
R-Accelerator: A Reconfigurable Accelerator with
RRAM Based Logic Contraction and Resource

Optimization for Application Specific Computing
Zhengyu Chen, Hai Zhou, and Jie Gu

Department of Electrical Engineering and Computer Science, Northwestern University
2145 Sheridan Road, Evanston, IL, 60208, USA

Email: zhengyuchen2015@u.northwestern.edu, haizhou@northwestern.edu, jgu@northwestern.edu

ABSTRACT—In this paper, we introduce a novel
reconfigurable accelerator (R-accelerator) design which embeds
RRAM device into traditional logic circuits for high-performance
application specific computing. To facilitate the synthesis of the
proposed RRAM based logic cell, a special
logic contraction technique is developed to maximize the area
saving. In order to optimize the arithmetic unit array for
instruction set mapping and interconnect routing, a new resource
allocation algorithm is also proposed to achieve further saving in
area and power. Using a fully integrated design flow with
commercial design tools, our experimental results show that the
proposed RRAM based R-accelerator architecture offers 45% area
improvement, 33% power reduction and 32% performance
enhancement in a 45nm CMOS process compared with
conventional CMOS design.

Keywords—memristor, RRAM, logic contraction,
reconfigurable architecture

I. INTRODUCTION
Accelerator enriched microprocessor design has recently

drawn tremendous interest from consumer electronic industry
due to the rapid growth from applications such as virtual
reality, artificial intelligence. Unfortunately, the complex
algorithms utilized by such applications, e.g. facial
recognition, lead to significant challenges to the existing IC
development models. On one hand, the market of electronic
devices pushes designs toward more complex and higher
performance system-on-chip (SoC) devices. As a result,
accelerator based ASIC chips or Application Specific
Instruction Processors (ASIP) are developed to provide
dedicated processing power for specific computing tasks
[1,2]. On the other hand, the increasing IC design costs at
advanced CMOS technology, and demand for shorter time-
to-market cycle requires lower risk and faster turnaround
solutions which pushes toward more flexible, reconfigurable
hardware solution, diminishing the benefits of dedicated
ASIC design. A typical example is the general-purpose
microprocessor which provides flexible support to various
applications but suffers from lower performance and higher
energy cost for handling the complex algorithm in real-time
image processing, such as median filter, and optimal margin
classifier, etc. [3, 4]. Meanwhile, even though ASIC or ASIP
solution does provide a performance boost of as much as
three orders of magnitude to its CPU counterpart, it becomes

impractically expensive to implement all potentially used
complex algorithm in an ASIC or ASIP design [5]. For this
reason, a reconfigurable accelerator-based hardware solution
which provide combined advantages of both high
performance and hardware flexibility has become
increasingly popular recently [6,7].

As an alternative solution, Coarse Grain Reconfigurable
Arrays (CGRA) represents a second class of reconfigurable
architectures. In CGRA, predefined and optimized
reconfigurable Arithmetic Logic Units (ALU) are used as
building blocks. Complex algorithms are then allocated into
ALU arrays to realize application specific instruction sets
removing conventional performance limitation from multi-
cycle pipeline operations. CGRA significantly reduces the
overhead of interconnects and associated memory
components compared with solution such as FPGA while
keeping a high level of reconfigurability [6, 8]. An example
of such architecture is shown in Fig. 1 (a) where totally 30
ALUs are connected to realize a complex operation such as
square-root without intermediate storage or pipelines [1, 6].
Fig. 1 (b) shows another CGRA design which contains 16
nodes arranged in a 4×4 mesh [8]. A similar CGRA work
with reconfigurable interconnect but focuses on providing
single-cycle communications between functional units (FUs)
is proposed in [9]. Although CGRA solution provides an
enhanced performance, significant challenges still exist
including (1) high cost in the design of reconfigurable ALU
units with large amount of function support; (2) Associated
memory costs for bookkeeping the configuration; (3) High
cost of establishing flexible interconnects between
Arithmetic Units (AU). In this paper, we try to address the
above issues of CGRA design using novel cross-layer
solutions ranging from device, circuits, to architecture levels.

BUS/ Switch
Controller

BUS/ Switch
Controller

ALU ALU ALU

ALU ALU ALU

(a) (b)
Fig. 1. (a) Layout and core circuit diagram of previous CGRA work [6]; (b)
Block diagram of another CGRA work [8].

This work is funded by NSF grant CCF-1533656.

163

2018 IEEE 36th International Conference on Computer Design

2576-6996/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCD.2018.00034

Among recent technology development, the emerging
non-volatile memory (NVM) technologies, i.e. RRAM or
memristor have provided tremendous new opportunities to
the development of high performance microprocessors. The
use of RRAM/memristor can be classified into two large
classes. The first class is in memory application where
RRAM is utilized to provide on-chip NVM solution replacing
conventional Cache or DRAM. In addition, the very simple
thin film topology of RRAM allows monolithic integration of
such memory device in vertical stacks on top of the
processing units, leading to an extremely high-density
storage solution [10]. In the second class, rather than using
NVM as a storage unit, RRAM/memristor device has been
proposed as processing units in emerging application such as
neuromorphic computing [11]. Such an implementation
dramatically reduced the cost of convolution operation,
leading to tremendous saving of computing power.
Furthermore, a mrFPGA technique was also proposed to use
memristor as an interconnect solution to replace existing
SRAM based FPGA, leading to 5X improvement in area [5].
Other relative work utilized RRAM as programmable
interconnect mainly focused on the circuit level
implementation [12, 13].

Ar
ea

AUAUAU

AUAUAU

AUAUAU
Switch Controller

Switch Controller

Co
nf

ig
. R

eg
is

te
r F

ile
s

DATA Register Files

Conventional CGRA Accelerator Proposed CGRA Accelerator
(R-Accelerator)

R R R

R R R

AU AU AU

AU AU AU

AU AU AU

DATA Register Files

Co
nf

ig
.R

eg
is

te
r F

ile
s

Switch ControllerS C

sss
ggg

AU
Logic

Contraction

Interconnect
Reduction

Mem Saving

Result
Carry

AU_Core

“ADD”

“LSL”

“CMP”

A

B
AU_Core

“ADD”

“LSL”

“CMP”

 Logic Contraction
 Interconnect Reduction
 Allocation Opt.
 Mem Saving A

B

set

reset

out

Fig. 2. Left: Conventional CGRA accelerator; Right: Proposed RRAM-
based CGRA accelerator (R-Accelerator).

Different from the prior arts, this paper proposes a
fundamentally new scheme for implementing CGRA-based
accelerator using the emerging RRAM/memristor device,
referred as R-Accelerator. Fig. 2 summarizes the proposed
R-Accelerator architecture in the following aspects: (1) the
conventional AU is replaced by RRAM-based reconfigurable
AU with a specially developed logic contraction technique
rending significant logic simplification; (2) The switch
controller in conventional design is reduced and simplified
by the RRAM-based programmable interconnection; (3)
Configuration register file is eliminated as the RRAM works
as both non-volatile storage and programmable interconnect.
Below summarizes the cross-layer contribution of this paper
from circuit, architecture to design automation:

In the circuit level, (1) we propose a RRAM based logic
cell design which works as both function units and storage
units to realize logic reconfigurability; (2) We propose a

special logic synthesis technique, referred as logic
contraction, which dramatically reduce area overhead
associated with realizing reconfigurability in conventional
CMOS design.
In the architecture level, we proposed the CGRA-based
accelerator architecture with RRAM-based programmable
interconnect.
In the design automation level, (1) to leverage the help
from memristive device and overcome the challenges of
allocating arbitrary algorithm into CGRA AU arrays, we
propose special allocation solution based on heuristic
algorithm with thousands time of speedup; (2) A full layer
implementation including PCell and backend supports
have been developed and fully integrated into conventional
EDA design flows/tools, leading to an automatic design
flow of the proposed R-accelerator design.

III.RRAM-BASED RECONFIGURABLE AU DESIGN

A. Memristor Devices
A memristor is a 2-terminal passive device in which the

resistance between its terminals can be changed into a high
resistance (OFF) state, or a low resistance (ON) state. The
‘ON’ and ‘OFF’ states are reversibly controlled by an
external voltage applied across its terminals. The two major
classes of application are (1) RRAM memory with binary
states; (2) Analog memristor where the resistance states
possess continuous tuning and larger range. Normally,
higher resistance ratio is observed in the second-class due to
the requirement of higher resolutions. Here we briefly survey
the selected published RRAM characteristics in Table-1. As
our paper explores a novel usage of the resistive memory as
a non-volatile reconfigurable logic, we only utilize the
RRAM as a binary state device, i.e. low resistive state (LRS)
and high resistive state (HRS) with relaxation on the tuning
resolution requirement of the device as compared with
previous publication for neuromorphic computing [14].
Although matching of exact device characteristics to
particular published device is beyond the scope of this paper,
we devote our effort to incorporate more realistic behavior
and electronic properties of the RRAM device by creating (1)
A realistic parameterized cell (PCell) that can be extracted
from real device layout and simulated by spice simulator to
characterize the performance of the proposed circuits. (2) An
integrated library cell that is fully supported by EDA tools,
e.g. Cadence encounter, to perform synthesis, place&route of
the developed circuit components.
Table 1: Selected Published RRAM/Memristor Characteristics

Material LRS (ohm) HRS (ohm) Write Time(ns) Set Voltage (V)
NiO [17] 500 10M 10~50 1.5
SiOxNy [20] 100 1M 100 1
TaO [21] 100 100k 2 1.5
HfO2 [22] 1k 100k 100 1.5
HfO2 [23] 5k 10~100M 100 2
This work 10k 1M 10 1.2

164

B. Electrical Characteristics of Memristors

+
-

e-

‘ON’

‘Vset’
+
-

e-

‘Vreset’

‘OFF’

I

V

Vth_ON

Vth_OFF

Vset

Vreset

Metal 5
Metal 4

Metal 3
Metal 2

Metal 1

Metal 6

CMOS
Transistor

Low Resistance
State (LRS)

High Resistance
State (HRS)

Vset Vreset
TE

SM

BE

TE

SM

BE

 (a) (b)
Fig. 3. (a) Typical bipolar I-V linear curve of memristor; (b) 3-D diagram of
memristor based circuit.

Fig. 3(a) shows the representative bipolar I-V linear
characteristics of such a memristor [10, 29]. To set (or
program) the device into a memristive ‘ON’ or ‘low
resistance’ state, a voltage Vset above the threshold Vth_ON
is applied across its terminals until a conductive filament is
formed. The conductive filament shorts the device and lowers
its resistance to RON. Reverse operation is applied to “reset”
the device into ‘OFF’ or ‘high resistance’ state. Recent
development from commercial vendors such as Crossbar, inc
has demonstrated a fully integrated monolithic solution
where memristive device can be inserted between any metal
layers of existing CMOS chips and possess a large on-off
ratio, e.g. 1,000 [10, 30]. Fig. 3 (b) shows the 3-D diagram
of memristor based circuit design where RRAM is inserted
between metal 4 and metal 5 on top of CMOS transistor
layers.

C. RRAM Model and PCell Design
Fig. 4 (a) shows our developed RRAM PCell including

both schematic and layout. The PCell allows variable
dimension as well as placement of RRAM at any user specific
metal layers. For spice simulation, parasitics due to routing
and via connections are first extracted from Calibre. The
devices are then simulated with veriloga model together with
extracted parasitics. The VerilogA model was developed
based on various reported resources [19]. In our design, we
used one of the high-level metals to avoid causing congestion
with local routing. The parasitic impact from the connection
between local transistors and RRAM devices has been
included in our extracted model and library cell component
in our digital design environment. Fig. 4 (b) shows our
integration of the developed RRAM device and RRAM-
based circuits into digital design flow for large scale
integration used in this work.

Practical issues of RRAM/memristor devices have been
reported including (1) variability of the cell resistance
especially at high resistance state and (2) endurance of
resistance value during writing and reading [18,19,31].
Although an exact device level evaluation is out of scope of
this paper, we performed variability test by varying HRS and
LRS by a factor of 300% and evaluate the performance, i.e.
cell delay impact. Our evaluation shows the performance
variation is within 10% of nominal value because the logic

cell delay is strongly influenced by intrinsic transistors from
driving buffers rather than the interconnect variation. In
addition, the proposed reconfiguration operation using
RRAM device is only performed at beginning of each
program and thus can be repeatedly tuned to eliminate
potential variation of the device resistance. Compared with
previous proposed neuromorphic application where high
resolution and sturdy resistance of memristor device is
required, the proposed circuits have significantly relaxed
requirement on the variability and durability of the device and
thus can be easily utilized from commonly used
RRAM/memristor devices.

(b) (c)

in_A

out

set

reset

R1

R2

write (≈10ns) normal

V
(V

)

1.0

0.5

0.0

V
(V

)

1.0

0.5

0.0

R
(M

Ω
)

0.0

1.0

0.5

0.0

0.0

~10kΩ

~1MΩ

Delay ≈ 30ps

(a)

Schematic
(Build-in Veriloga Model)

Layout (w/ PEX)
User Specified RRAM

Layer & dimension

RRAM/Memristor PCELL Generation

M1

M2

M3

Mx

Gx
Cx

Gm

Timing Library

Integration for Synthesis and P&R

Library (“45nm_typ.lib”)
{

Cell (Rmux_X1) { ….}....

LEFF/DEFF
for P&R

Fig. 4. Model and implementation of RRAM. (a) PCell layout and
schematic; (b) Integration into conventional EDA flow; (c) Spice simulation
waveforms of RRAM based MUX.

D. RRAM-Based Logic Cell Design
Multiplexer logic cells are heavily used in

reconfigurable logics for realizing configurable functionality.
Figs.5 (a) and (b) show two conventional implementations of
MUX2 cell which contains 16 and 12 transistors with one
select bit provided from a memory cell. As an alternative
solution, we propose a RRAM-based MUX (R-MUX) cell
with significant saving on cell footprint.

B

A

sel
out

A

B

set

reset

out

A

B

sel

sel

sel

set

reset

C

D

A

B
out

(a) (b) (c) (d) (e)

0.5μm5.8μm7.4μm

Digital MUX4 Analog MUX4 R-MUX4

(f)

Fig. 5. Multiplexer design. (a) Conv. digital MUX2. (b) Conv. analog
MUX2. (c) R-MUX2. (d) R-MUX4. (e) 3-D diagram of R-MUX2; (f) Layout
comparison: Conv. digital MUX4 (left), conv. analog MUX4 (middle), R-
MUX4 (right).

Fig. 5 (c) and (e) show our proposed RRAM based
MUX2 (R-MUX2) cells and its 3-D drawing with only two
memristors and two transistors. Since the R-MUX can be

165

fabricated over the logic blocks, integrating more bit into the
R-MUX would not significantly increase the area of the
device. Fig. 5 (d) shows the schematic of a 4-to-1 R-MUX
with the same footprint as 2-to-1 R-MUX. For comparison,
conventional 4-to-1 MUX takes 3 times area as 2-to-1 MUX.
The footprint of the proposed R-MUX4 cell is reduced by 9X
compared with conventional ones. In addition, there is no
extra SRAM needed to store the configuration data since the
RRAM works as non-volatile storage. Including memory
space saving, an overall saving of 12X to 15X compared to
conventional designs can be achieved. At configuration
phase of the proposed circuits, by tuning on/off the set/reset
transistors with particular input combination from previous
stage, we can selectively program the RRAM into LRS and
HRS, i.e. only one of RRAM stays in LRS while the rest stay
in HRS. In this way, only the signal through the path with
the RRAM in LRS will be passed realizing a multiplexer. The
proposed programming sequence is (1) presetting primary
input values for A, B, C, etc. and set, reset signals to program
each RRAM device; (2) Repeat (1) for every stage of RRAM
in a sequential order so that the input states are always
defined in the logic circuits. Note that to avoid drifting of the
resistive values, the configuration phase should be performed
at elevated voltage above programming voltage, e.g. 1.2V,
rather than the normal operation voltage, e.g. 1.0V. Fig. 4(c)
shows the spice simulation of operation waveforms of the R-
MUX circuits, exhibiting a write-speed of ~10ns, On-off
resistive ratio of ~100 and a logic delay of ~30ps with correct
functionality.

E. Logic Contraction using RRAM Based Logic Cell for
Reconfigurable AU design

1) Reconfigurable Arithmetic Unit (AU) Design
In order to build the element of reconfigurable

accelerator, we study the commonly used instructions in
applications such as facial recognition and pattern
classification. We identify the following most commonly
used algorithms including multiplication(MUL), square,
square root, division, winner-take-all (WTA), maximum
value (MAX), absolute value (ABS), convolution, and
multiply-accumulate operation (MAC). Accordingly, we
build 8-bit arithmetic unit in our design containing 8 basic
configurable operations: addition (ADD), subtraction (SUB),
logic shift left (LSL), logic shift right (LSR), comparison
(CMP), MUX, XOR and XNOR. A bypass mode is also
introduced to pass input signals directly into the next stages.
The AU units can then be jointly composed to realize the
above complex algorithms.

The conventional AU uses combinational logics to
realize configurability of different supported functionality.
We experiment the area benefits of using proposed R-MUX
by simply replacing some of the conventional MUXs by R-
MUXs in the synthesized and P&R AU design Surprisingly,
despite of the significant area reduction shown in Section II-
C, our experiments show only 5% of area saving can be
achieved by replacing conventional MUX by R-MUX. This

is because in a highly-optimized gate-level netlist, most of the
selection logic of the AU are synthesized into more complex
logic, e.g. AOI logic gates which cannot be replaced. The left
layout in Fig. 7 shows the conventional AU layout with
MUXs marked by red color boxes. The area benefit from
simply replacing existing MUXs with R-MUXs is
insignificant due to the low occurrence of conventional
MUXs because of the merging of selection logic with main
functional logics from conventional synthesis methodology.
We address this issue in the next section.
2) Proposed Logic Contraction Method and Flow

In this section, a novel control logic contraction
technique is proposed to provide substantial area saving using
RRAM based logic cells. In conventional design, an 8-bit AU
is realized by the digital operation code to configure the AU
core into different operation modes, e.g. ADD, SUB, CMP
etc. For instance, an 8-bit 2-operation conventional AU with
1-bit operation code (c0) can be expressed as:O௖௢௡௩ି஺௎ = ܿ଴ഥ ,ܣ)ܦܦܣ (ܤ + ܿ଴ܷܵܣ)ܤ, (ܤ (1)

It is important to highlight the overhead of the
configurability. Even with a fully optimized adder/subtractor
with technology mapping using complex standard cell, a
selection logic for realizing eq. (1) requires approximately 16
ANDs, 8 ORs gates and 8 NORs for this 2-operaton AU. The
block diagram of the conventional AU design is shown in Fig.
6 (a) with distributed selection logic circuits marked in grey.
Compare to the AU core function, i.e. ADD/SUB, the
selection logic circuit consumes a total of 20% to 40% area.
On the other hand, the selection logic overhead can be
dramatically suppressed by utilizing the proposed R-MUX
and logic contraction technique for configuration. Its block
diagram is shown in Fig. 6 (b). Oோோ஺ெି஺௎ = ,ܣ)ܦܦܣ]ܯ ,(ܤ ,ܣ)ܤܷܵ [(ܤ (2)

Eq. (2) shows the expression of the RRAM-based AU
design. The M function represents the R-MUX logic which
consumes much less area when compared to the conventional
digital MUX cells. More importantly, the selection logic
operation in eq. (2) is eliminated from conventional
expression as in eq. (1). As a result, the digital logic
implementation using proposed RMUX becomes much
simpler. In fact, the more functionality to be included in AU
design, the more area saving can be achieved due to the small
area consumption of R-MUX logic. The output expressions
of 8-bit 4-operation conventional and R-MUX based AUs are
shown in equations (3), (4): O௖௢௡௩ି஺௎ = ܿଵഥ ܿ଴ഥ ,ܣ)ܦܦܣ (ܤ + ܿଵഥ ܿ଴ܷܵܣ)ܤ, (ܤ + ܿଵܿ଴ഥ ,ܣ)ܮܵܮ (ଵܿ଴ܿܤ + ,ܣ)ܴܵܮ Oோோ஺ெି஺௎(3) (ܤ = M[Aܣ)ܦܦ, ,(ܤ ,ܣ)ܤܷܵ ,(ܤ ,ܣ)ܮܵܮ ,(ܤ ,ܣ)ܴܵܮ [(ܤ (4)

Unfortunately, standard logic synthesis technique does
not support insertion of the RMUX logic. To facilitate the
logic synthesis of the proposed RRAM based reconfigurable
cells, we developed a special logic contraction flow. As
illustrated in Fig. 6 (b), at first, we rewrite the RTL for AU
by elaborating outputs from each supporting function and
modify the high level top module with separation of core

166

functionality and selection logic. Secondly, we perform R-
MUX integration using cells built from RRAM PCell through
standard synthesis procedure of logic design. This method
allows us to fully utilize the optimization power of modern
synthesis tool while still integrating RMUX automatically
into the final netlist and layout. The layouts of our proposed
8-bit 8-operation AU and conventional AU are shown in Fig.
7. A maximum area saving of 30% is achieved by
introducing the logic contraction technique.

A 8

B 8

Distributed Digital
Control Circuits

Conventional AU

Opcode[0]

Result
8

Carry

Memristor-based MUX Group
with logic contraction

Result
8

Carry
AU_Core

9“ADD”

8
“LSL”

“CMP”

A 8

B 8 R
C

AU_Core

9“ADD99 ”

888
“LSL”

“CMP”

88

88

RRAM-based AU

AU_Core

Opcode[1]
Opcode[2]

(a) (b)

Fig. 6: AU circuit diagram. (a) Conventional; (b) RRAM-based.

13
.9
μm

16.1μm
19.1μm

17
.1
μm

R-MUX8

30%
reduction

Fig. 7: Layout comparison between conventional (left) and RRAM-based
AU (right).

A 8

B 8

Distributed Digital
Control Circuits

Conventional AU

Opcode[0]

Result
8

Carry
AU_Core

Opcode[1]
Opcode[2]

Memristor-based MUX Group
with logic contraction

Result
8

Carry
AU_Core

9“ADD”

8
“LSL”

“CMP”

A 8

B 8 R
C

AU_Core

9“ADD99 ”

888
“LSL”

“CMP”

88

88

RRAM-based AU

ResultAU_Core

9“ADD”

8
“LSL”

“CMP”

A 8

B 8 RAU_Core

9“ADD99 ”

888
“LSL”

“CMP”

88

88

Hybrid AU

8

Carry

M
U

X

Digital MUX Group

(a) (b) (c)

RTL design for
control logic

Replace digital
MUX with RMUX

RTL
integration

()
Sythesis

P&R

RTL revision

(
RTL design

for core logic

(d)
Fig. 8. (a) Conventional AU; (b) Hybrid AU; (c) RRAM-based AU; (d)
Flowchart for logic contraction;

The proposed logic contraction method is a special
method developed for effective insertion of RRAM based
logic cells. Since different applications have different
functionality defined, the benefits reported in previous
section may not be universal to a general design. We provide
a general logic contraction flow as shown in Fig. 8: (1) we
first extract the “core function” from the conventional AU.
This can be realized by eliminating the control logic in RTL
design step. (2) We generate a separate control logic block
which can be realized by groups of digital multiplexers, and
connect it with the function core to form the “hybrid AU” as
in Fig. 8(b). This “hybrid AU” realizes same functionality as
conventional AU with an overhead due to logic separation.

(3) Replace the digital multiplexers with RMUX to form the
proposed RRAM-base AU which is shown Fig. 8 (c). The
flowchart of proposed method is shown in Fig. 8 (d).

IV.RECONFIGURABLE AU ARRAY ARCHITECTURE

A. Interconnect and Reconfigurable AU Arrays
In order to implement instruction sets, the reconfigurable

AU array which consists of a group of RRAM-based AUs
should be configured into different logic topology to adapt to
the data path of particular instructions. Conventionally, the
reconfigurable AU array consists of AUs and switch
controller (SC) [8]. The architecture of conventional
interconnect network with SC is shown in Fig. 9 (a).

AU AU AU

AU AU AU

AU AU AU
Switch Controller

Switch Controller
R R R

R R R

AU AU AU

AU AU AU

AU AU AU

A

B

set

reset

out

(a) (b)

(c) (d) (e) (f) (g)

in1

in2

out

in1

in2

out

in1

in2

out

in1

in2

out

in1

in2

out

in1

in2

out

in1

in2

out

in1

in2

out

default space

de
fa

ul
t s

pa
ce

de
fa

ul
t s

pa
ce

ex
tr

a
sp

ac
e

default space

(h) (i)
Fig. 9. AU array interconnect. (a) Conventional interconnect; (b) Proposed
RRAM-based interconnect; (c) Option 2; (d) Option 3; (e) Option 4; (f)
Option 5. (g) Detailed routing of (c); (h) Detailed routing of (d) which shows
the overhead of extra routing channel.

To reduce the complexity of interconnect network, in
our work, the conventional switch controller is simplified
into a basic uni-directional interconnect in which only one
signal propagation direction is allowed in one signal channel.
Beside the basic interconnect, four more optional routing
channels depending on the demand of target instruction sets.
As a result, we introduce totally five interconnect options: (1)
The basic interconnect which is shown in Fig.9 (c); (2)
Adding an extra diagonal interconnect channel which is
shown in Fig.9 (d); (3) Adding an extra free interconnect
channel between nearby rows which is shown in Fig.9 (e); (4)
Adding an extra interconnect channel within same row but
between different columns which is shown in Fig.9 (f); (5)
Continually adding extra routing channels within the same
row which is shown in Fig.9 (g).

The proposed uni-directional network dramatically
decreases the congestion on interconnecting wires compared
with fully connected crossbar. The interconnect delay and
area overhead can be further reduced when introducing
proposed R-MUX logic to replace the conventional switch

167

controller (SC) which consists of a large amount of
conventional MUXs.

B. Interconnect Options and Modeling
The more interconnect routing options included, the

more flexible the AU array can be to implement complex
instructions. In our work, the default interconnect of the AU
array is uni-directional. Interestingly, no matter where the
input port 1, input port 2 and output port are located, there
occurs a free channel for the diagonal interconnects (from top
left to bottom right) without introducing extra routing space.
Fig. 9 (h) show detailed routing diagram according to default
routing in Fig. 9 (c). If more options are offered in the
configurable AU array, extra routing space will be needed.
Fig.9 (i) shows the detailed routing for routing option in Fig.
9 (d) and the extra routing channel is marked with red.
Despite of the extra routing overhead, more interconnect
options can lead to less number of AUs to be implemented
for the target instruction sets. Thus, there exists an optimal
interconnect solution which leads to the minimum area of AU
array for supporting target instruction sets which will be
discussed in Section IV. The cost function of interconnect is
shown as:S஺௅௎௔௥௥௔௬ = ௥ܰ௢௪ × (௜௡௧௘௥௖௡௖௧ܪ஺௎ାܪ) × ௖ܰ௢௟௨௠௡ (5) (௜௡௧௘௥௖௡௖௧ܮ஺௎ାܮ)×

where Nrow, Ncolumn are the numbers of row and
column, HAU is the height and LAU is the length of an AU,
Lintercnct, Hintercnct are the extra routing cost of the extra
interconnects. The final area of the configurable AU array is
determined by both the number of AU (array topology) in the
array and the extra routing space introduced by the extra
interconnects.

V.INSTRUCTION-TO-AU ARRAY SYNTHESIS AND
ALLOCATION ALGORITHM

An important challenge for reconfigurable AU based
accelerator design is the allocation of instruction set into
existing AU arrays. Several resource-constrained allocation
algorithms were proposed in [8, 9, 15]. However, the prior
work were focused on instruction scheduling based on
existing fixed numbers of processing units. Different from
prior work, in this paper, we explore optimal design choices
where the number and interconnects of AU arrays are not
predefined but a minimum number of target instruction sets
are provided. Hence, our work is orthogonal to prior
scheduling focused study [8, 9, 15] which cannot be used to
provide us the optimal design choices. Generally speaking,
this kind of graph allocation work is NP-Hard [16]. We
proposed an allocation algorithm based on heuristic
algorithm to find the optimal numbers of AU and optimal
interconnect options as given in Fig. 9 to achieve minimum
area cost.

A. Instruction Decomposition
In this work, all instructions are represented by Dataflow

Graph (DFGs). In the DFGs, each vertex represents a basic

function operation such as addition, subtraction, logic shift,
etc., and each edge represents the data dependency between
the connected operations. In order to allocate a particular
instruction into the AU arrays, this instruction needs to be
decomposed into several operations. The flow of the function
decomposition can be comprehended as follows: (1)
decompose the complex instruction into several simple
operations which can be realized by a single AU; (2)
Generate the Dataflow Graph (DFG) of the decomposed
instruction. For example, a four-input maximum can be
decomposed into two stages two-input maximum:
MAX(a,b,c,d) = MAX(MAX(a,b),MAX(c,d)); MAX(a,b) =
MUX(a,b,CMP(a,b)).

B. Simultaneous Allocation Algorithm (SAA)
The key idea of simultaneous algorithm is considering

all instructions at same time with all the operations allocated
sequentially in the given topological order. Fig. 10 shows the
allocation growing path of the instruction set consists of 7
instructions based on simultaneous algorithm. First, all the
operations whose input are from previous pipeline stage are
allocated into the first row of the AU array. Then the rest
operations whose input are not from previous pipeline stage
are allocated simultaneously and try to share as many
common AUs as possible. The allocation result of utilized
AU for allocating of first 5 operations is shown as the very
left graph of Fig. 10. After the 1st operations of all instruction
sets are allocated, the 2nd, 3rd …nth operations will be
allocated into the AU array continuously.
Simultaneous Allocation Algorithm
Input: DFGs of Instruction set and data path P of the 5*5 AU array
Output: Minimum Area of configurable AU array
1: Allocate the 1st group operations
2: Initialize the complexity of each instruction
3: for j = (j MAX_1st +1) .. (jMAX_1st + jMAX_2nd), do
4: for i based on the complexity order, from high to low do
5: repeat
6: Allocate the operation Oij

7: until find the location with minimum cost in that row
8: end for
9: Recalculate the complexity of each instruction

10: end for
11: Calculate the total rectangular area of the allocated ALUs S
12: return S and the floor plan of AU array

AU AU AU AU

AU AU AU

AU AU AU AU

AU AU

AU AU AU AU

AU AU AU

AU

AU AU AU AU

AU AU AU

AU AU

6th operation of
instruction 1~7

5th operation of
instruction 1~7

allocate

7th operation of
instruction 1~7

8th operation of
instruction 1~7

5th
CMP …...ADD

f
SUB MUX …...ADD SUB

7t
SUB …...

th
ADD

ti
CMP

8th
MUX …...

ti
ADD

f
SUB

Fig. 10. Allocation algorithm growing paths.

Our tests on instruction groups show that the
simultaneous allocation consumes much less runtime but
with similar optimization results compared to exhaustive
search because its searching space is much smaller than the
exhaustively search.

168

VI.RESULTS AND ANALYSIS
To estimate the performance (delay) improvement, we

performed “case-based” static timing analysis (STA) where
delay is reported under constraint of configuration of the
design rather than general worst-case critical path. The
“case-based” STA reported by Cadence encounter tool
provides more accurate estimation of specific operation of the
accelerator. Table 2 shows the delay improvement for each
configuration of the RRAM based AU compared with
conventional AU. Table 3 shows the power saving of under
different configuration using similar “case based” power
analysis in Encounter tool.

Table 2: Delay reduction of different operations in AU.
Function ADD SUB LSL LSR CMP XOR MUX

Reduction 34% 32% 23% 18% 41% 21% 36%

Table 3: Power saving of different operations in AU.
Function ADD SUB LSL LSR CMP XOR MUX
Saving 38% 36% 27% 27% 27% 25% 36%

A. Case Study on General Benchmarks
1) Benchmarks

To evaluate the performance in general use cases, we
selected a set of six benchmark programs from Mibench [27].
The selected benchmarks are fft, adpcm, basicmatch,
bitcount, qsort and rigndael, all of which have repetitive
computing loops suitable for mapping into reconfigurable
accelerators. For each benchmark, we first used LLVM [28,
30] to obtain the DFGs and representative computing loops.
We then identify custom instructions from the DFGs of each
benchmark using instruction decomposition described in
Section IV-A. The characteristics of representative loops are
shown in Table 4.

Table 4: Benchmark Characteristic
Bench mark Nodes Edges Domain
fft 28 41 Telecom
adpcm 27 47 Telecom
basicmatch 18 25 Automotive
bitcount 16 28 Automotive
qsort 27 42 Automotive
rigndael 16 28 Security

2) Performance Results
Fig. 11 shows the detailed implementation of the

example benchmark “qsort”. The DFG of representative loop
in “qsort” contains three multiplications: two additions and a
square root. Fig. 13 (a) shows the final configuration
floorplan of the R-accelerator which contains a 5×6 AU
array. Fig. 12 (a), (b) show the power and delay comparison
between proposed R-accelerator and conventional
reconfigurable architectures through different benchmarks.
The overall geometric mean of power saving and delay
improvement are 33% and 32% respectively. For power
saving, “fft” has the highest energy saving of 37%. This can
be explained by the fact that “fft” has largest number of
multiplication (addition) operations which have higher
saving compare to other operations. The highest delay
improvement is 38% achieved by “adpcm” due to dominant
MUX operations which have higher delay reduction compare

to other operations. Fig. 12 (c) shows the total area saving of
45% achieved by the proposed R-accelerator design. Among
the 45% area reduction, 25% comes from proposed logic
contraction, 9% comes from allocation algorithm, 4% comes
from interconnect and 7% comes from associated memory.

LSL LSL LSL LSL

ADD LSL ADD LSL

ADD ADD ADD ADD

ADD LSL LSL LSL

LSL

ADD

ADD

ADD

LSL

LSL

ADD

ADD ADD ADD CMP

Square Root

ADD

LSL

ADD

ADD

LSL

LSL

ADD

LSL LSL LSL ADD

ADD ADD CMPADD

MUL
L 1

L
1

L
1

SL
1

SL
1

L
1

L
1

SL
1

SL
1

SL
1

D
2

D
2

D
2

D
2

DD
2

DD
2

D
3

D
3 3

D
4

D
4

L
5 5 5 5

6 6 7 8

ADD
2

AD
3

ADD
5

6 7
MPP

8

(a) (b)
Fig. 11. (a) AU array and interconnection configuration diagram for “qsort”;
(b) Detailed configuration road map.

37%
34%

33%
33%

34%

32%

(a)

32%

38%
32% 30%

34%

29%

(b)

logic
contraction

allocation
algorithm

interconnect

45%
memory

(c)

(d)
Fig. 12. (a) Power comparison; (b) Delay comparison; (c) Area comparison;
(d) Configuration time comparison.

3) Configuration Time Analysis
One major difference of the proposed reconfigurable R-

accelerator is that the RRAM needs to be written for each
configuration. Compared with standard CMOS logic, the
written speed of RRAM is slower and thus leads to drawback

()

169

of the proposed design. In addition, a special sequence needs
to be enforced for configuration to ensure deterministic
writing to each RRAM device. The write time is assumed to
be a moderate speed of 10ns as listed in Table 1. Figs. 11 (a)
and (b) show the configuration flow of the accelerator for
“qsort” program. The different color indicates the order of
reconfiguration: (1) the AUs with same color /number are
reconfigured at same time; (2) The configuration order of the
RRAM-based AU is marked by the number at the right-
bottom corner of the AU. The detailed reconfiguration of
multiplication and square root are shown in Fig. 11 (b). Fig.
12 (d) shows the configuration time for different benchmarks.
The configuration time varies from 50ns to 120ns and among
them “bitcount” has the longest configuration time due to a
more complex and longer DFG it has. Although the longer
configuration time of the proposed R-Accelerator is a
drawback compared with conventional design, the overhead
of reconfiguration only happens once at the beginning of the
program and can often be hidden through careful scheduling
with CPU’s operation.

VII.CONCLUSION
This paper proposes a novel design methodology for

creating reconfigurable application specific accelerator using
emerging RRAM device. A novel RRAM based logic circuit
and a logic contraction technique were proposed to
significantly reduce the area cost of reconfigurable arithmetic
units. To construct CGRA- based accelerators from the
proposed RRAM based AU units, a new heuristic allocation
algorithm is developed to achieve the optimal solution for AU
placement and interconnect choices. The proposed
techniques have been fully integrated into commercial EDA
tools in 45nm technology. Case study general benchmark
programs are used to highlight the significant improvement
of the proposed R-Accelerator technique. Experiment results
show that compared with conventional design methodology,
a 45% area reduction, 32% of average delay improvement,
and 33% of average dynamic power saving can be achieved
with the proposed R-accelerator technique.

ACKNOWLEDGMENT

This work is funded by NSF grant CCF-1533656.

REFERENCES
[1] Michele Borgatti, et al. A reconfigurable system featuring dynamically

extensible embedded microprocessor, FPGA, and customizable I/O.
JSSC, 2003.

[2] Tung Thanh-Hoang, et al. A Data Layout Transformation Accelerator:
Architectural support for data movement optimization in accelerated-
centric heterogeneous systems. EDAA, 2016.

[3] Takuki Nakagawa, Tadashi SHIBATA. A real-time image feature vector
generator employing functional cache memory for edge flags. ISCS,
2009.

[4] B. Boser, L Guyon, Isablele M. Guyon. A training algorithm for optimal
margin classifier. ACM Workshop Computational Learning Theory,
1992.

[5] Jason Cong, et al. mrFPGA: a novel FPGA architecture with memristor-
based reconfiguration. IEEE International Symposium on Nanoscale
Architectures, 2011.

[6] Davide Rossi, et al. A heterogeneous digital signal processor for
dynamically reconfigurable computing. JSSC, 2010.

[7] Fang-Li Yuan, et al. A multi-granularity FPGA with hierarchical
interconnects for efficient and flexible mobile computing. JSSC, 2015.

[8] Hyunchul Park, et al. Edge-centric modulo scheduling for coarse-
grained reconfigurable architectures. PAC, 2008.

[9] Manupa Karunaratne, et al. HyCUBE: A CGRA with reconfigurable
single-cycle multi-hop interconnect. DAC, 2017.

[10] Crossbar, Inc online white paper. http://www.crossbar-
inc.com/assets/resource/whitepaper/Crossbar-RRAM-Technology-
Whitepaper.pdf

[11] Yong Shim, et al. Low-power approximate convolution computing
unit with domain-wall motion based “spin-memristor” for image
processing. DAC, 2016.

[12] Anne Siemon, et al. A complementary resistive switch-based crossbar
array adder. JETCAS, 15

[13] Debjyoti Bhattacharjee, et al. Fast comparator implementation using
1S1R ReRAM crossbar arrays, APCCAS,16.

[14] Ping Chi, et al. PRIME: a novel processing-in-memory architecture for
neural network computation in reram-based main memory. AISCA,
2016.

[15] Yuankai Chen, Hai Zhou. Resource-constrained high-level datapath
optimization in ASIP design. DATE, 2013.

[16] Michael R. Garey, Computers and Intractability, Bell Laboratories,
Murray Hill, New Jersey.

[17] K. Tsunoda, et al. Low power and high speed switching of ti-doped
nio reram under the unipolar voltage source of less than 3 V. IEDM,
2007.

[18] Akifahara, et al. An 8mb multi-layered cross-point reram macro with
443mb/s write throughput. ISSCC, 2012.

[19] Chris Yakopcic, et al. Memristor spice model and crossbar simulation
based on devices with nanosecond switching time. JCNN,2013.

[20] Ru Huang, et al. Resistive switching of silicon-rich-oxide featuring
high compatibility with CMOS technology for 3D stackable and
embedded applications. Appl. Phys A, 2011.

[21] Feng Miao, et al. Anatomy of a nanoscale conduction channel reveals
the mechanism of a high-performance memristor. Adavance d matirials,
2011.

[22] T. Diokh, et al. Investigation of the impact of the oxide thickness and
reset conditions on Disturb in HfO2-RRAM integrated in a 65nm
CMOS. IRPS, 2013.

[23] Jiun-Jia Huang, et al. One selector-one resistor (1S1R) crossbar array
for high-density flexible memory applications. IEMD, 2011.

[24] Xifan Tang, et al. Circuit designs of high-performance and low-power
RRAM-based multiplexers based on 4T(ransistor)1R(ram)
programming structure. TCS, 2016.

[25] Xifan Tang, et al. A high-performance low-power near-Vt RRAM-
based FPGA. ICFPF, 2014.

[26] Tomasz Tala´ska, et al. Analog programmable distance calculation
circuit for winner takes all neural network realized in the CMOS
technology. TNNLS, 2016.

[27] Mibench, www.eecs.umich.edu/mibench/.
[28] LLVM, www.llvm.org.
[29] Miguel Angel Lastras-Montaño, et al. A low-power hybrid

reconfigurable architecture for resistive random-access memories.
HPCA, 2016.

[30] P. Biswas, et al. ISEGEN: generation of high quality instruction set
extensions by iterative improvement. DATE, 2005.

[31] Sylvain DUBOSI. Crossbar Resistive RAM (RRAM): The future
technology for data storage. http://www.snia.org/sites/default/orig/-
DSI2014/presentations/HotTopics/SylvainDuBoise_Future_Technolog
y_final.pdf

170

