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ABSTRACT—In this paper, we introduce a novel 
reconfigurable accelerator (R-accelerator) design which embeds 
RRAM device into traditional logic circuits for high-performance 
application specific computing.  To facilitate the synthesis of the 
proposed RRAM based logic cell, a special 
logic contraction technique is developed to maximize the area 
saving. In order to optimize the arithmetic unit array for 
instruction set mapping and interconnect routing, a new resource 
allocation algorithm is also proposed to achieve further saving in 
area and power. Using a fully integrated design flow with
commercial design tools, our experimental results show that the 
proposed RRAM based R-accelerator architecture offers 45% area 
improvement, 33% power reduction and 32% performance 
enhancement in a 45nm CMOS process compared with 
conventional CMOS design.

Keywords—memristor, RRAM, logic contraction, 
reconfigurable architecture

I. INTRODUCTION
Accelerator enriched microprocessor design has recently 

drawn tremendous interest from consumer electronic industry 
due to the rapid growth from applications such as virtual 
reality, artificial intelligence. Unfortunately, the complex 
algorithms utilized by such applications, e.g. facial 
recognition, lead to significant challenges to the existing IC
development models. On one hand, the market of electronic 
devices pushes designs toward more complex and higher 
performance system-on-chip (SoC) devices. As a result, 
accelerator based ASIC chips or Application Specific 
Instruction Processors (ASIP) are developed to provide 
dedicated processing power for specific computing tasks 
[1,2].  On the other hand, the increasing IC design costs at 
advanced CMOS technology, and demand for shorter time-
to-market cycle requires lower risk and faster turnaround 
solutions which pushes toward more flexible, reconfigurable 
hardware solution, diminishing the benefits of dedicated 
ASIC design.   A typical example is the general-purpose 
microprocessor which provides flexible support to various 
applications but suffers from lower performance and higher 
energy cost for handling the complex algorithm in real-time 
image processing, such as median filter, and optimal margin 
classifier, etc. [3, 4].  Meanwhile, even though ASIC or ASIP 
solution does provide a performance boost of as much as 
three orders of magnitude to its CPU counterpart, it becomes 

impractically expensive to implement all potentially used 
complex algorithm in an ASIC or ASIP design [5].  For this 
reason, a reconfigurable accelerator-based hardware solution 
which provide combined advantages of both high 
performance and hardware flexibility has become 
increasingly popular recently [6,7]. 

As an alternative solution, Coarse Grain Reconfigurable 
Arrays (CGRA) represents a second class of reconfigurable 
architectures. In CGRA, predefined and optimized 
reconfigurable Arithmetic Logic Units (ALU) are used as 
building blocks.  Complex algorithms are then allocated into 
ALU arrays to realize application specific instruction sets 
removing conventional performance limitation from multi-
cycle pipeline operations.  CGRA significantly reduces the 
overhead of interconnects and associated memory 
components compared with solution such as FPGA while 
keeping a high level of reconfigurability [6, 8].   An example 
of such architecture is shown in Fig. 1 (a) where totally 30 
ALUs are connected to realize a complex operation such as 
square-root without intermediate storage or pipelines [1, 6].  
Fig. 1 (b) shows another CGRA design which contains 16 
nodes arranged in a 4×4 mesh [8]. A similar CGRA work 
with reconfigurable interconnect but focuses on providing 
single-cycle communications between functional units (FUs) 
is proposed in [9]. Although CGRA solution provides an 
enhanced performance, significant challenges still exist 
including (1) high cost in the design of reconfigurable ALU 
units with large amount of function support; (2) Associated 
memory costs for bookkeeping the configuration; (3) High
cost of establishing flexible interconnects between 
Arithmetic Units (AU).  In this paper, we try to address the 
above issues of CGRA design using novel cross-layer 
solutions ranging from device, circuits, to architecture levels. 
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Fig. 1. (a) Layout and core circuit diagram of previous CGRA work [6]; (b) 
Block diagram of another CGRA work [8].
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Among recent technology development, the emerging 
non-volatile memory (NVM) technologies, i.e. RRAM or
memristor have provided tremendous new opportunities to 
the development of high performance microprocessors.  The 
use of RRAM/memristor can be classified into two large 
classes.  The first class is in memory application where 
RRAM is utilized to provide on-chip NVM solution replacing 
conventional Cache or DRAM. In addition, the very simple 
thin film topology of RRAM allows monolithic integration of 
such memory device in vertical stacks on top of the 
processing units, leading to an extremely high-density
storage solution [10].  In the second class, rather than using 
NVM as a storage unit, RRAM/memristor device has been 
proposed as processing units in emerging application such as 
neuromorphic computing [11].  Such an implementation 
dramatically reduced the cost of convolution operation, 
leading to tremendous saving of computing power.  
Furthermore, a mrFPGA technique was also proposed to use 
memristor as an interconnect solution to replace existing 
SRAM based FPGA, leading to 5X improvement in area [5].  
Other relative work utilized RRAM as programmable 
interconnect mainly focused on the circuit level 
implementation [12, 13].
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Fig. 2. Left: Conventional CGRA accelerator; Right: Proposed RRAM-
based CGRA accelerator (R-Accelerator).

Different from the prior arts, this paper proposes a 
fundamentally new scheme for implementing CGRA-based 
accelerator using the emerging RRAM/memristor device, 
referred as R-Accelerator.    Fig. 2 summarizes the proposed 
R-Accelerator architecture in the following aspects:  (1) the 
conventional AU is replaced by RRAM-based reconfigurable 
AU with a specially developed logic contraction technique 
rending significant logic simplification; (2) The switch 
controller in conventional design is reduced and simplified 
by the RRAM-based programmable interconnection; (3) 
Configuration register file is eliminated as the RRAM works 
as both non-volatile storage and programmable interconnect. 
Below summarizes the cross-layer contribution of this paper
from circuit, architecture to design automation:

In the circuit level, (1) we propose a RRAM based logic 
cell design which works as both function units and storage 
units to realize logic reconfigurability; (2) We propose a 

special logic synthesis technique, referred as logic 
contraction, which dramatically reduce area overhead 
associated with realizing reconfigurability in conventional 
CMOS design. 
In the architecture level, we proposed the CGRA-based 
accelerator architecture with RRAM-based programmable 
interconnect.
In the design automation level, (1) to leverage the help 
from memristive device and overcome the challenges of 
allocating arbitrary algorithm into CGRA AU arrays, we 
propose special allocation solution based on heuristic 
algorithm with thousands time of speedup; (2) A full layer 
implementation including PCell and backend supports 
have been developed and fully integrated into conventional 
EDA design flows/tools, leading to an automatic design 
flow of the proposed R-accelerator design.

III.RRAM-BASED RECONFIGURABLE AU DESIGN

A. Memristor Devices
A memristor is a 2-terminal passive device in which the 

resistance between its terminals can be changed into a high 
resistance (OFF) state, or a low resistance (ON) state. The 
‘ON’ and ‘OFF’ states are reversibly controlled by an 
external voltage applied across its terminals. The two major 
classes of application are (1) RRAM memory with binary 
states; (2) Analog memristor where the resistance states 
possess continuous tuning and larger range.  Normally, 
higher resistance ratio is observed in the second-class due to 
the requirement of higher resolutions.  Here we briefly survey 
the selected published RRAM characteristics in Table-1. As 
our paper explores a novel usage of the resistive memory as 
a non-volatile reconfigurable logic, we only utilize the 
RRAM as a binary state device, i.e. low resistive state (LRS) 
and high resistive state (HRS) with relaxation on the tuning 
resolution requirement of the device as compared with 
previous publication for neuromorphic computing [14].   
Although matching of exact device characteristics to 
particular published device is beyond the scope of this paper, 
we devote our effort to incorporate more realistic behavior 
and electronic properties of the RRAM device by creating (1) 
A realistic parameterized cell (PCell) that can be extracted 
from real device layout and simulated by spice simulator to 
characterize the performance of the proposed circuits. (2) An 
integrated library cell that is fully supported by EDA tools, 
e.g. Cadence encounter, to perform synthesis, place&route of 
the developed circuit components.
Table 1: Selected Published RRAM/Memristor Characteristics

Material LRS (ohm) HRS (ohm) Write Time(ns) Set Voltage (V)
NiO [17] 500 10M 10~50 1.5
SiOxNy [20] 100 1M 100 1
TaO [21] 100 100k 2 1.5
HfO2 [22] 1k 100k 100 1.5
HfO2 [23] 5k 10~100M 100 2
This work 10k 1M 10 1.2
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B. Electrical Characteristics of Memristors
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Fig. 3. (a) Typical bipolar I-V linear curve of memristor; (b) 3-D diagram of 
memristor based circuit.

Fig. 3(a) shows the representative bipolar I-V linear 
characteristics of such a memristor [10, 29]. To set (or 
program) the device into a memristive ‘ON’ or ‘low 
resistance’ state, a voltage Vset above the threshold Vth_ON 
is applied across its terminals until a conductive filament is 
formed. The conductive filament shorts the device and lowers 
its resistance to RON.  Reverse operation is applied to “reset” 
the device into ‘OFF’ or ‘high resistance’ state.  Recent 
development from commercial vendors such as Crossbar, inc 
has demonstrated a fully integrated monolithic solution 
where memristive device can be inserted between any metal 
layers of existing CMOS chips and possess a large on-off 
ratio, e.g. 1,000 [10, 30].  Fig. 3 (b) shows the 3-D diagram 
of memristor based circuit design where RRAM is inserted 
between metal 4 and metal 5 on top of CMOS transistor 
layers.

C. RRAM Model and PCell Design
Fig. 4 (a) shows our developed RRAM PCell including 

both schematic and layout.  The PCell allows variable 
dimension as well as placement of RRAM at any user specific 
metal layers. For spice simulation, parasitics due to routing 
and via connections are first extracted from Calibre.  The 
devices are then simulated with veriloga model together with 
extracted parasitics.  The VerilogA model was developed 
based on various reported resources [19].   In our design, we 
used one of the high-level metals to avoid causing congestion 
with local routing.   The parasitic impact from the connection 
between local transistors and RRAM devices has been 
included in our extracted model and library cell component 
in our digital design environment.  Fig. 4 (b) shows our 
integration of the developed RRAM device and RRAM-
based circuits into digital design flow for large scale 
integration used in this work.

Practical issues of RRAM/memristor devices have been 
reported including (1) variability of the cell resistance 
especially at high resistance state and (2) endurance of 
resistance value during writing and reading [18,19,31].  
Although an exact device level evaluation is out of scope of 
this paper, we performed variability test by varying HRS and 
LRS by a factor of 300% and evaluate the performance, i.e. 
cell delay impact.  Our evaluation shows the performance 
variation is within 10% of nominal value because the logic 

cell delay is strongly influenced by intrinsic transistors from 
driving buffers rather than the interconnect variation. In 
addition, the proposed reconfiguration operation using 
RRAM device is only performed at beginning of each 
program and thus can be repeatedly tuned to eliminate 
potential variation of the device resistance.  Compared with 
previous proposed neuromorphic application where high 
resolution and sturdy resistance of memristor device is 
required, the proposed circuits have significantly relaxed 
requirement on the variability and durability of the device and 
thus can be easily utilized from commonly used 
RRAM/memristor devices.
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Fig. 4. Model and implementation of RRAM. (a) PCell layout and 
schematic; (b) Integration into conventional EDA flow; (c) Spice simulation 
waveforms of RRAM based MUX.

D. RRAM-Based Logic Cell Design
Multiplexer logic cells are heavily used in 

reconfigurable logics for realizing configurable functionality.  
Figs.5 (a) and (b) show two conventional implementations of 
MUX2 cell which contains 16 and 12 transistors with one 
select bit provided from a memory cell. As an alternative 
solution, we propose a RRAM-based MUX (R-MUX) cell
with significant saving on cell footprint. 
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Fig. 5. Multiplexer design. (a) Conv. digital MUX2. (b) Conv. analog 
MUX2. (c) R-MUX2. (d) R-MUX4. (e) 3-D diagram of R-MUX2; (f) Layout 
comparison: Conv. digital MUX4 (left), conv. analog MUX4 (middle), R-
MUX4 (right).

Fig. 5 (c) and (e) show our proposed RRAM based 
MUX2 (R-MUX2) cells and its 3-D drawing with only two 
memristors and two transistors.  Since the R-MUX can be 
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fabricated over the logic blocks, integrating more bit into the 
R-MUX would not significantly increase the area of the 
device.  Fig. 5 (d) shows the schematic of a 4-to-1 R-MUX 
with the same footprint as 2-to-1 R-MUX.  For comparison, 
conventional 4-to-1 MUX takes 3 times area as 2-to-1 MUX.   
The footprint of the proposed R-MUX4 cell is reduced by 9X 
compared with conventional ones.   In addition, there is no 
extra SRAM needed to store the configuration data since the 
RRAM works as non-volatile storage.  Including memory 
space saving, an overall saving of 12X to 15X compared to 
conventional designs can be achieved.  At configuration 
phase of the proposed circuits, by tuning on/off the set/reset 
transistors with particular input combination from previous 
stage, we can selectively program the RRAM into LRS and 
HRS, i.e. only one of RRAM stays in LRS while the rest stay 
in HRS.  In this way, only the signal through the path with 
the RRAM in LRS will be passed realizing a multiplexer. The 
proposed programming sequence is (1) presetting primary 
input values for A, B, C, etc. and set, reset signals to program 
each RRAM device; (2) Repeat (1) for every stage of RRAM 
in a sequential order so that the input states are always 
defined in the logic circuits.  Note that to avoid drifting of the 
resistive values, the configuration phase should be performed 
at elevated voltage above programming voltage, e.g. 1.2V, 
rather than the normal operation voltage, e.g. 1.0V. Fig. 4(c) 
shows the spice simulation of operation waveforms of the R-
MUX circuits, exhibiting a write-speed of ~10ns, On-off 
resistive ratio of ~100 and a logic delay of ~30ps with correct 
functionality.

E. Logic Contraction using RRAM Based Logic Cell for 
Reconfigurable AU design

1) Reconfigurable Arithmetic Unit (AU) Design
In order to build the element of reconfigurable 

accelerator, we study the commonly used instructions in 
applications such as facial recognition and pattern 
classification. We identify the following most commonly 
used algorithms including multiplication(MUL), square, 
square root, division, winner-take-all (WTA), maximum 
value (MAX), absolute value (ABS), convolution, and 
multiply-accumulate operation (MAC). Accordingly, we 
build 8-bit arithmetic unit in our design containing 8 basic 
configurable operations: addition (ADD), subtraction (SUB), 
logic shift left (LSL), logic shift right (LSR), comparison 
(CMP), MUX, XOR and XNOR. A bypass mode is also 
introduced to pass input signals directly into the next stages. 
The AU units can then be jointly composed to realize the 
above complex algorithms.

The conventional AU uses combinational logics to 
realize configurability of different supported functionality.  
We experiment the area benefits of using proposed R-MUX 
by simply replacing some of the conventional MUXs by R-
MUXs in the synthesized and P&R AU design Surprisingly, 
despite of the significant area reduction shown in Section II-
C, our experiments show only 5% of area saving can be 
achieved by replacing conventional MUX by R-MUX. This 

is because in a highly-optimized gate-level netlist, most of the 
selection logic of the AU are synthesized into more complex 
logic, e.g. AOI logic gates which cannot be replaced. The left 
layout in Fig. 7 shows the conventional AU layout with 
MUXs marked by red color boxes.  The area benefit from 
simply replacing existing MUXs with R-MUXs is 
insignificant due to the low occurrence of conventional 
MUXs because of the merging of selection logic with main 
functional logics from conventional synthesis methodology.  
We address this issue in the next section. 
2) Proposed Logic Contraction Method and Flow

In this section, a novel control logic contraction 
technique is proposed to provide substantial area saving using 
RRAM based logic cells. In conventional design, an 8-bit AU 
is realized by the digital operation code to configure the AU 
core into different operation modes, e.g. ADD, SUB, CMP 
etc.  For instance, an 8-bit 2-operation conventional AU with 
1-bit operation code (c0) can be expressed as:O௖௢௡௩ି஺௎ = ܿ଴ഥ ,ܣ)ܦܦܣ (ܤ + ܿ଴ܷܵܣ)ܤ, (ܤ       (1)

It is important to highlight the overhead of the 
configurability.  Even with a fully optimized adder/subtractor 
with technology mapping using complex standard cell, a 
selection logic for realizing eq. (1) requires approximately 16 
ANDs, 8 ORs gates and 8 NORs for this 2-operaton AU.  The 
block diagram of the conventional AU design is shown in Fig. 
6 (a) with distributed selection logic circuits marked in grey. 
Compare to the AU core function, i.e. ADD/SUB, the 
selection logic circuit consumes a total of 20% to 40% area.  
On the other hand, the selection logic overhead can be 
dramatically suppressed by utilizing the proposed R-MUX 
and logic contraction technique for configuration. Its block 
diagram is shown in Fig. 6 (b). Oோோ஺ெି஺௎ = ,ܣ)ܦܦܣ]ܯ ,(ܤ ,ܣ)ܤܷܵ [(ܤ                   (2)

Eq. (2) shows the expression of the RRAM-based AU 
design.  The M function represents the R-MUX logic which 
consumes much less area when compared to the conventional 
digital MUX cells.  More importantly, the selection logic 
operation in eq. (2) is eliminated from conventional 
expression as in eq. (1).  As a result, the digital logic 
implementation using proposed RMUX becomes much 
simpler.  In fact, the more functionality to be included in AU 
design, the more area saving can be achieved due to the small 
area consumption of R-MUX logic.  The output expressions 
of 8-bit 4-operation conventional and R-MUX based AUs are 
shown in equations (3), (4):          O௖௢௡௩ି஺௎ = ܿଵഥ ܿ଴ഥ ,ܣ)ܦܦܣ (ܤ + ܿଵഥ ܿ଴ܷܵܣ)ܤ, (ܤ +                  ܿଵܿ଴ഥ ,ܣ)ܮܵܮ (ଵܿ଴ܿܤ + ,ܣ)ܴܵܮ Oோோ஺ெି஺௎(3)                                     (ܤ = M[Aܣ)ܦܦ, ,(ܤ ,ܣ)ܤܷܵ ,(ܤ ,ܣ)ܮܵܮ ,(ܤ ,ܣ)ܴܵܮ [(ܤ (4)

Unfortunately, standard logic synthesis technique does 
not support insertion of the RMUX logic.  To facilitate the 
logic synthesis of the proposed RRAM based reconfigurable
cells, we developed a special logic contraction flow.  As 
illustrated in Fig. 6 (b), at first, we rewrite the RTL for AU 
by elaborating outputs from each supporting function and 
modify the high level top module with separation of core 
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functionality and selection logic.  Secondly, we perform R-
MUX integration using cells built from RRAM PCell through 
standard synthesis procedure of logic design.  This method 
allows us to fully utilize the optimization power of modern 
synthesis tool while still integrating RMUX automatically 
into the final netlist and layout. The layouts of our proposed 
8-bit 8-operation AU and conventional AU are shown in Fig. 
7.  A maximum area saving of 30% is achieved by 
introducing the logic contraction technique.
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The proposed logic contraction method is a special 
method developed for effective insertion of RRAM based 
logic cells.  Since different applications have different 
functionality defined, the benefits reported in previous 
section may not be universal to a general design.  We provide 
a general logic contraction flow as shown in Fig. 8: (1) we 
first extract the “core function” from the conventional AU. 
This can be realized by eliminating the control logic in RTL 
design step.  (2) We generate a separate control logic block 
which can be realized by groups of digital multiplexers, and 
connect it with the function core to form the “hybrid AU” as 
in Fig. 8(b). This “hybrid AU” realizes same functionality as 
conventional AU with an overhead due to logic separation. 

(3) Replace the digital multiplexers with RMUX to form the 
proposed RRAM-base AU which is shown Fig. 8 (c). The 
flowchart of proposed method is shown in Fig. 8 (d).

IV.RECONFIGURABLE AU ARRAY ARCHITECTURE

A. Interconnect and Reconfigurable AU Arrays
In order to implement instruction sets, the reconfigurable 

AU array which consists of a group of RRAM-based AUs 
should be configured into different logic topology to adapt to 
the data path of particular instructions. Conventionally, the 
reconfigurable AU array consists of AUs and switch 
controller (SC) [8]. The architecture of conventional 
interconnect network with SC is shown in Fig. 9 (a). 
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RRAM-based interconnect; (c) Option 2; (d) Option 3; (e) Option 4; (f) 
Option 5. (g) Detailed routing of (c); (h) Detailed routing of (d) which shows 
the overhead of extra routing channel.

To reduce the complexity of interconnect network, in 
our work, the conventional switch controller is simplified 
into a basic uni-directional interconnect in which only one 
signal propagation direction is allowed in one signal channel.
Beside the basic interconnect, four more optional routing 
channels depending on the demand of target instruction sets.  
As a result, we introduce totally five interconnect options: (1) 
The basic interconnect which is shown in Fig.9 (c); (2) 
Adding an extra diagonal interconnect channel which is 
shown in Fig.9 (d); (3) Adding an extra free interconnect 
channel between nearby rows which is shown in Fig.9 (e); (4) 
Adding an extra interconnect channel within same row but 
between different columns which is shown in Fig.9 (f); (5) 
Continually adding extra routing channels within the same 
row which is shown in Fig.9 (g). 

The proposed uni-directional network dramatically 
decreases the congestion on interconnecting wires compared 
with fully connected crossbar. The interconnect delay and 
area overhead can be further reduced when introducing 
proposed R-MUX logic to replace the conventional switch 
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controller (SC) which consists of a large amount of 
conventional MUXs. 

B. Interconnect Options and Modeling
The more interconnect routing options included, the 

more flexible the AU array can be to implement complex 
instructions.  In our work, the default interconnect of the AU 
array is uni-directional. Interestingly, no matter where the 
input port 1, input port 2 and output port are located, there 
occurs a free channel for the diagonal interconnects (from top 
left to bottom right) without introducing extra routing space.  
Fig. 9 (h) show detailed routing diagram according to default 
routing in Fig. 9 (c). If more options are offered in the 
configurable AU array, extra routing space will be needed. 
Fig.9 (i) shows the detailed routing for routing option in Fig. 
9 (d) and the extra routing channel is marked with red. 
Despite of the extra routing overhead, more interconnect 
options can lead to less number of AUs to be implemented 
for the target instruction sets.  Thus, there exists an optimal 
interconnect solution which leads to the minimum area of AU 
array for supporting target instruction sets which will be 
discussed in Section IV. The cost function of interconnect is 
shown as:S஺௅௎௔௥௥௔௬ = ௥ܰ௢௪ × (௜௡௧௘௥௖௡௖௧ܪ஺௎ାܪ) × ௖ܰ௢௟௨௠௡ (5)                                                                  (௜௡௧௘௥௖௡௖௧ܮ஺௎ାܮ)×

where Nrow, Ncolumn are the numbers of row and 
column, HAU is the height and LAU is the length of an AU, 
Lintercnct, Hintercnct are the extra routing cost of the extra 
interconnects. The final area of the configurable AU array is 
determined by both the number of AU (array topology) in the 
array and the extra routing space introduced by the extra 
interconnects.

V.INSTRUCTION-TO-AU ARRAY SYNTHESIS AND
ALLOCATION ALGORITHM

An important challenge for reconfigurable AU based 
accelerator design is the allocation of instruction set into 
existing AU arrays.  Several resource-constrained allocation 
algorithms were proposed in [8, 9, 15]. However, the prior 
work were focused on instruction scheduling based on 
existing fixed numbers of processing units.  Different from 
prior work, in this paper, we explore optimal design choices 
where the number and interconnects of AU arrays are not 
predefined but a minimum number of target instruction sets 
are provided.  Hence, our work is orthogonal to prior 
scheduling focused study [8, 9, 15] which cannot be used to 
provide us the optimal design choices.  Generally speaking, 
this kind of graph allocation work is NP-Hard [16]. We 
proposed an allocation algorithm based on heuristic 
algorithm to find the optimal numbers of AU and optimal 
interconnect options as given in Fig. 9 to achieve minimum 
area cost.

A. Instruction Decomposition
In this work, all instructions are represented by Dataflow 

Graph (DFGs). In the DFGs, each vertex represents a basic 

function operation such as addition, subtraction, logic shift, 
etc., and each edge represents the data dependency between 
the connected operations. In order to allocate a particular 
instruction into the AU arrays, this instruction needs to be 
decomposed into several operations. The flow of the function 
decomposition can be comprehended as follows: (1)
decompose the complex instruction into several simple 
operations which can be realized by a single AU; (2) 
Generate the Dataflow Graph (DFG) of the decomposed 
instruction. For example, a four-input maximum can be 
decomposed into two stages two-input maximum: 
MAX(a,b,c,d) = MAX(MAX(a,b),MAX(c,d)); MAX(a,b) = 
MUX(a,b,CMP(a,b)). 

B. Simultaneous Allocation Algorithm (SAA)
The key idea of simultaneous algorithm is considering 

all instructions at same time with all the operations allocated 
sequentially in the given topological order. Fig. 10 shows the 
allocation growing path of the instruction set consists of 7 
instructions based on simultaneous algorithm. First, all the 
operations whose input are from previous pipeline stage are 
allocated into the first row of the AU array. Then the rest 
operations whose input are not from previous pipeline stage 
are allocated simultaneously and try to share as many 
common AUs as possible. The allocation result of utilized 
AU for allocating of first 5 operations is shown as the very 
left graph of Fig. 10. After the 1st operations of all instruction
sets are allocated, the 2nd, 3rd …nth operations will be 
allocated into the AU array continuously. 
Simultaneous Allocation Algorithm 
Input: DFGs of Instruction set and data path P of the 5*5 AU array 
Output: Minimum Area of configurable AU array
1: Allocate the 1st group operations 
2: Initialize the complexity of each instruction 
3: for j = (j  MAX_1st +1) .. (jMAX_1st + jMAX_2nd ), do
4:     for i based on the complexity order, from high to low do
5: repeat
6: Allocate the operation Oij

7: until find the location with minimum cost in that row
8:     end for
9: Recalculate the complexity of each instruction 

10: end for
11: Calculate the total rectangular area of the allocated ALUs S
12: return S and the floor plan of AU array
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Fig. 10. Allocation algorithm growing paths.

Our tests on instruction groups show that the 
simultaneous allocation consumes much less runtime but 
with similar optimization results compared to exhaustive
search because its searching space is much smaller than the 
exhaustively search.
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VI.RESULTS AND ANALYSIS
To estimate the performance (delay) improvement, we 

performed “case-based” static timing analysis (STA) where 
delay is reported under constraint of configuration of the 
design rather than general worst-case critical path.  The 
“case-based” STA reported by Cadence encounter tool 
provides more accurate estimation of specific operation of the 
accelerator. Table 2 shows the delay improvement for each 
configuration of the RRAM based AU compared with 
conventional AU. Table 3 shows the power saving of under 
different configuration using similar “case based” power 
analysis in Encounter tool. 

Table 2: Delay reduction of different operations in AU.
Function ADD SUB LSL LSR CMP XOR MUX

Reduction 34% 32% 23% 18% 41% 21% 36%
 

Table 3: Power saving of different operations in AU.
Function ADD SUB LSL LSR CMP XOR MUX
Saving 38% 36% 27% 27% 27% 25% 36%

A. Case Study on General Benchmarks
1) Benchmarks

To evaluate the performance in general use cases, we 
selected a set of six benchmark programs from Mibench [27]. 
The selected benchmarks are fft, adpcm, basicmatch, 
bitcount, qsort and rigndael, all of which have repetitive 
computing loops suitable for mapping into reconfigurable 
accelerators. For each benchmark, we first used LLVM [28, 
30] to obtain the DFGs and representative computing loops. 
We then identify custom instructions from the DFGs of each 
benchmark using instruction decomposition described in 
Section IV-A. The characteristics of representative loops are 
shown in Table 4.

Table 4: Benchmark Characteristic
Bench mark Nodes Edges Domain
fft 28 41 Telecom
adpcm 27 47 Telecom
basicmatch 18 25 Automotive
bitcount 16 28 Automotive
qsort 27 42 Automotive
rigndael 16 28 Security

2) Performance Results
Fig. 11 shows the detailed implementation of the 

example benchmark “qsort”. The DFG of representative loop 
in “qsort” contains three multiplications: two additions and a 
square root. Fig. 13 (a) shows the final configuration 
floorplan of the R-accelerator which contains a 5×6 AU 
array.  Fig. 12 (a), (b) show the power and delay comparison 
between proposed R-accelerator and conventional 
reconfigurable architectures through different benchmarks. 
The overall geometric mean of power saving and delay 
improvement are 33% and 32% respectively. For power
saving, “fft” has the highest energy saving of 37%. This can 
be explained by the fact that “fft” has largest number of 
multiplication (addition) operations which have higher 
saving compare to other operations.  The highest delay 
improvement is 38% achieved by “adpcm” due to dominant 
MUX operations which have higher delay reduction compare 

to other operations. Fig. 12 (c) shows the total area saving of 
45% achieved by the proposed R-accelerator design. Among 
the 45% area reduction, 25% comes from proposed logic 
contraction, 9% comes from allocation algorithm, 4% comes 
from interconnect and 7% comes from associated memory.   
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Fig. 11. (a) AU array and interconnection configuration diagram for “qsort”; 
(b) Detailed configuration road map.
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(d) Configuration time comparison.

3) Configuration Time Analysis 
One major difference of the proposed reconfigurable R-

accelerator is that the RRAM needs to be written for each 
configuration. Compared with standard CMOS logic, the 
written speed of RRAM is slower and thus leads to drawback 

( )
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of the proposed design.  In addition, a special sequence needs 
to be enforced for configuration to ensure deterministic 
writing to each RRAM device.  The write time is assumed to 
be a moderate speed of 10ns as listed in Table 1.  Figs. 11 (a) 
and (b) show the configuration flow of the accelerator for 
“qsort” program.  The different color indicates the order of 
reconfiguration: (1) the AUs with same color /number are 
reconfigured at same time; (2) The configuration order of the 
RRAM-based AU is marked by the number at the right-
bottom corner of the AU. The detailed reconfiguration of 
multiplication and square root are shown in Fig. 11 (b).  Fig. 
12 (d) shows the configuration time for different benchmarks. 
The configuration time varies from 50ns to 120ns and among 
them “bitcount” has the longest configuration time due to a 
more complex and longer DFG it has.  Although the longer 
configuration time of the proposed R-Accelerator is a 
drawback compared with conventional design, the overhead 
of reconfiguration only happens once at the beginning of the 
program and can often be hidden through careful scheduling 
with CPU’s operation. 

VII.CONCLUSION
This paper proposes a novel design methodology for 

creating reconfigurable application specific accelerator using 
emerging RRAM device.  A novel RRAM based logic circuit 
and a logic contraction technique were proposed to 
significantly reduce the area cost of reconfigurable arithmetic 
units.  To construct CGRA- based accelerators from the 
proposed RRAM based AU units, a new heuristic allocation 
algorithm is developed to achieve the optimal solution for AU 
placement and interconnect choices.  The proposed 
techniques have been fully integrated into commercial EDA 
tools in 45nm technology. Case study general benchmark
programs are used to highlight the significant improvement 
of the proposed R-Accelerator technique.  Experiment results 
show that compared with conventional design methodology, 
a 45% area reduction, 32% of average delay improvement, 
and 33% of average dynamic power saving can be achieved
with the proposed R-accelerator technique.
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