random walk in the network that is terminated after TTL steps.
Other termination conditions exist; however, they are not relevant for this work. The random-
walks routing algorithm greatly reduces the message passing throughout the network, with other
advantages such as local load balancing, since no nodes are favored over others during message
propagation. However, depending on the network topology, success rates could vary significantly.
These two routing algorithms are sometimes referred to as blind search methods. On the other
hand, informed search methods include methods that, for example, take advantage of previous
queries making better decisions for message passing, and in an ideal scenario, a message could
then take the shortest path to a target node.

In the Gnutella network, once a node receives a message, it first reduces the TTL counter of the
message before forwarding it. The TTL parameter is intuitively equivalent to the SOC parameter
κ in this paper while the set of nodes in � represents nodes that reset the TTL counter before
forwarding the message. These, for example, could be compromised nodes. In the analysis of
the Gnutella network, an interesting question is determining the most important nodes in the
network, which could be the nodes that receive the most traffic.

Social networks (online): The popularity and complexity of online social networks (OSNs) have
seen a tremendous growth in the last two decades and will continue to grow. In OSNs such as
Twitter or Facebook, a user shares information which can be viewed by other users he/she is con-
nected to. Centralitymeasures are often used to identify influential users within anOSN.However,
in most centrality measures, all the users in the network are assumed to exhibit similar behavioral
features. In other words, they all have the same desire and motivation to share knowledge in the
network. In most cases, all the users are assumed to be active users, users that are willing and
motivated to share their knowledge. Many studies have been carried out and they show that this is
not the case. In fact, most users, while being beneficiaries of the content being shared, actually do
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not share information themselves. The two different types of users are often referred to as posters
and lurkers (Marett & Joshi, 2009; Lai & Chen, 2014; Preece et al., 2004; Schlosser, 2005). Posters
are defined in Schlosser (2005) as the active users who share their experiences and create content
on the internet while lurkers are defined as the passive users who do not necessarily create any
content. The analysis of lurkers in social networks is now an active area of research (Interdonato
& Tagarelli, 2016). In order to have a better understanding of OSNs, it is important to understand
how information and content are shared over the network. It has been reported that lurkers are the
majority in many online communities. The percentage of lurkers in an online community varies
across different studies with some giving estimates as high as 90% of the total users (Van Mierlo,
2014). Sometimes referred to as the participation inequality principle (Interdonato & Tagarelli,
2016), in which only a small percentage of users actually contribute to the online content while
the rest never do. Lurkers are not registered users who do not use their account; they can share
information in subtle ways. For example, Facebook has the “like” feature and thus user’s contacts
can see the information he/she liked. In this work, we take the posters to be members of the set
� and assume that a piece of information is coupled with a momentum or penetrating power.
Following the analogy of a battery charge in Electric Vehicle (EV), the momentum of a piece of
information has the power to drive the information for a limited number of steps, κ , before it dies
out. However, if it reaches a node in �, it regains its momentum.

Personalized web ranking: Consider a person surfing the web at random, however, with a topic
of interest in mind. The surfer begins at a web page ω1 and performs a random walk on the web
graph. At each time step, the person proceeds from the current page u to a randomly chosen web
page that u is linked to. If after κ steps, the surfer has not found a web page of interest, the surfer
starts the process again from ω1. However, if the surfer discovers a web page ω2 that is relevant
to the topic of interest, ω2 becomes the new restarting point and the process continues. If � is
the set of web pages known beforehand, then centrality measure defined by such a process can be
used to rank the web pages based on the ones in�, giving a personalized page ranking strategy. In
this class of applications, we can also mention random-walk-based similarity measures on graphs
and hypergraphs (Shaydulin et al., 2017; Fouss et al., 2007; Chen & Safro, 2011) that would benefit
from introducing resource consumption restrictions for the distance of a random walk.

3. Related work
Centrality as a way of analyzing social networks dates back to Bavelas (1948). Since then, various
methods of centrality have been proposed to quantify the importance of individuals in social net-
works. These measures have also been effectively used as tools to study networks in other diverse
fields such as physics, biology, and engineering.

Since our initial motivation for this research was related to the analysis of road networks, in
this section, we first highlight how previous studies have used centrality measures to analyze road
networks. Next, we briefly introduce and summarize studies on electric vehicle road networks.
Lastly, based on the potential applications for the proposed centrality measures, we summarize
different existing approaches for possible applications.

We briefly summarize an incomplete list of studies in which centralities have been used to study
and analyze road networks. A road network pattern can be viewed as the geographical layout and
structure of a network. A road network can be laid out in different patterns (e.g., see the book
by Southworth & Ben-Joseph (2013) for more information on road network patterns) which can
affect traffic performance, travel behavior, and traffic safety. In Zhang et al. (2011), the between-
ness centrality is computed to analyze and classify road network patterns. In particular, it is used
to define a measure that can quantitatively distinguish between different pattern types. In Wang
et al. (2012), the authors use centrality measures to analyze road networks in urban areas and
apply their findings to mitigate congestion. More specifically, they use large-scale mobile phone

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2019.7
Downloaded from https://www.cambridge.org/core. IP address: 198.21.137.109, on 18 Oct 2019 at 19:50:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2019.7
https://www.cambridge.org/core


380 H. Ushijima-Mwesigwa et al.

data, with detailed Geographic Information System data, to detect types of road usage and deter-
mine the origins of the drivers. This information is used to build a bipartite network with nodes
representing road segments and driver sources, which is then called the network of road usage.
Here, a driver source is a zone where the mobile phone user lives. This can be located using the
mobile phone data. Given a list of all driver sources, for each road segment r, the authors calcu-
lated the fraction of traffic flow on r that was generated by each driver source. They then ranked
the driver sources by their contribution to the traffic flow. Based on this information, an edge in
the network of road usage exists between a road segment r and the top-ranked source nodes that
produce 80% of r’s traffic flow. Finally, the betweenness centrality of a road segment r in the road
network, along with the degree centrality of r in the network of road usage, was used to classify and
group the road segments in the network. Experiments carried out in the San Francisco Bay area
and Boston area provide evidence to show that the findings could enable cities to tailor targeted
strategies to reduce the average daily commute time.

In Scheurer et al. (2008), the authors used a wide variety of centralitymeasures such as between-
ness, closeness, and degree centrality to identify the positive and negative points of the public
transportation networks from different perspectives such as coverage, connectivity, and service
levels. The collective human spatial movement behavior is explored in Jiang & Jia (2011). The
authors use, among others, PageRank and betweenness centrality coupled with agent-based sim-
ulations to study the movement of pedestrians in London street network. In Altshuler et al.
(2011), the authors propose an estimation method for mobility prediction in transportation net-
works based on the betweenness centrality carrying out experiments on the Israeli transportation
network. Other studies on transportation networks, where centrality plays a crucial role in the
analysis, include Jayasinghe et al. (2015), Jiang & Claramunt (2004), Porta et al. (2006), Jayaweera
et al. (2017), Crucitti et al. (2006), and Park & Yilmaz (2010).

As cities move toward reducing their carbon footprint, EVs offer the potential to reduce both
petroleum imports and greenhouse gas emissions. However, batteries in these vehicles have a lim-
ited travel distance per charge. This results in a major obstacle for EV widespread adaptation,
namely, range anxiety, the persistent worry about not having enough battery power to complete a
trip. The emergence of EV wireless charging technology where a whole lane can be turned into a
charging infrastructure provides itself as a potential solution to range anxiety. For a more detailed
study of the design, application, and future prospects of this technology, the reader is encour-
aged to see, for example, Qiu et al. (2013), Bi et al. (2016), Li & Mi (2015), Lukic & Pantic (2013),
Cirimele et al. (2014), Fuller (2016), Vilathgamuwa & Sampath (2015), Ning et al. (2013), Yan
et al. (2006), and Guimerà et al. (2002). With a heavy price tag, a deployment of this technology
without a careful study can lead to inefficient use of limited resources. One of the main purposes
of this paper is to provide a tool to study and analyze road networks with a given deployment of
wireless charging lanes. In these EV road networks, we assume that in order for an EV to travel
between any two nodes, it is possible that a vehicle may need to detour to get charged to arrive
at its destination. We envision that our modified version of betweenness centrality can be used in
studying these EV road networks in similar ways as the studies in the preceding paragraph.

Studies analyzing social networks whose users can be categorized as posters and lurkers have
recently been gaining attention. In Tagarelli & Interdonato (2013, 2014), the authors propose cen-
trality measures for ranking lurkers in social networks. In these works, no prior knowledge of
whether a user is a lurker/poster or not is assumed. The authors define a topology-driven lurking
framework to model the relationships from information-producer to information-consumer. As
a result, lurkers are ranked based on only the topology of the network. In our applications of the
proposed centrality measures, we assume prior knowledge of whether or not a user is a poster or
lurker. The main basis for this assumption is that the network topology may not be related to a
user’s desire to share information. For example, two users on Facebookmay have the same number
of connections; however, they have very different desires to share or post information.
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4. Graphmodel
Let G= (V , E) be an unweighted (directed or undirected) graph underlying a network of interest.
The underlying assumption is that the commodity (such as information and moving vehicle) is
flowing (or spreading) on G while consuming a resource necessary for flow. The flow is limited to
the nodes within a geodesic distance of at most κ edges, κ ∈N. In addition, there exists a subset
of nodes � ⊂V that refill the resource. In other words, if the commodity passes through a node
u ∈ �, it can then spread further to nodes that are at most κ edges, from u. This process is modeled
by a directed graph with adjacency matrix Bκ (see below).

Let A be the adjacency matrix of G, and |V| = n. Define the state space of a commodity
traversing G as the set

V := {(u, i)|u ∈V , 0≤ i≤ κ},
in which the state (u, i) represents the event that the commodity is at node u ∈V with the current
level of SOC at i. The transition from one state to another is modeled by a directed graph G =
(V , E ), where E = E1 ∪ E2 with

E1 :=
{(
(u, i), (v, κ)

) | (u, v) ∈ E, v ∈ �
}
,

and

E2 :=
{(
(u, i), (v, j)

) | (u, v) ∈ E, i= j+ 1, v /∈ �
}
.

The set E1 represents a transition where the current SOC is increased to κ (refilled), while E2
represents a transition where the current SOC is reduced by 1 (consumed). The adjacency matrix
of G , denoted as Bκ , is defined as follows. Let J� be a diagonal n× nmatrix given by

[J�]ii =
{
1, if i ∈ �

0, otherwise.

}

For ease of exposition, where it is clear, we drop the subscript in J� and simply write J. If I the
n× n identity matrix defines the n(κ + 1)× n(κ + 1) block matrix Bκ as

Bκ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AJ A(I-J) 0 . . . . . . . . . 0
AJ 0 A(I-J) 0 . . . . . . 0

AJ 0 0 . . . 0 . . . 0
...

. . .
...

...
. . .

...
AJ 0 0 . . . 0 . . .A(I-J)
AJ 0 0 . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

then the block matrix Bκ defines a directed state space graph G = (V , E ) that models the underly-
ing flow process. In order for a commodity to flow from node s to t, it may be necessary to traverse
one or more nodes in �. With this in mind, we define a feasible walk to represent the walks in G
that the commodity can fully traverse.

Definition 1. A walk w inG is a feasible walk if a commodity starting with full SOC can traverse w.

The proposed centrality measures in the following sections are based on computing the feasible
walks in the network.
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5. Katz centrality
The centrality measure proposed by Katz (1953) was originally intended to rank a node (i.e., an
actor in a social system) influence within a social network according to the number of its contacts
considering different path lengths to other nodes. Thus, the model takes into account not only the
immediate neighbors of a node but also its neighbors of second-order, third-order, and so on. The
computation of Katz centrality is based on random walks emanating from a node. In this section,
we propose SOC-Katz centrality that only takes feasible walks into account.

5.1 Counting number of feasible walks
For an adjacency matrix A of a graph, the ijth entry of the matrix Ak, k ∈N, counts paths from i to
j of length k.However, in our resource consumption model, not all of these walks are in fact feasible.
This leads to an interesting question of finding a matrix that represents the number of i-j feasible
walks.

Consider the matrix Bk
κ . Assume that the index of nodes in V and matrices I, J,A, Bκ start at 0.

For i, j ∈V , with 0≤ i< n, 0≤ i′ < n(κ + 1), and j≡ i′ (mod n), the ijth entry of Bk
κ gives the

number of walks from node i to j completing with a different SOC. The destination SOC is given
by the value 	i′/n
. This implies that the number of walks from i to j ending with non-negative
SOC is given by the summation at each SOC level.

Let Iκ be an n(κ + 1)× n block matrix with κ + 1 blocks of identity matrix I given by

Iκ =

⎡
⎢⎢⎢⎢⎢⎣

I
I
...
I

⎤
⎥⎥⎥⎥⎥⎦ , andZκ =

⎡
⎢⎢⎢⎢⎢⎣

I
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ (2)

Then the matrix IT
κ Bk

κIκ is an n× n matrix whose ijth entry gives the number of feasible walks
from i to j of length k. Let S be the n(κ + 1)× n(κ + 1) matrix with ij term given by

sij =
∞∑
k=1

αk[Bk
κ ]ij (3)

Thus,

S = In(κ+1)×n(κ+1) + αBκ + α2B2
κ + · · · + αiBi

κ + · · ·
= (In(κ+1)×n(κ+1) − αBκ )−1

Then, ifW is the n× nmatrix given

W =ZT
κ (In(κ+1)×n(κ+1) − αBκ )−1Iκ (4)

The centrality is then given by C =W1, where 1 is the column vector consisting of all 1’s. For the
standard centrality measure, the Katz centrality is computed by (I − αA)−1. The parameter α, also
known as the damping factor, must be chosen carefully such that 0< α < 1/λmax, where λmax is
the largest eigenvalue of Bκ .

Lemma 5.1. 1/λmax(A)≤ 1/λmax(Bκ ) .

Proof. If A=ZT
mBmIm, then Ak is the n× n matrix that counts the walks of length k in the

bounded-walk graph. Clearly, [Ak]ij ≥ [Ak]ij for all i, j. This implies that if the sequence {αkAk}∞k=1
converges, then {αkAk}∞k=1 converges. Thus, λmax(A)> λmax(B)
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When α → 0, then only walks of very short length are taken into account and degree centrality
usually performs well (Borgatti, 2005; Kitsak et al., 2010). However, as the value of α increases,
eigenvector and Katz outperform other measures (Liu et al., 2016). Due to lemma 5.1, we are able
to take larger values of α compared to the standard Katz centrality measure.

6. Betweenness centrality
For a graph G, let σst be the total number of shortest paths from nodes s to t, while σst(v) be
the total number of shortest paths from s to t that pass through v. Then the (unnormalized)
betweenness centrality of v, BC(v), is given by

BC(v) :=
∑
s�=v �=t

σst(v)
σst

(5)

The decision of whether or not to include the end-points of a path to fall on that path is usually
made according to specific applications and goals. This is because the only difference this makes
is an additive constant to BC(v). In this paper, we will generally include the end-points.

Let σ ∗
st be the total number of shortest feasible walks (see Definition 1) from s to t, with

σ ∗
st(v) be the total number of shortest feasible walks from s to t that pass through v. Then the

(unnormalized) SOC-betweenness centrality of v, BC∗(v), is given by

BC∗(v) :=
∑
s�=v �=t

σ ∗
st(v)
σ ∗
st

(6)

The computation of BC∗ depends on counting the number of shortest feasible walks for each pair
s, t ∈V .

6.1 Counting shortest feasible walks
Let dG(u, v) for u, v ∈V be the geodesic distance from u to v. The term σst(v) for v ∈V can be
calculated as

σst(v)=
{
0, if dG(s, t)< dG(s, v)+ dG(v, t)
σsv · σvt , otherwise

(7)

This property, however, does not hold for counting shortest feasible walks in G. Thus, in order to
count feasible walks in G, we turn to the directed graph G .

Lemma 6.1. Let w= (s= u0, u1, . . . , uk = t) be an s-t walk in G of length k, with ui ∈V. w is
a feasible walk in G if and only if there exists a walk in G with a node sequence of (s, κ)=
(u0, i0), (u1, i1), . . . , (uk, ik)= (t, ik) for some 0≤ i0, . . . , ik ≤ κ .

Proof. For walk w= (s= u0, u1, . . . , uk = t) in G, let i0, i1, . . . , ik be the SOC value at nodes
u0, . . . , uk, respectively, during the walk. Since, w is a feasible walk, i0 = κ and node
(uj+1, ij+1) is adjacent to (uj, ij) in G , for 0≤ j≤ k− 1. Therefore, the node sequence (s, κ)=
(u0, i0), (u1, i1), . . . , (uk, ik)= (t, ik) is a walk in G . On the other hand, if (s, κ)= (u0, i0), (u1, i1),
. . . , (uk, ik) = (t, ik) is a walk in G , then uj+1 is adjacent to uj in G, for 0≤ j≤ k− 1. Thus,
w= (s= u0, u1, . . . , uk = t) is a walk in G.

For 0≤ i≤ κ , a walk from (s, κ) ∈ V to (t, i) can be viewed as a feasible walk from s to t in G.
However, a shortest path from (s, κ) ∈ V to (t, i) is not necessarily a shortest feasible walk from s
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to t in G. In order to count shortest feasible walks in G, we introduce a set of dummy nodes into
G and call the new graph G� = (V�, E�), where

V� := V ∪ { (u, �) | u ∈V}
E� := E ∪ { (

(u, i), (u, �)
) | (u, i) ∈ E }

Note: � can be viewed as a string or marker and is not a variable. The nodes (u, i) for 0≤ i≤ κ

represent node u ∈V at different states i. However, for a shortest feasible walk from s to t, we
are interested in arriving at t at any state, thus introducing a dummy node (t, �) to capture all
final states. The following lemma shows how adding these dummy nodes simplifies the process
representing shortest feasible walks.

Lemma 6.2. Let w= (s= u0, u1, . . . , uk = t) be an s-t walk in G of length k, with ui ∈V. w is a
shortest feasible walk in G if and only if there exists a shortest path in G� with a node sequence
of (s, κ)= (u0, i0), (u1, i1), . . . , (uk, ik)= (t, ik), (uk+1, ik+1)= (t, �) for some 0≤ i0, . . . , ik ≤ κ ;
k ∈N.

Proof. If w is a shortest feasible walk in G, from Lemma 6.1, it follows that there exists a walk w′
in G and subsequently in G� with w′ = ((s, κ)= (u0, i0), (u1, i1), . . . , (uk, ik)= (t, ik)). Suppose w′
is not a path in G . Then there exists a node (uj, ij) for some j ∈N visited more than once. This
forms a cycle C within w′. Define w′′ as a node sequence in G where the cycle C in w′ is replaced
with (uj, ij). It is easy to see that w′′ is a walk in G with length strictly less than w′. By Lemma
6.1, this implies that there exists a feasible walk in G with length less than w contradicting the
assumption that w is a shortest feasible walk in G. Thus, w′ and subsequently the node sequence
(s, κ)= (u0, i0), (u1, i1), . . . , (uk, ik)= (t, ik), (uk+1, ik+1)= (t, �) for some 0≤ i0, . . . , ik ≤ κ , form
a shortest path in G�.

On the other hand, suppose w′ is a shortest path from (s, κ) to (t, �) in G� of length k+ 1 for
some k ∈N. Lemma 6.1 implies that there exists an s-t feasible walkw inG of length k. By the same
lemma, the existence of a shorter s-t feasible walk in G would imply the existence of a walk from
(s, κ) to (t, �) in G� with length less than k+ 1, contradicting the shortest path assumption.

For a set A⊂V and s, t ∈V , define σst(A) as the number of s-t shortest paths that pass through
one or more nodes in A.

Lemma 6.3. For s, t, v ∈V, let γ , τ ∈ E� with γ = (s, κ), τ = (t, �) and Av = {(v, i)|0≤ i≤ κ} then:

1. σ ∗
st = σγ τ

2. σ ∗
st(v)= σγ τ

(
Av

)
Proof. For the first part, Lemma 6.2 gives a one-to-one mapping between set of shortest feasible
walks inG and set of shortest paths in G� whose cardinalities are given by σ ∗

st and σγ τ , respectively.
For the second part, σγ τ (Av) counts the number of shortest paths in G� that pass through a node
inAv. Applying Lemma 6.2, any shortest path that passes through a node inAv is a shortest feasible
walk in G that passes through v.

Due to the above lemma, we can compute BC∗(v) as follows:

Theorem 1. For graph G= (V , E), and directed graph G�, let S= {(s, i) ∈ E�|s ∈V , i= κ} and T =
{(t, i) ∈ E�|s ∈V , i= �}, Av = {(v, i)|0≤ i≤ κ}, with v ∈V, then

BC∗(v)=
∑

γ ,τ∈E�γ∈S,τ∈T

σγ τ

(
Av

)
σγ τ

(8)
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We now show how to compute BC∗(v) without explicitly constructing G�. In our computations,

the value σγ τ

(
Av

)
is approximated by

κ∑
i=0

σγ τ

(
(v, i)

)
.

6.2 Computing SOC-betweenness centrality
In order to compute BC∗, we build on Brandes’ algorithm (Brandes, 2001) for computing BC(v).
We first give a summary of Brandes’ algorithm.

The pair-dependency is defined as the ratio

δst(v) := σst(v)
σst

(9)

of a pair s, t ∈V on an intermediary node v ∈V . In order to eliminate the need for explicit sum-
mation of all pair-dependencies, Brandes introduces the notion of dependency of a vertex s ∈V on
a single vertex v ∈V , defined as

δs•(v) :=
∑
t∈V

δst(v) (10)

and shows that the dependency of s ∈V on any v ∈V obeys the following recursive relation:

δs•(v)=
∑

w:v∈Ps(w)

σsv
σsw

· (1+ δs•(w)) (11)

where Ps(v) is the set of predecessors of a vertex v during a breadth-first search (BFS) from source
s ∈V . It is given by

Ps(v) := {u ∈V :{u, v} ∈ E, dG(s, v)= dG(s, u)+ 1} (12)
where dG(s, v) is the geodesic distance from s to v. In summary, Brandes’ algorithm for computing
BC is as follows: for each source node, s ∈V ,

i. perform BFS computing number of shortest paths to every other node, t ∈V
ii. back propagation: compute δs•(v) for v ∈V in order of non-increasing distance from s.

One major difference between equation (8) and the standard computation of BC is that Equation
(8) is constrained by the fact that the source and target nodes must be chosen from sets S and
T. Therefore, the recursive relation given by Equation (11) cannot be used as it is because not all
nodes are target nodes. For T ⊂V , consider the function

δTs•(v) :=
∑
t∈T

δst(v) (13)

then

Lemma 6.4.
δTs•(v)=

∑
w:v∈Ps(w)

σsv
σsw

· (1T(w)+ δTs•(w)) (14)

where 1T(w) is the indicator function such that 1T(w)= 1 if w ∈ T and 0 otherwise.

Proof. For each term on the right side, if w ∈ T, then the summand follows from Equation (11).
Consider the case if w /∈ T. Extend the definition of the pair-dependency to include an edge e such
that, δst(v, e) := σst(v, e)/σst , where σst(v, e) is the number of shortest s-t paths that contain both v
and e. Then Brandes showed that
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δs•(v)=
∑

w:v∈Ps(w)

∑
t∈V

δst(v, {v,w})

and

δst(v, {v,w})=
{

σsv
σsw

, if t =w
σsv
σsw

· σst(v)
σst

, otherwise

It then follows that
δTs•(v)=

∑
w:v∈Ps(w)

∑
t∈T

δst(v, {v,w})

So for w /∈ T, then t �=w and∑
w:v∈Ps(w)

∑
t∈T

δst(v, {v,w}) =
∑

w:v∈Ps(w)

σsv
σsw

· σst(w)
σst

=
∑

w:v∈Ps(w)

σsv
σsw

· δs•T(w)

The recursive relation in Equation (14) is used to compute the SOC-betweenness centrality.
Algorithm (1) describes this computation in detail.

7. Random-walk betweenness centrality
A common criticism for betweenness centrality is that it does not take non-shortest paths into
account and is therefore inappropriate in cases where information spread is governed by other
rules (Borgatti, 2005). As a result, variants of betweenness centrality have been proposed such
as betweenness measures based on network flow (Freeman et al., 1991) and RWBC (Newman,
2005; Brandes & Fleischer, 2005). In some sense, as suggested by Newman, “RWBC and BC can
be viewed as being on opposite ends of a spectrum of possibilities, one representing information
that is moving at random and has no idea of where it is going and the other knowing precisely
where it is going.” Some real-world situations mimic these extremes (Newman, 2005; Freeman,
1978), however, others, such as the small-world experiment (Kleinfeld, 2002), fall somewhere in
between.

In a network where the flow process is coupled with an SOC constraint, it is therefore natural
to also propose a variant of RWBC for such networks. If we consider an undirected connected
graph, for any pair of nodes s, t, a random walk starting at s will eventually arrive at t with high
probability. However, in a network where the flow is coupled with a SOC constraint, and likewise,
a directed network that is not strongly connected, not every random walk starting at s has a posi-
tive probability of arriving at t. With this in mind, the proposed variant of RWBC only considers
walks that arrive at the destination node. For example, if a node does not have enough SOC to
travel from s to t via any walk, then the pair s-t does not contribute to centrality score.

Consider RWBC proposed in Newman (2005). Unlike the standard betweenness centrality
measure that only considers shortest paths between a pair of nodes, RWBC takes all paths into
account while giving more importance to shorter paths. RWBC of a node i is defined as the net
number of times a random walk passes through i. By net, authors meant that if a walk passes
through i and later passes back through it in the opposite direction, the two would cancel out and
there is no contribution to the betweenness.

RWBC was originally proposed for undirected graphs. In this section, we first generalize
RWBC to directed graphs. In a directed graph G = (V , E ), for any pair of nodes s, t ∈ V , it is
not guaranteed that every random walk from s will eventually arrive at t. We generalize RWBC
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Algorithm 1 SOC-Betweenness Centrality
1: Input: G= (V , E), V�,�, κ
2: Output: bc[v], v ∈ V�

3: bc[ν]← 0, ν ∈ V�

4: 
 ← {(u, i) ∈ V�|u ∈ V�, i= κ}
5: for s ∈ 
 do
6: S← empty stack;
7: P[ω]← empty list, ω ∈ V�;
8: σ [t]← 0, t ∈ V�;σ [s]← 1
9: d[t]← −1, t ∈ V�; d[s]← 0
10: Q← empty queue;
11: enqueue s→Q;
12: while Q not empty do
13: dequeue (v, i)←Q;
14: push (v, i)→ S;
15: if i �= � then
16: for neighbor w of v do
17: if w ∈ � then current_node← (w, κ)
18: else
19: if i≥ 0 then current_node← (w, i− 1)
20: else current_node← −1
21: if current_node �= −1 then
22: if d[current_node]< 0 then � w found for first time?
23: enqueue current_node→Q;
24: d[current_node]← d[(v, i)]+ 1;
25: if d[current_node]= d[(v, i)]+ 1 then � shortest path to w via v?
26: σ [current_node]← σ [current_node]+ σ [(v, i)];
27: append (v, i)→ P[current_node];
28: δ[ν]← 0, ν ∈ V�; � S return vertices in order of non-increasing distance from s
29: χ[(v, i)]← 0, (v, i) ∈ V�

30: χ[(v, i)]← 1, (v, �) ∈ V�

31: while S not empty do
32: pop (w, i)← S;
33: if χ[(w, i)]= 1 then
34: for (v, j) ∈ P[(w, i)] do χ[(v, j)]← 1
35: if i= � then δ[(v, j)]← δ[(v, j)]+ σ [(v,j)]

σ [(w,i)] · (1+ δ[(w, i)]);
36: else δ[(v, j)]← δ[(v, j)]+ σ [(v,j)]

σ [(w,i)] · δ[(w, i)];
37: if (w, i) �= s then bc[(w, i)]← bc[(w, i)]+ δ[(w, i)]

for directed graphs to only include random walks from s to t. Let Gs,t = (Vs,t , Es,t) be a subgraph
of G such that every node lies on a walk from s to t. RWBC is adjusted for �Gs,t as follows. Let A
adjacency matrix with D the out-degree diagonal matrix, where D is defined as

[D]ij :=
{
deg+(vi) if i= j
0, otherwise

where deg+(vi) is the out-degree of node vi. Define the transition matrix of �Gs,t as
M :=D−1A (15)
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For a walk starting at s, the probability that it is at j after r steps is given by [Mr]sj. The probabil-
ity that the walk continues further to an adjacent vertex i is [Mr]sjd−1

j , where d−1
j is the out-degree

at j. Thus, the expected number of times a walk from s to t uses the directed edge ( j, i) is given by
[(I −Mt)−1]sjd−1

j , which is the s-jth entry of the matrix given by

(I −Mt)−1D−1
t = (Dt −At)−1 (16)

where Dt and At are the matrices derived from deleting row and column t. Add the zero column
back to (Dt −At)−1 and call this matrix T. Let s be the vector given by

si :=

⎧⎪⎪⎨
⎪⎪⎩
1, if i= s
−1, if i= t
0, otherwise

Let the vector f be defined as

f := sTT
then, the ith entry of f , fi, represents the expected number of walks from s to t that pass through
node i. If Df is the diagonal matrix with fi at the ith diagonal position, then the matrix

F :=DfA
gives a matrix whose i-j value represents the expected number of times a random walk from s to t
uses edge (i, j). The net flow of randomwalk through the ith vertex is for a given s-t pair is given by

I(st)i = 1
2

∑
(i, j)∈Es,t

∣∣Fi,j −Fj,i
∣∣ (17)

The expression in (17) is used to compute the centrality scores of a directed graph Gs,t arising
from random walks starting at node s to t. Note that for every node v in Gs,t , v must be at a finite
distance from s and t. The centrality for each node in G is then given by the sum of the individual
scores for each source–target pair. Let Ŷ be the vector of centrality scores of G ; the SOC-RWBC is
given by the vector

ŶT · Iκ (18)

where Iκ is the block matrix defined in (2).

8. Computational experiments
In the preceding sections, mathematical models for the three proposed centrality measures are
given. The question then arises, “How good are these centrality measures?” We tackle this ques-
tion from three different perspectives. First, usability: how can we meaningfully use the proposed
centrality measures. Second, robustness: how robust are the centrality measures with respect to
their parameters. Lastly, novelty: how are the proposed centrality measures different from their
well-established predecessors. Experiments in this section are carried on the graph data sets given
in Table 1.

8.1 Usability
In Borgatti (2005), the expected centrality is defined as a centrality score given by a closed-form
expression, and realized centrality as the actual centrality score observed in the context of a partic-
ular flow process. Therefore, one can view a centrality measure as a formula-based prediction of
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Table 1. Experimental graph data sets: dmin, davg, dmax represents the minimum, average, andmaximum degree.

Graph Nodes Edges dmin davg dmax Reference

Router Network 2,114 6,632 1 6 109 (Rossi & Ahmed, 2015)


Minnesota State Road Network 2,642 3,303 1 2 5 (Davis & Hu, 2011)


Gnutella Network 6,301 2,077 1 7 97 (Ripeanu & Foster, 2002)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Collaboration Network 5,242 14,496 0 5 81 (Leskovec et al., 2007b)

a flow process through a node. It is therefore important to compare the predictions given by the
closed-form expression with the actual frequency of traffic observed flowing through a node across
multiple instances. For example, in order to test whether betweenness centrality is a good predic-
tion of observed traffic through a node, the expected betweenness centrality is compared with
the realized betweenness centrality, where the actual frequency of traffic through a given node is
referred to as the realized betweenness centrality, while the formula-based centrality is referred to
as the expected betweenness centrality. In this section, we compare the expected centrality with
the realized centrality values for the proposed centrality measures. Given that realized centrality
scores are achieved by running long simulations, we show the usability of the proposed measures
as way to efficiently estimate the outcome of these computationally expensive simulations.

In order to observe realized centrality values, simulations for each of the three flow process are
developed. In general, centrality measures are primarily used either as ranking algorithms or as
methods for identification of influential nodes. We therefore compare the expected and realized
centrality values using Kendall’s Tau (Kendall, 1938) rank correlation coefficient. Kendall’s Tau is
given by

τ := 2
n(n− 1)

∑
i<j

sgn
[
(yi − yj)(zi − zj)

]

where, for each node i, we denote the node’s spreading influence and its centrality measure by yi
and zi, respectively. The sgn(y) is a piecewise function such that sgn(y)= 1 if y> 0,−1 if y< 0 and
0 if y= 0. The values of τ belong to the range [− 1, 1], where larger values of τ correspond to a
higher correlation between the expected and realized centralities.

8.1.1 SOC Katz centrality
In order to compute the realized centrality values with respect to SOC-Katz centrality, we turn
to the susceptible–infected–recovered (SIR) spreading model (also called susceptible–infected–
removed model) (Hethcote, 2000). Klemm et al. (2012) suggested that the eigenvector centrality
can be used for estimating a spreading influence of the nodes in the SIR model, by (Liu et al.,
2016) defining the dynamical-sensitive (DS) centrality and showing that it more accurately locates
influential nodes in the SIR model. The DS centrality is very closely related to the Katz centrality.

In the SIR model, a node can be in one of following states: (i) susceptible, nodes can become
infected, (ii) infected, nodes are infected and can infect susceptible nodes, and (iii) recovered,
nodes have recovered and developed immunity, thus cannot be infected again. In order to estimate
the spreading influence of a node v, initially, all nodes are susceptible and v is infected. At each
step, an infected node tries to infect its susceptible neighbors and succeeds with probability α. The
infected node enters the recovered state with probability μ. In this work, we set μ = 1, that is,
the infection can be transmitted only once. The process stops if no new infections are formed or
after a fixed number of steps. We generalize the SIR spreading process to accommodate the SOC
parameter.
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Figure 1. Comparison of nodes’ spreading influence
according to the generalized SIR model and SOC-
Katz centrality on the routers network. Each box-
plot represents 30 random choices of the set � with
spreading probability α = 0.03, and κ = 5.

Define an edge (i, j) as active if node i infected j via edge (i, j). A stopping criteria for the SIR
spreading process for a fixed number of steps κ can be viewed as follows: Let u be the initially
infected node, then

an infected node v cannot infect its susceptible neighbors if there exists a path of length κ from
u to v consisting of only active edges, that is, the infection dies out after κ steps.

In order to generalize the SIR model to accommodate a flow process based on SOC, we modify the
above stopping criteria to:

an infected node v cannot infect its susceptible neighbors if there exists a path of length κ from
either u, or non-susceptible w ∈ � to v consisting of only active edges.

If the set � ⊂V is empty, then SOC-Katz centrality is equivalent to the DS centrality which is
shown in Liu et al. (2016) to be highly correlated with the nodes’ spreading influence according to
the SIR model.

Experiments are carried out to show that the above generalized SIR spreading process is highly
correlated with the proposed SOC-Katz centrality. For this experiment, we use the network repre-
senting the Internet at the major router level (Rossi & Ahmed, 2015; Spring et al., 2002) consisting
of 2,114 nodes and 6,632 edges. The nodes and edges represent routers and the connections
between them, respectively. We set κ = 5, and α = 0.03, and vary the size of the set � ⊂V such
that the ratio |�|/|V| ranges from 0.1 to 0.9. For each value of |�|/|V|, the set � is chosen at
random, and the corresponding spreading influence is estimated for each node by running the
generalized SIR model 104 times. This is repeated 30 times. The boxplot in Figure 1 shows the
correlation between the spreading influence as a result of the generalized SIR model compared to
SOC-Katz centrality. The results show Kendall Tau correlation values in the range (0.945, 0.970)
suggesting that the two processes are very highly correlated.

8.1.2 SOC-(random-walk) betweenness centrality
To demonstrate the SOC-RWBC and SOC-betweenness centralities, we experiment with two net-
works, namely, a computer network and road network. The computer network is generated from
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Figure 2. Correlation scores for expected versus
realized centrality for SOC-betweenness central-
ity for the Gnutella network. Each boxplot rep-
resents 30 random choices of the set �, with
κ = 4.

the P2P network, Gnutella (Leskovec et al., 2007b; Ripeanu & Foster, 2002), and consists of 6,301
nodes and 20,777 edges. The road network (Davis & Hu, 2011) represents Minnesota state roads
and consists of 2,642 nodes and 3,303 edges. We simulate traffic on both networks.

The realized centralities are computed using the particle hopping. The particle hopping model
is a method used in vehicular flow theory (Nagel, 1996). In this model, a section of a road is repre-
sented by a node and a vehicle as a particle where each node can only be occupied by one particle
at a given time. This model is sometimes referred to as cellular automata and gives a minimal
model for traffic flow behaviors (Huitema, 2000). The flow of packets through the internet has
also been modeled by cellular automata (Liu et al., 2002; Huisinga et al., 2001). In Holme (2003),
the fraction of time steps that node is occupied by a particle is referred to as the occupation ratio.

For the application to electric vehicles, the value κ represents the number of steps the car can
travel before its battery runs out of charge. For a message or vehicle being propagated from node
s to t, we simulate the traffic on the nodes when a routing algorithm propagates the message or
vehicle in one of the two cases: (i) via a shortest feasible walk and (ii) via a random feasible walk.
We add the condition that the routing algorithm is informed and takes the current κ counter of
the message or vehicle, and target t, into account before deciding which neighbor to direct it to. In
other words, if a message or vehicle cannot be successfully propagated to its destination due to the
value of κ , then the message or vehicle is not propagated at all and therefore does not contribute
to the traffic of the network.

Experiments are carried on the Gnutella network, where we setTTL= 4 and record the occupa-
tion ratio based on the corresponding routing algorithms. The occupation ratio is then compared
to the proposed centrality measures. The results for SOC-betweenness centrality and SOC-RWBC
are presented in Figures 2 and 3, respectively. The results show Kendall Tau values in the range
(0.79, 0.82) for a ratio |�|/|V| of 0.2 and (0.86, 0.88) for a ratio |�|/|V| of 0.9 for SOC-betweenness
centrality. Similar correlation scores and trends for SOC-RWBC are observed suggesting a high
correlation between the expected centralities and realized centrality measures.

For experiments on the Minnesota state road network, we set κ = 20. We choose a relatively
larger value of κ for the road network experiments because we assume that electric vehicles can
travel a relatively long distance if it starts fully charged. As in the Gnutella experiments, we record
the occupation ratio. The results for SOC-betweenness centrality are presented in Figure 4. The
results show Kendall Tau values in the range (0.79, 0.86) for a ratio |�|/|V| = 0.2 and (0.83, 0.87)
for a ratio |�|/|V| = 0.9 for SOC-betweenness centrality.
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Figure 3. Correlation scores for expected versus
realized centrality for SOC RWBC for the Gnutella
network. Each boxplot represents 30 random
choices of the set�, with κ = 4.

Figure 4. Correlation scores for expected versus
realized centrality for SOC-betweenness central-
ity for the Minnesota state road network. Each
boxplot represents 30 random choices of the set
�, with κ = 20.

8.2 Robustness and novelty
The parameter κ is application dependent, so it is important to understand how the proposed
centrality measures behave for different values of κ . From the mathematical expressions of our
novel centrality measures, it is clear that for a large enough κ , the proposed centrality measures
would become identical to their baseline centrality measures as in this case, the limitation of SOC-
dependent distance is gradually vanishing. In this section, we carry out experiments to understand
how the proposed measures compare to their baseline measures while varying the parameter κ .
The goal of the experiments is to quantify what is not captured when using the well-established
centrality measures for given values of κ , thus demonstrating the robustness of the results and
novelty of the measures.

The first set of experiments is carried out on toy graphs to illustrate the difference in central
nodes when using the proposed centrality measures versus their baseline measures. The first toy
graph is a graph formed by connecting two 5× 5 grid graphs by a path of length 5. The second is a
10× 10 grid graph. The second set of experiments uses real-world data sets. In these experiments,
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparisonof BC andSOC-BC. Theblue diamond-shapednodes represent nodes in�. In (a), the nodes connecting
the two components of the graph, which can be viewed as a “bridge” between two communities, have high centrality scores
because they are essential for flow from one component to another. Whereas in (b)–(f), since the flow is limited to just four
steps, the majoring of the flow in the graph would be within the two components thus the bridge nodes are no longer as
important.

we focus on the Minnesota state road network and a collaboration network constructed using the
scientific collaboration data (Leskovec et al., 2007b), consisting of 5,242 nodes and 14,496 edges.

The experiments on toy graphs are used to visually illustrate to the reader the difference
between the proposed centrality measures and their baseline measures, thus providing an intu-
ition on how the measures work. The difference between SOC-BC and BC for small values of κ

is illustrated in Figure 5. In this experiment, we set κ = 4. We use a color spectrum from red to
yellow, showing the most central to the least central nodes respectively. The graph in Figure 5(a)
represents the standard BC. As expected, the nodes along the bridge are the most central nodes.
The graphs in Figure 5(b)–(f) show different scenarios where the nodes in � are marked with a
blue-edge diamond-shaped node. As we can see in Figure 5(d) and (f), depending on the value of
κ and nodes in �, the centrality scores can be significantly different from the standard BC, where
the most central nodes based on BC are now among the least central nodes based on SOC-BC.

Differences between SOC-Katz and Katz centrality are illustrated in Figure 6. In this experi-
ment, we set κ = 4. The graph in Figure 6(a) represents the standard Katz centrality. As expected,
the nodes toward the center of the grid are the most important nodes according to this model.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparison of Katz and SOC-Katz;
The blue diamond-shaped nodes represent
nodes in �. In (a), the standard Katz cen-
trality shows that the nodes more centrally
located on the grid have a higher impor-
tance. For example, with respect to infor-
mation spreading in a network, this implies
that these nodes are the most influential in
information spreading. However as observed
from (b) to (f) if the information spread has
fixed travel distance, then just the connectiv-
ity structure of the network is not enough to
conclude about the most influential nodes.

The graphs in Figure 6(b)–(f) show different scenarios where the nodes in � are marked with a
blue-edge diamond-shaped node. As we can see in Figure 6(e), depending on the value of κ , even
with a relatively large ration of |�|/|V| (0.5 for (e)), the centrality scores can still be significantly
different than the scores from their baseline models.

A more comprehensive study comparing SOC-Katz with Katz on the grid graph is shown in
Figure 7. For each value of κ , with 2≤ κ ≤ 16, we run 30 experiments. Each experiment consists
of choosing nodes at random to be in the set �. The boxplots in blue represent experiments with
|�|/|V| = 0.1, while |�|/|V| = 0.2 are represented in red. We choose the values 0.1 and 0.2 for
the ratio |�|/|V| because in most applications the set � will be considerably smaller than V . For
example in social networks, the percentage of lurkers in an online community is estimated to
range from 50% to 90% of the total membership (Katz, 1998; Mason, 1999; Soroka et al., 2003). As
expected, the results show that as κ increases, the correlation between SOC-Katz and Katz ranking
increases. It is interesting to observe that since Katz centrality is based on infinite-length random
walks emanating from a node, it is not clear what value of κ would make SOC-Katz identical to
the standard Katz centrality for a given graph. However, this is not the case with betweenness
centrality which is based on shortest paths. For a given graph, setting κ to the longest shortest
path would make SOC-BC identical to BC.

The second set of experiments in this section is carried out on real-world graphs, theMinnesota
state road network, and the collaboration network. In the Minnesota state road network, first, we
compare SOC-BC with BC, while varying the value of κ ; second, we compare SOC-RWBC and
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Figure 7. SOC-Katz versus Katz for 10× 10 grid
graph.

Figure 8. SOC-BC versus BC for Minnesota state
road network.

RWBC for a given source–target pair. The comparison of SOC-BC and BC is shown in Figure 8.
The parameter κ is varied from 2 to 16. For each value of κ , we perform 30 experiments where each
experiment consists of sampling a set of nodes � ⊂V for a fixed ratio |�|/|V|. We fix the ratio
to 0.1 and 0.2, represented by blue and red boxplots, respectively. Given that the Minnesota state
road network has an average shortest path length of approximately 35.4, the results show that
for values of κ , smaller than the average shortest path length, we can get significant differences
between SOC-BC and BC ranking. Thus, we find where the standard BC may potentially fail in
identifying central nodes. We visually demonstrate a similar result for SOC-RWBC and RWBC in
Figure 9. In this experiment, we pick a pair of nodes representing a source and target and then
compute the RWBC scores contributed by the two nodes referring to them as s-t-RWBC. Given
that RWBC is identical to the current flow betweenness centrality (Brandes & Fleischer, 2005), one
can think of this experiment as injecting a unit of current from the source flowing to target and
measuring the fraction of current flowing through each node. The graph in Figure 9(a) represents
the s-t-RWBC scores for the source–target pair represented by nodes in black. The s-t-RWBC
values identical to zero are represented with nodes with negligible size. As expected, the results
show higher s-t-RWBC values for nodes close to the source and target. We perform a similar
experiment for SOC-RWBC with κ = 20, while the distance from source to target is larger than
20. This implies that every randomwalk from source to target must pass through at least one node
in �. The results in Figure 9(b) show the s-t-SOC-RWBC values for the given source–target pair.
In the case of SOC-RWBC, the higher central nodes are now the nodes close to the nodes in �.
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(a)

(b)

Figure 9. Comparison of RWBC with SOC-RWBC for a single s-t pair over the Minnesota state road network. The top-left
and center black nodes represent the source and target nodes, respectively. Nodes with s-t-centrality scores equal to 0 have
negligible node sizes. (a) RWBC for a given s-t pair. (b) SOC-RWBC for a given s-t pair. Nodeswith a triangularmarker represent
nodes in�.

This example demonstrates how SOC-RWBC can be used to identify congested nodes in a road
network that is equipped with wireless charging lanes.

A comparison of SOC-Katz versus standard Katz with variations of the parameter κ on the
Collaboration network is shown in Figure 10. In general, for different values of κ , the correlation
of SOC-Katz and Katz is high, generally above 0.8. However, once we plot the different ranking
we see significant differences with the node rankings of the two measures. Thus, Kendall Tau
correlation does not give a complete picture for this network. In particular, a node that is ranked
highly with the standard Katz centrality can have a significantly less rank in a ranking with SOC-
Katz. However, conversely, highly ranked nodes with SOC-Katz generally tend to also be highly
ranked with respect to the standard Katz. With respect to the application to posters and lurkers in
social networks, this follows the intuition that a user with a large number of neighbors (friends)
can still be non-influential if the user together with all his/her neighbors (friends) are lurkers. On
the other hand, a highly influential node would generally have many neighbors (friends).

9. Conclusion
An estimation of node spreading influence in a network is an important step toward under-
standing and controlling the spreading dynamics over the network. Centrality measures are
traditionally used to identify influential nodes in a network. In this work, we extend the well-
known measures of Katz, betweenness, and RWBC to models that accommodate a resource,
necessary for the spread, being consumed along the way. We present algorithms to compute
the proposed centrality measures and carry out experiments on real-world networks. Lastly, we
demonstrate simulation models that describe the flow process and show that they are highly
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Figure 10. Comparison of node rankings based on SOC-Katz and Katz for different values of κ with |�|/|V| = 0.1. Even if the
above ranking gives high Kendall Tau correlation, we notice that with the introduction of a ranking-based SOC-Katz, highly
ranked Katz nodes can significantly lose their ranking; however, less important nodes do not significantly increasewith rank.

correlated with the proposed centralities. In order to answer the question, “How good are
these centrality measures?”, we analyze the centrality measures from three different perspectives,
namely, usability, robustness, and novelty. From the usability perspective, among other experi-
ments, we demonstrate how the centrality measures can be used to identify congested nodes in
computer and road networks. From the robustness and novelty perspective, in the application
of posters and lurkers in a social network, we showed that the proposed extension of Katz cen-
trality follows the intuition that a user with a large number of neighbors (friends) can still be
non-influential if the user together with all his/her neighbors (connections) are lurkers. On the
other hand, a highly influential node would generally have many neighbors (connections).

The proposed measures take into account a spreading process that depends on a resource, such
that the spreading process would be impossible without. Our numerical experiments demonstrate
that the proposed measures differ significantly from the original measures when the resource is
limited. On the other hand, they become identical to the original measures as the quantity of
resource available tends to infinity. As a result, the proposedmeasures give a new tool and perspec-
tive to different application domains. For example, in the application of a road network equipped
with wireless charging lanes, an optimal placement of these lanes with respect to traffic distribu-
tion could be one where the distribution of centrality scores of all nodes is taken into account.
In another domain, high centrality nodes can be considered for targeted attack or immunization
strategies.

For a given application, the choice of which centrality measure to use to draw a conclusion
about the network is extremely important as using a wrong measure can lead to meaning-
less results. The measures of SOC-RWBC and SOC-Katz are both based on random walks on

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2019.7
Downloaded from https://www.cambridge.org/core. IP address: 198.21.137.109, on 18 Oct 2019 at 19:50:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2019.7
https://www.cambridge.org/core


398 H. Ushijima-Mwesigwa et al.

the network. It is, however, important to note that, just as the standard measures, the random
walks associated with SOC-RWBC have a fixed source and target node, while the random walks
associated with SOC-Katz only have a fixed source node. Thus SOC-Katz is more suitable for appli-
cations where the flow process does not have a specified destination, for example, a disease spread.
The SOC-RWBC and subsequently SOC-BC are suitable for applications where the flow process
has a specified destination, for example, vehicle flow.

There are numerous future research directions associated with the resource consumption-
based centralities. For example, we propose to explore other fundamental network properties such
as connectedness, clustering, and network robustness in the context of consumable resource net-
works. In this work, there exists a set of nodes that facilitate flow in the network; conversely,
problems in network interdiction (Wood, 1993) deal with the identification of nodes that hin-
der flow. An interesting direction is to explore the relationship between these two problems in
more detail. Another highly relevant direction for the future work is to consider a distribution of
resource consumption-based centralities in realistic network generation (Gutfraind et al., 2015;
Staudt et al., 2017) . This is particularly important for the simulation and verification studies. To
the best of our knowledge, no generating model currently considers a distribution of resource
consumption-based centralities. Also, the resource consumption models can be generalized for
clusters and communities. Moreover, one of the natural extensions of this work is introducing
resource consumption element to node and edge similarity measures.
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