
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019 2655

R-Accelerator: An RRAM-Based CGRA
Accelerator With Logic Contraction
Zhengyu Chen , Student Member, IEEE, Hai Zhou, Senior Member, IEEE,

and Jie Gu , Senior Member, IEEE

Abstract— In this paper, a novel RRAM-based reconfigurable
accelerator (R-accelerator) design is proposed, which makes spe-
cial use of existing RRAM device for high-efficient reconfigurable
application-specific computing. The proposed R-accelerator
design consists of RRAM-based arithmetic unit (AU) array,
fully integrated into commercial EDA design tools. A significant
area saving is achieved compared with conventional digital
counterpart due to the proposed logic contraction technique,
as well as saving of storage space and routing congestions.
For enabling the optimization of the AU array, this paper
also proposes a systematical method on the synthesis of the
AU array under routing channel constraint for application-
specific designs. Two automatic mapping algorithms, including
simultaneous mapping and incremental mapping algorithms,
are proposed and compared. The experiments using 45-nm
CMOS technology on a case study of dynamic time warping
example and general benchmark programs show up to 49%
area reduction and 28% performance enhancement using the
proposed R-accelerator technique compared with conventional
application-specified integrated circuit (ASIC) design.

Index Terms— Coarse grain reconfigurable array (CGRA),
logic contraction, reconfigurable accelerator (R-accelerator),
RRAM.

I. INTRODUCTION

STRONG demand for accelerator enriched microproces-
sor is recently observed from the consumer electron-

ics industry due to the rapid growth of applications, such
as image processing, machine learning, etc. These appli-
cations are typically characterized by complex and data-
intensive computation, which lead to significant challenges
to the existing IC development models. Two approaches are
commonly applied for their implementations: 1) hardware in
the form of accelerator-based application-specified integrated
circuit (ASIC) chips or application-specific instruction proces-
sors (ASIPs) [1], [2] and 2) software running on a general-
purpose processor. In the case of ASIC designs, although a
state-of-the-art performance is achieved, it becomes impracti-
cally expensive to implement all potentially used algorithm
in an ASIC or ASIP design [5]. On the other hand, the

Manuscript received February 1, 2019; revised May 22, 2019; accepted
June 11, 2019. Date of publication July 30, 2019; date of current version
October 23, 2019. This work was supported by the National Science Foun-
dation (NSF) under Grant CCF-1533656, Grant CNS-1441695, and Grant
CNS-1651695. (Corresponding author: Zhengyu Chen.)

The authors are with the Electrical and Computer Engineering
Department, Northwestern University, Evanston, IL 60208 USA (e-mail:
zhengyuchen2015@u.northwestern.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2925937

Fig. 1. (a) Layout and core circuit diagram of previous CGRA work [6].
(b) Block diagram of a CGRA with single-cycle multihop interconnect [25].

general-purpose processor is flexible enough to support various
applications but suffers from insufficient performance for com-
plex algorithms, especially those required for real-time image
processing, such as face recognition, and optimal margin
classifier, etc. [3], [4]. As a result, a reconfigurable accelerator
(R-accelerator)-based hardware solution, which can provide
the advantages of both approaches, has become increasingly
popular recently [6], [7]. Such architecture has higher per-
formance compared to the general-purpose processor and
wider applicability compared to ASIC. Toward reconfigurable
processor design, many solutions have been developed so
far. The most common example is field-programmable gate
array (FPGA), which utilizes SRAM-based look-up tables to
provide flexibility in implementing logical solutions. However,
the high cost of area and power caused by the bit-level
programmability in FPGA poses significant challenges to meet
the demand of low-power applications, such as the Internet of
Things (IoT) devices.

As an alternative solution, coarse grain reconfigurable
array (CGRA) represents the second class of reconfigurable
architectures. In CGRA, predefined, and optimized reconfig-
urable arithmetic units (AUs) are used as building blocks.
Complex algorithms are then allocated into AU arrays to
realize application-specific instruction sets removing conven-
tional performance limitation from multicycle pipeline opera-
tions. CGRA significantly reduces the overhead of fine-grain
switches and associated memory components from solutions,
such as FPGA while keeping a high level of reconfigura-
bility [6], [8]. An example of such architecture is shown
in Fig. 1(a) where totally 30 ALUs are arranged in a 5×6 mesh
to realize a complex operation, such as square-root without
intermediate storage or pipelines [1], [6]. Fig. 1(b) shows
another CGRA design with single-cycle multihop interconnect,
which contains 16 nodes; each node can communicate with its
four nearest neighbors without using a central crossbar [25].
In spite of the above advantages, CGRA still suffers from

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5811-456X
https://orcid.org/0000-0003-2912-7294

2656 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

the area, and power overhead for bookkeeping the configu-
ration of the design, as well as the high cost of establish-
ing flexible interconnects between AU units. In this paper,
we proposed a novel RRAM-embedded accelerator based on
CGRA architecture to address the above issues with a cross-
layer solution ranging from device, circuits, to architecture
levels.

In recent technology development, the emerging nonvolatile
memory (NVM) technologies, i.e., RRAM or memristor, have
provided tremendous new opportunities to the development of
high-performance microprocessors. The demonstrated use of
RRAM can be classified into two large classes: 1) NVM where
RRAM is utilized to provide on-chip NVM solution replacing
conventional cache or DRAM and 2) a processing unit, where
resistive values of such devices are used to represent comput-
ing variables, e.g., weights for the matrix computation [11].
In the first class, the nonvolatility of such device provides
a significant saving in retention power. In addition, the very
simple thin-film topology of RRAM allows monolithic inte-
gration of such memory device in vertical stacks on top of the
processing units, leading to an extremely high-density storage
solution. An example is shown in the commercial crossbar’s
technology [10]. In the second class, such an implementation
dramatically reduced the cost of convolution operation, leading
to a tremendous saving of computing power. Furthermore,
a mrFPGA technique was also proposed to use RRAM as an
interconnect solution to replace existing SRAM-based FPGA,
leading to 5.2× improvement in the area [5]. More recently,
a processing-in-memory (PIM) solution was proposed, which
uses RRAM as a processing unit embedded into memory array
for the neural network application. It is shown that such a
PIM significantly reduced the costs, leading to 300× saving
on energy consumption [12].

A. Prior Works

A similar work, which focuses on the interconnect is
in [25]. A novel CGRA architecture, HyCUBE is introduced,
which has a reconfigurable interconnect supporting single-
cycle communications across distant function units on the chip.
The reconfigurable interconnect leads to a new formulation of
the application mapping problem that is efficiently handled by
their HyCUBE compiler.

In [6], a system on chip implementation of a reconfigurable
digital signal processor is proposed. The device is suitable
for the execution of a wide range of applications exploiting a
balanced mix of heterogeneous reconfigurable fabrics merged
together by a flexible and efficient communication infrastruc-
ture based on a 64-bit Network on-chip.

In [8] and [9], an edge-centric modulo scheduling (EMS)
for coarse-grained reconfigurable architecture is proposed to
systematically solve the problem of the placement of oper-
ation for the compiler. The distributed nature of CGRAs,
including sparse interconnect and distributed register files,
presents challenges to a compiler. Overall, EMS improves
performance by 25% over traditional modulo scheduling and
achieves 85%–98% of the performance compared to a state-
of-the-art simulated annealing technique.

Fig. 2. Conventional CGRA accelerator (left). Proposed RRAM-based CGRA
accelerator (R-accelerator) (right).

B. Contributions of This Work

Different from the prior works, this paper proposes a
fundamentally new scheme for implementing CGRA using the
emerging RRAM/RRAM device, referred to as R-accelerator.
Our target design is similar to those from CGRA, where
the chip is reconfigured for special applications. The suit-
able applications for CGRA are pretty wide and mostly
special-purpose computing, e.g., image processing, video
decoding/encoding, compression, and machine learning oper-
ation, etc. Essentially, most of the computing jobs can be
mapped to this design as a general-purpose “accelerator” in
comparison with the general-purpose microprocessor. Contrary
to the popular PIM implementation, we propose a microar-
chitecture of memory-in-process (MIP), which embeds a
nonvolatile RRAM device into the computing logic. Fig. 2
summarizes the proposed R-Accelerator architecture in the
following aspects.

1) The conventional AU is replaced by RRAM-based
reconfigurable AU with a specially developed logic
contraction technique rending significant logic
simplification.

2) The switch controller (SC) in conventional design is
reduced and simplified by the RRAM-based program-
mable interconnection.

3) The configuration register file is eliminated as the
RRAM works as both nonvolatile storage and program-
mable interconnect.

As extended from previous works in [31], this work devel-
ops comprehensive techniques of RRAM-based accelerator
design. Also, a comprehensive modeling of logic contraction
and area-driven design is provided. More specifically, the
contributions of this paper are highlighted below.

1) To fully utilize the strength of the RRAM-based logic
cell, we propose a special logic synthesis technique,
referred as logic contraction, which can dramatically
reduce the area overhead associated with realizing

CHEN et al.: R-ACCELERATOR: AN RRAM-BASED CGRA ACCELERATOR WITH LOGIC CONTRACTION 2657

Fig. 3. (a) Typical bipolar I–V linear curve of RRAM. (b) Three-dimensional
diagram of the RRAM-based circuit.

the reconfigurability in conventional CMOS design.
Additionally, we developed a model of the logic con-
traction to estimate the area saving.

2) To leverage the help from RRAM device and over-
come the challenges of allocating arbitrary algorithm
into CGRA AU arrays, we propose special resource
allocation solutions based on two heuristic algorithms:
simultaneous allocation and incremental allocation
algorithm. The proposed resource allocation algorithms
lead to orders of magnitude speedup while achieving
an almost ideal solution compared with brute-force
exhaustive search algorithm.

3) A full layer implementation, including PCell and back-
end supports, have been developed and fully integrated
into the conventional EDA design tools, leading to an
automatic design flow of the proposed R-accelerator
design. It is demonstrated in our case studies on a
dynamic time warping (DTW) example and general
benchmark programs.

The organization of this paper is given below. In Section II,
a brief introduction of the principle of the RRAM device
is described. An overview of the coarse grain reconfigurable
architecture is introduced. In Section III, the critical element
of RRAM-based AU array, an RRAM-based AU design, is
proposed. Detailed design flow and analysis of the proposed
logic contraction technique are carried out. In Section IV,
the reconfigurable AU array architecture is introduced with
detailed interconnect options and modeling. A comprehensive
instruction-to-AU array synthesis and allocation algorithm is
provided in Section V. Measurement that supports the results
of the proposed design flow is presented in Section VI.
Section VII concludes the discussion on this paper.

II. BACKGROUND

A. RRAM Devices

Since the announcement of RRAM device from 2008,
a large variety of RRAM device has been developed. A com-
mon RRAM uses a metal-insulator-metal structure, where a
thin layer of insulation material is sandwiched between two
metallic electrodes. The resistance of the RRAM is determined
by the content of a conductive filament in the layer between
the two electrodes, as illustrated in Fig. 3(a).

TABLE I

SELECTED PUBLISHED RRAM/RRAM CHARACTERISTICS

The key characteristics, such as resistance tuning range,
writing speed, and tuning voltages, vary dramatically based on
the potential applications. The two major classes of application
are: 1) RRAM memory with binary states and 2) analog
RRAM where the resistance states possess continuous tuning
and larger range. Normally, higher resistance ratio is observed
in the second class due to the requirement of higher resolu-
tions. Here, we briefly survey the selected published RRAM
characteristics in Table I.

As this paper explores a novel usage of the resistive memory
as a nonvolatile reconfigurable logic, we only utilize the
RRAM as a binary state device, i.e., low resistive state (LRS)
and high resistive state (HRS) with relaxation on the tuning
resolution requirement of the device as compared with previ-
ous publication for neuromorphic computing [12]. Although
the matching of exact device characteristics to particular
published device is beyond the scope of this paper, we devote
our effort to incorporate more realistic behavior and electronic
properties of the RRAM device by creating: 1) a realistic
parameterized cell (PCell) that can be extracted from real
device layout and simulated by spice simulator to characterize
the performance of the proposed circuits, e.g., the delay of
the proposed logic circuits and 2) an integrated library cell
that is fully supported by modern EDA tools, e.g., Cadence
encounter, to perform synthesis, place and route step of the
developed circuit components. All designs in this paper have
been fully implemented using commercial EDA tools into
backend layout in a 45-nm CMOS.

B. Electrical Characteristics of RRAMs

Fig. 3 shows the RRAM device, which is a two-terminal
passive device in which the resistance between its terminals
can be configured into an HRS state, or an LRS state. Both
HRS and LRS states are controlled by an external voltage
applied across its terminals.

Fig. 3(a) shows the representative bipolar I–V linear char-
acteristics of such an RRAM [10], [28]. A voltage Vset above
the threshold Vth_ON is applied across its terminals until a
conductive filament is formed, to set (or program) the device
into a memristive “ON” or LRS state. The conductive filament
shorts the device and lowers its resistance to RON. The reverse
operation is applied to “reset” the device into “OFF” or HRS
state. A recent development from commercial vendors, such as
Crossbar, Inc., Santa Clara, CA, USA, has demonstrated a fully
integrated monolithic solution, where a memristive device can
be inserted between any metal layers of the existing CMOS
chips and possess a large on–off ratio, e.g., 1000 [10], [30].

2658 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 4. Model and implementation of RRAM. (a) PCell layout and schematic.
(b) Integration into the conventional EDA flow.

Fig. 3(b) shows the 3-D diagram of RRAM-based circuit
design where RRAM is inserted between metal 4 and metal 5
on top of CMOS transistor layers.

C. Coarse Grain Reconfigurable Architecture
CGRA consists of an array of computing elements/nodes.

Each node executes word-level operations and communicates
through an interconnected network. In general, CGRA designs
can be described by four characteristics: size, node function-
ality, interconnected network configuration, and register file
communication. The size refers to the number and topology
of nodes array and commonly varies from four nodes arranged
in a 2 × 2 grid up to 64 nodes arranged in an 8 × 8 grid [8].
The functionality of each node can vary from a single-function
module (e.g., adder or absolute value), an ALU, or to a full-
blown processing element (PE). In addition, the functionality
of nodes may be homogeneous or heterogeneous. For example,
only a subset of nodes may access data memory [9], [25].
There is a large amount of different interconnect network
configurations, such as interconnects between each node and
its four (or eight diagonal) nearest neighbors [8], [24], or
buses connecting each node to other nodes in the same
row or column [6].

III. RRAM-BASED RECONFIGURABLE AU DESIGN

A. RRAM Model and PCell Design

Fig. 4(a) shows our developed RRAM PCell, including both
schematic representation and layout. The PCell allows variable
dimension, as well as placement of RRAM at any user-specific
metal layers.

For spice simulation, parasitics due to routing and via con-
nections are first extracted from Calibre. And then, the devices
are simulated with the VerilogA model together with extracted
parasitics. The VerilogA model was developed based on var-
ious reported resources [17]. In our design, we used one of
the high-level metals to avoid causing congestion with local
routing. The parasitic impact from the connection between
local transistors and RRAM devices has been included in
our extracted model and library cell component in our digital
design environment. Fig. 4(b) shows our integration of the
developed RRAM device and RRAM based logic circuits into
digital design flow for large-scale integration used in this work.
Fig. 4(c) shows the spice simulation waveforms of RRAM-
based multiplexer (MUX) circuits as will be discussed in
Section III-B.

Practical issues of RRAM/RRAM devices have been
reported, including the variability of the cell resistance espe-
cially at high resistance state and the endurance of resistance

Fig. 5. MUX design. (a) Conv. digital MUX2. (b) Conv. analog MUX2.
(c) R-MUX2. (d) R-MUX4. (e) Three-dimensional diagram of R-MUX2.
(f) Spice simulation waveforms of RRAM-based MUX. (g) Layout com-
parison: Conv. digital MUX4 (left), conv. analog MUX4 (middle), and
R-MUX4 (right).

value during the writing and reading [16], [17]. Although an
exact device level evaluation is out of the scope of this paper,
we performed a variability test by varying HRS and LRS by a
factor of 300% and evaluated the performance, i.e., cell delay
impact. Our evaluation shows the performance variation is
within 10% of the nominal value because the logic cell delay is
strongly influenced by intrinsic transistors from driving buffers
rather than the interconnect variation.

B. RRAM-Based Logic Cell Design
In CGRA, MUX logic cell plays an important role in

realizing configurable functionality. Fig. 5(a) and (b) show two
conventional implementations of MUX2 cell, which contains
16 and 12 transistors with one select bit provided from
a memory cell. As an alternative solution, we propose an
RRAM-based MUX (R-MUX) cell with a significant sav-
ing on cell footprint. Fig. 5(c) and (e) show our proposed
RRAM-based MUX2 (R-MUX2) cells and its 3-D drawing
with only two RRAMs and two transistors.

Moreover, since the R-MUX can be fabricated over the
logic blocks, integrating more bit into the R-MUX would not
significantly increase the area of the device. Fig. 5(d) shows
the schema of a 4-to-1 R-MUX with the same footprint as
2-to-1 R-MUX. For comparison, conventional 4-to-1 MUX
takes three times the area as 2-to-1 MUX. The footprint of
the proposed R-MUX4 cell is reduced by 9× compared with
conventional ones. In addition, there is no extra SRAM needed
to store the configuration data since the RRAM works as
nonvolatile storage. Including memory space saving, an overall
saving of 12× to 15× compared to conventional designs can
be achieved. At configuration phase of the proposed circuits,
by turning ON/OFF the set/reset transistors with particular
input combination from the previous stage, we can selectively
program the RRAM into LRS and HRS, i.e., only one of
RRAM stays in LRS while the rest stay in HRS. In this
way, only the signal through the path with the RRAM in LRS

CHEN et al.: R-ACCELERATOR: AN RRAM-BASED CGRA ACCELERATOR WITH LOGIC CONTRACTION 2659

will be passed realizing a MUX logic. For programming the
device into an LRS, a voltage Vset above the programming
threshold is applied across its terminals until a conductive
filament is formed; reverse operation is applied to “reset” the
device into HRS. Note that to separate programming from the
normal operation the configuration phase should be performed
at an elevated voltage, e.g., Vset of 1.2 V, rather than the
normal operation voltage, e.g., 1.0 V. Fig. 5(f) shows the spice
simulation of operation waveforms of the R-MUX circuits,
exhibiting a write-speed of ∼10 ns, ON–OFF resistive ratio of
∼100 and a logic delay of ∼30 ps with correct functionality.
Fig. 5(g) shows the area comparison among conventional
MUX, analog MUX, and R-MUX.

C. Logic Contraction Using RRAM-Based Logic Cell for
Reconfigurable AU Design

1) Reconfigurable Arithmetic Unit Design: Reconfigurable
AU is used as a building element of the CGRA. We implement
the RRAM based 8-bit AU which integrates eight basic
configurable operations: addition (ADD), subtraction (SUB),
logic shift left (LSL), logic shift right (LSR), MUX, com-
parison (CMP), XOR, and XNOR. In addition, a bypass mode
is also introduced to pass input signals directly into the next
stages.

The conventional AU uses combinational logics to real-
ize the configuration of different supported functionality.
We experiment with the area benefits of using proposed
R-MUX by simply replacing some of the conventional MUXs
by R-MUXs in the synthesized and place and route step.
Note that, only the static MUXs used for configuration can be
replaced by the R-MUX since the MUXs used for dynamic
logic operations require much faster switching speed than
what is offered in our RRAM devices. Despite the significant
area reduction shown in Section III-B, our experiments show
that only 5% of area saving can be achieved by replacing
conventional MUX by R-MUX. This is because, in a highly
optimized gate-level netlist, many of the selection logic of
the AU are synthesized into more complex logic, e.g., AND-
OR-Invert logic gates which cannot be replaced. The left
layout in Fig. 6 shows the conventional AU layout with MUXs
marked by red color boxes. The area benefit from simply
replacing existing MUXs with R-MUXs is insignificant due
to the low occurrence of conventional MUXs because of the
merging of selection logic with main functional logics from
conventional synthesis methodology. Even if we force more
usage of MUXs, the area improvement is still small. Hence,
without a methodology to clearly distinguish main functional
logic from other control/selection logic, we cannot fully utilize
the benefits from RRAM based logic cells. This issue will be
addressed in Section III-C2.

2) Proposed Logic Contraction Method: In this section,
a novel control logic contraction technique is proposed to
provide substantial area saving using RRAM based logic cells.

In the conventional design, an 8-bit AU is realized by the
digital operation code (control bit) to configure the AU core
into different operation modes, e.g., ADD, SUB, CMP, etc.
For instance, an 8-bit two-operation conventional AU with a

Fig. 6. Layout comparison between the conventional AU (left) and
RRAM-based AU (right) with conventional MUXs and R-MUXs highlighted.

1-bit operation code (c0) can be expressed as follows:

Oconv−AU = c0ADD(A, B) + c0SUB(A, B). (1)

It is important to highlight the overhead of the configuration.
Even with a fully optimized adder/subtractor with technology
mapping using complex standard cell, selection logic for
realizing (1) requires approximately 16 ANDs, 8 ORs gates,
and 8 NORs for this two-operation AU. The block diagram
of the conventional AU design is shown in Fig. 8(a) with
distributed selection logic circuits marked in gray. Compared
to the AU core function, i.e., ADD/SUB, the selection logic
circuit consumes a total of 20%–40% area. On the other hand,
the selection logic overhead can be dramatically suppressed by
utilizing the proposed R-MUX and logic contraction technique
for configuration. Its block diagram is shown in Fig. 8(b)

ORRAM−AU = M[ADD(A, B), SUB(A, B)]. (2)

Equation (2) shows the expression of the RRAM-based AU
design. The M function represents the R-MUX logic, which
consumes much less area when compared to the conventional
digital MUX cells. More importantly, the selection logic
operation in (2) is eliminated from the conventional expression
as in (1). As a result, the digital logic implementation using
proposed R-MUX becomes much simpler. In fact, the more
functionality included in the AU design, the more area saving
can be achieved due to the small area consumption of R-MUX
logic. The output expressions of 8-bit 4-operation conventional
and R-MUX-based AUs are shown in the following equations:

Oconv−AU = c1c0ADD(A, B) + c1c0SUB(A, B)

+ c1c0LSL(A, Bc1c0) + LSR(A, B) (3)

ORRAM−AU = M[ADD(A, B), SUB(A, B),

LSL(A, B), LSR(A, B)]. (4)

Unfortunately, standard logic synthesis technique does not
support the insertion of the R-MUX logic, which essentially
behaves as a reconfigurable “wire” rather than a Boolean logic.
To facilitate the logic synthesis of the proposed RRAM-based
reconfigurable cells, we developed a special logic contraction
flow. As illustrated in Fig. 8(b), at first, we rewrite the register
transfer level (RTL) for AU by elaborating outputs from each
supporting function and modify the high-level top module with
a separation of core functionality and selection logic. Second,
we perform R-MUX integration using cells built from RRAM
PCell through standard synthesis procedure of the logic design.
This method allows us to fully utilize the optimization power

2660 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 7. Area comparison between the conventional and RRAM-based AUs.

Fig. 8. AU circuit diagram. (a) Conventional AU. (b) RRAM-based AU.

of modern synthesis tool, while still integrating R-MUX
automatically into the final netlist and layout. For comparison,
we also built a conventional AU, which includes the same
amount of functions as the R-MUX-based AU, e.g., ADD,
SUB, etc. It is synthesized by the commercial tool and then
placed and routed by the same tool. Both designs are generated
by Cadence tool in the 45-nm technology. The area compar-
ison between conventional AU and R-MUX-based AU with
different operations integrated is shown in Fig. 7. An area-
saving from 24% to 30% is achieved. As expected, the more
operations integrated into the AU, the more area-saving benefit
is achieved. The layouts of our proposed 8-bit 8-operation AU
and conventional AU are shown in Fig. 6. Both designs have
been synthesized and placed and routed with hierarchically
flattened options to achieve optimized area. A maximum area-
saving of 30% is achieved by introducing the RRAM-based
logic contraction technique. Note that, the additional area-
saving of storage bits for configuration is not included in this
comparison.

3) Flow and Modeling of Logic Contraction: The proposed
logic contraction method is a special method developed for the
effective insertion of RRAM-based logic cells. Since different
applications have different functionality defined, the benefits
reported in Section III-C2 may not be universal to a general
design. In this section, we provide an analytical model for area
saving from RRAM-based logic contraction.

The general AU or ALU design consists of two main parts:
1) the core function parts that provide the core functionality
of AU (e.g., adder, subtractor) and 2) configuration or control
logic parts that configure the AU into a particular function
mode. In conventional AU design, core function part is mixed
with digital control circuits, as shown in Fig. 9(a) and hard
to be separated. To facilitate the study and analysis, we add
a virtual intermediate step in Fig. 9(b) to create a hybrid
AU where the core functional logic is separated from the
control/selection logic for reconfigurability.

Fig. 9. (a) Conventional AU. (b) Hybrid AU. (c) RRAM-based AU.
(d) Flowchart for logic contraction. (e) Comparison between modeled versus
measured saving.

Fig. 9 shows the evolution of RRAM-based AU.

1) We first extract the “core function” from the conven-
tional AU. This can be realized by eliminating the
control logic in the RTL design step.

2) We generate a separate control logic block, which can
be realized by groups of digital MUXs and connect
it with the function core to form the “hybrid AU”
as in Fig. 9(b). This “hybrid AU” realizes the same
functionality as conventional AU with an overhead due
to logic separation.

3) Replace the digital MUXs with R-MUX to form the
proposed RRAM-based AU, which is shown in Fig. 9(c).
In the actual implementation, step (2) in Fig. 9(b)
is not necessary. The flowchart of the proposed logic
contraction method is shown in Fig. 9(d).

Since the area consumption of R-MUX is very small,
the area difference between the RRAM-based AU [shown
in Fig. 9(c)] and the “hybrid AU” [shown in Fig. 9(b)] equals
to the area of the control logic part (digital MUX group). The
area saving SRRAM−hybrid is shown in the following equation:

SRRAM−hybrid = Ahybrid − ARRAM

Ahybrid
= Actrl

Acore + Actrl
(5)

where Abybrid is the area of “hybrid AU,” Acore is the area
of the core function, ARRAM is the area of RRAM-based AU,
which is approximately equal to Acore, and Actrl is the area of
the control logic, which consists of digital MUXs. Based on
experimental results, the area of the control logic group, with
a given number of output bit and control bit, can be estimated
by the following empirical equation:

Actrl = (α0 + α12nctrl) · (β0 + β1anout) (6)

where the term α0 + α12nctrl in (6) represents that the area
of MUX-based control logic exponentially increases when the
number of control bit increases. β0 + β1anout represents that
area of control logic linearly increase when the number of out
bit increases.

Based on the experimental results we found out that the
area of hybrid AU is constantly 10% larger than the conven-
tional AU. We then assume Aconv = γ Ahybrid, where γ is a
constant (e.g., γ = 0.9 in our case). Based on (5), the saving

CHEN et al.: R-ACCELERATOR: AN RRAM-BASED CGRA ACCELERATOR WITH LOGIC CONTRACTION 2661

Fig. 10. AU array interconnect. (a) Conventional interconnect. (b) Proposed
RRAM-based interconnect. (c) Option 1. (d) Option 2. (e) Option 3.
(f) Option 4. (g) Option 5. (h) Detailed routing of (c). (i) Detailed routing of
(d) which shows the overhead of extra routing channel.

between conventional AU and RRAM-based AU is shown in
the following equation:

SRRAM−conv = Aconv − ARRAM

Aconv
= γ Ahybrid − ARRAM

γ Ahybrid

= γ Actrl + (γ − 1)Acore

γ (Acore + Actrl)
. (7)

In summary, for an arbitrary AU design with given func-
tionality, the area saving of RRAM-based AU design can be
estimated by following steps: 1) find out the area of core
function design by using commercial EDA tools; 2) estimate
the area of digital control logic group by (6); 3) calculate the
final area saving based on (7). Fig. 9(e) shows the model based
on (5)–(7) matches experiment results on a large number of
designs.

IV. RECONFIGURABLE AU ARRAY ARCHITECTURE

A. Interconnect and Reconfigurable AU Arrays

In the CGRA, the reconfigurable AU array should be config-
ured into different logic topology to adapt to the data path of
particular instructions. Conventionally, the reconfigurable AU
array consists of AUs and SC [8]. The primary function of SC
is achieving the interconnect of m×n configurable AUs setting
signals from the top level. The architecture of a conventional
interconnecting network with SC is shown in Fig. 10(a).

In order to reduce the complexity and area overhead of
interconnecting network, in our work, the conventional SC is
simplified into a basic unidirectional interconnect in which
only one signal propagation direction is allowed in one
signal channel. Besides the basic interconnect, four more
optional routing channels depending on the demand of tar-
get instruction sets. As a result, we introduce totally five

interconnecting options: 1) the basic interconnect, which is
shown in Fig. 10(c); 2) adding an extra diagonal intercon-
nect channel, which is shown in Fig. 10(d); 3) adding an
extra free interconnect channel between nearby rows, which
is shown in Fig. 10(e); 4) adding an extra interconnect
channel within the same row but between different columns,
which is shown in Fig. 10(f); and 5) continually adding
extra routing channels within the same row, which is shown
in Fig. 10(g).

Our proposed unidirectional network dramatically decreases
the congestion on interconnecting wires compared with a
fully connected crossbar. The interconnecting delay and area
overhead can be further reduced when introducing proposed
R-MUX logic to replace the conventional SC, which con-
sists of a large amount of conventional MUXs. In addition,
the memory component used to store the reconfigurable infor-
mation is no longer needed since the R-MUX also works
as NVM unit. Thus, the proposed R-accelerator design can
provide a significantly reduced area with detailed results
shown in Section VI.

B. Interconnect Options and Modeling

There is a tradeoff between the flexibility of interconnecting
and the area consumption. The more interconnection routing
options included, the more flexible the AU array can be
to implement complex instructions. However, more routing
options lead to increase of routing space and performance
degradation of the interconnecting network. In this work,
the default interconnecting of the AU array is unidirectional.
Interestingly, no matter where the input port 1, input port 2
and output port are located, there occurs a free channel for the
diagonal interconnects (from top left to bottom right) without
introducing extra routing space. Fig. 10(h) shows a detailed
routing diagram according to default routing in Fig. 10(c).
If more options are offered in the configurable AU array, extra
routing space will be needed. Fig. 10(i) shows the detailed
routing for routing option in Fig. 10(d) and the extra routing
channel is marked in red. Despite the extra routing overhead,
more interconnecting options can lead to less number of AUs
to be implemented for the target instruction sets. Thus, there
exists an optimal interconnecting solution, which leads to the
minimum area of AU array for supporting target instruction
sets, which will be discussed in Section V.

The cost function (area) of interconnect is given as follows:

SALUarray = Nrow × (HAU+Hintercnct)

× Ncolumn × (LAU+L intercnct) (8)

where Nrow is the number of rows, and Ncolumn is the number
of columns in AU array, HAU is the height and LAU is the
length of a single AU, L intercnct is the extra routing spacing
in the horizontal direction, and Hintercnct is the extra routing
spacing in the vertical direction of the extra interconnects.
The final area of the configurable AU array is determined
by both the number of AU (array topology) in the array and
the extra routing space introduced by the extra interconnects.
In Sections V-B and Section VC, two heuristic allocation
algorithms are introduced.

2662 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

V. INSTRUCTION-TO-AU ARRAY SYNTHESIS AND

ALLOCATION ALGORITHM

An important challenge for reconfigurable AU-based accel-
erator design is the allocation of instruction set into existing
AU arrays. Several resource-constrained allocation algorithms
were proposed in [8], [9], [13]. However, the prior work
was focused on instruction scheduling based on existing fixed
numbers of processing units. Different from prior work, in this
paper, we explore optimal design choices where the number
and interconnects of AU arrays are not predefined, but a
minimum number of target instruction sets are provided. Thus,
an optimal design exists to support the required instruction
sets, which can be further extended based on reconfigurability
provided in the design. Hence, this work is orthogonal to prior
scheduling focused study [8], [9], [13], which cannot be used
to provide us the optimal design choices. Generally speaking,
this kind of graph allocation work is NP-hard [14]. In this
work, we proposed two allocation algorithms based on the
heuristic algorithm. The target is to find the optimal numbers
of AU and optimal interconnect options as given in Fig. 10 to
achieve minimum area costs.

A. Instruction Decomposition
One way to represent the instructions is by using a dataflow

graph (DFGs). In the DFGs, each vertex represents a basic
function operation, such as ADD, SUB, logic shift, etc., and
each edge represents the data dependency between the con-
nected operations. In order to allocate a particular instruction
into the AU arrays, this instruction needs to be decomposed
into several operations. The flow of the function decompo-
sition can be comprehended as follows: 1) decompose the
complex instruction into several simple operations, which can
be realized by a single AU and 2) generate the DFG of the
decomposed instruction. For example, a four-input maximum
can be decomposed into two stages two-input maximum [the
DFGs of MAX is shown in Fig. 11(e)]

MAX(a, b, c, d) = MAX(MAX(a, b), MAX(c, d));
MAX(a, b) = MUX(a, b, CMP(a, b)).

B. Simultaneous Allocation Algorithm
Suppose there are a total of iMAX number of instructions,

and all the operations are in the given topological orders
for AU array allocation. The key idea of the simultaneous
algorithm is considering all instructions at the same time
with all the operations allocated sequentially in the given
topological order. Fig. 12(a) shows the allocation growing path
of the instruction set consists of seven instructions based on
Algorithm 1.

The DFGs of the input instructions are shown in Fig. 11.
First, all the operations whose input are from the previous
pipeline stage are allocated into the first row of the AU
array. Then the remaining operations whose input are not
from the previous pipeline stage are allocated simultaneously
and try to share as many common AUs as possible. The
allocation result of utilized AU for allocating of the first 5
operations is shown as the very left graph of Fig. 12(a).

Fig. 11. DFGs of the test instruction set. (a) Long Addition. (b) ABS.
(c) MUL. (d) MAC. (e) MAX. (f) Square Root. (g) WTA.

Algorithm 1 Simultaneous Allocation Algorithm

Fig. 12. Allocation algorithm growing paths. (a) Simultaneous algorithm.
(b) Incremental algorithm.

After the 1st operation of all instruction sets is allocated,
the 2nd, 3rd, …nth operations will be allocated into the AU
array continuously. The remaining allocation result of those
operations is shown in Fig. 12(a).

C. Incremental Allocation Algorithm
The incremental algorithm (its pseudocode is shown in

Algorithm 2) is basically considering the most complex
instruction first and then “growing” other instructions based
on it. The most complex instruction will be fully optimized in
the first place. The remaining instructions will be optimized
based on the order of complexity, as given in (9). The
previous utilized AU will be recorded and put into high priority
when the following instructions are allocated. The complexity
of each instruction is calculated based on the sum of the

CHEN et al.: R-ACCELERATOR: AN RRAM-BASED CGRA ACCELERATOR WITH LOGIC CONTRACTION 2663

Algorithm 2 Incremental Allocation Algorithm

weighted interconnects and operations, while the weight of
each interconnect is chosen based on the distance between the
two operations it connects

complexityi =
∑

O +
j �=i∑

j=1...imax

(C ji I j i) (9)

where
∑

O represents the number of operations in i th instruc-
tion, and I j i represents the number of connects between i th
and j th instructions with weight C ji .

Fig. 12(b) shows the allocation growing procedure of the
instruction set based on the incremental algorithm. The most
complex instruction winner-take-all (WTA) is first allocated.
The floor plan of the AU array, which serves as the “root”
is shown in the very left graph in Fig. 12(b) after the first
allocation. The following instructions just “grow” on this
“root” and try to use as many AU as possible within the “root.”

The main differences between simultaneous and incremental
algorithms are: 1) simultaneous algorithm has a wider vision
of the whole allocation tasks, while incremental algorithm just
consider the instructions one by one and 2) the search space
of incremental algorithm is smaller than the simultaneous
algorithm since incremental one considers the AU based on
allocation history without taking consideration of the unallo-
cated AUs (AUs which are not in the “root”).

D. Evaluation of Allocation Algorithms
In order to test the correctness and efficiency of the simul-

taneous and incremental allocation algorithms, we run each
algorithm on a group of instructions, which consists of seven
instructions whose DFGs are shown in Fig. 11.

1) Area and Runtime: In this test, we use seven different
instruction groups that contain different numbers (1, 2, . . . , 7)
of instructions from the original instruction set to evaluate
the impact from the various number of instruction sets to
be supported. The algorithms are implemented in MATLAB
and run on a Windows machine with 2.6-GHz i7 Quad-core
and 8-GB RAM. For each group, we run the simultaneous
and incremental algorithms and compare with a brute-force
exhaustive search method where we exhaustively search all
possible solutions.

Fig. 13. (a) Runtime comparison. (b) Area comparison during interconnect
choice level 1.

Fig. 14. (a) Optimal interconnects choice. (b) AU array area comparison
between the conventional and RRAM-based designs.

Fig. 13(a) shows the runtime results. The incremental allo-
cation consumes less runtime because its searching space is
much smaller than the simultaneous allocation. The runtime
benefit increases with more instructions included. The incre-
mental allocation would achieve the runtime improvement
of 1.8× when there are seven instructions to be allocated. For
comparison, the runtime of exhaustive allocation is 32 min
which is a thousand times larger than the proposed two
algorithms.

Fig. 13(b) shows the area consumption of AU array between
the two algorithms with default interconnect. The incremental
algorithm introduces more area overhead because it does
not consider all instructions simultaneously during allocation,
while simultaneous algorithm does, which was discussed in
Section V-C. The area overhead of incremental allocation
algorithm drops with more flexible interconnect options intro-
duced. It is because, with extra reconfiguration flexibility
introduced, the following instructions are easier to be allo-
cated into the original shape and will not introduce extra
AU usage. Overall, compared with the exhaustive search,
the simultaneous allocation algorithm always provides the
same solution while incremental allocation shows a maximum
overhead of 11% with ∼2× runtime improvement.

2) Optimal Choice of the Interconnects: Fig. 14(a) shows
the final configurable AU array area change allocated
by the simultaneous algorithm with different interconnects
choices. The x-axis represents the interconnect choice level:
1) level 1 contains interconnect option 1; 2) level 2 contains
options 1 and 2; and 3) level 3 options 1, 2, and 3, etc.
Note that some of AUs are turned into bypass mode to
allow signal passing because only limited routing options are
supported. The area consumption initially rises with more
routing options, because the interconnect is not sufficient to
reduce the AU usage numbers. But after more flexibility in
routing is added, i.e., the optimal level of 4, the total shape
of the AU array changes from 3 × 4 into 2 × 5 leading to
the decrease of AU numbers and total area. Fig. 14(b) shows

2664 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

Fig. 15. (a) DTW algorithm. (b) DTW circuit diagram. (c) AU array floor
plan and configuration of a DTW processing unit. (d) Delay comparison.
(e) Area comparison. (f) Power comparison with the conventional design.

the area comparison between conventional and RRAM-based
AU array (R-accelerator) with different topologies of the
array. More than 45% reduction in area is observed in each
case.

VI. RESULTS AND ANALYSIS

A. Case Study on Time-Series Analysis

In order to evaluate the proposed R-accelerator design, we
performed a case study using a DTW algorithm which is
commonly used in time series classifications [24]. Fig. 15(a)
shows the basic principle of DTW, which detects similarities
among temporal signals despite the variable speed. As shown
in Fig. 15(a), for two time series A and B, Di, j can be
formulated as the summation of absolute difference |Ai − B j |
and minimum value of its three ancestor nodes min(Di−1, j ,
Di, j−1, Di−1, j−1) where Ai and B j denotes the i th and
j th elements of A, B , and Di, j denotes the DTW value at
node (i, j). The instruction set of the DTW algorithm contains
the following instructions: WTA/MIN, ABS, and ADD. The
core operation of the algorithm is to accumulate the minimum
value from its three ancestor nodes. The algorithm diagram is
shown in Fig. 15(a) and the final AU array floor plan (5 × 4
AU array) is shown in Fig. 15(b) for a single processing unit
of DTW. A configuration example of a DTW operation is
also shown in Fig. 15(b) with the operation and interconnect
marked in red. The final layout of the configurable AU
array is shown in Fig. 16 in comparison with conventional
ASIC design showing a total of 49% area saving of which,
27% comes from proposed logic contraction, 11% comes from

Fig. 16. AU array layout comparison: conventional AU array (left) and
RRAM-based AU array (right).

TABLE II

DELAY REDUCTION OF DIFFERENT OPERATIONS IN AU

TABLE III

POWER SAVING OF DIFFERENT OPERATIONS IN AU

allocation algorithms, 4% comes from interconnections, and
7% comes from associated memory components.

To estimate the performance (delay) improvement, we per-
formed “case-based” static timing analysis (STA) where the
delay is reported under the constraint of the configuration
of the design rather than general worst-case critical path.
The “case-based” STA reported by Cadence Encounter tool
provides a more accurate estimation of the specific operation
of the accelerator. The same analysis is applied to the con-
ventional design on the same reconfigurable module. Table II
shows the delay in improvement for each configuration of the
RRAM-based AU compared with conventional AU. Interest-
ingly, CMP has the largest delay improvement, possibly due to
high delay contribution of the selection logic in conventional
AU design. Table III shows the power saving of under different
configuration using similar “case-based” power analysis in
Cadence Encounter tool.

Fig. 15(c) and (e) show the total improvement of delay and
power from the proposed R-accelerator design, the process-
ing unit of DTW accelerator compared with conventional
ASIC design. Overall, 28% delay and 38% power saving are
achieved as a result of the significantly smaller design in the
proposed R-accelerator.

B. Case Study on General Benchmarks

1) Benchmarks: To evaluate the performance in more gen-
eral use cases, we selected a set of six benchmark pro-
grams from [26]. The selected benchmarks are fft, adpcm,
basicmatch, bitcount, qsort, and rigndael, all of which
have repetitive computing loops suitable for mapping into
R-accelerators. For each benchmark, we first used the low
level virtual machine (LLVM) [27], [29] to obtain the
DFGs and representative computing loops. We then iden-
tify custom instructions from the DFGs of each benchmark
using instruction decomposition described in Section V-A.
The characteristics of representative loops are shown in
Table IV.

CHEN et al.: R-ACCELERATOR: AN RRAM-BASED CGRA ACCELERATOR WITH LOGIC CONTRACTION 2665

Fig. 17. (a) DFG of the representative loop in “qsort.” (b) AU array and interconnection configuration diagram for “qsort.” (c) Detailed configuration road
map.

TABLE IV

BENCHMARK CHARACTERISTIC

2) Experiment Setup: In our experiments, we compare
the proposed RRAM-based reconfigurable architecture with
conventional reconfigurable architecture. To obtain an optimal
reconfigurable architecture used for the different benchmarks
mentioned in Section VI-B, we take the DFGs of each repre-
sentative loop as input and utilize the simultaneous allocation
algorithm proposed in Section V-B to find out the optimal
topology of the AU array.

3) Performance Results: Fig. 17 shows the detailed imple-
mentation of the example benchmark “qsort.” The DFG of
the representative loop in “qsort” is shown in Fig. 17(a),
which contains three multiplications, two additions, and a
square root. Fig. 17(b) shows the final configuration floor
plan of the R-accelerator, which contains a 5 × 6 AU array.
Fig. 18(a) and (b) show the power and delay comparison
between proposed R-accelerator and conventional reconfig-
urable architectures through different benchmarks. The overall
geometric mean of power-saving and delay improvement are
33% and 32%, respectively. For power saving, “fft” has the
highest energy saving of 37%. This can be explained by
the fact that “fft” has the largest number of multiplication
(addition) operations, which have higher saving compared
to other operations. The highest delay improvement is 38%
achieved by “adpcm” due to dominant MUX operations, which
have higher delay reduction compared to other operations.
Fig. 18(c) shows the total area-saving of 45% achieved by
the proposed R-accelerator design. Of the 45% area reduction,
25% comes from proposed logic contraction, 9% comes from
the allocation algorithm, 4% comes from interconnections, and
7% comes from associated memory components.

Fig. 18. (a) Power comparison. (b) Delay comparison. (c) Area comparison.
(d) Configuration time comparison.

4) Configuration Time Analysis: One major difference of
the proposed reconfigurable R-accelerator is that the RRAM
needs to be written for each configuration. Compared with
standard CMOS logic, the written speed of RRAM is slower,
and thus, leads to the drawback of the proposed design.
In addition, a special sequence needs to be enforced for
configuration to ensure deterministic writing to each RRAM
device. We study the impact of RRAM write in this section.
The write time is assumed to be a moderate speed of 10 ns,

2666 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

as listed in Table I. Fig. 17(b) and (c) show the configuration
flow of the accelerator for “qsort” program. The different
color indicates the order of reconfiguration: 1) the AUs with
the same color are reconfigured at the same time and 2) the
configuration order of the RRAM-based AU is marked by the
number at the right-bottom corner of the AU. The detailed
reconfiguration of multiplication and square root are shown
in Fig. 17(c).

Fig. 18(d) shows the configuration time for different bench-
marks. The configuration time varies from 50 to 120 ns and
among them “bitcount” has the longest configuration time due
to a more complex and longer DFG it has. Although the
longer configuration time of the proposed R-Accelerator is
a drawback compared with conventional design, the overhead
of reconfiguration only happens once at the beginning of the
program and can often be hidden through careful scheduling
with CPU’s operation. As RRAM technology improves, the
configuration time due to RRAM write is expected to be
significantly shortened.

5) Endurance and Variation Impact: As described in
Section III-A, some practical issues of RRAM/RRAM devices
have been reported including: 1) variability of the cell resis-
tance especially at high resistance state and 2) endurance
of resistance value during writing and reading [16], [17].
We performed variability test by varying HRS and LRS by a
factor of 300% and evaluated the performance, i.e., cell delay
impact. Our evaluation shows the performance variation is
within 10% of the nominal value because the logic cell delay is
strongly influenced by intrinsic transistors from driving buffers
rather than the interconnect variation.

Such a performance variation indeed impacts the writing
time of the RRAM device. However, the proposed reconfig-
uration operation using the RRAM device is only performed
at the beginning of each program, and thus, can be repeat-
edly tuned to eliminate the potential variation of the device
resistance. Overall, less than 1% delay degradation of the
proposed R-accelerator is observed among all the experiments
due to the RRAM variation. In addition, compared with
the previous proposed neuromorphic application where high
resolution and sturdy resistance of RRAM device is required,
the proposed circuits have significantly relaxed requirement
on the variability and durability of the device, and thus,
can be easily utilized from commonly used RRAM/RRAM
devices.

VII. CONCLUSION

We proposed a novel design methodology for creat-
ing reconfigurable application-specific accelerator using the
RRAM device. A logic contraction technique along with a
modeling technique was developed to significantly reduce
the area cost of reconfigurable AUs. Two heuristic resource
allocation algorithms were developed to achieve the optimal
solution for AU placement and interconnect choices. Study on
an example of DTW and general benchmark programs show
that compared with conventional design methodology, a total
of 49% area reduction, 28% of delay improvement, and 38%
dynamic power saving are achieved.

REFERENCES

[1] M. Borgatti, F. Lertora, B. Forêt, and L. Calí, “A reconfigurable sys-
tem featuring dynamically extensible embedded microprocessor, FPGA,
and customizable I/O,” IEEE J. Solid-State Circuits, vol. 38, no. 3,
pp. 521–529, Mar. 2003.

[2] T. Thanh-Hoang, A. Shambayati, and A. A. Chien, “A data layout trans-
formation (DLT) accelerator: Architectural support for data movement
optimization in accelerated-centric heterogeneous systems,” in Proc.
EDAA, 2016, pp. 1489–1492.

[3] T. Nakagawa and T. Shibata, “A real-time image feature vector generator
employing functional cache memory for edge flags,” in Proc. IEEE ISCS,
May 2009, pp. 3026–3029.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proc. 5th Annu. Workshop Comput.
Learn. Theory, 1992, pp. 144–152.

[5] J. Cong and B. Xiao, “mrFPGA: A novel FPGA architecture with
memristor-based reconfiguration,” in Proc. IEEE/ACM Int. Symp.
Nanosc. Archit., Jun. 2011, pp. 1–8.

[6] D. Rossi, F. Campi, S. Spolzino, S. Pucillo, and R. Guerrieri,
“A heterogeneous digital signal processor for dynamically reconfigurable
computing,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1615–1626,
Aug. 2010.

[7] F.-L. Yuan, C. C. Wang, T.-H. Yu, and D. Marković, “A multi-granularity
FPGA with hierarchical interconnects for efficient and flexible mobile
computing,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 137–149,
Jan. 2015.

[8] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proc. PAC, 2008, pp. 166–176.

[9] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph embedding:
Mapping applications onto coarse-grained reconfigurable architectures,”
in Proc. CASES, 2006, pp. 136–146.

[10] Crossbar. Accessed: Dec. 2017. [Online]. Available: http://www.
crossbar-inc.com/assets/resource/whitepaper/Crossbar-RRAM-
Technology-Whitepaper.pdf

[11] Y. Shim, A. Sengupta, and K. Roy, “Low-power approximate con-
volution computing unit with domain-wall motion based ‘Spin-
Memristor’ for image processing applications,” in Proc. DAC, Jun. 2016,
pp. 1–6.

[12] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in Proc.
AISCA, 2016, pp. 27–39.

[13] Y. Chen and H. Zhou, “Resource-constrained high-level datapath opti-
mization in ASIP design,” in Proc. DATE, 2013, pp. 198–201.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability.
Murray Hill, NJ, USA: Bell Laboratories, Jan. 1979.

[15] K. Tsunoda et al., “Low power and high speed switching of Ti-doped
NiO ReRAM under the unipolar voltage source of less than 3 V,” in
IEDM Tech. Dig., Dec. 2007, pp. 767–770.

[16] A. Kawahara et al., “An 8 Mb multi-layered cross-point ReRAM macro
with 443 MB/s write throughput,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2012, pp. 432–434.

[17] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor
SPICE model and crossbar simulation based on devices with nanosecond
switching time,” in Proc. Int. Joint Conf. Neural Netw., Aug. 2013,
pp. 1–7.

[18] R. Huang et al., “Resistive switching of silicon-rich-oxide featuring high
compatibility with CMOS technology for 3D stackable and embedded
applications,” Appl. Phys. A, Solids Surf., vol. 102, no. 4, pp. 927–931,
2011.

[19] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals
the mechanism of a high-performance memristor,” Adv. Mater., vol. 23,
no. 47, pp. 5633–5640, 2011.

[20] T. Diokh et al., “Investigation of the impact of the oxide thickness and
RESET conditions on Disturb in HfO2-RRAM integrated in a 65 nm
CMOS technology,” in Proc. IRPS, Apr. 2013, pp. 5E.4.1–5E.4.4.

[21] J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, and T.-H. Hou,
“One selector-one resistor (1S1R) crossbar array for high-density
flexible memory applications,” in IEDM Tech. Dig., Dec. 2011,
pp. 31.7.1–31.7.4.

[22] X. Tang, E. Giacomin, G. De Micheli, and P.-E. Gaillardon, “Circuit
designs of high-performance and low-power RRAM-based multiplexers
based on 4T(ransistor)1R(RAM) programming structure,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 64, no. 5, pp. 1173–1186, May 2017.

CHEN et al.: R-ACCELERATOR: AN RRAM-BASED CGRA ACCELERATOR WITH LOGIC CONTRACTION 2667

[23] X. Tang, P.-E. Gaillardon, and G. De Micheli, “A high-performance
low-power near-Vt RRAM-based FPGA,” in Proc. ICFPF, Dec. 2014,
pp. 207–214.

[24] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: Experimental comparison of
representations and distance measures,” Proc. VLDB Endowment, vol. 1,
no. 2, pp. 1542–1552, 2008.

[25] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,” in
Proc. DAC, Jun. 2017, pp. 1–6.

[26] Mibench. Accessed: Dec. 2018. [Online]. Available:
https://www.eecs.umich.edu/mibench/

[27] LLVM. Accessed: Dec. 2018. [Online]. Available: https://www.llvm.org
[28] M. A. Lastras-Montaño, A. Ghofrani, and K.-T. Cheng, “A low-power

hybrid reconfigurable architecture for resistive random-access memo-
ries,” in Proc. HPCA, Mar. 2016, pp. 102–113.

[29] P. Biswas, S. Banerjee, N. Dutt, L. Pozzi, and P. Ienne, “ISEGEN: Gen-
eration of high-quality instruction set extensions by iterative improve-
ment,” in Proc. IEEE DATE, Mar. 2005, pp. 1246–1251.

[30] Sylvain DUBOSI. Crossbar Resistive RAM (RRAM): The Future
Technology for Data Storage. [Online]. Available: http://www.snia.
org/sites/default/orig/-DSI2014/presentations/HotTopics/SylvainDuBoise
_Future_Technology_final.pdf

[31] Z. Chen, H. Zhou, and J. Gu, “R-accelerator: A reconfigurable accel-
erator with RRAM based logic contraction and resource optimization
for application specific computing,” in Proc. IEEE Int. Conf. Comput.
Design (ICCD), Oct. 2018, pp. 163–170.

Zhengyu Chen (S’16) received the B.S. degree
in electrical engineering from Southeast University,
Nanjing, China, in 2013, and the M.S. degree in
electrical and computer engineering from Cornell
University, Ithaca, NY, USA, in 2015. He is currently
working toward the Ph.D. degree in electrical and
computer engineering at Northwestern University,
Evanston, IL, USA.

He is an Aspiring Researcher doing research in the
area of ultralow power design/algorithm for VLSI,
mixed-signal ICs, and emerging device. His current

research interests include the low-power algorithm design such as time-domain
signal processing and accelerator design of machine learning algorithms.

Hai Zhou (SM’04) received the B.S. and M.S.
degrees in computer science and technology from
Tsinghua University, Beijing, China, in 1992 and
1994, respectively, and the Ph.D. degree in computer
sciences from the University of Texas at Austin,
Austin, TX, USA, in 1999.

He is currently an Associate Professor of elec-
trical and computer engineering with Northwestern
University, Evanston, IL, USA. His current research
interests include VLSI computer-aided design, algo-
rithm design, and formal methods. He has authored

more than 150 papers in flagship journals and conferences in these areas.
Dr. Zhou received the CAREER Award from the National Science

Foundation.

Jie Gu (SM’19) received the B.S. degree from
Tsinghua University, Beijing, China, in 2001,
the M.S. degree from Texas A&M University,
College Station, TX, USA, in 2003, and the
Ph.D. degree from the University of Minnesota,
Minneapolis, MN, USA, in 2008.

He was an IC Design Engineer with Texas Instru-
ments, Dallas, TX, USA, from 2008 to 2010, focus-
ing on ultralow-voltage mobile processor design and
integrated power management techniques. He was a
Senior Staff Engineer with Maxlinear, Inc., Dallas,

TX, USA, from 2011 to 2014, focusing on low-power mixed-signal broadband
system-on-chip (SoC) design. He is currently an Assistant Professor with
Northwestern University, Evanston, IL, USA. His current research interests
include ultradynamic clock and power management for microprocessor and
accelerators, emerging mixed-signal computing circuit, and the design of
machine learning capable edge devices.

Dr. Gu was a recipient of the NSF CAREER Award. He has served as
a Program Committee and Conference Co-Chair for numerous low-power
design conference and journals, such as ISPLED, DAC, ICCAD, and ICCD.

