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ABSTRACT: Simplified template cross sections define a framework for the measurement
and dissemination of kinematic information in Higgs measurements. We benchmark the
currently proposed setup in an analysis of dimension-6 effective field theory operators for
W H production. Calculating the Fisher information allows us to quantify the sensitivity
of this framework to new physics and study its dependence on phase space. New machine-
learning techniques let us compare the simplified template cross section framework to the
full, high-dimensional kinematic information. We show that the way in which we truncate
the effective theory has a sizable impact on the definition of the optimal simplified template
cross sections.
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1 Introduction

Since the discovery of the Higgs boson at the LHC in 2012, the experimental and theoretical
communities have focused intense scrutiny on the question of whether the observed particle
has exactly the properties predicted by the Standard Model (SM) [1]. The interpretation
of the vast number of Higgs measurements requires a theoretical framework, which should
be as flexible as possible. From a theoretical perspective and given that there are no non-
SM particles observed at the electroweak scale, potential deviations from the SM are best
analyzed in an effective field theory (EFT) approach [2]. Such a framework allows us to
systematically include both rate information and kinematic distributions in the analysis [3,
4]. In this study, we assume that the Higgs boson is in an SU(2)1, doublet and work in the
so-called Standard Model Effective Field Theory (SMEFT) In this case deviations from the
SM are parameterized in terms of a series of SU(3). x SU(2)r x U(1)y invariant operators
and possible new physics effects are contained in the Wilson coefficients of these operators.
The expansion involves a new high energy scale A, and we truncate the expansion with
dimension-6 operators, whose effects are generically suppressed relative to SM predictions
by factors of v2/A% or E?/A2.

To interpret Higgs measurements in a combined experimental and theory analysis we
need to a) develop an efficient strategy to extract the maximum information from Higgs
events, and b) publish this information in an efficient form. Many analyses focus on total
rate measurements, but the available global fits have shown that kinematic information
on new Lorentz structures provides the most powerful limits on new physics, for instance,
exploiting the boosted regime of W H production [3, 5-9]. For the first aspect this means
that total or fiducial rate measurements alone are not useful. As for the second question,
the experimental collaborations could choose to publish full likelihoods [10-12], which
would ensure the most accurate modeling of systematic uncertainties and their correlations.
However, despite some recent progress this strategy has not been widely adapted. Lacking
the full likelihoods, the publication of measured event counts or cross sections in all bins
of a histogram including uncertainties and their correlations is desirable [13]. In reality,
global fitting projects [7, 14-18] often rely on extracting the necessary information from
plots in publications and backwards-engineering as much of the analyses as possible.

An ad-hoc solution to these issues is the use of simplified template cross sections
(STXS) [19, 20] which propose to measure and publish cross sections in slices of simple
phase-space parameters. They have been proposed for all major Higgs production channels
and are continuously developed alongside the corresponding analysis opportunities. Given
the established SMEFT approach we can benchmark any proposed method of extract-
ing and publishing kinematic event information. A particularly well-suited approach for
benchmarking is based on information geometry. Its central object, the Fisher information,
encodes the maximal precision with which continuous parameters of a Lagrangian can be
measured, and therefore allows us to directly compare the power of single LHC observables
or STXS to the power of multivariate analysis strategies [21, 22]. In our case, these pa-
rameters are the Wilson coefficients of the dimension-6 SMEFT operators. Until now, a



major limiting factor in this approach was that detector effects and invisible particles like
neutrinos could not accurately be taken into account. This problem was recently solved
with a technique that combines matrix element information and machine learning [23-25],
automated in the MADMINER tool [26].

In this paper we benchmark the W H production process, which is well known for its
leading impact in extracting SMEFT coefficients [9, 27]. In Sec. 2, we first review the
SMEFT framework and define the Wilson coefficients included in our study. The basics
of the Fisher information approach and the MADMINER machinery [26] are described in
Sec. 4. Physics results on the relationships between effective operators and kinematic
regions are presented in Sec. 5, starting with the simple kinematic distributions of infor-
mation. Motivated by the differences between effects arising at linear and quadratic order
in the Wilson coeflicients, we propose an improved STXS definition for W H production in
Sec. 5.3 and benchmark the reach in EFT coefficients in Sec. 5.4. Many technical details
are given in the appendices.

2 Effective operators

New physics beyond the Standard Model (SM) can be parameterized in terms of the effec-
tive Lagrangian
d

C
Adﬁp;ﬁ. (2.1)

L = Lm +Z
d.k

The dimension-d operators Of form a complete basis of SU(3). x SU(2)1, x U(1)y invariant
operators containing only SM fields [14-16]. This defines the effective field theory to be the
SMEFT. All non-SM physics effects are contained in the Wilson coefficients C’g. We further
assume that the operators conserve C', P, baryon and lepton numbers, and neglect all flavor
effects [28]. With these assumptions there are 59 dimension-6 operators. We work in the
context of the Warsaw basis [29], although one of the strengths of our approach is that it
is straightforward to go from one basis to another. Several groups have performed global
fits to determine the restrictions on SMEFT coefficients from LEP and LHC data [3, 5-9],
with various assumptions to reduce the number of operators. In the future, such fits will
need to become increasingly sophisticated as the amount of data increases. Our study is a
step in the direction of optimizing the flow of information into these analyses.

For the hard partonic process
q7 — WH — (D bb (2.2)

we start with the experimental inputs in terms of the measured values of My, Mz, and
Gp. At tree level in the SMEFT, these parameters are shifted from their SM values, which
introduces a dependence on Cyp, Cgwg, Cu, and Cg’g [2, 30]. The effective couplings
of the fermions to the Z and W gauge bosons are also shifted from their SM values. None

of these effects change the momentum structures of the vertices and so they are of limited



interest to anomalous coupling fits to the W H process at the LHC with its large QCD
backgrounds. In this study, we also neglect dipole operators that do not interfere with the
SM prediction (Caw, Cuw s CHu, Camr, Cew) and also Cpyg which contributes only to the
CKM matrix. Finally, Cygwp is proportional to the oblique parameter S, while Cyy and
Cg’g contribute to Gp. Since S and Gr are measured to be extremely close to the SM
predictions [31], we neglect the contributions of these operators. The dependence on Cyy
vanishes for my = 0 and we also set this coefficient to zero.

All of these assumptions lead to a restricted set of operators that are expected to have
the dominant effects on the W H process, namely

Onp = Onn — P12 = (416)0(610) — 1 (6'D6)*(¢' Dyg)

Opw = ¢T¢W:VWMW
0P = (611D ¢)( QLo 2.3
Hq_(¢l #qb)(QLO")/QL), ()
where ¢ is the SU(2) Higgs doublet, D, = 3M+igSTAGﬁ+ig”2—an‘f+ig’YBu, QT = (ug,dyp),
H a a
Wi, = 0,Ws — 8,W + ge®™WiW¢, and ¢TiD S ¢ = i¢! (% Dyugp) — i(Dy¢) % ¢. The first
line of Eq. 2.3 gives the combination of two operators that affect the W H amplitude in
exactly the same way, namely through a finite Higgs wave function renormalization. We
describe them with one Wilson coefficient,
CHD ~ C~(HD C~'HD
——Opyp =—-0go — —50 2.4
A2 CHD A2 YHO = g VHD (2.4)
defining our SMEFT model parameters as

{CN'HD, Caw, Cg;} . (2.5)

Obviously, the degeneracy between O and Opgp will be broken by other Higgs and
gauge observables contributing to a global analysis, so we can neglect this effect in this
analysis. In principle, dimension-6 operators can also appear in the W and H decays.
With our assumptions, the decays only receive SM contributions, but more generally we
also know that the dominant momentum-dependent corrections are completely dominated
by the Higgs production processes [21].

As mentioned above, the effects of dimension-6 operators can either scale like v?/A2
or like £2/A2. While in general all three operators in Eq.(2.3) allow for the second kind of
scaling, it turns out that for single Higgs production Oy p changes only the wave function
of the Higgs field and therefore the Higgs couplings to all other particles. In contrast,
Opw changes the momentum structure of the WW H vertex [32]. Even more interesting is
the existence of a ¢¢ W H 4-point vertex proportional to CS;, which avoids the s-channel
suppression of the Standard Model ¢’ — W — W H diagram and is momentum-enhanced
at high energy [9]. To be more specific, we can compute the helicity amplitudes for the
on-shell process ud — WHAH, where X is the W-helicity [33]. The leading powers of the
ratio My /+/s contributing to the amplitude squared for W H production in the Standard

Model and including the three operators are:



W polarization ‘ SM C’HD Caw C’Séz
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This structure obviously causes problems with a universal definition of sensitive phase-space

A=0 1 1 0

A==

regions even in terms of the relatively simple observable myy g = /s, since the operators
contribute differently in different phase-space regions.

3 Signal and backgrounds

We simulate the Higgs production process
pp — WH — (v bb, (3.1)

at 13 TeV with MADGRAPH5_AMC@NLO [34] at tree level using the PDFALHC15 PDF
set [35] (1haid=90900) and the default dynamical scale choice of MADGRAPH, namely, the
transverse mass of the 2 — 2 system formed from a k7 clustering [36]. We include in the
matrix elements all diagrams with an intermediate W and H, though non-resonant and
t-channel contributions are generally unimportant. The electroweak contributions from
diagrams with a Z or v* are neglected, as they are largely removed by the analysis cuts.

The higher-dimensional operators are implemented at tree level in the Warsaw basis [2,
29] using the SMEFTSsIM package [37] with the { My, Mz, Gr} input scheme and assuming
U(3)° invariance in the flavor sector. Because we want to compare the linear dimension-6
contributions with the dimension-6 squared terms, we generate all amplitudes to dimension
6 and do not truncate the cross section.

The leading QCD backgrounds to our process are
pp — Wb, pp — tb (tb), and pp — tt. (3.2)

We also simulate them with MADGRAPH5_AMC@NLO [34] at tree level. At generator
level, we apply cuts that mimic a typical experimental analysis [38, 39]. We require all
leptons to have pr, > 10 GeV, Fr > 25 GeV, and tagged b-jets to have prj > 35 GeV. The
leptons and b-jets are required to lie within || < 2.5, and be well separated, ARy, g > 0.4.
We also require a Higgs mass window 80 GeV< my; < 160 GeV, which has no effect on the
signal, but allows for efficient sampling of the backgrounds. To reduce the semi-leptonic
tt background, we require additional light jets to lie outside the central region, demanding
pr; < 30 GeV and ARyjs; > 0.4. We ignore the fully leptonic and fully hadronic t¢
backgrounds since they lead to different final states.

Prior to analysis, the parton-level events are processed to approximate the most im-
portant detector effects. The energies of the b-jets are smeared with a Gaussian transfer



function chosen to approximate the h — bb mass resolution from Ref. [39]. We also smear
the transverse components of the missing transverse energy according to the most recent
ATLAS performance [40]. We assume a flat b-tagging probability of 70%, and neglect
charm and light-flavor mis-tagging probabilities. For simplicity, we neglect any reconstruc-
tion inefficiencies for electrons and muons. Further details on the treatment of detector
effects and a comparison with alternative methods is presented in App. A.

4 Statistical analysis

The task of this paper is to quantify the information in the WH — fvbb process and to
identify observables and phase-space regions that allow us to probe new physics effects
parameterized in terms of the Wilson coefficients given in Eq. (2.5). While our reference
process is relatively simple, we know from Sec. 2 that the three relevant operators contribute
very differently to the event kinematics. To describe their effects we need to quantize the
sensitivity of the W H phase space to a set of continuous model parameters. We start
by discussing the challenges of such an analysis in a high-dimensional observable space,
show how optimal observables can be constructed for this process, and review the Fisher
information as an appropriate and convenient object to encode our analysis sensitivity.

4.1 Score as the optimal observables

In a typical LHC measurement we link n observed events {x}, each of which is characterized
by a phase space vector x;, to a vector of model parameters § = (CHD, Cyw, CS()Z). The
central quantity that describes their relation is the likelihood function, the probability
density of the observed data as a function of the model parameters. It is given by [41]

pran(x]0) = Pois(n|L o (6)) H p(x4]0) . (4.1)

The first term with Pois(n|A) = A\"e™*/n! describes the probability of observing n events
given an integrated luminosity £ and predicted cross sections o(6). The remaining factors
describe the kinematic information in each event x; and are equal to the fully differential
cross section normalized to one:

1 d*o(x|0)

p(z|0) = o0 it

(4.2)
The Poisson term is relatively straightforward to compute. Calculating the event-wise
kinematic likelihoods p(z|@) explicitly, however, requires inverting the chain of Monte-Carlo
tools used to simulate LHC events and integrating over an extremely high-dimensional
space, which is impossible in practice [23, 24].

The most common solution is to restrict the data = to one or a few hand-picked
kinematic variables such as invariant masses, transverse momenta, or angular correlations,
which integrates out some kinematic information and typically reduces the power of the
analysis [21, 22]. The STXS also follow this approach. We compare them to an alternative



method, which defines statistically optimal observables for all directions in parameter space.
We start by assuming that the values of the Wilson coefficients 0; are small, that is, we
consider the parameter space region close to the SM. In this case one can explicitly construct
the most powerful observables, which turn out to be [23]

B 0logp(x|0)

ti(z) i (4.3)

0=0

The vector ¢(x) is the gradient in model space, described by the Wilson coefficients ;. Each
component t;(x) is a function of phase space x, in other words, the set of basic kinematic
observables like reconstructed energies, momenta, angles, and so on. The high-dimensional
observable vector x can be compressed to these functions in each event without losing any
statistical power: the ¢;(x) are the sufficient statistics. Furthermore, confidence limits on
the Wilson coefficients can be calculated from histograms of the components ¢; in the same
manner as with histograms of one or two familiar kinematic variables. Such an analysis of
the t;(z) is guaranteed to lead to optimal statistical limits in the neighborhood of the SM.

In particle physics, the ¢(z) are known as Optimal Observables and have been cal-
culated in a parton-level approximation for many processes [42-44], an approach closely
related to the Matrix Element Method [45]. In the statistics community ¢(x) is originally
known as the score [46]; we follow this older nomenclature.

Calculating the score is not straightforward: it is defined through the likelihood func-
tion p(z|@), which is intractable when we use a realistic simulation of shower and detector
effects. Recently, however, a new technique was developed that solves this problem with
a combination of matrix-element information and machine learning: the SALLY algorithm
introduced in Refs. [23-25] allows us to train a neural network to estimate ¢(z) as a func-
tion of the observables x.* This way the score defines optimal observables not only at the
parton level, but including the effects of invisible and undetected particles, parton showers,
and detector response.

We use the implementation of the SALLY algorithm in MADMINER 0.5 [26] to extract
matrix-element information from our Monte-Carlo simulations, train neural networks to
estimate the score, and calculate the expected limits on the Wilson coefficients. In ad-
dition to the four-momentum components, we choose to include a number of higher-level
observables to aid in the training of the network, like the pr and 7 of each particle, the
AR, A¢, invariant mass, transverse mass, and transverse momentum of each particle pair,
altogether 48 observables for our W H process. We simulate 4 - 10° signal and 16 - 10°
background events (after all cuts) and train fully connected neural networks with three
hidden layers of 100 units and tanh activation functions. The SALLY loss function [24] is
minimized with the Adam optimizer [48] over 50 epochs with a learning rate that decays
exponentially from 1072 to 107> and a batch size of 128. We train ensembles of five net-

*See Ref. [1] for an alternative formulation and a toy example, Ref. [47] for a comparison with the Matrix
Element Method and the traditional Optimal Observable approach, and Ref. [26] for a tool that makes it
easy to use this technique.



works, using the ensemble mean as prediction and the ensemble variance as a diagnostic
tool to check the consistency of the predictions.

4.2 Fisher information

Benchmarking an analysis strategy such as the STXS requires a meaningful, but convenient
metric. We propose to use the Fisher information, which we review in this section. Consider
the expected significance with which a parameter point 6 can be excluded in a measurement.
It is essentially [49, 50] given by the expected log likelihood ratio

pfull(wa) ]

prann(z|6)

—2E |log (4.4)

where 6 is the maximum-likelihood estimator of the Wilson coefficients. The log likelihood
ratio is a generalization of the x? test statistic to non-Gaussian distributions. If the best
fit point is close to the SM and the tested theory parameters § ~ C/A? are small, we can
expand the log likelihood ratio,

Pfuu(%!é?)] _ = [02 log prun(z6)
prun (z0) 90; 99,

EIZ']'

—2FE [log } 0; 0; + O(6°), (4.5)

where E[-] now denotes the expectation value assuming events distributed according to the
SM. The leading term in the Taylor expansion defines the Fisher information I;;. This
matrix quantifies the expected sensitivity of a measurement in a compact way and has
several useful properties:

e According to the Cramer-Rao bound, the covariance matrix of any unbiased estima-
tor, or the precision of a measurement, is bounded by the inverse Fisher information:

COV[@Z‘, 93} > (Iil)ij . (46)
So the larger an eigenvalue of the Fisher information matrix, the more precisely we
can measure the direction in parameter space given by the corresponding eigenvector.

e The Fisher information is independent of the parameterization of the observables.

e [t transforms covariantly under parameter transformations, so it can easily converted
between model space bases.

e It is additive for different processes and phase-space regions. This allows us to study
the distribution of information over phase space.

e [t has a geometric interpretation as a metric in parameter space, defining distances

that quantify the expected reach of a measurement (for example, the 95% CL contours
for two free parameters corresponds to a distance d = 2.447).



e Finally, the Fisher information formalism allows us to easily include systematic un-
certainties, which are modeled with nuisance parameters and profiled over in the
statistical analysis [21].

If we insert Eq. (4.1) into the definition of the Fisher information in Eq. (4.5) we find

L - E [Wlogpfu(»fleq _ Lo do | Lo

26; 90, = 96, 00, + > ti(w) ti(x) (4.8)
z~p(z|0)

where N is the number of events in the Monte-Carlo sample. This means that after we

train a neural network to estimate the score ¢(x) as discussed in the previous section, we

can calculate the full Fisher information, corresponding to the maximal reach based on all

observables including correlations.

In addition, we can calculate the information in the distribution of one or two kinematic
variables with histograms [21, 22]. We will use this to calculate the sensitivity of the STXS.
Finally, as a cross-check we can calculate the parton-level information directly from event
weights, using the technique introduced in Ref. [21]. This information neglects shower and
detector effects and assumes that we can exactly reconstruct the parton-level final state,
including flavor information and the full four-momenta of invisible particles. While this is
not a realistic scenario, we will use this method to verify the machine-learning results in
App. B.

4.3 Beyond the leading Fisher information

By definition, the Fisher information on dimension-six Wilson coefficients measures their
leading effects, i. e. it is linearized in powers of 1/A%. Similarly, the score vector t(z) defined
in Eq. (4.3) is only statistically optimal in the parameter region where the Wilson coeffi-
cients are small. Further away from the SM, the O(1/A*) terms become important and
eventually dominate. The same happens if the interference between dimension-6 ampli-
tudes and the SM at order O(1/A?) vanishes[51]. In this situation, the Fisher information
approximation is no longer accurate, and while an analysis based on the score will still
lead to correct confidence limits, they might no longer represent the best possible limits.
One way to discuss this case is to use machine-learning techniques to estimate the full
likelihood or likelihood ratio function to all orders in 1/A? [23-25, 52]. In a related way,
using the geometric interpretation of the Fisher information, one could calculate distances
along geodesics that capture these higher-order effects as well [21].

Here we follow a different approach. In the limit where the linear term vanishes or
is very small, we can still discuss the Fisher information and define optimal observables
by assuming that the effects from one operator squared ( ~ 93), dominate over both
interference terms ( ~ 6;) and cross terms ( ~ 6;0;). In this approximation we can write
the likelihood in terms of the squared Wilson coefficients ©; = 67 as new parameters.
We note that while the ©; are perfectly well defined statistical quantities, their physics
interpretation requires the additional condition ©; > 0. In a global EFT fit this leads to a
series of interesting effects [53] which will have no impact on our discussion in Sec. 5.2.



To analyze the impact of the contributions at quadratic order, O(1/A%), we again
define the score as a function of © according to Eq. (4.3) and the Fisher information as
a function of © according to Eq. (4.8). In practice, this means we replace the derivative
with respect to 6; by a derivative with respect to ©;, which is proportional to the second
derivative with respect to 6;. We will label confidence limits based on the score in terms
of the © as HARRY'.

5 New physics in kinematics

The physics question we are going to tackle in this study is how the effects of the three
operators in Eq.(2.3) are distributed over phase space and how we can define LHC ob-
servables to best constrain them. In particular, we need to determine if the established
simplified template cross sections serve this purpose, or if they can be improved.

The Fisher information is an ideal tool to analyze questions on where in phase space we
can search for new physics signals and how we can extract this information from kinematic
analyses [21, 22]. The first question we discuss is the impact of detector effects, which can
hide information that in principle exists at the parton level but is not accessible in a realistic
measurement [23, 24]. As described in Sec. 4 we can use machine learning to calculate the
actually observable information at the detector level. We will illustrate this aspect in
Sec. 5.1. Next, in Sec. 5.2 we will discuss how the sensitivity to different dimension-6
operators is distributed over phase space, both linearized in the Wilson coefficients and
including the Wilson coefficients squared. In Sec. 5.3 we will study the information in
two-dimensional and multivariate distributions. We analyze how much of the available
information is captured by simplified template cross sections and discuss their proposed
form. Finally, we calculate expected exclusion limits for this channel based on the use of
STXS as well as a multivariate analysis [19, 20].

5.1 Information after detector effects

Fisher information calculations for fully reconstructable signals and their irreducible back-
grounds, also including leading detector effects, have been studied in the past [21, 22]. Using
MADMINER we can also study signatures which cannot be fully reconstructed. Specifically
in the W H production process, we study the information based on the smeared missing
transverse energy rather than the full neutrino momentum. In this section we analyze
the loss of information due to these detector effects, comparing three sets of observables:
first, keeping the full information on all initial and final state particles at parton level,
second, using all final state particles after detector smearing, and third, keeping only the
observable missing transverse momentum in place of the neutrino momentum, including
all detector-level smearing.

To gain some intuition about the impact of detector effects on the information content
of the hard process we analyze two of the three operators given in Eq. (2.5) at a time, setting

TWe leave it to the reader to imagine a carefully chosen acronym.
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Figure 1. 95% CL limits based on the (linearized) Fisher information on pairs of Wilson coefficients
with A =1 TeV, for WH production only (top) and including the QCD background (bottom). We
include full parton-level information without detector effects (dotted black), detector effects, but
retaining the full neutrino 4-momentum (dashed orange), and finally retaining only the transverse
neutrino momentum (solid blue). We also show the information using only the signal rate in grey.

the third Wilson coefficient to zero. We also limit ourselves to linearized differential cross
sections in each of the Wilson coefficients at this point, the effects of the squared terms
will be discussed in detail later.

In Fig. 1 we show how the full information about the dimension-6 signal at the parton
level is reduced when we move from parton-level truth to realistic observables step by step.
The dotted black line corresponds to retaining the full parton-level information without
detector effects that is used for the evaluation of the matrix elements. This includes
unobservable degrees of freedom such as the initial-state parton flavors, particle helicities
and the un-smeared momenta. Removing this information and introducing a realistic
smearing of the particle momenta washes out possible structures, for example asymmetries
in the rapidity distributions, as can be seen when going from the black to the orange line.
In this step we still assume that we can measure the full neutrino four-momentum. Finally,
we remove the unobserved longitudinal neutrino momentum and neutrino energy, which
changes the orange line into the blue line. While the longitudinal neutrino momentum
can in principle be reconstructed if we assume an on-shell W boson, this reconstruction is
spoiled by the detector smearing.

In the top panels of Fig. 1, we neglect the QCD backgrounds and consider only
W H production with linear dimension-six contributions. The loss of information has the

- 11 -
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Figure 2. Left axis: SM signal distribution. Right axis: normalized distributions of the diagonal
elements of the Fisher information, representing the information on the three Wilson coefficients
in bins of prw (left panel) and mr oy (right panel). The solid lines are linearized in the Wilson
coefficients, while the dotted lines show the information on the dimension-6 squared terms.

strongest impact on the correlated measurements of Cup-Crw, because the phase-space
effects of both operators are very SM-like. In this situation we rely on the best possible
understanding of the full final state. In the C’HD—CS; and C’HW—CS; planes, we know
that the phase-space effects are more dramatic, so the additional information from the
third neutrino direction is less relevant. We also show the information from the total rate
measurement, which is not only much poorer, but it also shows a perfect flat direction for

each pair of operators.

In the lower panel of Fig. 1 we show the same change in available information at
detector level, now in the presence of the QCD backgrounds. In this situation, a complete
understanding of the final state neutrinos is desirable for understanding small changes in
the full phase space distribution due to BSM effects, and hence the missing information
affects all three operators.

5.2 Distribution of information

From Sec. 2 we know that the three dimension-6 operators we are considering have distinctly
different effects on the W H production process. If we want to exploit the momentum
enhancement of C’S’;, it is clear that the leading kinematic variable for the partonic 2 — 2
signal is the partonic energy or equivalently [54]

PT,W R PT,H OF MWH - (5.1)

This simple description as a 2 — 2 process is broken by two aspects, the 2 — 3 structure
of the Wbb continuum background and angular correlations reflecting the W polarization.

In the left panel of Fig. 2, we show the pr s distribution for the W H signal, together
with the information distribution. We start with the normalized distribution of the diagonal
element of the Fisher information introduced in Sec. 4.2, by definition linearized in the
Wilson coefficient, as solid lines. We see that the information on all three operators reflects
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Figure 3. Left axis: stacked histograms of the SM signal on top of the QCD backgrounds for
prw (left) and mp o (right). Right axis: normalized distributions of the diagonal elements of
the Fisher information, representing the information on the three Wilson coefficients. The solid
lines are linearized in the Wilson coefficients, while the dotted lines show the information on the
dimension-6 squared terms.

their respective Lorentz structures. The information on Oy p mimics the distribution of
the signal, and the information in Ogyy is energy-suppressed because it couples to the
transverse W-modes. In contrast, 01(331 is visible at large momentum transfer because of

the 4-point vertex.

In the same figure we also show the information distribution as dotted lines for the
dimension-6 squared terms only for each of the three operators. In this case the interference
with the Standard Model does not act as a projector onto the W-polarization structure
of the Standard Model. In these plots we treat the squared Wilson coefficients as uncon-
strained parameters; physically, they are restricted to be non-negative, but this does not
change our conclusions. What we see clearly is that the sensitive phase-space region for
Opw now peaks around 400 GeV, well outside the dominant phase-space region of the SM
signal. Also the peak in the information on (’)g")] moves from around 400 GeV to 600 GeV,
dominated by the squared 4-point vertex.

The right panel of Fig. 2 shows the distribution and information distribution over the
total transverse mass of the final state,

2 2
o = (BB + ) = o+ [ (5:2)

where E%M =4/ \pgé’KIQ + m%be and plj’f’e is the vector sum of the transverse momenta of the

lepton and the b-jet, with similar conclusions.

In Fig. 3, we demonstrate how including the continuum QCD background changes
the picture. First, we see that regions of low pr or low mr ot are swamped by the QCD
backgrounds, so they do not lend themselves to extracting momentum-enhanced contri-
butions. For @HD there is no momentum enhancement, and the information in the two
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Figure 4. Left axis: stacked histograms of the SM signal on top of the backgrounds for different
kinematic observables. Right axis: normalized distributions of the diagonal elements of the Fisher
information, representing the information on the three Wilson coefficients.

distributions behaves exactly as before. Similarly, the information distribution on Oy in
the linear case is primarily in the low bins, where the event rate is larger, but is largest
2 700 GeV if we consider the dimension-6 squared term. In

~

for prw 2 300 or m7 ot
contrast, OS’; gains only very little information from the low-pry or low-mz o regime.
We note that for operators only affecting the total rate, the distribution of information
over pr, is completely consistent with the distribution of the statistical significance of the

V' H production over the QCD background, as studied in Ref. [55].

Finally, in Fig. 4 we consider two more kinematic distributions. First, the opening
angle of the charged lepton and the leading bottom becomes ARy, ~ 7 for boosted 2 — 2
processes, like the part of W H phase space sensitive to ng. Second, the reconstructed
rapidity of the bb system also becomes more central for boosted 2 — 2 processes. The
opening angle is useful for discriminating against the ¢t and tb backgrounds, where we do
not expect the two b-jets to recoil against the lepton, but they do not otherwise appear
too promising to gain additional information into one of the three dimension-6 operators,
or into the relation between linearized and quadratic contributions.

Altogether, we have learned that when looking at 1D kinematic distributions those
which scale like momentum, like pr or my 101, are best-suited to separate the effects of the
different operators. Including QCD backgrounds makes the high-momentum regime even
more attractive. The only problem is that the relevant region, for instance in pr -, depends
not only on the operator, but also on whether we linearize the effective field theory for the
cross section or keep the O(1/A%*) squared term. Furthermore, the balance between linear
and quadratic contributions to a combined analysis will change with the LHC luminosity
and the kinematic focus of the analysis.

5.3 Information in STXS

Testing one effective operator at a time violates the basic assumptions of effective theories,
namely that we expect to see effects from all operators allowed by the underlying theory.
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We now examine how the kinematic variables introduced in the previous section can be
used to set constraints on the full multi-dimensional parameter space.

Simplified template cross sections (STXS) have been proposed to provide experimental
results on kinematic distributions for global analyses [19, 20]. For the W H production
process they include rate measurements binned in pr . At stage 1, the three bins are
defined by prw = 0—-150 GeV, prw = 150—250 GeV, and prw > 250 GeV. For increased
statistics, stage 1.1 proposes five bins, now split at prw = 75, 150, 250,400 GeV, as shown
in Fig. 7. Results using this approach have recently been presented by ATLAS [56] using
the O-jet, single lepton data sample, to obtain limits on anomalous couplings, assuming
only one non-zero Wilson coefficient at a time. Unfortunately, they do not consider the
most interesting 4-point vertex from (’)g;, for which boosted V H production provides the
strongest constraints [9].

We evaluate these proposals by calculating the Fisher information in the STXS bins.
From Fig. 3, it is clear that the stage 1.1 STXS version will not capture the full information
on O so we consider a 6-bin setup with

Hq7 p w1

PR = (0 — 75, 75 — 150, 150 — 250, 250 — 400, 400 — 600, 600 — 00 ) GeV . (5.3)

We compare the results to the full information in the high-dimensional phase space using
the SALLY method discussed in Sec. 4.1. In addition, we train a neural network with the
SALLY method on just prw as input variable, which lets us calculate the information in
the full pry distribution in the infinite-bin limit; see App. D for more details.

In Fig. 5, we show the expected limits on pairs of Wilson coefficients from the pr w
distribution. First, we see the almost flat direction in the Ogp — Omw plane, reflecting
the fact that both operators are constrained at low transverse momenta, as long as we only
consider linearized predictions. This flat direction will be broken by other observables in a
proper global analysis [9], so it is of less interest for our purposes. The situation changes
once we consider the correlation of either of these two operators with (’)S;, because now
the two directions are tested by distinctly different p7 y regimes. The only requirement in
this case is that we include enough p7 1 bins to distinguish the two regimes, as is provided
by the stage 1.1 setup. Indeed, this framework collects essentially all information on our

set of three operators affecting the pry distribution.

In the second row of Fig. 5 we switch from the linear terms in the Wilson coefficient
to the squared terms alone. In the left panel we see hardly any effect of the different
binnings for O uD, but the flat direction has vanished and the reach in Ogyy is increased
dramatically by including the high prw bins. Because this sensitivity to Ogy comes
from high momentum transfer, we start to observe a strong anti-correlation with OS;. To
break it, we need to resolve the high-pr 1 range, and for this purpose the additional bin

in Eq. (5.3) is crucial. Indeed, we see that it improves the situation considerably.

In the lower six panels of Fig. 5 we show the same kind of information, but now
profiled over the respective third operator. The results are generally much weaker, and the
flat directions are more significant. As mentioned above, this is not a big concern, since our
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Figure 5. 95% CL constraints based on pr w in the Fisher information approximation. We show
linearized and squared-only results setting the third operator to zero (top six panels) and profiling
over the third operator (bottom six panels). The blue dotted line shows the STXS stage 1 (3 bins),
red dashed stage 1.1 (5 bins), and green dot-dashed and purple solid show the results when adding
a 6th bin or including the full pr w distribution.
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W H analysis has to be embedded in a global analysis. An interesting aspect is that with
three operators actually contributing to the analysis the gap between the few-bins STXS
approach and the full information from the entire pr distribution widens. Some details
on the scaling with larger number of bins and on the number of bins needed to saturate the

information in a kinematic distribution are given in App. D. Altogether, it becomes even
(3)
H

7 by sufficiently

more important that we extract as much information for instance on O
covering the dedicated phase-space regions.

After having established that the currently used STXS for W H production need to
be supplemented by another high-energy bin, we can test how much of the available infor-
mation of the full phase space is captured in the binned p7 y distribution. The reasoning
behind picking an additional observable scaling like momentum is that the signal process
is dominantly 2 — 2 scattering, described by two kinematic observables, and the scattering
angle or rapidity are not found to be particularly useful, as shown in Fig. 4. On the other
hand, if the signal from dimension-6 operators populates phase space far away from the
SM we will become sensitive to the background kinematics, and the simple picture of a
2 — 2 process can completely change [55, 57].

In the top row of Fig. 6 we show the limits from the SALLY approach trained on
linearized effects in the Wilson coefficients as a blue line. The dotted pink line comes from
limiting the information of the SALLY training to the observables pryw and m7 tot, which
can be understood as the constraints computed from the infinite-bin limit of a 2-dimensional
histogram. It is not clear a priori which second observable complements p7 - best, but we
found that mq o as defined in Eq. (5.2) works well. In the linearized approach, we confirm
that compared to the full phase space we still lose a significant amount of information
on the three operators. The next question is how much of the information from the two-
dimensional contribution we can capture in a reasonable number of STXS bins. Motivated
by Fig 3, we propose to further split each of the six bins in prw into three mr o bins in

mis, = (0 — 400, 400 — 800, 800 — o0 ) GV | (5.4)

as illustrated in Fig. 7. Because mr o and prw are by no means uncorrelated, this
captures the effects of the 2 — 3 background phase space and adds an implicit sub-division
in prw. In the top row of Fig. 6, we see that for the linearized case our new proposed
STXS definition performs extremely well, but the STXS stage 1.1 also does fine. In the
second row, we show the same effects, but now for the squared new physics terms only
and not including the imposed positivity condition. The blue curve is now generated
consistently based on the squared terms, using the HARRY method. As expected, the
improved 2-dimensional STXS outperform the stage 1.1 results when we test (91(3()1, as a
better understanding of the information in high prw or mr . bins is effective. The lower
panels of Fig. 7 show the same effect, but profiled over the full range of the respective third
Wilson coefficient. The large effect related to OS’; now propagates through the entire set
of measurements. Moreover, the limited number of bins in the STXS stage 1.1 become an

issue.
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Figure 6. As Fig. 5, now comparing various approaches: The solid blue curve shows the limits
from training on the full phase space. The dotted pink line shows training only on the prw vs
Mr tot histogram. The limits obtained from the STXS stage 1.1 are shown in dashed red, and the
dot-dashed green curve shows the limits obtained by six prw bins subdivided into three my ¢t
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Figure 7. Definition of the old STXS [19, 20] and our proposed improved version based on Egs. (5.3)
and (5.4).

5.4 Limits with consistent squared terms

Finally, we go beyond the linearized Fisher-information approach and calculate expected
exclusion limits on the dimension-6 Wilson coefficients with the squared terms included
in a physically consistent way. Generally, power counting in 1/A? suggests that the linear
effects should be dominant. However, in some directions of parameter space the interference
contribution to the analyzed distributions is small, the analysis is only sensitive further
away from the SM, and the squared terms are the dominant effects of new physics. We
thus expect the squared terms to break the flat directions of the linearized results.

This is exactly what we find in Fig. 8, where we show the expected limits for a rate-only
analysis (gray), the improved STXS defined in the previous section (green), and a multi-
variate analysis of the full phase-space information based on the SALLY technique described
in Sec. 4.1 (blue). In the plane spanned by Crp and Cy (left panel) we can clearly see
that the squared contributions remove the approximate flat direction in the improved STXS
limits. More generally, the full exclusion limits based on the SALLY method differ from
those obtained from the linearized Fisher information, indicating the importance of squared
new physics effects in this region of parameter space. In these parameter-space regions we
expect that even stronger limits can be constructed with techniques that estimate the full
likelihood function to all orders in the Wilson coefficients [23-26]. Closer to the SM, we
find that the full limits are well approximated by the Fisher information, confirming that
the linear operator effects dominate there. Generally, these full limit calculations confirm
the main result of the last section: the simplified template cross sections, in particular our
improved version, are substantially more informative than a simple rate measurement, but
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Figure 8. Expected exclusion limits at 95% CL based on a rate-only analysis (grey), from the
improved STXS (green), and from a multivariate analysis of the full phase-space information with
the SALLY algorithm. We show (linearized) limits based on the Fisher information (dashed) and
full exclusion limits that take into account the effects of linearized and squared new physics effects
(solid). In each panel, we set the operator not shown to zero.

fall short of capturing all of the kinematic information in the high-dimensional final state.

6 Conclusions

We have, for the first time, performed a comprehensive benchmarking of simplified template
cross sections (STXS) in the W H channel with a leptonic W decay. The Fisher information
allowed us to quantify the reach of different analysis strategies and to identify which phase-
space regions are sensitive to the three dimension-6 operators Oup, Ouw, and OS;. We
compared the STXS to a machine-learning-based analysis of the full, high-dimensional
final state, using the SALLY technique of Refs. [23-25] implemented in MADMINER [26] to
calculate the statistically optimal observables and the maximal new physics reach of an
analysis.

We found that prw is the most promising kinematic observable, but that the STXS
stage 1.1 criteria benefit from being supplemented by an additional high-energy bin. The
ability to distinguish different operator signatures is further enhanced when we include a
second observable in the definition of the STXS, mr ot being one workable option. We
showed that for the W H process such a two-dimensional approach is promising, even
though it cannot obtain all of the kinematic information in the process that can be un-
earthed with machine-learning-based techniques. More generally, this study presents a
blueprint for a systematic benchmarking of STXS or any other method of publishing re-
sults needed for a global Higgs analysis.
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A  Detector effects

The leading detector effect relevant for this analysis is the smearing of the di-jet invariant
mass peak. The distribution has been carefully simulated by CMS [71] (see Fig. 9) and
we aim to reproduce it for our analysis. In the MADMINER framework, this smearing can
be simulated in three different ways: i) In the simplest approach, we explicitly smear the
parton level b-quark energies after event generation. This is parameterized by a gaussian
transfer function with width og/E = 0.1. ii) Alternatively, we can include the smearing
already in the event generation process by modifying the Higgs propagator [21, 22, 57]. To
reproduce the my, distribution obtained by CMS, the Breit-Wigner propagator is simply
replaced by the square-root of the Gaussian with mean mp, and width ¢ = 15 GeV. As a
result, the joint scores already include the smearing and can therefore be used as estimator
for the score, making this approach a useful tool for validation (see Appendix B). iii)
Finally, it is also possible to simulate parton shower, hadronization and detector response
using PYTHIA and DELPHES.

In the left panel of Fig. 9 we compare the three approaches to the di-jet mass distri-
bution obtained by CMS [71] (solid black). We can see that both the parton level energy
smearing (dashed red) and propagator modifcation (dashed blue) approach can reproduce
the CMS mass spectrum, while a fast detector simulation using PyTHIA 8 [64] and DELPHES
3 [58] with default settings (dotted green) systematically underestimates the di-jet mass.

Another important detector effect is the smearing of the missing transverse energy
Fr. In this work, we aim to reproduce the most recent ATLAS performance [40] and
explicitly smear the transverse components of the missing energy using a Gaussian transfer
function with width oy, = 12.5 GeV. An additional smearing at higher energies is induced
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Figure 9. Left: Invariant di-jet mass ms, from Higgs decay obtained by CMS [71] (solid black),
the parton level energy smearing (dashed red), the modified Higgs propagator smearing (dashed
blue), and a simulation of shower and detector response with PyTHIA 8 and DELPHES 3 (green
dotted). Right: RMS of the missing transverse momentum smearing in the x-direction, Fr 4, as
a function of the true missing energy Fp for the signal process obtained by ATLAS [40] (solid
black), the MET smearing in MADMINER, (dashed red) and by a simulation of shower and detector
response with PyTHIA 8 and DELPHES 3 (dotted green).

through the smearing of the b-quark energies. As shown in the right panel of Fig. 9, this
procedure reproduces the experimental results well. In contrast, a fast detector simulation
using PYTHIA 8 and DELPHES 3 once again fails to accurately reproduce the experimental
performance without tuning the simulation parameters, as indicated by the green dotted
line.

B Fisher information in the presence of backgrounds

A key feature of the machine learning approach in MADMINER is that one can reliably es-
timate the score in the presence of backgrounds. As explained in Ref. [26], this also works
when signal and background samples are generated separately from each other, implicitly
inducing an additional discrete latent variable which labels each training event as either
signal or background. This latent variable is then integrated out in the machine learning
step alongside with all other unobservable latent variables, such as the longitudinal neu-
trino momenta, initial state quark flavours or additional unobserved particles in reducible
backgrounds (such as the jets in top pair production). Reference [26] contains examples to
validate the performance of MADMINER’s machine learning approach in the case of either
a single observable or a single process. In the following, we will consider another simplified
scenario in which we can validate MADMINER’s reach estimate in the presence of both a
high-dimensional observable space and irreducible backgrounds.

As mentioned in Sec. 4.2, for a fixed initial and final state at parton level, we can
calculate the Fisher information directly from the event weights and hence cross check the
machine learning based results. In particular, we consider the process ud — putv bb, with

— 9292 —



0.03

Signal+Background
""" Parton (reweighted sample)
0.029 —— SALLY (reweighted sample)
A
|
0.01 1 i
=~
ox 0
D o
001 |
Al
20.021 - Signal only
""" Parton
—— SALLY
-0.03 T T ; r - - ,
-3 -2 -1 0 1 2 3

CH D

Figure 10. A comparison of the 95% CL limits based on the Fisher information in the two-
parameter space for a simplified version of our process, comparing the Fisher information obtained
from a set of parton level event weights (dotted lines), using a SALLY estimator trained on the
same sample events (solid lines), and using a SALLY estimator trained on separate signal and
background event samples (dot-dashed line). The inner ellipses show the results when evaluated
only on the signal sample, while the outer ellipses show the results taking into account both signal
and background.

contributions coming from both the W H signal and the irreducible Wbb background, and
restrict ourselves to only two effective operators Ogp and (’)(;31. We first generate a set
of signal events {x}}, described by event weights Acg (). In contrast to the results in
Section 3, where the smearing of the my;, peak was done at analysis level, here we generate
the signal events using the propagator modification method described in Appendix A. We
then use the MADGRAPH reweighting tool [72] to obtain the background weights Aop i
for the same set of events. As shown in Ref. [21], the Fisher information at parton level

for a set of events can then be computed as

0Ao(0)

Op.
o=0 Vi

B L 0Aok(0)
5= 2 K@ o

(B.1)

events, k 0=0

A comparison of the Fisher information obtained using machine learning results with
the Fisher information directly obtained from the parton level event weights is shown in
Fig. 10. The inner ellipses show the reach in the absence of backgrounds (Ao, = Aogy),
while the outer ellipses take into account both signal and background (Acy, = Aogy +
Aopy). In both cases, the Fisher information obtained at parton level (dotted curves) and
using a SALLY estimator trained on the same sample (solid curves) are indistinguishable,
indicating excellent machine learning performance. This is then compared to the standard
way of estimating the Fisher information, using a SALLY estimator trained with separately
generated signal and background samples, which is indicated by the green dot-dashed
ellipse. This result agrees remarkably well with the other results, confirming that the
treatment of backgrounds in the MADMINER algorithm works correctly.
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Figure 11. Left: The normalized distributions of pr w for signal and background weights with
various choices of the theory parameters and (barely visible) shaded bands showing the effects of
the PDF and scale uncertainties. Right: The 95% CL bounds on Cgyw and Cg’; in the Fisher in-
formation approximation obtained with the SALLY estimator evaluated using the full set of physical
variables (blue), the Stage 1.1 simplified template cross sections (red), and measurements of the rate
(grey), with Cup fixed to zero. The solid lines show the projected limits obtained in the absence
of systematic uncertainties, while the dashed lines show the reach contours after marginalizing over

the additional nuisance parameters.

C Systematics

An important question that must be addressed when comparing the expected limits from
different sets of kinematic data from experiments is the effect of systematic uncertainties
on the expected limits. While a treatment of all experimental systematics is beyond the
scope of this study, an important step in this direction is to understand the effects of theory
uncertainties, namely the dependence on the choice of renormalization and factorization
scales as well as the PDFs. These uncertainties are fully integrated in the MADMINER
framework [26] and parameterized through nuisance parameters, which are then marginal-
ized over to set limits.

In the following we only consider the theory uncertainties on the W H signal. Since
uncertainties on the backgrounds are typically mitigated through the use of sideband anal-
yses, rather than through direct simulations, including the scale and PDF uncertainties on
the backgrounds would dramatically overestimate the actual systematic uncertainty in a
realistic measurement.

In the left panel of Fig. 11 we show the normalized distribution of the W boson’s trans-
verse momentum including scale and PDF uncertainties for several benchmark parameter
points. In particular we vary the renormalization and factorization scale by a factor of two
and use the PDF4LHC15_NLO_30 set to estimate PDF uncertainties. We see that the
relative uncertainty is small in the background-dominated low-pr - regime, and increases
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Figure 12. Diagonal elements of Fisher information obtained from a pr w histogram with varying
number of bins. The horizontal black line shows the Fisher information obtained using the SALLY
method trained only with pr - as input observable. The markers show the information in the
STXS with 3, 5 and 6 bins, respectively.

to O(5%) at large transverse momentum. In W H production, the PDF shape uncertainties
dominate over the scale uncertainties, given that the scale dependence of the quark PDF
is small.

In the right panel of Fig. 11 we show how including systematics changes the expected
limits. While the solid contours show the reach neglecting systematic uncertainties, the
dashed lines account for the systematic uncertainties by profiling over the nuisance parame-
ters. We can see that the presence of systematic uncertainties mainly reduce the sensitivity
in the rate-sensitive direction, rotating the orientation of the ellipses. The overall effect is
sizable, indicating the importance of understanding these systematic uncertainties.

D Binning distributions

In view of an appropriate definition of simplified template cross sections, it is interesting to
ask how finely we need to bin a kinematic distribution to extract as much of the available
information as possible. This is illustrated in Fig. 12, where we show the Fisher information
corresponding to a pr histogram for varying number of bins with equal size in the range
[0,800 GeV]. The three panels correspond to the diagonal element of the Fisher information
for Cyp (left), Chw (center) and C’S’I){ (right).

This is compared to the information obtained using a SALLY score estimator trained
with only prw as input observable (solid black) and the information in the STXS with
3 bins (stars), 5 bins (crosses) and 3 bins (triangles). The shaded regions indicated the
uncertainties of the Fisher information, where the uncertainty for the SALLY method was
estimated using an ensemble of estimators with varying architecture. We can see that the
information in histograms approaches the information in the distribution in the limit of
large number of bins, showing that the SALLY approach gives the correct large-ny;, limit.
For all three operators, a histogram with an O(10) number of bins will essentially extract
the full information of the pr - distribution. The STXS with 3 bins already collects almost
all information on Cyp and Cyw, while for C’S’ I){ a significant improvement is obtained
when increasing the number of bins to 6.
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