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Abstract

Mining entity synonym sets (i.e., sets of terms referring to the
same entity) is an important task for many entity-leveraging
applications. Previous work either rank terms based on their
similarity to a given query term, or treats the problem as a
two-phase task (i.e., detecting synonymy pairs, followed by
organizing these pairs into synonym sets). However, these
approaches fail to model the holistic semantics of a set and
suffer from the error propagation issue. Here we propose a new
framework, named SynSetMine, that efficiently generates
entity synonym sets from a given vocabulary, using example
sets from external knowledge bases as distant supervision.
SynSetMine consists of two novel modules: (1) a set-instance
classifier that jointly learns how to represent a permutation
invariant synonym set and whether to include a new instance
(i.e., aterm) into the set, and (2) a set generation algorithm that
enumerates the vocabulary only once and applies the learned
set-instance classifier to detect all entity synonym sets in it.
Experiments on three real datasets from different domains
demonstrate both effectiveness and efficiency of SynSetMine
for mining entity synonym sets.

Introduction

An entity synonym set is a set of terms (i.e., words or phrases)
that refer to the same real-world entity. For instance, {“USA”,
“United States”, “U.S.”} is an entity synonym set as all terms
in it refer to the same country. Entity synonym set discov-
ery can benefit a wide range of applications such as web
search (Cheng, Lauw, and Paparizos 2012), question answer-
ing (Zhou et al. 2013), and taxonomy construction (Anh, Kim,
and Ng 2015). Take the query “Emirates Airline U.S. to UAE”
as an example, understanding “U.S.” refers to “United States”
and “UAE” stands for “United Arab Emirates” is crucial for
an intelligent system to satisfy the user information need.
One line of work for entity synonym sets discovery takes a
ranking plus pruning approach. Given a query term referring
to one entity, it first ranks all candidate terms based on their
probabilities of referring to the same entity and then prunes
the rank list into an output set. By treating each term in a
vocabulary as a query, this approach can finally output all
the entity synonym sets in the vocabulary. A variety of fea-
tures are extracted, including corpus-level statistics (Turney
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2001), textual patterns (Nakashole, Weikum, and Suchanek
2012), or query contexts (Chakrabarti et al. 2012), from dif-
ferent data sources (e.g., query log (Chaudhuri, Ganti, and
Xin 2009), web table (He et al. 2016), and raw text corpus
(Qu, Ren, and Han 2017)) to calculate the above probabilities.
However, this approach treats each candidate term separately
and computes its probability of referring to the query entity
independently. As a result, it ignores relations among candi-
date terms which could have helped to improve the quality
of discovered synonym sets. Furthermore, as shown in (Ren
and Cheng 2015), the number of true synonyms varies a lot
across different entities and thus converting a rank list into a
set itself is a non-trivial problem and can be error-prone.

Another line of work divides the synonym set discovery
problem into two sequential subtasks: (1) synonymy detection
(i.e., finding term pairs of synonymy relation), and (2) syn-
onymy organization (i.e., aggregating synonymous term pairs
into synonym sets). Methods developed for synonymy detec-
tion leverage textual patterns (Wang and Hirst 2012) and dis-
tributional word representations (Shwartz and Dagan 2016) to
train a classifier that predicts whether two terms hold the syn-
onymy relation. Then, those predicted term pairs form a syn-
onymy graph on which different graph clustering algorithms
are applied (Hope and Keller 2013; Oliveira and Gomes 2014;
Ustalov, Panchenko, and Biemann 2017). This approach is
able to capture relations among candidate terms and returns
all entity synonym sets in the vocabulary. However, these
two-phase methods only use training data in their first phase
and cannot leverage training signals in the second phase. Fur-
thermore, the detected synonymous term pairs are usually
fixed during synonymy organization and there is no feedback
from the second phase to the first, which causes the error
accumulation problem.

In this work, we propose a new framework, SynSetMine,
which leverages existing synonym sets from a knowledge
base as distant supervision and extracts more synonym sets
not in knowledge bases from massive raw text corpus. Specif-
ically, SynSetMine first applies an entity linker to map in-
corpus text (i.e. entity mentions) to entities in the knowledge
base. Then, it groups all mentions mapped to the same entity
(with the same unique id) into an entity synonym set, which
provides supervision signals. As these “training” synonym
sets are created automatically and without any human effort,
we refer to them as distant supervision.
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Figure 1: SynSetMine Framework Overview.

To effectively leverage distant supervision signals,
SynSetMine consists of two novel modules. First, we train
a set-instance classifier which jointly learns how to repre-
sent an entity synonym set and whether to include a new
instance (i.e., a term) into the set. This set-instance classifier
can model a set holistically, instead of decomposing it into
separated pairs. As a result, it effectively captures relations
among candidate terms and directly leverages supervision
signals from the set structure. Second, we design an efficient
set generation algorithm that applies the learned set-instance
classifier to discover new entity synonym sets. Given a vocab-
ulary, this algorithm processes each term in it one at a time
and maintains a pool of all detected sets. For each term in the
vocabulary, the algorithm applies the set-instance classifier to
determine whether and which previous detected set this term
should reside in. If no matching set can be found, a new set
is formed, consisting of this single term, and added into the
pool of detected sets. As it only enumerates the vocabulary
once to generate all synonym sets, this algorithm is efficient.

Contributions. This study makes three contributions: (1) a
novel framework, SynSetMine, is proposed that leverages
distant supervision for entity synonym set mining; (2) a set-
instance classifier is designed to model entity synonym sets
holistically and is integrated into a set generation algorithm
to discover new synonym sets efficiently; and (3) extensive
experiments conducted on three real-world datasets from
different domains show the effectiveness of the method.

Problem Formulation

We first elaborate on some important concepts and then for-
mulate the problem.

Entity Synonym Set. An entity synonym set is a set of terms
(i.e., words or phrases) that refer to the same real-world entity.

Knowledge Base. A knowledge base consists of many facts
about a set of entities. In this work, we focus on one partic-
ular type of facts: entity synonym. For some entities, their
synonyms are manually curated and stored in a knowledge
base. The knowledge base provides such training signals to
help discover more entity synonym sets.

Problem Definition. Given a text corpus D, a vocabulary V'
(i.e., a list of terms) derived from D, and a knowledge base

IC, the task of mining entity synonym set aims to discover all
entity synonym sets consisting of terms in V', based on the
information extracted from D and /.

The SynSetMine Framework

Our proposed SynSetMine framework consists of three
main steps (Figure 1): (1) an entity linker is used to map
in-corpus text (i.e., entity mentions) to entities in the given
knowledge base, which provides some training entity syn-
onym sets as distant supervision; (2) a classifier is constructed
to determine whether a term should be included into the syn-
onym set, based on the above distant supervision; and (3) the
learned classifier is integrated into a set generation algorithm
which outputs all term clusters in the vocabulary as detected
entity synonym sets.

Distant Supervision Acquisition

A knowledge base contains a collection of curated entities
with their known synonyms. These entities can provide dis-
tant supervision signals to help discover more entity synonym
sets that are not in the knowledge base from raw text cor-
pus. To automatically acquire the distant supervision, we
first apply an existing entity linker such as DBpedia Spot-
light (Mendes et al. 2011) which directly maps in-corpus
text (i.e., entity mentions) to entities in the knowledge base.
However, most entity linkers are not perfect and heavily rely
on the string-level features which could introduce additional
noise, as shown in (Shen et al. 2018) and the example below.
Therefore, we follow the same procedure in (Qu, Ren, and
Han 2017) to reduce the linking errors. Specifically, for each
entity mention and its linked entity, if the mention surface
string is not in that entity’s synonym set (in the knowledge
base), we remove the link between them. Finally, we group
all entity mentions that linked to the same entity as a training
entity synonym set, and collect all synonym sets from the
linked corpus as distant supervision.

Example 1. Given a sentence “The U.S. Steel, located in
Pennsylvania, USA, is a leading steel producer in America”,
an entity linker may first map “U.S. Steel”, “USA” and
“America” to the entity “UNITED STATES”. Then, we find
that the synonym set of entity “UNITED STATES ", retrieved
Jrom knowledge base, does not contain the surface string



“U.S. Steel”. Therefore, we remove the link between them and

group the remaining two entity mentions into an entity syn-
onym set { “USA”, “America”}.

Learning Set-Instance Classifier

After obtaining distant supervision, we train a set-instance
classifier, denoted as f(S,t), to determine whether a syn-
onym set S should include an instance t (i.e., a term).

Set-Instance Classifier Architecture. One key require-
ment of the set-instance classifier f(.5,t) is that its output
should be invariant to the ordering of elements in set S. An
intuitive way to achieve such permutation invariance prop-
erty is to decompose the set-instance prediction into multiple
instance-instance pair predictions, as shown in Figure 2. Each
pair prediction decides whether two instances are synonyms,
and all pair prediction results are finally aggregated into the
set-instance prediction result. However, this method com-
pletely ignores the relations between elements in set .S

In this work, we are inspired by (Zaheer et al. 2017) and
design a neural network architecture that directly learns to
represent the permutation invariant set. The architecture of
our set-instance classifier is shown in Figure 3. The bottom
part of Figure 3 shows a set scorer ¢(-) which takes a set
Z as input, and returns a quality score ¢(Z) that measures
how complete and coherent this set Z is. Given a synonym
set S and an instance term ¢, our set-instance classifier f(-)
first applies the set scorer to obtain the quality score of input
set S (i.e., ¢(S)). Then, we add the instance ¢ into the set
and apply the set scorer again to obtain the quality score of
S U {t}. Finally, we calculate the difference between these
two quality scores, and transform this score difference into
the probability using a sigmoid unit as follows:

Pr(t € §) = f(5,1) = o (¢(SU{t}) —q(5)), (D

where ¢(x) = 1= is the sigmoid function.

Given a collection of m set-instance pairs {(.S;, ¢; )|,
with their corresponding labels {y;|",}, we learn the set-
instance classifier using the log-loss as follows:

L(f) = Z —yilog(f(Si, i) — (1 —y:) log(1— f(Si, t:)), (2)

where y; equals to 1 if ¢; € S; and equals to 0 otherwise.

Note that if the set scorer ¢(-) is invariant to the ordering
of elements in its input set, our set-instance classifier built on
it will naturally satisfy the permutation invariance property.
Following we first describe the set scorer architecture (the
bottom part of Figure 3) and then discuss how to generate
set-instance pairs from distant supervision.

Set Scorer Architecture. Given a set of terms Z =
{z1,...,2n}, the set scorer first passes each term z; into
an embedding layer and obtains its embedding x;. Then, an
“embedding transformer” ¢(-) is applied to transform the raw
embedding to a new term representation ¢ (x; ). After that, we
sum all transformed term representations and obtain the “raw”
set representation v(Z) = Y " | ¢(x;). Finally, we feed this
set representation into the “post-transformer” which outputs
the final set quality score. Since the summation operation is
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Figure 3: Architecture of our set-instance classifier.

commutative, the “raw” set representation v(Z) is invariant
to the ordering of elements in Z and so is the set-scorer g.
In this work, we initialize the embedding layer using term
embeddings pre-trained on the given corpus. We instantiate
the “embedding transformer” using a fully connected neural
network with two hidden layers. For the “post transformer”,
we construct it using another fully connected neural network
with three hidden layers. We demonstrate the necessity of
these two transformers and study how the size of hidden
layers may influence model performance in later experiments.

Generation of Training Set-Instance Pairs. To train the
set-instance classifier f(S,¢), we need to first generate a col-
lection of training set-instance pairs from training synonym
sets. For each entity synonym set £'S, we randomly holdout
one instance tP°° € E'S and construct a positive set-instance
sample (SP%%, tP°%) where SP°° = ES \ {t?°*}. Then, for
each positive sample (SP°%, tP°%), we generate K negative
samples by selecting K negative instances ¢; “/|% | and pair
each of them with SP°%. To generate each negative instance
t;“Y, we can either randomly choose a term from the vocab-
ulary V' (denoted as complete-random strategy); select
a term that shares same token with some string in S”°° (de-
noted as share-token strategy), or combine these two
methods (denoted as mixture strategy). We study how this
negative sample size K and the sampling strategy influence
the model performance in later experiments.

Set Generation Algorithm

We present our designed set generation algorithm for mining
entity synonym set in Algorithm 1. This algorithm takes the
above learned set-instance classifier, a vocabulary V', and
a probability threshold 6 as input, and clusters all terms in
the vocabulary into entity synonym sets. Specifically, this



Algorithm 1: Set Generation Algorithm

Input: A set-instance classifier f; An input vocabulary
V = (s1,82,...,5v|); A threshold 6 € [0, 1].
Output: m entity synonym sets C = [C1, Cy, . .., C,,] where
C;, CV,ULC,=V,C;nC; =0,Yi #j.
1 C < [{s1}]; // initialize the first single-element cluster;
2 for i from 2 to |V| do

3 best_score =0,

4 best_j=1;

5 for j from 1 to |C| do

6 if f(Cj, si) > best_score then
7 best_score < f(Cj, si);

8 ‘ best_j « j;

9 if best_score > 0 then

10 | Chest_j.add(s:);

1 else

12 | C.append({s;}); //add a new cluster into the output;
13 Return C;

algorithm enumerates the vocabulary V' once and maintains
a pool of all detected sets C. For each term s; € V/, it applies
the set-instance classifier f to calculate the probability of
adding this term into each detected set in C, and finds the best
set C; that has the largest probability, If this probability value
passes the threshold 6, we will add s; into set C};. Otherwise,
we create a new set {s; } with this single term and add it into
the set pool C. The entire algorithm stops after one pass of
the vocabulary and returns all detected sets in C. Note that
we do not need to specify the number of entity synonym
sets in the vocabulary and our set generation algorithm will
determine this value on its own. In this work, we simply set
the probability threshold 6 to be 0.5 and study its influence
on clustering performance below.

Complexity Analysis. To compare with the clustering al-
gorithm that requires the input cluster number, we suppose
our algorithm will eventually return K clusters. Then, our al-
gorithm applies the set-instance classifier at most O(|V| - K)
times, where |V| denotes the vocabulary size. Most computa-
tion efforts of set-instance classifier are the matrix multiplica-
tion in two transformers, which can be accelerated by GPU.
As a comparison, the time complexity of k-means algorithm
is O(|V|- K - I) where I denotes the number of iterations, and
for most supervised clustering methods (such as SV M cluster
(Finley and Joachims 2005)) and two-phase methods (such
as WATSET (Ustalov, Panchenko, and Biemann 2017)), their
time complexity is O(|V|?) as they need to explicitly calcu-
late all pairwise similarities. Finally, we emphasize that we
can further parallelize lines 5-8 in Algorithm 1 by grouping
all set-instance pairs {(Cj, s;)|[j = 1,--- ,|C|} into a batch
and applying the set-instance classifier only once. In practice,
this strategy can significantly reduce the running time.

Experiments

In this section, we first describe our experimental setup, and
then report the experimental results. Finally, we analyze each
component of SynSetMine in more details and show several
concrete case studies. Our model implementation is avail-

Table 1: Datasets Statistics.

Dataset Wiki NYT PubMed
#Documents 100,000 118,664 1,554,433
#Sentences 6,839,331 3,002,123 15,051,203
#Terms in train 8,731 2,600 72,627
#Synonym sets in train 4,359 1,273 28,600
#Terms in test 891 389 1,743
#Synonym sets in test 256 117 250

able at: https://github.com/mickeystroller/
SynSetMine-pytorch.

Experimental Setup

Datasets. We evaluate SynSetMine on three public bench-
mark datasets used in (Qu, Ren, and Han 2017):

1. Wiki contains 100K articles in the Wikipedia. We use
Freebase' as the knowledge base.

2. NYT includes about 119K news articles from 2013 New
York Times. We use Freebase as the knowledge base.

3. PubMed contains around 1.5M paper abstracts from
PubMed?. We select UMLS? as the knowledge base.

For Wiki and NYT datasets, DBpedia Spotlight* is used as
the entity linker, and for PubMed, we apply PubTator’ as
the entity linker. After the linking step, we randomly sam-
ple a portion of linked entities as test entities and treat the
remaining as training entities. Note that there is no over-
lapping between training vocabulary and testing vocabulary,
which makes the evaluation more realistic but also more
challenging. The statistics of these datasets are listed in
Table 1. All datasets are available at: http://bit.ly/
SynSetMine-dataset.

Compared Methods. We select the following algorithms
to compare with our method.

1. Kmeans: An unsupervised clustering algorithm which
takes term embedding as features and returns detected
synonym sets as clusters. This algorithm requires a prede-
fined cluster number K and we set its value to the oracle
number of clusters for each dataset.

2. Louvain (Blondel et al. 2008)°: An unsupervised com-
munity detection algorithm which takes a graph as input
and returns discovered graph communities. To apply this
algorithm, we first construct a term graph where each node
represents a term. Then, we calculate the cosine similarity
between each pair of term embeddings, and if the similar-
ity is larger than a threshold o, we will add an edge into
the graph. We tune this threshold « on training set.

https://developers.google.com/freebase/

1
2https://www.ncbi.nlm.nih.gov/pubmed
3https ://www.nlm.nih.gov/research/umls/
4https://github.com/dbpediafspotlight/

dbpedia-spotlight
5https://www.ncbi.nlm.nih.qov/CBBresearch/Lu/Demo/
PubTator/

6https://github.com/taynaud/python—louvain



Table 2: Quantitative results of entity synonym set mining. All metrics are in percentage scale. We run all methods except L2C
five times and report the averaged score with standard deviation. Due to the bad scalability of L2C, we have not obtain its results
on PubMed dataset within 120h, and indicate this using “~” mark.

Method | Wiki NYT PubMed

| ARI(+std)  FMI(+std)  NMI(std) | ARI(dstd)  FMI(dsd)  NMI(dstd) | ARI(Estd)  FMI(dstd)  NMI (£std)
Kmeans 34.35 (£1.06) 3547 (£0.96) 86.98 (+0.27) | 28.87 (+1.98) 30.85 (+1.76) 83.71 (+0.57) | 48.68 (+1.93) 49.86 (+1.79) 88.08 (+0.45)
Louvain 4225 (+£0.00) 46.48 (+£0.00) 92.58 (+0.00) | 21.83 (£0.00) 30.58 (£0.00) 90.13 (+0.00) | 46.58 (:0.00) 52.76 (£0.00) 90.46 (+0.00)

SetExpan+Louvain | 44.78 (£0.28) 44.95 (+£0.28) 92.12 (£0.02) | 43.92 (£0.90)
38.80 (£0.51)  39.96 (£0.49) 90.31 (£0.15) | 33.80 (£1.94)

COP-Kmeans

4431 (£0.93) 90.34 (£0.11) | 58.91 (£0.08) 61.87(£0.07) 92.23 (£0.15)
34.57 (£2.06) 87.92 (+0.30) | 49.12 (+0.85) 51.92(£0.83) 89.91 (£0.15)

SVM-+Louvain 6.03 (+0.73)

7.75(£0.81) 2543 (£0.13) | 3.64 (£0.42)
L2C 12.87 (£0.22)  19.90 (£0.24) 73.47 (£0.29) | 12.71 (£0.89)

510 (£0.39) 21.02(£0.27) | 7.76 (£0.96)  8.79 (£1.03)  31.08 (£0.34)
16.66 (£0.68) 70.23 (£1.20) - - -

SynSetMine

| 56.43 (£1.31) 57.10 (£1.17) 93.04 (£0.23) | 44.91 (+2.16)

46.37 (£1.92)  90.62 (+1.53) | 74.33 (£0.66) 74.45 (£0.64) 94.90 (+0.97)

3. SetExpan (Shen et al. 2017)”+Louvain: A two-phase un-
supervised approach that first uses SetExpan (i.e., a weakly-
supervised set expansion algorithm) to find each term’s k&
nearest neighbors in embedding space, and then construct
a k-NN graph on which the above Louvain algorithm is
applied. We tune the variable k on training set.

4. COP-Kmeans (Wagstaff et al. 2001)%: A semi-
supervised variation of the Kmeans algorithm that can
incorporate pairwise constraints (e.g., two elements must
or cannot be clustered together) and output clusters that
satisfy all constraints. We convert training synonym sets
into these pairwise constraints and set the oracle number
of clusters K for each dataset.

5. SVM’+Louvain: A two-phase supervised approach which
first uses a SVM for synonym pair prediction and then
groups all predicted pairs into a graph where the Louvain
algorithm is applied. The SVM is learned on training set.

6. L2C (Hsu, Lv, and Kira 2018)'°: A supervised clustering
method that learns a pairwise similarity prediction neural
network and a constrained clustering network on training
synonym sets, then applies the learned networks on test
vocabulary to detect new entity synonym sets.

7. SynSetMine: Our proposed approach which trains a set-
instance classifier and integrates it seamlessly into an effi-
cient set generation algorithm.

Parameter Settings and Initial Term Embedding. For a
fair comparison, we use the same 50-dimension term em-
bedding, trained on each corpus, across all compared meth-
ods. We tune hyper-parameters in all (semi-)supervised al-
gorithms using 5-fold cross validation on training set. For
SynSetMine, we use a neural network with two hidden lay-
ers (of sizes 50, 250) as embedding transformer, and another
neural network with three hidden layers (of sizes 250, 500,
250) as post transformer (c.f. Figure 3). We optimize our
model using Adam with initial learning rate 0.001 and apply
dropout technique with dropout rate 0.5. For the set genera-
tion algorithm, we set the probability threshold 6 be 0.5. We
will discuss the influence of these hyper-parameters later.

7https ://github.com/mickeystroller/SetExpan
8https ://github.com/Behrouz-Babaki/COP-Kmeans
91’1ttp ://scikit-learn.org/stable/modules/svm.html
lOhttps ://github.com/GT-RIPL/L2C

Evaluation Metrics. As all compared methods output entity
synonym sets in the form of clusters, we evaluate them using
three standard clustering evaluation metrics.

e ARI measures the similarity of two cluster assignments.
Given the ground truth cluster assignment C* and model
predicted cluster assignment C, we use T'P (T'N) to denote
the number of element pairs that are in the same (different)
cluster(s) in both C* and C, respectively. We denote the to-
tal number of element pairs in C* as NV, and then calculate
ARI as follows:

RI — E(RI) (TP+TN)

ARI= ————~— RI=-—_—~
max(RI) — E(RI)’ N ’

where E(RI) is the expected RI of random assignments.

e FMI is another similarity measure of two cluster assign-
ments. Besides the above T'P, we use F'P (F'N) to denote
the number of element pairs that belong to the same clus-
ters in C* (C) but in different clusters in C (C*), respectively.
Then, we calculate FMI as follows:

TP
V(TP +FP)(TP + FN)

FMI =

e NMI calculates the normalized mutual information be-
tween two cluster assignments. This metric is widely used
in literature and its calculation details can be found in
(Nguyen, Epps, and Bailey 2009).

Experimental Results

Clustering Performance. We first compare all methods in
terms of the clustering performance. Results are shown in
Table 2. We can see that overall SynSetMine outperforms
baseline methods across all three datasets. The main disad-
vantage of unsupervised methods (Kmeans, Louvain, and
SetExpan+Louvain) is that they cannot utilize supervision
signals, which limits their performance when supervision is
available. Compared with Kmeans, COP-Kmeans leverages
additional supervision information from the training set and
thus has an improvement in performance. However, the incor-
poration of supervision signals is not always straightforward.
We find that the SVM+Louvain method fails to capture the
synonymy relation, probably due to the limited expressive
power of SVM. Also, the supervised clustering method L2C
also does not work very well on synonym datasets regard-
ing both efficiency and the quality of returned clusters. The
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Figure 4: Evaluation of set-instance classifiers on PubMed
dataset using (a) Accuracy and (b) F1 score.

reason is that during the training stage, L2C needs to calcu-
late each example’s class distribution, and this computation
effort is proportional to the training cluster number which
is in the scale of thousands''. Another major deficiency of
both SVM+Louvain and L2C is that their learned model is
based on pairwise similarity and does not have a holistic view
of set. On the other hand, SynSetMine encodes synonym
sets directly and therefore is able to capture set-level features
beyond pairwise similarity.
Set-instance Pair Prediction Performance. To further an-
alyze the importance of encoding set structure, we compare
our method with the approach that averages instance-instance
pair prediction results, as shown in Figure 2. Specifically,
given a trained set-instance classifier f(S,¢), we first con-
struct an instance-instance classifier g(¢1,¢2) to determine
whether two instances should be put into the same set. We
let g(t1,t2) to be the mean of f({t1},t2) and f({t2},t1).
Then, for each set-instance pair (.5,t), we apply the clas-
sifier g to obtain all instance pair prediction results (i.e.,
g(t',t),vt' € S) and average them into the final prediction.
For evaluation, we convert the testing synonym sets in
PubMed dataset into a collection of 3486 set-instance pairs,
among which 1743 pairs are positive. Results are shown in
Figure 4. We can see clearly that the set-encoding based ap-
proach performs much better than the “averaging pair predic-
tion” approach in terms of both accuracy and F1 score. This
demonstrates the importance of capturing entity relations
among the set and modeling the set structure holistically.

Efficiency Analysis. We implement our model based on
the PyTorch library, same as the L2C baseline. We train
two neural models (SynSetMine and L.2C) on one Quadro
P4000 GPU and run all the other methods on CPU. Results
are shown in Table 3. Compared with the other supervised
neural model L2C, our method can predict significantly faster.
In addition, our set generation algorithm avoids explicitly
computing all pairwise term similarities and thus is more
efficient during the prediction stage.

Model Analysis and Cases Studies

Following we conduct more experiments to analyze each
component of our SynSetMine framework in more details

"' For comparison, L2C originally runs on MNIST and CIFAR-10
datasets where examples with the same class label is viewed as a
cluster and the cluster number is of scale 10-100.

Table 3: Efficiency analysis. Model and data loading time
are excluded. GPU time are marked with *. We use “=" to
indicate that either there is no training time for unsupervised
methods, or the model is too slow to train and thus we don’t
get one trained model for prediction.

Method | Training Prediction

| Wiki NYT  PubMed | Wiki NYT  PubMed
Kmeans - - - 1.82s 0.88s 2.95s
Louvain - - - 3.94s 20.59s 74.6s
SetExpan+Louvain - - - 323s 120s 4143s
COP-KMeans - - - 249s 37.94s 713s
SVM+Louvain 4.9m 37s 1.3h 29.21s 5.80s 101.32s
L2C 16.8h*  30.7m*  >120h* | 209m*  56.6s* -

SynSetMine | 48m*  6.5m* 7.5h* | 0.852s* 0.348s*  1.84s*

and show some concrete case studies.

Effect of training set-instance pair generation strategy
and negative sample size. In order to train the set-instance
classifier, we need to first convert the training entity synonym
sets (obtained from distant supervision) to a collection of
set-instance pairs. We study how such conversion strategy
and different negative sample sizes will affect the model per-
formance on Wiki dataset. Results are shown in Figure 5(a).
First, we find that the complete-random strategy actually
performs better than the share-token strategy. One pos-
sible explanation is that the complete-random strategy
can generate more diverse negative samples and thus provide
more supervision signals. Second, we observe that by com-
bining the above two strategies and generating more mixed
negative samples, our model can be further improved, which
again may contribute to the diversity of negative samples.

Effects of different set-scorer architectures. To demon-
strate the necessity of our model components, we first com-
pare the current set-scorer architecture (c.f. Figure 3) with its
two ablations. Specifically, we leave either the Embedding
Transformer (ET) or the Post Transformer (PT) out, and test
the performance of remaining models. As shown in Table 4,
both ET and PT are essential to our model, and removing
either of them will significantly damage our model’s perfor-
mance. Furthermore, the Post Transformer, which operates on
the set representation, is particularly important to our model.

To further explore the effect of above two transformers, we
train our model with different hidden layer sizes. Specifically,
we use Both—X-Y to denote a set-scorer composed of an
Embedding Transformer (of hidden sizes {50, X}) and a
Post Transformer (of hidden sizes {X, Y, X}). Results are
shown in Table 4. We discover that the performance first
keeps increasing when the hidden layer size grows and then
drops slightly. Also, the best model sizes are consistent for
both Wiki and NYT datasets.

Effect of probability threshold . As shown in Algo-
rithm 1, our set generation algorithm requires an input prob-
ability threshold 6 to determine whether a term should be
added into one of the already detected sets. Intuitively, the
higher this threshold 6 is, the more conservative our set gener-
ation algorithm will be and more sets will be generated. In all
the above experiments, we set the threshold 6 to be 0.5. In this
experiment, we intend to empirically study how this hyper-



Table 4: Analysis of set scorer architecture. “No-ET” means no
Embedding Transformer (ET) module, “No-PT” means no Post
Transformer (PT) module, and Both-X-Y stands for using both
ET (of hidden sizes {50, X}) and PT (of hidden sizes {X, Y, X}).

Method | Wiki NYT

‘ ARI FMI NMI ‘ ARI FMI NMI
No-ET 4648 4723 91.57 | 39.86 42.67 90.46
No-PT 1.50 0.50 89.95 | 0.82 1.70  82.20

Both-100-200 | 49.38 49.56 91.21 | 37.64 39.37 89.33
Both-150-300 | 53.06 53.27 91.96 | 43.20 44.08 89.57
Both-200-400 | 53.82 5399 9236 | 47.03 49.65 91.00
Both-250-500 | 57.34 58.13 93.10 | 48.89 5133 91.19
Both-300-600 | 56.26 56.51 9292 | 46.65 47.30 90.01
Both-350-600 | 5593 56.10 92.69 | 47.40 4837 90.14
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Figure 5: Hyper-parameters analysis.

parameter will influence the clustering performance and how
SynSetMine is sensitive to the choice of . Therefore, we
run our set generation algorithm with fixed set-instance clas-
sifier and varied thresholds. The results are shown in Figure
5(b). First, we notice that the performance of our clustering
algorithm is insensitive to § and a value within 0.4 and 0.6 is
generally good for 6. Second, we find that setting € to be 0.5
is robust and works well across all three datasets.

Case Studies. Table 5 presents some example outputs of
SynSetMine. We can see that our method is able to detect
different types of entity synonym sets across different do-
mains. Then, in Table 6, we show a concrete case comparing
our set-instance classifier with the approach that aggregates
the instance-instance pair predictions. Clearly, the set encod-
ing based method can detect more accurate entity synonyms.

Related Work

There are two lines of related work, including entity synonym
discovery and set representation learning.

Entity Synonym Discovery. Most of previous efforts on
entity synonym discovery focus on discovering entity syn-
onyms from (semi-)structured data such as web table schemas
(Cafarella et al. 2008) and query logs (Chaudhuri, Ganti,
and Xin 2009; Ren and Cheng 2015). In this work, we aim
to mine entity synonym sets directly from raw text corpus,
which has a border application scope. Given a corpus, one
can leverage co-occurrence statistics (Baroni and Bisi 2004),
textual pattern (Nakashole, Weikum, and Suchanek 2012;
Yahya et al. 2014), distributional similarity (Pantel et al. 2009;
Wang et al. 2015), or their combinations (Qu, Ren, and Han
2017) to extract synonyms. These methods, however, only

Table 5: Example outputs on three datasets.

Dataset \ Distant Supervision \ Discovered Synonym Sets
Wiki {“londres”, “london”} {“gas”, “gasoline”, “petrol’”}
| {“mushroom”, “toadstool”} | {“roman fort”, “castra”}
{“myanmar”, “burma”} { “royal dutch shell plc”,
NYT Y ’ “royal dutch shell”, “shell” }
| {“honda motor”, “honda”} |  {“chief executive officier”, “ceo” }
PubMed ‘ {“alzheimers disease”, ‘ {“dna microarrays”, “dna chip”,

“Alzheimer’s dementia”} “gene expression array”, “dna array”}

Table 6: Comparison of set-instance classifier with the ap-
proach that aggregates instance-instance pair predictions.

Method | Set-instance Classifier | Aggregate Pair Predictions
Synonymset | {“w.k.”, “britain”} | {“u.k.”, “britain”}
“uk” k"
“united kingdom” “indie”
Ranked terms « RN o . . .
great britain united kingdom
“elizabeth ii” “america”

find synonymous term pairs or a rank list of query entity’s
synonym, instead of entity synonym sets. Some work attempt
to further cut-off the rank list into a set output (Ren and
Cheng 2015) or to build a synonym graph and then apply
graph clustering techniques to derive synonym sets (Oliveira
and Gomes 2014; Ustalov, Panchenko, and Biemann 2017).
However, these two-phase approaches suffer from the noise
accumulation problem, and cannot directly model the entity
set structure. Comparing to them, our approach can model
entity synonym sets holistically and capture important rela-
tions among terms in the set. Finally, there exist some studies,
such as finding lexical synonyms from dictionary (Ustalov
et al. 2017) or attribute synonyms from query logs (He et
al. 2016), but this work focuses on mining entity synonyms
from raw text corpora.

Set Representation Learning. Our work is also related to
set representation learning, which aims to construct permuta-
tion invariant representations of sets. PointNet (Qi et al. 2017)
models points in a space as sets and uses multi-layer percep-
trons and max pooling function to learn their representation.
DeepSets (Zaheer et al. 2017) establishes the general form of
permutation invariant functions and proposes to learn these
functions using a deep neural network consisting of multi-
layer perceptrons and aggregation functions. AutoEncSets
(Hartford et al. 2018) further extends DeepSets by modeling
the interactions across sets. In this work, in addition to just
representing given sets, we go beyond one step and aim to
predict sets (i.e., entity synonym sets) from the vocabulary.

Conclusions

In this paper, we study how to mine entity synonym sets
from raw text corpus. We propose a framework named
SynSetMine which effectively leverages distant supervision
from knowledge bases to learn a set-instance classifier and
integrates it in an efficient set generation algorithm to detect
new entity synonym sets. Extensive experiments on three real-
world datasets demonstrate both effectiveness and efficiency
of our framework. In the future, we plan to further integrate



set-instance classifier into the set generation algorithm and
learn both of them in an end-to-end fashion.
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