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Human–machine partnership with artificial intelligence for

chest radiograph diagnosis
Bhavik N. Patel 1*, Louis Rosenberg2, Gregg Willcox2, David Baltaxe2, Mimi Lyons2, Jeremy Irvin3, Pranav Rajpurkar3,

Timothy Amrhein 4, Rajan Gupta4, Safwan Halabi 1, Curtis Langlotz 1, Edward Lo1, Joseph Mammarappallil4, A. J. Mariano1,

Geoffrey Riley1, Jayne Seekins1, Luyao Shen1, Evan Zucker1 and Matthew Lungren1

Human-in-the-loop (HITL) AI may enable an ideal symbiosis of human experts and AI models, harnessing the advantages of both

while at the same time overcoming their respective limitations. The purpose of this study was to investigate a novel collective

intelligence technology designed to amplify the diagnostic accuracy of networked human groups by forming real-time systems

modeled on biological swarms. Using small groups of radiologists, the swarm-based technology was applied to the diagnosis of

pneumonia on chest radiographs and compared against human experts alone, as well as two state-of-the-art deep learning AI

models. Our work demonstrates that both the swarm-based technology and deep-learning technology achieved superior

diagnostic accuracy than the human experts alone. Our work further demonstrates that when used in combination, the swarm-

based technology and deep-learning technology outperformed either method alone. The superior diagnostic accuracy of the

combined HITL AI solution compared to radiologists and AI alone has broad implications for the surging clinical AI deployment and

implementation strategies in future practice.
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INTRODUCTION

Recent notable applications of deep learning in medicine include
automated detection of diabetic retinopathy, classification of skin
cancers, and detection of metastatic lymphadenopathy in patients
with breast cancer, all of which demonstrated expert level
diagnostic accuracy.1–3 Recently, a deep-learning model was
found to match or outperform human expert radiologists in
diagnosing 10 or more pathologies on chest radiographs.4,5 The
success of AI in diagnostic imaging has fueled a growing debate6–
9 regarding the future role of radiologists in an era, where deep-
learning models are capable of performing important diagnostic
tasks autonomously and speculation surrounds whether the
comprehensive diagnostic interpretive skillsets of radiologist can
be replicated in algorithms. However, AI is also plagued with
several disadvantages including biases due to limited training
data, lack of cross-population generalizability, and inability of
deep-learning models to contextualize.8,10–12

Human-in-the-loop (HITL) AI may offer advantages where both
radiologists and machine-learning algorithms fall short.13,14 This
paradigm allows leveraging all the advantages of AI models (i.e.
rapid automated detection) but having a human at various
checkpoints to fill gaps where algorithms are not confident in
their probabilities or where they may fall short due to underlying
biases. For example, a machine-learning algorithm could analyze a
large dataset and provide output for the presence of disease in a
short period of time, some with high confidence (i.e. high
probability of the presence or absence of the disease relative to
the probabilistic threshold for the detection of that disease) and
others with low. The lower confidence outputs could then be
validated by a human to create a combined better decision on the
input; this approach could harness the best of human intelligence
and artificial intelligence to create a collective super intelligence.

Recent work has shown superior task performance of a combined
human and AI augmented model compared to either human15 or
machine alone.15,16 To date, however, no studies have harvested
the full collective intelligence of a group of radiologists and then
examined the performance of an augmented model.
In this study, we employ a novel collective intelligence platform

called Swarm17–19 designed to amplify the accuracy of networked
human groups by enabling the groups to work together in real-
time systems modeled after biological swarms. In contrast to
traditional crowds, swarm intelligence refers to stigmergic
collaborative behavior of large groups of independent agents
that form a closed-loop system, resulting in an collective super
intelligence whose capacity exceeds that of any individual
agent.17,19 The most studied form of swarm intelligence in nature
is the honeybee swarm, which has been shown to make decisions
through a process that is surprisingly similar to neurological
brains.20–22 Both employ large populations of simple excitable
units (i.e., bees and neurons) that work in unison to integrate noisy
and incomplete information, weigh competing alternatives and
converge on unified decisions in real-time synchrony. In both
brains and swarms, outcomes are arrived at through a real-time
competition among sub-populations of excitable units. When one
sub-population exceeds threshold support, the corresponding
alternative is chosen. In honeybees, this enables the colonies to
converge on optimal decisions to highly complex problems, such
as selecting an optimal home location from among a large set of
alternatives.21–23

When using the platform with groups of radiologists, the
swarm-based technology was applied to the diagnosis of
pneumonia on chest radiographs. Diagnostic accuracy of the
swarm-based technology was compared against the human
experts alone and two state-of-the-art deep-learning AI models
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that have demonstrated expert level performance in automated
pneumonia and multiple diagnosis detection, respectively.5,6 In
addition, a novel combination of the swarm-based technology
and the deep-learning AI models was compared against each of
the methods in isolation.

RESULTS

Experiment design

Complete details regarding the chest radiograph dataset, two
deep-learning model architectures, and swarm-based collective
intelligence platform is discussed in the online methods section. In
brief, a total of 13 expert radiologists split over two sessions (7
radiologists in group A; 6 radiologists in group B) provided their
estimate of the probability of the presence or absence of
pneumonia on 50 chest radiographs, first alone then collectively
using the real-time swarm platform. Two state-of-the art deep-
learning models, CheXNet and CheXMax, were also used to
evaluate the chest radiographs and the performance between
individual human experts, real-time swarms, and AI were
compared. Finally, a novel combination of the real-time swarm
platform and the deep-learning models was compared against
each method in isolation.
The aggregate performance of individual human experts was

calculated in two ways: first, the average probability of all
radiologists in each group was calculated and used as the
crowd-based mean performance. Second, a crowd-based majority

diagnosis was calculated using a vote—if more radiologists
diagnosed pneumonia than no pneumonia using a 50%
probability cutoff, the crowd-based majority diagnosis was
pneumonia.
The probabilistic diagnoses from CheXNet and CheXMax were

turned into binary classifications of pneumonia using a discrimi-
nation threshold—any probabilistic diagnosis above the threshold
is assigned a prediction of “Pneumonia” and any diagnosis below
the threshold is assigned a prediction of “No Pneumonia”. The
thresholds for these algorithms were set to maximize the
performance of the algorithms on their respective training data
sets. The discrimination threshold for CheXNet is 50%, and the
discrimination threshold for CheXMax is 4.008%.

Diagnostic performance results

Results of the diagnostic performance of individuals, real-time
swarms, and AI models are summarized in Tables 1 and 2. The
individual radiologists outperformed CheXNet in diagnosing
pneumonia in this study (AUC of 0.698 vs. 0.545, p < 0.01).
CheXMax on the other hand, outperformed the individual
radiologists (AUC of 0.938 vs. 0.698, p < 0.01). The swarm platform
also outperformed the individual radiologists. For both swarm
sessions, swarm interpolation achieved higher diagnostic accuracy
than individual human performance, crowd-based performance,
and CheXNet (Fig. 1). For group A, swarm achieved a statistically
higher AUC of 0.840 [0.691, 0.937] compared to 0.763 [0.709,
0.817] (p < 0.05) average AUC of all radiologists in group A and to

Table 1. Diagnostic performance parameters for individual particpants, swarm sessions, and AI models

Participants Diagnostic performance parametersa

No. of correct (%) Mean absolute error Brier score AUC F1 score

Swarm sessions

Group A (N= 7)

Individual average 37 (75) [35, 40] 0.269 [0.231, 0.306] 0.188 [0.152, 0.274] 0.763* [0.709, 0.817] 0.687 [0.606, 0.736]

Crowd-based Majority 39 (78) [33, 44] N/A N/A N/A 0.686 [0.533, 0.872]

Crowd-based mean probability 40 (80) [34, 45] 0.269 [0.198, 0.347] 0.145 [0.084, 0.213] 0.838 [0.686, 0.963] 0.722 [0.533, 0.872]

Swarm interpolation 42 (84) [37, 47] 0.235 [0.60, 0.324] 0.139 [0.070, 0.225] 0.840 [0.691, 0.937] 0.778 [0.588, 0.905]

Group B (N= 6)

Individual average 39 (78)¶ [37,41] 0.260¶ [0.226, 0.295] 0.166¶ [0.135, 0.199] 0.814¶ [0.755, 0.870] 0.717¶ [0.626, 0.771]

Crowd-based majority 40 (80) [34, 45] N/A N/A N/A 0.706 [0.483, 0.864]

Crowd-based mean probability 40 (80) [34, 45] 0.260¶ [0.189, 0.334] 0.135 [0.079, 0.208] 0.873 [0.730, 0.969] 0.706 [0.483, 0.864]

Swarm interpolation 42 (84) [37, 47] 0.231 [0.163, 0.314] 0.128 [0.069, 0.202] 0.883 [0.751, 0.964] 0.778 [0.600, 0.909]

Combined (N= 13)

Individual average 38 (76)† [36.5, 40] 0.266† [0.240, 0.344] 0.179† [0.154, 0.275] 0.785† [0.740, 0.957] 0.698† [0.635, 0.731]

Crowd-based majority 40 (80)Ø [34, 45] N/A N/A N/A 0.722† [0.529, 0.867

Crowd-based mean probability 40 (80)Ø [34, 45] 0.264† [0.196, 0.344] 0.140 [0.083, 0.221] 0.853 [0.686, 0.960] 0.722Ø [0.529, 0.867]

Swarm interpolation 84 (84) [78, 90] 0.233 [0.177, 0.279] 0.134 [0.096, 0.175] 0.868 [0.801, 0.933] 0.778 [0.685, 0.862]

Deep-learning models

CheXNet 35 (70)‡† [29, 41] 0.397¶† [0.336, 0.461] 0.210¶† [0.152, 0.274] 0.685*¶† [0.520, 0.854] 0.545¶† [0.333, 0.733]

CheXMax 41 (82) [35, 46] 0.357† [0.249, 0.476] 0.287† [0.184, 0.389] 0.938† [0.864, 0.994] 0.800 [0.667, 0.917]

Augmented HITL model (combined swarm
and CheXMax)

91 (91)†? [86, 96] 0.356† [0.297, 0.418] 0.287†Ψ [0.211, 0.319] N/Ab 0.886†? [0.819, 0.945]

N/A not applicable

*Indicates a statistically significant difference (p < 0.05) compared to group A swarm interpolation
¶Indicates a statistically significant difference (p < 0.01) compared to group B swarm interpolation
‡Indicates a statistically significant difference (p < 0.05) compared to group B swarm interpolation
†Indicates a statistically significant difference (p < 0.01) compared to combined swarm interpolation
ØIndicates a statistically significant difference (p < 0.05) compared to combined swarm interpolation
ϕIndicates a statistically significant difference (p < 001) compared to CheXMax
ΨIndicates a statistically significant difference (p < 0.05) compared to CheXMax
aData reported as mean [95% confidence interval] as applicable, unless otherwise specified
bAUC not applicable here as distribution of probabilities for swarm and CheXMax are centered about different averages (i.e. 50% vs. 4%, respectively)
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0.685 [0.520, 0.854] (p < 0.01) AUC for CheXNet. For group B, the
swarm had a statistically higher diagnostic accuracy than
individual radiologists and CheXNet for all performance metrics
(e.g. AUC of 0.889 vs. 0.810 and 0.685, respectively). When results

from both swarm sessions were combined, swarm-based diag-
noses resulted in statistically higher (p < 0.01) accuracies com-
pared to radiologists and CheXNet (e.g. AUC of 0.868 vs. 0.785 and
0.685, respectively) (Fig. 1). There was no difference between

Table 2. Sensitvity and specificity for individual particpants, swarm sessions, and AI models

Participants Diagnostic performance parametersa

Sensitivity Specificity

Swarm sessions

Group A (N= 7)

Individual average 0.642 [0.579, 0.709] 0.819* [0.777, 0.862]

Crowd-based majority 0.650 [0.412, 0.783] 0.900 [0.800, 0.972]

Crowd-based mean probability 0.650 [0.462, 0.824] 0.900 [0.806, 1.00]

Swarm interpolation 0.700 [0.526, 0.875] 0.933 [0.852, 1.00]

Group B (N= 6)

Individual average 0.633 [0.558, 0.704] 0.883 [0.845, 0.920]

Crowd-based majority 0.600 [0.421, 0.789] 0.933 [0.846, 1.00]

Crowd-based mean probability 0.600 [0.421, 0.789] 0.933 [0.846, 1.00]

Swarm interpolation 0.700 [0.500, 0.867] 0.933 [0.844, 1.00]

Combined (N= 13)

Individual average 0.519ϕ† [0.471, 0.568] 0.690 [0.654, 0.724]

Crowd-based majority 0.625ϕØ [0.477, 0.721] 0.917 [0.857, 0.968]

Crowd-based mean probability 0.625ϕ† [0.500, 0.744] 0.917Ø [0.852, 0.968]

Swarm interpolation 0.700Ψ [0.578, 0.814] 0.933ϕ [0.855, 0.968]

Deep learning models

CheXNet 0.450*‡† [0.326, 0.579] 0.867 [0.793, 0.932]

CheXMax 0.900^‡† [0.773, 1.00] 0.767*‡† [0.672, 0.857]

Augmented HITL model (combined swarm and CheXMax) 0.875*‡† [0.783, 0.956] 0.933ϕ [0.877, 0.983]

N/A not applicable
^Indicates a statistically significant difference (p < 0.01) compared to group A swarm interpolation

*Indicates a statistically significant difference (p < 0.05) compared to group A swarm interpolation
¶Indicates a statistically significant difference (p < 0.01) compared to group B swarm interpolation
‡Indicates a statistically significant difference (p < 0.05) compared to group B swarm interpolation
†Indicates a statistically significant difference (p < 0.01) compared to combined swarm interpolation
ØIndicates a statistically significant difference (p < 0.05) compared to combined swarm interpolation
ϕIndicates a statistically significant difference (p < 0.01) compared to CheXMax
ΨIndicates a statistically significant difference (p < 0.05) compared to CheXMax
aData reported as mean [95% confidence interval] as applicable, unless otherwise specified

Fig. 1 Bootstrapped average AUC curves. AUC curves show that the swarms (blue bars) outperform group A (left image), group B (middle
image), and combined group (right image). Radiologists (orange bars) performances in diagnosing pneumonia. Swarm also outperforms
CheXNet (green bars).
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CheXMax and the combined swarms in terms of accuracy or
F1 score (accuracy of 82% vs. 84%, p= 0.423; F1 of 0.788 vs. 0.800,
p= 0.34). CheXMax outperformed the combined swarm in AUC
(0.938 vs. 0.868, p < 0.01), but the swarm outperformed CheXMax
in terms of Brier score and mean absolute error (Brier scores of
0.287 vs. 0.134, p < 0.01; MAE of 0.357 vs. 0.233, p < 0.01).
The sensitivity and specificity of each of the diagnostic methods

is compared in Table 2. In terms of the sensitivity of each
diagnostic method, the swarm outperforms CheXNet in all groups
(a combined group sensitivity of 0.700 [0.578, 0.814] versus
CheXNet’s 0.450 [0.326, 0.579], p < 0.01), while CheXMax and the
combined model outperform the swarm in all groups, with
sensitivities of 0.900 [0.773, 1.00] (p < 0.05) and 0.875 [0.783, 0.956]
(p < 0.05), respectively. In terms of the specificity of each
diagnostic method, the swarm outperforms CheXMax, with a
specificity of 0.933 [0.855, 0.968] compared to CheXMax’s
specificity of 0.767 [0.672, 0.857] (p < 0.01). The Augmented HITL
model obtains a specificity of 0.933 [0.877, 0.983], the same as the
swarm. Interestingly, the human diagnostic methods all show a
lower sensitivity than specificity, while CheXMax shows a higher
sensitivity than specificity. The swarm shows the highest
specificity of any of the diagnostic methods, while CheXMax
shows the highest sensitivity of any of the diagnostic methods.
Due to the differences in sensitivity and specificity between the

swarm and CheXMax, it is clear that these two diagnostic methods
have different strengths and advantages when diagnosing
pneumonia: CheXMax has a higher sensitivity, so this machine-
learning model is more precise at detecting pneumonia if it does
exist, whereas the swarm has a higher specificity, so this human-
driven model is more precise at detecting when pneumonia does
not exist in an image. An augmentation model was created to
determine whether these two strengths could be combined into a
single model to achieve higher accuracy as compared to either
model alone. CheXMax was used first to diagnose the probability
of pneumonia across all 50 cases. Cases in which CheXMax yielded
a low-confidence diagnosis were then passed on to swarm. Low-
confidence was defined as a CheXMax probability between 2.5%
and 5.5%, resulting in 20 cases passed on to swarm for final
prediction of pneumonia. This selection was chosen as a fair low-
confidence band around the average CheXMax prediction (p=
4.008%) and yielded 20 cases on which to swarm: 13 negative
predictions and 7 positive predictions. Each swarm’s probabilistic
diagnoses on these 20 cases were then used as the augmented

model’s final diagnoses, in place of the ML system’s low-
confidence diagnoses. All other cases remained diagnosed
exclusively by the ML system.
This augmented combined system achieved a statistically

higher diagnostic performance than either CheXNet or CheXMax
and combined swarm alone using two of the performance metrics
(e.g. accuracy 92% vs. 82% and 84%; F1 score of 0.89 vs. 0.80 and
0.78, respectively; p < 0.01) (Table 1). The augmented model
system achieves the lowest diagnostic error rate, in terms of
number of diagnoses incorrect, compared to any of the other
examined diagnostic methods (error rates of 9% augmented
model; 16% combined swarm; 18% CheXMax; 24% individuals).
Moreover, the augmented system achieves near-best performance
in both sensitivity and specificity, with a sensitivity of 0.875 [0.783,
0.956] and a specificity of 0.933 [0.877, 0.983]. It appears that this
augmented model is therefore able to combine the best aspects
of both the machine-learning system (CheXMax), which has high
sensitivity, and the swarm, which has high specificity.
To better visualize how the HITL augmentation process

changed the probabilistic diagnoses of CheXMax and why these
changes resulted in a more accurate system, a scatterplot of
probabilistic diagnoses is shown in Fig. 2. Over all 100 of the
evaluated cases, the swarm and CheXMax disagreed on a total of
24, of which the vast majority (21, or 87.5%) were cases where the
swarm gave a negative diagnosis, but CheXMax gave a positive
diagnosis. Over all 24 cases where the Swarm and CheXMax
disagreed, the swarm was correct on 12 diagnoses, while
CheXMax was correct on the other 12 diagnoses.
The gray band across each image represents the range of cases

that CheXMax diagnosed with low confidence (probabilistic
diagnosis between 0.025 and 0.055), and subsequently sent to
the swarm for a second opinion. These 20 cases were each
evaluated by both Group A and Group B, for a total of 40
diagnoses generated by the swarms in the augmented system. Of
these 40 diagnoses, 29 agreed with CheXMax’s original evaluation:
three cases where both diagnostic methods gave a positive
reading, with 100% accuracy, and 26 cases where both methods
gave a negative reading, with 84.6% accuracy. Only 11 diagnoses
disagreed with CheXMax’s original evaluation, all of which were
low-confidence positive diagnoses by CheXMax, and high
confidence negative diagnoses by swarm (less than a 20%
probability of pneumonia). Of these 11 cases, the swarm correctly
changed CheXMax’s original diagnosis 10 out of 11 times (91%).

Fig. 2 Scatterplot of swarm vs. CheXMax probabilistic diagnoses, with cases colored by ground truth. The scatterplots show that CheXMax
and human swarms assign very different probabilities to each case (left image). The gray “Augmented Cases” range shows cases that were
sent from CheXMax to the Swarm for augmentation. CheXMax has a high incidence of True Positives (blue-colored cases below the horizontal
CheXMax Threshold line), but when the CheXMax gives a weak positive diagnosis (between 0.04008 and 0.055 on the y-axis), it is often
incorrect (11 out of 15 cases correct, or an accuracy of 73%). Using a human swarm to re-classify these weak positive cases results in correctly
labeling 14 out of 15 of the cases—an accuracy improvement of 20%. The cases on which the two diagnostic methods disagreed are more
clearly visualized in the scatterplot of diagnostic disagreement (right image)
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Figure 3 provides examples of correct diagnosis by CheXMax over
swarm, and vice-versa, as well as an augmented case with correct
diagnosis changed by swarm from CheXMax.
Because the boost in performance of the augmented model

depends on the selection of cases (i.e. how “low confidence” is
defined) sent to the swarm, a sensitivity analysis was performed to
determine the impact of the quantity of cases selected to be sent
to the swarm on the accuracy of the augmented model. In this
sensitivity analysis, cases are selected based on their distance to
the discrimination threshold (4.008%) of CheXMax, starting with
the lowest-confidence cases (those closest to the discrimination
threshold). An equal number of positive and negative cases are
selected to be diagnosed with Swarm at each cutoff, where the
number of cases selected ranges from 0 to 50 (0–100% of the
data). The number of cases correctly diagnosed by the augmented
system is calculated for each cutoff.
A bootstrapping analysis with 1000 bootstraps is used to find

the 90% confidence interval of accuracy for each cutoff by
randomly re-sampling a full set of cases from the observed
population 1000 times and calculating the observed accuracy for
each resampled set of cases. The average accuracy increases of
this augmented system relative to CheXMax and 90% confidence

interval of this accuracy increase are shown in Figs. 4 and 5. This
sensitivity analysis suggests that the success of the augmented
model is only slightly sensitive to the choice of threshold at which
a case is deemed “low-confidence”. Regardless of the choice of
threshold, the average accuracy of the augmented system is
greater than or equal to that of the ML system (Fig. 6). When the
proportion of cases sent to the swarm is between 6% and 32%,
however, the augmented system diagnoses more cases correctly
than the ML system alone (p < 0.05), indicating that the

Fig. 3 Case examples. Each of the three rows a–c represent three
different patients. Grayscale image is on the left with the
corresponding class activation map to its right. The top row
example a includes a patient with pneumonia in the left lung,
correctly predicted by CheXMax but incorrectly by swarm. The
middle row b is an example of a patient with metastatic disease but
without pneumonia, correctly predicted by swarm and incorrectly
by CheXMax. The bottom row c is an example of an augmented
case, where CheXMax provided a low confidence positive prediction
(p= 0.41) but was correctly predicted as negative by swarm

Fig. 4 Sensitivity analysis of augmented model accuracy. The shape
of the average accuracy line shows a consistent increase in the
accuracy of the augmented model when the 0–14% lowest-
confidence cases are sent to the swarm, from 82% correct of
CheXMax (sending 0% of cases) to 90% correct when sending the
14% of lowest-confidence positive and negative cases to the swarm.
The model performs similarly when 16–32% of cases are sent to the
swarm, achieving between 88% and 92% accuracy across this
sensitivity range. If more than 32% of cases are sent to the swarm,
the accuracy of the system decreases, until the limit of sending all
diagnoses to the swarm is reached (100% of cases swarmed), where
the accuracy returns to the swarm score of 84%

Fig. 5 Sensitivity analysis of accuracy increase relative to CheXMax.
Sensitivity analysis shows a band between 6% and 34%, where the
90% confidence interval is only ever >0%. This indicates that when
sending between 6% and 34% of the lowest-confidence cases to the
swarm using this method, there is high confidence that the
augmented model would diagnose the cases more accurately than
the CheXMax alone. If the range is limited between 14% and 28%,
the average improvement in accuracy is 7.75% correct
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augmented model outperforms CheXMax across a wide range of
“low confidence” thresholds.

DISCUSSION

Our study shows that, using a test set of 50 chest radiographs with
strong ground truth using clinical outcomes, highest diagnostic
performance can be achieved with HITL AI when radiologists and
AI technologies work together. We combined a novel real-time
interactive platform that utilizes the biological concept of swarm
intelligence with a deep-learning model and found the maximum
diagnostic performance that neither alone was able to achieve.
Using a swarm platform, we found that the diagnostic

performance was higher than individual radiologist performance
in diagnosing pneumonia. Moreover, when results of both swarm
sessions were combined, swarm-based diagnoses outperformed
crowd-based majority vote. This has important implications as
many studies involving deep-learning models often use either
individual expert, consensus, or majority vote to provide ground
truth labels for validation and test sets when stronger metrics,
such as pathology results, are unavailable or not applic-
able.4,15,24,25 Results from our study shows that swarm-based
diagnoses outperforms crowd-based diagnoses, and thus may
represent a novel means for generating image labels that provide
more accurate ground truth than conventional consensus labeling
methods for training datasets for deep-learning algorithms.
Moreover, some centers may not readily have access to experts,
and labeling images through swarm sessions may allow such
centers to achieve expert level labels.
It has been well-established that crowds of people can

outperform individuals and achieve estimates close to the true
value that would otherwise not be possible with individual
estimates, a concept known as “wisdom of crowd effect”.26–30 In
fact, the use of this effect specifically for medical decision making
has also been described.31–34 However, this effect is a statistical
aggregation of individual estimates. Traditionally, its power is
shown through votes, conducting polls, or collecting surveys such
that the input from each individual member is captured in
isolation (or near isolation) and then combined with the data
collected from other members to then pass through a post-hoc
statistical processing. Thus, the dynamics of a real-time

collaboration and negotiation are void within these types of
“crowds.” Studies have also shown that wisdom of crowd effect
could be undermined by social influence, and that the crowd-
based decision can be biased resulting in tending away from
higher accuracy compared to the individual.28,35,36 This is,
however, dependent on how the communication network for
information exchange is structured.37

Modeled after complex decision processes used by swarming
honeybees, the real-time algorithms that connect users of the
Swarm platform enable human groups to work together to
integrate noisy and incomplete information, weigh competing
alternatives, and converge on unified decisions in real-time
synchrony. In this way, the swarm-based technology utilized in
this study enabled networked groups of radiologists to outper-
form individual radiologists, groups of radiologists taking a
traditional vote, and the CheXNet deep-learning system when
diagnosing pneumonia on chest radiographs.
Similar to the human experiment in which we aimed to harness

the maximum diagnostic potential, we retrained CheXNet,38 which
was originally trained on a publicly available NIH dataset,39 on a
recently released large dataset of chest radiographs with
radiologist level validation and test sets.5 This newly trained
deep-learning algorithm, CheXMax, outperformed the average
radiologist for the detection of pneumonia (e.g. 82% vs. 76%
accuracy, respectively). Moreover, this newly trained algorithm
outperformed the swarm-based method when using the AUC
metric (the standard measure of diagnostic classification accuracy)
and underperformed the swarm-based method when using mean
absolute error and Brier score (the standard measures of
probabilistic accuracy) (Table 1). Since the AUC metric measures
the success of ordering the cases from least to most likely to
contain pneumonia, while the Brier score and mean absolute error
scores measure the probabilistic accuracy of the diagnoses—e.g.
whether a diagnosis of a 10% chance of pneumonia actually
contained pneumonia only 10% of the time—this result suggests
that the CheXMax is better at ordering the cases from least to
most likely to contain pneumonia, while the swarm is better at
assessing the probabilistic likelihood of pneumonia in a
specific case.
As deep-learning models continue to improve though larger

and higher quality dataset for training, as we found with retraining

Fig. 6 Bootstrapped average specificity and sensitivity of aggregate diagnostic methods. The bootstrapped specificity histograms show that
the swarms in the combined group (blue bars) outperform CheXMax (green bars) in terms of specificity (left image), but CheXMax
outperforms the swarms in terms of sensitivity (right image). The HITL Combined model combines the best of both the CheXMax and swarm
diagnostic methods, by attaining swarm-level specificity and CheXMax-level sensitivity
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CheXNet,5 an unanswered question remains as to what the exact
scenario of implementation within clinical workflow will be.
Advantages of deep-learning algorithms include rapidity in
diagnosis proving to be useful as a triage tool. Disadvantages
include biases introduced by training dataset and inability to
contextualize to clinical context.8,11,12,40 Thus, many have advo-
cated that a clinical workflow model in which healthcare workers
leverage AI might yield the greatest benefit to patients.40,41 To
that extent, few studies have shown superior performance of
human augmented by AI compared to either human or machine
alone.15,16 In our study, we showed the ability of a deep-learning
algorithm in CheXMax to provide rapid confident diagnoses for
pneumonia for over a half of the cases in the test set. Low-
confidence cases were then passed on to the human through
swarm to yield the final diagnosis and the combined HITL model
resulted in higher diagnostic accuracy than either radiologists or
AI models alone. The clinical significance of this could imply that,
in a landscape of increasing clinical volumes, complexity of cases,
and medical record documentation, physicians could leverage
deep learning to improve operational efficiency; deep-learning
algorithms could provide automated rapid diagnosis for high
confident cases as a triage tool so that physicians could spend less
time on high confidence cases evaluated by an AI model and
more time on relatively complex cases. In such HITL scenarios,
active learning could be provided to AI algorithms through
feedback from radiologists in the form of additional training data,
which the model did not initially provide a confident diagnosis.
Further studies are needed to determine the optimal workflow
and implementation of deep-learning algorithms in the healthcare
setting.
Several limitations of our study merit consideration, including

those that are attributed to a retrospective design; despite having
a strong clinical reference standard, we utilized a very small test
set of 50 cases which, though achieving the best available clinical
ground truth, nonetheless, it is possible that patients who were
included may have had other pathologies that were clinically
treated as pneumonia in routine clinical care, which may have
confounded the diagnosis had the follow-up period been
prospectively designed or more invasive testing been performed
(i.e. sputum cultures, bronchoscopy, direct sampling), which may
have altered the results of the study. This size was chosen as to
practically perform swarm sessions with synchronous groups of
radiologists in a timely manner, and judging by the statistical
analysis in this pilot it is possible that larger sample sizes would
have observed a similar trend. While we studied the improved
diagnostic accuracy of combining the capabilities of CheXMax
with swarm, we did not perform a simulation experiment where
CheXMax results are given real-time during the swarm sessions.
The cutoff for the model decisions were selected by maximizing
Youden’s J on the validation set and this low probability leads to a
good tradeoff between sensitivity and specificity for this task.
Finally, one could argue that such a platform as swarm may not be
practically necessary for decisions and tasks as relatively simple as
diagnosing pneumonia on chest radiographs.
In conclusion, we demonstrated increased diagnostic perfor-

mance of radiologists in diagnosing pneumonia on chest radio-
graphs through swarm intelligence using a novel platform,
superior performance of a deep-learning algorithm trained on
higher quality data compared to individual radiologists and
achieved the maximum diagnostic accuracy using an HITL AI
approach through an augmented model combining both
radiologists (through swarm) and AI (using a deep-learning
model). Although we focused on one common medical-imaging
task, future work could assess the feasibility and application for
other various medical diagnostic tasks and decision making.

METHODS

This Health Insurance Portability and Accountability Act-compliant study
was approved by the Institutional Review Board of Stanford University, and
a waiver of informed consent was obtained.

Chest radiograph pneumonia dataset

We retrospectively searched our electronic medical record database and
picture and archiving communications system (PACS) for patients who
underwent chest radiographs (anterioposterior or posterioanterior) in the
emergency room or in the outpatient clinic setting over a 2-year period
between 2015 and 2017. The search yielded an initial target population of
7826 unique patients with 11,127 chest radiographs. Patients were eligible
for inclusion in the study if they presented with clinical signs and
symptoms concerning for pneumonia, such as fever, cough, shortness of
breath, elevated white blood cell count, crackles on physical examination,
etc.42,43 Subjects were excluded from the study if: (a) the clinical reference
standard was inadequate (see below) or (b) an inadequate examination
due to a suboptimal technique or incomplete imaging data available. The
first consecutive 50 unique patients who met the aforementioned
eligibility were included in the final population. A test set size cutoff of
50 chest radiographs was used in order to practically perform the human
reader evaluation in a timely fashion and so as not to introduce reader
fatigue that might occur with larger datasets. The final retrospective cohort
was comprised of 27 males and 23 females (mean age ± standard
deviation, 62.1 ± 21.0 years; range, 19–100 years) with a test set of 50
frontal chest radiographs.

Clinical reference standard

Only those patients and their frontal chest radiographs were included, if
they are presented with aforementioned signs and symptoms and clinical
concern for pneumonia. An image was labeled negative if all of the
following criteria were met: (a) chest radiograph was interpreted as
negative for pneumonia by a board-certified diagnostic radiologist at the
time of examination; (b) a follow-up chest computed tomography (CT)
within 1 day after the index chest radiograph confirmed lack of pneumonia
on imaging; (c) the patient was not administered antibiotics. An image was
labeled positive for pneumonia if all of the following criteria were met: (a)
chest radiograph was interpreted as positive for pneumonia by a board-
certified diagnostic radiologist at the time of examination; (b) patient was
treated with antibiotics; (c) a follow-up chest CT or chest radiograph within
7 days after treatment showed interval improvement or resolution of
pneumonia; (d) patient showed clinical signs of improvement after
treatment on follow-up visit. Using this reference standard, the test set
contained a class balance of 30 negative and 20 positive exams for
pneumonia.

Deep-learning models and architectures

Two previously developed and described state-of-the-art convolutional
neural networks for chest radiographs were used.4,5 First, a 121-layer dense
convolutional neural network (DenseNet), CheXNet, was used on the 50
test cases. This model was trained using the publicly available dataset
released by Wang et al.39 CheXNet was previously tested on 14 different
chest radiograph pathologies, including pneumonia, and outperformed a
group of board-certified diagnostic radiologists5 as well as previous
models39,44 using the same dataset. Though large datasets, such as the one
released by Wang et al. 39 have allowed progress in deep-learning
automation of chest radiographs, those efforts can only achieve a certain
advancement before reaching a plateau. This is due to the fact that large
well-labeled datasets with strong clinical reference standards are needed.
Publicly available large datasets are often limited as the labels are derived
from automatic labelers that extract information from existing radiology
reports.39 Additionally, these labelers cannot account for uncertainty that
may be conveyed in free text radiology reports. Thus, the advantages of
access to available large datasets can come at a cost of weak labels. A
recent large dataset of chest radiographs was released that addresses
these limitations with labels that account for uncertainty and has strong
reference standards with radiologist labeled validation and test sets.5

Using the this recently released database, we retrained CheXNet model
(the newly trained model referred to as CheXMax), hypothesizing that the
improved training dataset would boost the diagnostic potential of this
deep-learning algorithm for chest radiographs. The test set of 50 chest
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radiographs were evaluated with CheXMax and probabilities of pneumonia
for each exam were derived.

Radiologists

A total of 13 board certified diagnostic radiologists (average years of
experience: 7.8 years; range 1–23 years) across two major busy tertiary care
centers (Stanford University and Duke University) participated in this study.
The 13 radiologists were arbitrarily divided into two groups (group A—7
radiologists, average(range) of experience: 6.6 (1–11); group B—6
radiologists, average(range) of experience: 9.2 (1–23)) based on their
availability. Each group participated in a 2-h session (see the “Swarm
sessions” section) to evaluate a test set of 50 chest radiographs, first
individually and then as a swarm.

Swarm platform and model architecture

In order to assess both individual diagnostic performance and maximal
collective human diagnostic performance, we employed a novel real-time
collaborative software platform called Swarm that has been assessed in a
variety of prior studies and has been shown to amplify the combined
intelligence of networked human groups.23,45–47 While traditional systems
that harness the intelligence of groups collect data from participants in
isolation, usually through an online survey, and then combine the input
statistically to determine the group response, the Swarm platform enables
participants to work together in real-time, converging on a group decision
as a unified system that employs biological principle of Swarm Intelligence.
This is achieved using a unique system architecture that includes a central
processing engine that runs swarming algorithms on a cloud-based server
(Fig. 7a). The processing engine is connected over the internet to a set of
remote workstations used by the human participants (Fig. 7b). Each
workstation runs a client application that provides a unique graphical
interface for capturing real-time behavioral input from participants and for
providing real-time feedback generated by the processing engine.
The processing engine employs algorithms modeled on the decision-

making process of honeybee swarms. The underlying algorithms enable
networked groups to work together in parallel to (a) integrate noisy and
incomplete information, (b) weigh competing alternatives, and (c)
converge in synchrony on optimized decision, all while allowing
participants to react to the collective impact they are having on the
changing system in real-time, thereby closing a feedback loop around the
whole group.21 To use this platform, distributed groups of participants (in
this case radiologists) log on to a central server from their own individual
workstations and are simultaneously asked a series of questions to be
answered together as a swarm. In this study, each question in the series
involved assessing the probability of a patient having pneumonia based
upon a displayed chest radiograph.
To answer each question, the participants collaboratively move a

graphical pointer represented as a glass puck (Fig. 7c). An answer is
reached when the group moves the puck from the center of the screen to
a target associated with one of the available answer options. In this study,
the displayed question was “What is the probability this patient has

pneumonia?” and the answer options were five percentage ranges that the
participants could choose among. The ranges were (0–5%), (5–25%),
(25–65%), (65–85%), and (85–100%).
To influence the motion of the puck, each participant controls a

graphical magnet using their mouse or touchscreen. The magnet enables
each participant to express their intent upon the collaborative system by
pulling the graphical puck in the direction they believe it should go. It is
important to note that these user inputs are not discrete votes, but
continuous streams of vectors provided simultaneously by the full set of
participants, enabling the group to collectively pull on the system in
opposing and/or supporting directions until they converge, moving the
puck to one solution they can best agree upon. It is also important to note
that the impact that each user has on the motion of the puck is
determined by the swarm algorithms at every time step. The algorithms
evaluate the relative conviction that each participant has at each moment
based on their behaviors over time (i.e. how their magnets move as
compared to each of the other participants). In this way, the software
enables real-time control system such that (i) the participants provide
behavioral input at every time-step, (ii) the swarming algorithms determine
how the graphical pointer should move based on the behavioral input, (iii)
the participants to react to the updated motion of the pointer, updating
their behaviors in real-time, and (iv) the swarming algorithms react to the
updated behaviors, thereby creating a real-time, closed-loop feedback
system. This process repeats in real-time until the participants converge on
a final answer by positioning the pointer upon one of the five targets.
Using this method, the distributed group of users quickly converge on

solutions, each answer being generated in under 60 s. After the solutions is
reached, the behavioral data is fed into an interpolation algorithm which
computes a refined probability as to the likelihood that patient associated
with the displayed radiograph is positive for pneumonia. This interpolation
is performed because the group of participants were provided a simple set
of five options to choose from, each representing a wide range of
probabilities. By interpolating the behavioral data captured while the
group guided the puck to the target, a refined probability value can be
computed with a high degree of precision.

Swarm sessions

Two groups (A and B) of radiologists participated in two separate swarm
sessions, split randomly based on the availability of each radiologist to
participate on a given date. Each session diagnosed 50 cases. For each
case, participants were first asked to view a DICOM image of a frontal chest
radiograph using their own independent workstation with a DICOM viewer
of their preference. Individual assessments of the probability of pneumonia
within this image were made through an online questionnaire using the
swarm platform. These individual assessments were not revealed to other
participants. Individuals were not given a time limit for the completion of
the online questionnaire, and never took more than 1min to review each
image and complete the questionnaire. Subsequently, the group worked
together as a real-time swarm, converging on a probabilistic diagnosis as
to the likelihood that the patient has pneumonia using the aforemen-
tioned magnets to move the puck. The radiologists had no direct

Fig. 7 Swarm platform. A system diagram (left image) of the Swarm platform shows the connection of networked human users. A Swarm
engine algorithm received continuous input from the humans as they are making their decision and provides real-time collaborative feedback
back to the humans to create a dynamic feedback loop. Swarm Platform positioned next to a second screen for viewing radiograph (middle
image). A snapshot (right image) of the real-time swarm of six radiologists (group B) shows small magnets controlled by radiologists pulling
on the circular puck in the process of collectively converging towards a probability of pneumonia. To view a video of the above question
being answered in the Swarm platform, visit the following link: https://unanimous.ai/wp-content/uploads/2019/05/Radiology-Swarm.gif
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communication during the swarm and were anonymous to one another.
The diagnosis was arrived at through a two-step process in which the
swarm first converged on a coarse range of probabilities and then
converged on a refined value within the chosen range. The full process of
deliberation for each case, as moderated by the real-time swarm artificial
intelligence algorithm, generally took between 15 and 60 s. No swarm
failed to reach an answer within 60 s. Each swarm session took 2 h to
complete the entire test set.

Statistical analysis

Probabilities produced by CheXNet and CheXMax were converted to binary
prediction using a discrimination threshold (p= 50.0% for CheXNet and p
= 4.006% for CheXMax). Similarly, for the human assessments of chest
radiographs prior to the swarm-based decision, probabilities of pneumonia
were converted to binary prediction using a 50% threshold—any
diagnoses >50% probability were labeled as “pneumonia predicted”. This
was performed for individual radiologist diagnoses, the average of all
radiologist diagnoses for a single image, as well as by a crowd-based
majority vote. For the swarm session, results of the two separate sessions
were analyzed separately as well as together. The final probability selected
by the swarm was further refined through using underlying data
generated during the convergence process. This was done using a
weighted averaging process referred to as squared impulse interpolation
or swarm interpolation. This process, as outlined in equations below,
calculates a weighted average of the probabilities in the swarm using the
squared net “pull” towards each answer as weights. The pull is represented
as the force (F) imparted by members of the swarm and the weight for
each answer wi is calculated as the squared impulse towards that answer
(Eq. (1)). The weighted average over the answer choice values vi is then
computed (Eq. (2)). The answer choice values vi are taken as the midpoint
of each bin. For example, the bin “0–5%” has a midpoint vi of 2.5%.

wi ¼
FðiÞ2

P
a2Answers FðaÞ

2
(1)

Refinedprobabilistic diagnosis
X

wivi (2)

This process can be visualized by plotting the net vector force of each
radiologist over the course of the swarm, as shown in Fig. 8.

Final diagnostic performance was compared between radiologists
(average performance of individual radiologists, averaging individual
diagnoses on an image within a group to calculate the group’s average
probabilistic diagnosis, and taking a vote of individual radiologist
diagnoses to label the image in a binary manner), the AI models, and
diagnosis by swarm. Five different diagnostic performance metrics were
used to make the comparisons: (a) percent correct, (b) mean absolute
error, (c) Brier score, (d) AUC, and (e) F1 score.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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