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ABSTRACT—In this paper, we introduce a novel
reconfigurable accelerator (R-accelerator) design which embeds
RRAM device into traditional logic circuits for high-performance
application specific computing. To facilitate the synthesis of the
proposed  RRAM  based logic cell, a special
logic contraction technique is developed to maximize the area
saving. In order to optimize the arithmetic unit array for
instruction set mapping and interconnect routing, a new resource
allocation algorithm is also proposed to achieve further saving in
area and power. Using a fully integrated design flow with
commercial design tools, our experimental results show that the
proposed RRAM based R-accelerator architecture offers 45% area
improvement, 33% power reduction and 32% performance
enhancementin a 45nm CMOS process compared with
conventional CMOS design.
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[. INTRODUCTION

Accelerator enriched microprocessor design has recently
drawn tremendous interest from consumer electronic industry
due to the rapid growth from applications such as virtual
reality, artificial intelligence. Unfortunately, the complex
algorithms utilized by such applications, e.g. facial
recognition, lead to significant challenges to the existing IC
development models. On one hand, the market of electronic
devices pushes designs toward more complex and higher
performance system-on-chip (SoC) devices. As a result,
accelerator based ASIC chips or Application Specific
Instruction Processors (ASIP) are developed to provide
dedicated processing power for specific computing tasks
[1,2]. On the other hand, the increasing IC design costs at
advanced CMOS technology, and demand for shorter time-
to-market cycle requires lower risk and faster turnaround
solutions which pushes toward more flexible, reconfigurable
hardware solution, diminishing the benefits of dedicated
ASIC design. A typical example is the general-purpose
microprocessor which provides flexible support to various
applications but suffers from lower performance and higher
energy cost for handling the complex algorithm in real-time
image processing, such as median filter, and optimal margin
classifier, etc. [3, 4]. Meanwhile, even though ASIC or ASIP
solution does provide a performance boost of as much as
three orders of magnitude to its CPU counterpart, it becomes
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impractically expensive to implement all potentially used
complex algorithm in an ASIC or ASIP design [5]. For this
reason, a reconfigurable accelerator-based hardware solution
which provide combined advantages of both high
performance and hardware flexibility has become
increasingly popular recently [6,7].

As an alternative solution, Coarse Grain Reconfigurable
Arrays (CGRA) represents a second class of reconfigurable
architectures. In CGRA, predefined and optimized
reconfigurable Arithmetic Logic Units (ALU) are used as
building blocks. Complex algorithms are then allocated into
ALU arrays to realize application specific instruction sets
removing conventional performance limitation from multi-
cycle pipeline operations. CGRA significantly reduces the
overhead of interconnects and associated memory
components compared with solution such as FPGA while
keeping a high level of reconfigurability [6, 8]. An example
of such architecture is shown in Fig. 1 (a) where totally 30
ALUs are connected to realize a complex operation such as
square-root without intermediate storage or pipelines [1, 6].
Fig. 1 (b) shows another CGRA design which contains 16
nodes arranged in a 4x4 mesh [8]. A similar CGRA work
with reconfigurable interconnect but focuses on providing
single-cycle communications between functional units (FUs)
is proposed in [9]. Although CGRA solution provides an
enhanced performance, significant challenges still exist
including (1) high cost in the design of reconfigurable ALU
units with large amount of function support; (2) Associated
memory costs for bookkeeping the configuration; (3) High
cost of establishing flexible interconnects between

Arithmetic Units (AU). In this paper, we try to address the
above issues of CGRA design using novel cross-layer
solutions ranging from device, circuits, to architecture levels.

BUS/ Switch
Controller

Fig. 1. (a) Layout and core circuit diagram of previous CGRA work [6]; (b)
Block diagram of another CGRA work [8].



Among recent technology development, the emerging
non-volatile memory (NVM) technologies, i.e. RRAM or
memristor have provided tremendous new opportunities to
the development of high performance microprocessors. The
use of RRAM/memristor can be classified into two large
classes. The first class is in memory application where
RRAM is utilized to provide on-chip NVM solution replacing
conventional Cache or DRAM. In addition, the very simple
thin film topology of RRAM allows monolithic integration of
such memory device in vertical stacks on top of the
processing units, leading to an extremely high-density
storage solution [10]. In the second class, rather than using
NVM as a storage unit, RRAM/memristor device has been
proposed as processing units in emerging application such as
neuromorphic computing [11]. Such an implementation
dramatically reduced the cost of convolution operation,
leading to tremendous saving of computing power.
Furthermore, a mrFPGA technique was also proposed to use
memristor as an interconnect solution to replace existing
SRAM based FPGA, leading to 5X improvement in area [5].
Other relative work utilized RRAM as programmable
interconnect mainly focused on the circuit level

implementation [12, 13].
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Fig. 2. Left: Conventional CGRA accelerator; Right: Proposed RRAM-
based CGRA accelerator (R-Accelerator).

Different from the prior arts, this paper proposes a
fundamentally new scheme for implementing CGRA-based
accelerator using the emerging RRAM/memristor device,
referred as R-Accelerator. Fig. 2 summarizes the proposed
R-Accelerator architecture in the following aspects: (1) the
conventional AU is replaced by RRAM-based reconfigurable
AU with a specially developed logic contraction technique
rending significant logic simplification; (2) The switch
controller in conventional design is reduced and simplified
by the RRAM-based programmable interconnection; (3)
Configuration register file is eliminated as the RRAM works
as both non-volatile storage and programmable interconnect.
Below summarizes the cross-layer contribution of this paper
from circuit, architecture to design automation:

e In the circuit level, (1) we propose a RRAM based logic
cell design which works as both function units and storage
units to realize logic reconfigurability; (2) We propose a

special logic synthesis technique, referred as logic
contraction, which dramatically reduce area overhead
associated with realizing reconfigurability in conventional
CMOS design.

e In the architecture level, we proposed the CGRA-based
accelerator architecture with RRAM-based programmable
interconnect.

e In the design automation level, (1) to leverage the help
from memristive device and overcome the challenges of
allocating arbitrary algorithm into CGRA AU arrays, we
propose special allocation solution based on heuristic
algorithm with thousands time of speedup; (2) A full layer
implementation including PCell and backend supports
have been developed and fully integrated into conventional
EDA design flows/tools, leading to an automatic design
flow of the proposed R-accelerator design.

[II.RRAM-BASED RECONFIGURABLE AU DESIGN

A. Memristor Devices

A memiristor is a 2-terminal passive device in which the
resistance between its terminals can be changed into a high
resistance (OFF) state, or a low resistance (ON) state. The
‘ON’ and ‘OFF’ states are reversibly controlled by an
external voltage applied across its terminals. The two major
classes of application are (1) RRAM memory with binary
states; (2) Analog memristor where the resistance states
possess continuous tuning and larger range. Normally,
higher resistance ratio is observed in the second-class due to
the requirement of higher resolutions. Here we briefly survey
the selected published RRAM characteristics in Table-1. As
our paper explores a novel usage of the resistive memory as
a non-volatile reconfigurable logic, we only utilize the
RRAM as a binary state device, i.e. low resistive state (LRS)
and high resistive state (HRS) with relaxation on the tuning
resolution requirement of the device as compared with
previous publication for neuromorphic computing [14].
Although matching of exact device characteristics to
particular published device is beyond the scope of this paper,
we devote our effort to incorporate more realistic behavior
and electronic properties of the RRAM device by creating (1)
A realistic parameterized cell (PCell) that can be extracted
from real device layout and simulated by spice simulator to
characterize the performance of the proposed circuits. (2) An
integrated library cell that is fully supported by EDA tools,
e.g. Cadence encounter, to perform synthesis, place&route of
the developed circuit components.

Table 1: Selected Published RRAM/Memristor Characteristics

Material ILRS (ohm) [HRS (ohm) |Write Time(ns) |Set Voltage (V)
NiO [17] 500 10M 10~50 1.5

SiOxNy [20] 100 IM 100 1

TaO [21] 100 100k 2 1.5

HfO2 [22] 1k 100k 100 1.5

HfO2 [23] 5k 10~100M 100 2

This work 10k IM 10 1.2




B. Electrical Characteristics of Memristors
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Fig. 3. (a) Typical bipolar I-V linear curve of memristor; (b) 3-D diagram of
memristor based circuit.

Fig. 3(a) shows the representative bipolar I-V linear
characteristics of such a memristor [10, 29]. To set (or
program) the device into a memristive ‘ON’ or ‘low
resistance’ state, a voltage Vset above the threshold Vth ON
is applied across its terminals until a conductive filament is
formed. The conductive filament shorts the device and lowers
its resistance to RON. Reverse operation is applied to “reset”
the device into ‘OFF’ or ‘high resistance’ state. Recent
development from commercial vendors such as Crossbar, inc
has demonstrated a fully integrated monolithic solution
where memristive device can be inserted between any metal
layers of existing CMOS chips and possess a large on-off
ratio, e.g. 1,000 [10, 30]. Fig. 3 (b) shows the 3-D diagram
of memristor based circuit design where RRAM is inserted
between metal 4 and metal 5 on top of CMOS transistor
layers.

C. RRAM Model and PCell Design

Fig. 4 (a) shows our developed RRAM PCell including
both schematic and layout. The PCell allows variable
dimension as well as placement of RRAM at any user specific
metal layers. For spice simulation, parasitics due to routing
and via connections are first extracted from Calibre. The
devices are then simulated with veriloga model together with
extracted parasitics. The VerilogA model was developed
based on various reported resources [19]. In our design, we
used one of the high-level metals to avoid causing congestion
with local routing. The parasitic impact from the connection
between local transistors and RRAM devices has been
included in our extracted model and library cell component
in our digital design environment. Fig. 4 (b) shows our
integration of the developed RRAM device and RRAM-
based circuits into digital design flow for large scale
integration used in this work.

Practical issues of RRAM/memristor devices have been
reported including (1) variability of the cell resistance
especially at high resistance state and (2) endurance of
resistance value during writing and reading [18,19,31].
Although an exact device level evaluation is out of scope of
this paper, we performed variability test by varying HRS and
LRS by a factor of 300% and evaluate the performance, i.e.
cell delay impact. Our evaluation shows the performance
variation is within 10% of nominal value because the logic

cell delay is strongly influenced by intrinsic transistors from
driving buffers rather than the interconnect variation. In
addition, the proposed reconfiguration operation using
RRAM device is only performed at beginning of each
program and thus can be repeatedly tuned to eliminate
potential variation of the device resistance. Compared with
previous proposed neuromorphic application where high
resolution and sturdy resistance of memristor device is
required, the proposed circuits have significantly relaxed
requirement on the variability and durability of the device and
thus can be easily utilized from commonly used
RRAM/memristor devices.
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Fig. 4. Model and implementation of RRAM. (a) PCell layout and
schematic; (b) Integration into conventional EDA flow; (c) Spice simulation
waveforms of RRAM based MUX.

D. RRAM-Based Logic Cell Design

Multiplexer logic cells are heavily wused in
reconfigurable logics for realizing configurable functionality.
Figs.5 (a) and (b) show two conventional implementations of
MUX2 cell which contains 16 and 12 transistors with one
select bit provided from a memory cell. As an alternative
solution, we propose a RRAM-based MUX (R-MUX) cell
with significant saving on cell footprint.
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Fig. 5. Multiplexer design. (a) Conv. digital MUX2. (b) Conv. analog

MUX2. (c) R-MUX2. (d) R-MUX4. (e) 3-D diagram of R-MUX2; (f) Layout
comparison: Conv. digital MUX4 (left), conv. analog MUX4 (middle), R-
MUX4 (right).

Fig. 5 (¢) and (e) show our proposed RRAM based
MUX2 (R-MUX2) cells and its 3-D drawing with only two
memristors and two transistors. Since the R-MUX can be
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fabricated over the logic blocks, integrating more bit into the
R-MUX would not significantly increase the area of the
device. Fig. 5 (d) shows the schematic of a 4-to-1 R-MUX
with the same footprint as 2-to-1 R-MUX. For comparison,
conventional 4-to-1 MUX takes 3 times area as 2-to-1 MUX.
The footprint of the proposed R-MUX4 cell is reduced by 9X
compared with conventional ones. In addition, there is no
extra SRAM needed to store the configuration data since the
RRAM works as non-volatile storage. Including memory
space saving, an overall saving of 12X to 15X compared to
conventional designs can be achieved. At configuration
phase of the proposed circuits, by tuning on/off the set/reset
transistors with particular input combination from previous
stage, we can selectively program the RRAM into LRS and
HRS, i.e. only one of RRAM stays in LRS while the rest stay
in HRS. In this way, only the signal through the path with
the RRAM in LRS will be passed realizing a multiplexer. The
proposed programming sequence is (1) presetting primary
input values for A, B, C, etc. and set, reset signals to program
each RRAM device; (2) Repeat (1) for every stage of RRAM
in a sequential order so that the input states are always
defined in the logic circuits. Note that to avoid drifting of the
resistive values, the configuration phase should be performed
at elevated voltage above programming voltage, e.g. 1.2V,
rather than the normal operation voltage, e.g. 1.0V. Fig. 4(c)
shows the spice simulation of operation waveforms of the R-
MUX circuits, exhibiting a write-speed of ~10ns, On-off
resistive ratio of ~100 and a logic delay of ~30ps with correct
functionality.

E. Logic Contraction using RRAM Based Logic Cell for
Reconfigurable AU design

1) Reconfigurable Arithmetic Unit (AU) Design

In order to build the element of reconfigurable
accelerator, we study the commonly used instructions in
applications such as facial recognition and pattern
classification. We identify the following most commonly
used algorithms including multiplication(MUL), square,
square root, division, winner-take-all (WTA), maximum
value (MAX), absolute value (ABS), convolution, and
multiply-accumulate operation (MAC). Accordingly, we
build 8-bit arithmetic unit in our design containing § basic
configurable operations: addition (ADD), subtraction (SUB),
logic shift left (LSL), logic shift right (LSR), comparison
(CMP), MUX, XOR and XNOR. A bypass mode is also
introduced to pass input signals directly into the next stages.
The AU units can then be jointly composed to realize the
above complex algorithms.

The conventional AU uses combinational logics to
realize configurability of different supported functionality.
We experiment the area benefits of using proposed R-MUX
by simply replacing some of the conventional MUXs by R-
MUXSs in the synthesized and P&R AU design Surprisingly,
despite of the significant area reduction shown in Section II-
C, our experiments show only 5% of area saving can be
achieved by replacing conventional MUX by R-MUX. This
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is because in a highly-optimized gate-level netlist, most of the
selection logic of the AU are synthesized into more complex
logic, e.g. AOI logic gates which cannot be replaced. The left
layout in Fig. 7 shows the conventional AU layout with
MUXs marked by red color boxes. The area benefit from
simply replacing existing MUXs with R-MUXs is
insignificant due to the low occurrence of conventional
MUXs because of the merging of selection logic with main
functional logics from conventional synthesis methodology.
We address this issue in the next section.
2) Proposed Logic Contraction Method and Flow
In this section, a novel control logic contraction
technique is proposed to provide substantial area saving using
RRAM based logic cells. In conventional design, an 8-bit AU
is realized by the digital operation code to configure the AU
core into different operation modes, e.g. ADD, SUB, CMP
etc. For instance, an 8-bit 2-operation conventional AU with
1-bit operation code (c0) can be expressed as:
Oconv—au = CoADD(A,B) + c,SUB(A4, B) 1)
It is important to highlight the overhead of the
configurability. Even with a fully optimized adder/subtractor
with technology mapping using complex standard cell, a
selection logic for realizing eq. (1) requires approximately 16
ANDs, 8 ORs gates and 8 NORs for this 2-operaton AU. The
block diagram of the conventional AU design is shown in Fig.
6 (a) with distributed selection logic circuits marked in grey.
Compare to the AU core function, i.e. ADD/SUB, the
selection logic circuit consumes a total of 20% to 40% area.
On the other hand, the selection logic overhead can be
dramatically suppressed by utilizing the proposed R-MUX
and logic contraction technique for configuration. Its block
diagram is shown in Fig. 6 (b).
Ogram-av = M[ADD(A, B),SUB(A, B)] 2
Eq. (2) shows the expression of the RRAM-based AU
design. The M function represents the R-MUX logic which
consumes much less area when compared to the conventional
digital MUX cells. More importantly, the selection logic
operation in eq. (2) is eliminated from conventional
expression as in eq. (1). As a result, the digital logic
implementation using proposed RMUX becomes much
simpler. In fact, the more functionality to be included in AU
design, the more area saving can be achieved due to the small
area consumption of R-MUX logic. The output expressions
of 8-bit 4-operation conventional and R-MUX based AUs are
shown in equations (3), (4):
Oconv—av = €160ADD(A, B) + ¢1¢oSUB(4, B) +
¢160LSL(A, Bcycy) + LSR(4, B)

Orram—ay = M[ADD(A, B), SUB(A, B), LSL(4, B), LSR(4, B)]

3
“

Unfortunately, standard logic synthesis technique does
not support insertion of the RMUX logic. To facilitate the
logic synthesis of the proposed RRAM based reconfigurable
cells, we developed a special logic contraction flow. As
illustrated in Fig. 6 (b), at first, we rewrite the RTL for AU
by elaborating outputs from each supporting function and
modify the high level top module with separation of core



functionality and selection logic. Secondly, we perform R-
MUX integration using cells built from RRAM PCell through
standard synthesis procedure of logic design. This method
allows us to fully utilize the optimization power of modern
synthesis tool while still integrating RMUX automatically
into the final netlist and layout. The layouts of our proposed
8-bit 8-operation AU and conventional AU are shown in Fig.
7. A maximum area saving of 30% is achieved by
introducing the logic contraction technique.
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Fig. 7: Layout comparison between conventional (left) and RRAM-based
AU (right).
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The proposed logic contraction method is a special
method developed for effective insertion of RRAM based
logic cells. Since different applications have different
functionality defined, the benefits reported in previous
section may not be universal to a general design. We provide
a general logic contraction flow as shown in Fig. 8: (1) we
first extract the “core function” from the conventional AU.
This can be realized by eliminating the control logic in RTL
design step. (2) We generate a separate control logic block
which can be realized by groups of digital multiplexers, and
connect it with the function core to form the “hybrid AU” as
in Fig. 8(b). This “hybrid AU” realizes same functionality as
conventional AU with an overhead due to logic separation.

(3) Replace the digital multiplexers with RMUX to form the
proposed RRAM-base AU which is shown Fig. 8 (c). The
flowchart of proposed method is shown in Fig. 8 (d).

IV.RECONFIGURABLE AU ARRAY ARCHITECTURE

A. Interconnect and Reconfigurable AU Arrays

In order to implement instruction sets, the reconfigurable
AU array which consists of a group of RRAM-based AUs
should be configured into different logic topology to adapt to
the data path of particular instructions. Conventionally, the
reconfigurable AU array consists of AUs and switch
controller (SC) [8]. The architecture of conventional
interconnect network with SC is shown in Fig. 9 (a).
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Fig. 9. AU array interconnect. (a) Conventional interconnect; (b) Proposed
RRAM-based interconnect; (c) Option 2; (d) Option 3; (e¢) Option 4; (f)
Option 5. (g) Detailed routing of (c); (h) Detailed routing of (d) which shows
the overhead of extra routing channel.

To reduce the complexity of interconnect network, in
our work, the conventional switch controller is simplified
into a basic uni-directional interconnect in which only one
signal propagation direction is allowed in one signal channel.
Beside the basic interconnect, four more optional routing
channels depending on the demand of target instruction sets.
As a result, we introduce totally five interconnect options: (1)
The basic interconnect which is shown in Fig.9 (c); (2)
Adding an extra diagonal interconnect channel which is
shown in Fig.9 (d); (3) Adding an extra free interconnect
channel between nearby rows which is shown in Fig.9 (e); (4)
Adding an extra interconnect channel within same row but
between different columns which is shown in Fig.9 (f); (5)
Continually adding extra routing channels within the same
row which is shown in Fig.9 (g).

The proposed uni-directional network dramatically
decreases the congestion on interconnecting wires compared
with fully connected crossbar. The interconnect delay and
area overhead can be further reduced when introducing
proposed R-MUX logic to replace the conventional switch
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controller (SC) which consists of a large amount of
conventional MUXSs.

B. Interconnect Options and Modeling

The more interconnect routing options included, the
more flexible the AU array can be to implement complex
instructions. In our work, the default interconnect of the AU
array is uni-directional. Interestingly, no matter where the
input port 1, input port 2 and output port are located, there
occurs a free channel for the diagonal interconnects (from top
left to bottom right) without introducing extra routing space.
Fig. 9 (h) show detailed routing diagram according to default
routing in Fig. 9 (c). If more options are offered in the
configurable AU array, extra routing space will be needed.
Fig.9 (i) shows the detailed routing for routing option in Fig.
9 (d) and the extra routing channel is marked with red.
Despite of the extra routing overhead, more interconnect
options can lead to less number of AUs to be implemented
for the target instruction sets. Thus, there exists an optimal
interconnect solution which leads to the minimum area of AU
array for supporting target instruction sets which will be
discussed in Section IV. The cost function of interconnect is
shown as:

SALUarray = Nraw X (HAU+Hintercnct) X Ncolumn X
(LAU+Lintercnct) (5)
where Nrow, Ncolumn are the numbers of row and

column, HAU is the height and LAU is the length of an AU,
Lintercnct, Hintercnct are the extra routing cost of the extra
interconnects. The final area of the configurable AU array is
determined by both the number of AU (array topology) in the
array and the extra routing space introduced by the extra
interconnects.

V.INSTRUCTION-TO-AU ARRAY SYNTHESIS AND
ALLOCATION ALGORITHM

An important challenge for reconfigurable AU based
accelerator design is the allocation of instruction set into
existing AU arrays. Several resource-constrained allocation
algorithms were proposed in [8, 9, 15]. However, the prior
work were focused on instruction scheduling based on
existing fixed numbers of processing units. Different from
prior work, in this paper, we explore optimal design choices
where the number and interconnects of AU arrays are not
predefined but a minimum number of target instruction sets
are provided. Hence, our work is orthogonal to prior
scheduling focused study [8, 9, 15] which cannot be used to
provide us the optimal design choices. Generally speaking,
this kind of graph allocation work is NP-Hard [16]. We
proposed an allocation algorithm based on heuristic
algorithm to find the optimal numbers of AU and optimal
interconnect options as given in Fig. 9 to achieve minimum
area cost.

A. Instruction Decomposition

In this work, all instructions are represented by Dataflow
Graph (DFGs). In the DFGs, each vertex represents a basic
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function operation such as addition, subtraction, logic shift,
etc., and each edge represents the data dependency between
the connected operations. In order to allocate a particular
instruction into the AU arrays, this instruction needs to be
decomposed into several operations. The flow of the function
decomposition can be comprehended as follows: (1)
decompose the complex instruction into several simple
operations which can be realized by a single AU; (2)
Generate the Dataflow Graph (DFG) of the decomposed
instruction. For example, a four-input maximum can be
decomposed into two stages two-input maximum:
MAX(a,b,c,d) = MAX(MAX(a,b),MAX(c,d)); MAX(a,b) =
MUZX(a,b,CMP(a,b)).

B.  Simultaneous Allocation Algorithm (SAA)

The key idea of simultaneous algorithm is considering
all instructions at same time with all the operations allocated
sequentially in the given topological order. Fig. 10 shows the
allocation growing path of the instruction set consists of 7
instructions based on simultaneous algorithm. First, all the
operations whose input are from previous pipeline stage are
allocated into the first row of the AU array. Then the rest
operations whose input are not from previous pipeline stage
are allocated simultaneously and try to share as many
common AUs as possible. The allocation result of utilized
AU for allocating of first 5 operations is shown as the very
left graph of Fig. 10. After the 1st operations of all instruction
sets are allocated, the 2nd, 3rd ...nth operations will be

allocated into the AU array continuously.

Simultaneous Allocation Algorithm

Input: DFGs of Instruction set and data path P of the 5*5 AU array
Output: Minimum Area of configurable AU array
1: Allocate the 1% group operations
2: Initialize the complexity of each instruction
3:forj=( max_ist+1) .. GMAX_1st+ jMAX_2nd ), dO
for i based on the complexity order, from high to low do
repeat
Allocate the operation O
until find the location with minimum cost in that row
end for
Recalculate the complexity of each instruction
10: end for
11: Calculate the total rectangular area of the allocated ALUs .S
12: return S and the floor plan of AU array

4
5
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7
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AU—»AU—»AU—»AU AU— AU— AU— AU AU—+AU—+AU—AU  AU— AU—+ AU— AU
¢ AU— Al [:> AU—AU—A [:> AU—+ AU—> Al
[:> u u / U U u u i} u
7
O \
§ \\o/ ' allocate I 0//
) . @B MUX)- SUB) suB) ABD..... MUX) .?f?’
5th operatlon of 6th operahon of 7th operation of 8th operation of

instruction 1~7 instruction 1~7 instruction 1~7 instruction 1~7

Fig. 10. Allocation algorithm growing paths.

Our tests on instruction groups show that the
simultaneous allocation consumes much less runtime but
with similar optimization results compared to exhaustive
search because its searching space is much smaller than the
exhaustively search.



VILRESULTS AND ANALYSIS

To estimate the performance (delay) improvement, we
performed “case-based” static timing analysis (STA) where
delay is reported under constraint of configuration of the
design rather than general worst-case critical path. The
“case-based” STA reported by Cadence encounter tool
provides more accurate estimation of specific operation of the
accelerator. Table 2 shows the delay improvement for each
configuration of the RRAM based AU compared with
conventional AU. Table 3 shows the power saving of under
different configuration using similar “case based” power
analysis in Encounter tool.

Table 2: Delay reduction of different operations in AU.
ADD | SUB | LSL | LSR | CMP | XOR | MUX
34% | 32% | 23% | 18% | 41% | 21% 36%
Table 3: Power saving of different operations in AU.

ADD | SUB | LSL | LSR | CMP | XOR | MUX
38% | 36% | 27% | 27% | 27% | 25% | 36%

Function
Reduction

Function
Saving

A. Case Study on General Benchmarks

1) Benchmarks

To evaluate the performance in general use cases, we
selected a set of six benchmark programs from Mibench [27].
The selected benchmarks are fft, adpcm, basicmatch,
bitcount, gsort and rigndael, all of which have repetitive
computing loops suitable for mapping into reconfigurable
accelerators. For each benchmark, we first used LLVM [28,
30] to obtain the DFGs and representative computing loops.
We then identify custom instructions from the DFGs of each
benchmark using instruction decomposition described in
Section IV-A. The characteristics of representative loops are
shown in Table 4.

Table 4: Benchmark Characteristic

Bench mark Nodes Edges Domain
fft 28 41 Telecom
adpcm 27 47 Telecom
basicmatch 18 25 Automotive
bitcount 16 28 Automotive
gsort 27 42 Automotive
rigndael 16 28 Security

2) Performance Results

Fig. 11 shows the detailed implementation of the
example benchmark “gsort”. The DFG of representative loop
in “gsort” contains three multiplications: two additions and a
square root. Fig. 13 (a) shows the final configuration
floorplan of the R-accelerator which contains a 5x6 AU
array. Fig. 12 (a), (b) show the power and delay comparison
between proposed R-accelerator and conventional
reconfigurable architectures through different benchmarks.
The overall geometric mean of power saving and delay
improvement are 33% and 32% respectively. For power
saving, “fft” has the highest energy saving of 37%. This can
be explained by the fact that “fft” has largest number of
multiplication (addition) operations which have higher
saving compare to other operations. The highest delay
improvement is 38% achieved by “adpcm” due to dominant
MUX operations which have higher delay reduction compare
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to other operations. Fig. 12 (c) shows the total area saving of
45% achieved by the proposed R-accelerator design. Among
the 45% area reduction, 25% comes from proposed logic
contraction, 9% comes from allocation algorithm, 4% comes
from interconnect and 7% comes from associated memory.

T g p
T

Square Root H

(a) (b)
Fig. 11. (a) AU array and interconnection configuration diagram for “qsort”;
(b) Detailed configuration road map.
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Fig. 12. (a) Power comparison; (b) Delay comparison; (c) Area comparison;
(d) Configuration time comparison.

3) Configuration Time Analysis

One major difference of the proposed reconfigurable R-
accelerator is that the RRAM needs to be written for each
configuration. Compared with standard CMOS logic, the
written speed of RRAM is slower and thus leads to drawback



of the proposed design. In addition, a special sequence needs
to be enforced for configuration to ensure deterministic
writing to each RRAM device. The write time is assumed to
be a moderate speed of 10ns as listed in Table 1. Figs. 11 (a)
and (b) show the configuration flow of the accelerator for
“gsort” program. The different color indicates the order of
reconfiguration: (1) the AUs with same color /number are
reconfigured at same time; (2) The configuration order of the
RRAM-based AU is marked by the number at the right-
bottom corner of the AU. The detailed reconfiguration of
multiplication and square root are shown in Fig. 11 (b). Fig.
12 (d) shows the configuration time for different benchmarks.
The configuration time varies from 50ns to 120ns and among
them “bitcount” has the longest configuration time due to a
more complex and longer DFG it has. Although the longer
configuration time of the proposed R-Accelerator is a
drawback compared with conventional design, the overhead
of reconfiguration only happens once at the beginning of the
program and can often be hidden through careful scheduling
with CPU’s operation.

VIIL.CONCLUSION

This paper proposes a novel design methodology for
creating reconfigurable application specific accelerator using
emerging RRAM device. A novel RRAM based logic circuit
and a logic contraction technique were proposed to
significantly reduce the area cost of reconfigurable arithmetic
units. To construct CGRA- based accelerators from the
proposed RRAM based AU units, a new heuristic allocation
algorithm is developed to achieve the optimal solution for AU
placement and interconnect choices. The proposed
techniques have been fully integrated into commercial EDA
tools in 45nm technology. Case study general benchmark
programs are used to highlight the significant improvement
of the proposed R-Accelerator technique. Experiment results
show that compared with conventional design methodology,
a 45% area reduction, 32% of average delay improvement,
and 33% of average dynamic power saving can be achieved
with the proposed R-accelerator technique.
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