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Abstract: Simplified template cross sections define a framework for the measurement

and dissemination of kinematic information in Higgs measurements. We benchmark the

currently proposed setup in an analysis of dimension-6 effective field theory operators for

WH production. Calculating the Fisher information allows us to quantify the sensitivity

of this framework to new physics and study its dependence on phase space. New machine-

learning techniques let us compare the simplified template cross section framework to the

full, high-dimensional kinematic information. We show that the way in which we truncate

the effective theory has a sizable impact on the definition of the optimal simplified template

cross sections.
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1 Introduction

Since the discovery of the Higgs boson at the LHC in 2012, the experimental and theoretical

communities have focused intense scrutiny on the question of whether the observed particle

has exactly the properties predicted by the Standard Model (SM) [1]. The interpretation

of the vast number of Higgs measurements requires a theoretical framework, which should

be as flexible as possible. From a theoretical perspective and given that there are no non-

SM particles observed at the electroweak scale, potential deviations from the SM are best

analyzed in an effective field theory (EFT) approach [2]. Such a framework allows us to

systematically include both rate information and kinematic distributions in the analysis [3,

4]. In this study, we assume that the Higgs boson is in an SU(2)L doublet and work in the

so-called Standard Model Effective Field Theory (SMEFT) In this case deviations from the

SM are parameterized in terms of a series of SU(3)c×SU(2)L×U(1)Y invariant operators

and possible new physics effects are contained in the Wilson coefficients of these operators.

The expansion involves a new high energy scale Λ, and we truncate the expansion with

dimension-6 operators, whose effects are generically suppressed relative to SM predictions

by factors of v2/Λ2 or E2/Λ2.

To interpret Higgs measurements in a combined experimental and theory analysis we

need to a) develop an efficient strategy to extract the maximum information from Higgs

events, and b) publish this information in an efficient form. Many analyses focus on total

rate measurements, but the available global fits have shown that kinematic information

on new Lorentz structures provides the most powerful limits on new physics, for instance,

exploiting the boosted regime of WH production [3, 5–9]. For the first aspect this means

that total or fiducial rate measurements alone are not useful. As for the second question,

the experimental collaborations could choose to publish full likelihoods [10–12], which

would ensure the most accurate modeling of systematic uncertainties and their correlations.

However, despite some recent progress this strategy has not been widely adapted. Lacking

the full likelihoods, the publication of measured event counts or cross sections in all bins

of a histogram including uncertainties and their correlations is desirable [13]. In reality,

global fitting projects [7, 14–18] often rely on extracting the necessary information from

plots in publications and backwards-engineering as much of the analyses as possible.

An ad-hoc solution to these issues is the use of simplified template cross sections

(STXS) [19, 20] which propose to measure and publish cross sections in slices of simple

phase-space parameters. They have been proposed for all major Higgs production channels

and are continuously developed alongside the corresponding analysis opportunities. Given

the established SMEFT approach we can benchmark any proposed method of extract-

ing and publishing kinematic event information. A particularly well-suited approach for

benchmarking is based on information geometry. Its central object, the Fisher information,

encodes the maximal precision with which continuous parameters of a Lagrangian can be

measured, and therefore allows us to directly compare the power of single LHC observables

or STXS to the power of multivariate analysis strategies [21, 22]. In our case, these pa-

rameters are the Wilson coefficients of the dimension-6 SMEFT operators. Until now, a
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major limiting factor in this approach was that detector effects and invisible particles like

neutrinos could not accurately be taken into account. This problem was recently solved

with a technique that combines matrix element information and machine learning [23–25],

automated in the MadMiner tool [26].

In this paper we benchmark the WH production process, which is well known for its

leading impact in extracting SMEFT coefficients [9, 27]. In Sec. 2, we first review the

SMEFT framework and define the Wilson coefficients included in our study. The basics

of the Fisher information approach and the MadMiner machinery [26] are described in

Sec. 4. Physics results on the relationships between effective operators and kinematic

regions are presented in Sec. 5, starting with the simple kinematic distributions of infor-

mation. Motivated by the differences between effects arising at linear and quadratic order

in the Wilson coefficients, we propose an improved STXS definition for WH production in

Sec. 5.3 and benchmark the reach in EFT coefficients in Sec. 5.4. Many technical details

are given in the appendices.

2 Effective operators

New physics beyond the Standard Model (SM) can be parameterized in terms of the effec-

tive Lagrangian

L = LSM +
∑

d,k

Cd
k

Λd−4
Od

k . (2.1)

The dimension-d operators Od
k form a complete basis of SU(3)c×SU(2)L×U(1)Y invariant

operators containing only SM fields [14–16]. This defines the effective field theory to be the

SMEFT. All non-SM physics effects are contained in the Wilson coefficients Cd
k . We further

assume that the operators conserve C, P , baryon and lepton numbers, and neglect all flavor

effects [28]. With these assumptions there are 59 dimension-6 operators. We work in the

context of the Warsaw basis [29], although one of the strengths of our approach is that it

is straightforward to go from one basis to another. Several groups have performed global

fits to determine the restrictions on SMEFT coefficients from LEP and LHC data [3, 5–9],

with various assumptions to reduce the number of operators. In the future, such fits will

need to become increasingly sophisticated as the amount of data increases. Our study is a

step in the direction of optimizing the flow of information into these analyses.

For the hard partonic process

qq̄′ → WH → ℓν̄ bb̄ (2.2)

we start with the experimental inputs in terms of the measured values of MW , MZ , and

GF . At tree level in the SMEFT, these parameters are shifted from their SM values, which

introduces a dependence on CHD, CHWB, Cℓℓ, and C
(3)
Hℓ [2, 30]. The effective couplings

of the fermions to the Z and W gauge bosons are also shifted from their SM values. None

of these effects change the momentum structures of the vertices and so they are of limited
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interest to anomalous coupling fits to the WH process at the LHC with its large QCD

backgrounds. In this study, we also neglect dipole operators that do not interfere with the

SM prediction (CdW , CuW , CHu, CdH , CeW ) and also CHud which contributes only to the

CKM matrix. Finally, CHWB is proportional to the oblique parameter S, while Cℓℓ and

C
(3)
Hℓ contribute to GF . Since S and GF are measured to be extremely close to the SM

predictions [31], we neglect the contributions of these operators. The dependence on CdH

vanishes for mb = 0 and we also set this coefficient to zero.

All of these assumptions lead to a restricted set of operators that are expected to have

the dominant effects on the WH process, namely

ÕHD = OH� − OHD

4
= (φ†φ)�(φ†φ)− 1

4
(φ†Dµφ)∗(φ†Dµφ)

OHW = φ†φW a
µνW

µνa

O(3)
Hq = (φ†i

↔

D a
µ φ)(QLσ

aγµQL) , (2.3)

where φ is the SU(2) Higgs doublet,Dµ = ∂µ+igsT
AGA

µ+ig σa

2 W a
µ+ig′Y Bµ, Q

T
L = (uL, dL),

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gǫabcW b

µW
c
ν , and φ†i

↔

D a
µ φ = iφ†(σ

a

2 Dµφ)− i(Dµφ)
† σa

2 φ. The first

line of Eq. 2.3 gives the combination of two operators that affect the WH amplitude in

exactly the same way, namely through a finite Higgs wave function renormalization. We

describe them with one Wilson coefficient,

C̃HD

Λ2
ÕHD =

C̃HD

Λ2
OH� − C̃HD

4Λ2
OHD , (2.4)

defining our SMEFT model parameters as
{

C̃HD, CHW , C
(3)
Hq

}

. (2.5)

Obviously, the degeneracy between OH� and OHD will be broken by other Higgs and

gauge observables contributing to a global analysis, so we can neglect this effect in this

analysis. In principle, dimension-6 operators can also appear in the W and H decays.

With our assumptions, the decays only receive SM contributions, but more generally we

also know that the dominant momentum-dependent corrections are completely dominated

by the Higgs production processes [21].

As mentioned above, the effects of dimension-6 operators can either scale like v2/Λ2

or like E2/Λ2. While in general all three operators in Eq.(2.3) allow for the second kind of

scaling, it turns out that for single Higgs production ÕHD changes only the wave function

of the Higgs field and therefore the Higgs couplings to all other particles. In contrast,

OHW changes the momentum structure of the WWH vertex [32]. Even more interesting is

the existence of a qq′WH 4-point vertex proportional to C
(3)
Hq, which avoids the s-channel

suppression of the Standard Model qq′ → W → WH diagram and is momentum-enhanced

at high energy [9]. To be more specific, we can compute the helicity amplitudes for the

on-shell process ud̄ → W+,λH, where λ is the W -helicity [33]. The leading powers of the

ratio MW /
√
s contributing to the amplitude squared for WH production in the Standard

Model and including the three operators are:
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W polarization SM C̃HD CHW C
(3)
HQ

λ = 0 1 1 0
s

Λ2

λ = ± MW√
s

MW√
s

√
sMW

Λ2

√
sMW

Λ2

This structure obviously causes problems with a universal definition of sensitive phase-space

regions even in terms of the relatively simple observable mWH ≡ √
s, since the operators

contribute differently in different phase-space regions.

3 Signal and backgrounds

We simulate the Higgs production process

pp → WH → ℓν bb̄, (3.1)

at 13 TeV with MadGraph5 aMC@NLO [34] at tree level using the PDF4LHC15 PDF

set [35] (lhaid=90900) and the default dynamical scale choice of MadGraph, namely, the

transverse mass of the 2 → 2 system formed from a kT clustering [36]. We include in the

matrix elements all diagrams with an intermediate W and H, though non-resonant and

t-channel contributions are generally unimportant. The electroweak contributions from

diagrams with a Z or γ∗ are neglected, as they are largely removed by the analysis cuts.

The higher-dimensional operators are implemented at tree level in the Warsaw basis [2,

29] using the SMEFTsim package [37] with the {MW ,MZ , GF } input scheme and assuming

U(3)5 invariance in the flavor sector. Because we want to compare the linear dimension-6

contributions with the dimension-6 squared terms, we generate all amplitudes to dimension

6 and do not truncate the cross section.

The leading QCD backgrounds to our process are

pp → Wbb̄, pp → tb̄ (t̄b), and pp → tt̄ . (3.2)

We also simulate them with MadGraph5 aMC@NLO [34] at tree level. At generator

level, we apply cuts that mimic a typical experimental analysis [38, 39]. We require all

leptons to have pT,ℓ > 10GeV, /ET > 25GeV, and tagged b-jets to have pT,b > 35GeV. The

leptons and b-jets are required to lie within |ηℓ,b| < 2.5, and be well separated, ∆Rbb,ℓb > 0.4.

We also require a Higgs mass window 80 GeV< mbb̄ < 160 GeV, which has no effect on the

signal, but allows for efficient sampling of the backgrounds. To reduce the semi-leptonic

tt̄ background, we require additional light jets to lie outside the central region, demanding

pT,j < 30 GeV and ∆Rbj,ℓj > 0.4. We ignore the fully leptonic and fully hadronic tt̄

backgrounds since they lead to different final states.

Prior to analysis, the parton-level events are processed to approximate the most im-

portant detector effects. The energies of the b-jets are smeared with a Gaussian transfer
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function chosen to approximate the h → bb̄ mass resolution from Ref. [39]. We also smear

the transverse components of the missing transverse energy according to the most recent

ATLAS performance [40]. We assume a flat b-tagging probability of 70%, and neglect

charm and light-flavor mis-tagging probabilities. For simplicity, we neglect any reconstruc-

tion inefficiencies for electrons and muons. Further details on the treatment of detector

effects and a comparison with alternative methods is presented in App. A.

4 Statistical analysis

The task of this paper is to quantify the information in the WH → ℓνbb process and to

identify observables and phase-space regions that allow us to probe new physics effects

parameterized in terms of the Wilson coefficients given in Eq. (2.5). While our reference

process is relatively simple, we know from Sec. 2 that the three relevant operators contribute

very differently to the event kinematics. To describe their effects we need to quantize the

sensitivity of the WH phase space to a set of continuous model parameters. We start

by discussing the challenges of such an analysis in a high-dimensional observable space,

show how optimal observables can be constructed for this process, and review the Fisher

information as an appropriate and convenient object to encode our analysis sensitivity.

4.1 Score as the optimal observables

In a typical LHC measurement we link n observed events {x}, each of which is characterized

by a phase space vector xi, to a vector of model parameters θ = (C̃HD, CHW , C
(3)
Hq). The

central quantity that describes their relation is the likelihood function, the probability

density of the observed data as a function of the model parameters. It is given by [41]

pfull(x|θ) = Pois(n|Lσ(θ))
∏

i

p(xi|θ) . (4.1)

The first term with Pois(n|λ) = λne−λ/n! describes the probability of observing n events

given an integrated luminosity L and predicted cross sections σ(θ). The remaining factors

describe the kinematic information in each event xi and are equal to the fully differential

cross section normalized to one:

p(x|θ) = 1

σ(θ)

dkσ(x|θ)
dxk

. (4.2)

The Poisson term is relatively straightforward to compute. Calculating the event-wise

kinematic likelihoods p(x|θ) explicitly, however, requires inverting the chain of Monte-Carlo

tools used to simulate LHC events and integrating over an extremely high-dimensional

space, which is impossible in practice [23, 24].

The most common solution is to restrict the data x to one or a few hand-picked

kinematic variables such as invariant masses, transverse momenta, or angular correlations,

which integrates out some kinematic information and typically reduces the power of the

analysis [21, 22]. The STXS also follow this approach. We compare them to an alternative
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method, which defines statistically optimal observables for all directions in parameter space.

We start by assuming that the values of the Wilson coefficients θi are small, that is, we

consider the parameter space region close to the SM. In this case one can explicitly construct

the most powerful observables, which turn out to be [23]

ti(x) =
∂ log p(x|θ)

∂θi

∣
∣
∣
∣
∣
θ=0

. (4.3)

The vector t(x) is the gradient in model space, described by the Wilson coefficients θi. Each

component ti(x) is a function of phase space x, in other words, the set of basic kinematic

observables like reconstructed energies, momenta, angles, and so on. The high-dimensional

observable vector x can be compressed to these functions in each event without losing any

statistical power: the ti(x) are the sufficient statistics. Furthermore, confidence limits on

the Wilson coefficients can be calculated from histograms of the components ti in the same

manner as with histograms of one or two familiar kinematic variables. Such an analysis of

the ti(x) is guaranteed to lead to optimal statistical limits in the neighborhood of the SM.

In particle physics, the t(x) are known as Optimal Observables and have been cal-

culated in a parton-level approximation for many processes [42–44], an approach closely

related to the Matrix Element Method [45]. In the statistics community t(x) is originally

known as the score [46]; we follow this older nomenclature.

Calculating the score is not straightforward: it is defined through the likelihood func-

tion p(x|θ), which is intractable when we use a realistic simulation of shower and detector

effects. Recently, however, a new technique was developed that solves this problem with

a combination of matrix-element information and machine learning: the Sally algorithm

introduced in Refs. [23–25] allows us to train a neural network to estimate t(x) as a func-

tion of the observables x.∗ This way the score defines optimal observables not only at the

parton level, but including the effects of invisible and undetected particles, parton showers,

and detector response.

We use the implementation of the Sally algorithm in MadMiner 0.5 [26] to extract

matrix-element information from our Monte-Carlo simulations, train neural networks to

estimate the score, and calculate the expected limits on the Wilson coefficients. In ad-

dition to the four-momentum components, we choose to include a number of higher-level

observables to aid in the training of the network, like the pT and η of each particle, the

∆R, ∆φ, invariant mass, transverse mass, and transverse momentum of each particle pair,

altogether 48 observables for our WH process. We simulate 4 · 106 signal and 16 · 106
background events (after all cuts) and train fully connected neural networks with three

hidden layers of 100 units and tanh activation functions. The Sally loss function [24] is

minimized with the Adam optimizer [48] over 50 epochs with a learning rate that decays

exponentially from 10−3 to 10−5 and a batch size of 128. We train ensembles of five net-

∗See Ref. [1] for an alternative formulation and a toy example, Ref. [47] for a comparison with the Matrix

Element Method and the traditional Optimal Observable approach, and Ref. [26] for a tool that makes it

easy to use this technique.
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works, using the ensemble mean as prediction and the ensemble variance as a diagnostic

tool to check the consistency of the predictions.

4.2 Fisher information

Benchmarking an analysis strategy such as the STXS requires a meaningful, but convenient

metric. We propose to use the Fisher information, which we review in this section. Consider

the expected significance with which a parameter point θ can be excluded in a measurement.

It is essentially [49, 50] given by the expected log likelihood ratio

−2E

[

log
pfull(x|θ)
pfull(x|θ̂)

]

, (4.4)

where θ̂ is the maximum-likelihood estimator of the Wilson coefficients. The log likelihood

ratio is a generalization of the χ2 test statistic to non-Gaussian distributions. If the best

fit point is close to the SM and the tested theory parameters θ ∼ C/Λ2 are small, we can

expand the log likelihood ratio,

−2 E

[

log
pfull(x|θ)
pfull(x|0)

]

= −E

[
∂2 log pfull(x|θ)

∂θi ∂θj

]

︸ ︷︷ ︸

≡Iij

θi θj +O(θ3) , (4.5)

where E[·] now denotes the expectation value assuming events distributed according to the

SM. The leading term in the Taylor expansion defines the Fisher information Iij . This

matrix quantifies the expected sensitivity of a measurement in a compact way and has

several useful properties:

• According to the Cramèr-Rao bound, the covariance matrix of any unbiased estima-

tor, or the precision of a measurement, is bounded by the inverse Fisher information:

cov[θi, θj ] ≥ (I−1)ij . (4.6)

So the larger an eigenvalue of the Fisher information matrix, the more precisely we

can measure the direction in parameter space given by the corresponding eigenvector.

• The Fisher information is independent of the parameterization of the observables.

• It transforms covariantly under parameter transformations, so it can easily converted

between model space bases.

• It is additive for different processes and phase-space regions. This allows us to study

the distribution of information over phase space.

• It has a geometric interpretation as a metric in parameter space, defining distances

d(θ1, θ0)
2 = Iij (θ1 − θ0)i (θ1 − θ0)j (4.7)

that quantify the expected reach of a measurement (for example, the 95% CL contours

for two free parameters corresponds to a distance d = 2.447).
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• Finally, the Fisher information formalism allows us to easily include systematic un-

certainties, which are modeled with nuisance parameters and profiled over in the

statistical analysis [21].

If we insert Eq. (4.1) into the definition of the Fisher information in Eq. (4.5) we find

Iij = −E

[
∂2 log pfull(x|θ)

∂θi ∂θj

]

=
L
σ

∂σ

∂θi

∂σ

∂θj
+

Lσ
N

∑

x∼p(x|0)

ti(x) tj(x) (4.8)

where N is the number of events in the Monte-Carlo sample. This means that after we

train a neural network to estimate the score t(x) as discussed in the previous section, we

can calculate the full Fisher information, corresponding to the maximal reach based on all

observables including correlations.

In addition, we can calculate the information in the distribution of one or two kinematic

variables with histograms [21, 22]. We will use this to calculate the sensitivity of the STXS.

Finally, as a cross-check we can calculate the parton-level information directly from event

weights, using the technique introduced in Ref. [21]. This information neglects shower and

detector effects and assumes that we can exactly reconstruct the parton-level final state,

including flavor information and the full four-momenta of invisible particles. While this is

not a realistic scenario, we will use this method to verify the machine-learning results in

App. B.

4.3 Beyond the leading Fisher information

By definition, the Fisher information on dimension-six Wilson coefficients measures their

leading effects, i. e. it is linearized in powers of 1/Λ2. Similarly, the score vector t(x) defined

in Eq. (4.3) is only statistically optimal in the parameter region where the Wilson coeffi-

cients are small. Further away from the SM, the O(1/Λ4) terms become important and

eventually dominate. The same happens if the interference between dimension-6 ampli-

tudes and the SM at order O(1/Λ2) vanishes[51]. In this situation, the Fisher information

approximation is no longer accurate, and while an analysis based on the score will still

lead to correct confidence limits, they might no longer represent the best possible limits.

One way to discuss this case is to use machine-learning techniques to estimate the full

likelihood or likelihood ratio function to all orders in 1/Λ2 [23–25, 52]. In a related way,

using the geometric interpretation of the Fisher information, one could calculate distances

along geodesics that capture these higher-order effects as well [21].

Here we follow a different approach. In the limit where the linear term vanishes or

is very small, we can still discuss the Fisher information and define optimal observables

by assuming that the effects from one operator squared ( ∼ θ2i ), dominate over both

interference terms ( ∼ θi) and cross terms ( ∼ θiθj). In this approximation we can write

the likelihood in terms of the squared Wilson coefficients Θi ≡ θ2i as new parameters.

We note that while the Θi are perfectly well defined statistical quantities, their physics

interpretation requires the additional condition Θi ≥ 0. In a global EFT fit this leads to a

series of interesting effects [53] which will have no impact on our discussion in Sec. 5.2.
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To analyze the impact of the contributions at quadratic order, O(1/Λ4), we again

define the score as a function of Θ according to Eq. (4.3) and the Fisher information as

a function of Θ according to Eq. (4.8). In practice, this means we replace the derivative

with respect to θi by a derivative with respect to Θi, which is proportional to the second

derivative with respect to θi. We will label confidence limits based on the score in terms

of the Θ as Harry†.

5 New physics in kinematics

The physics question we are going to tackle in this study is how the effects of the three

operators in Eq. (2.3) are distributed over phase space and how we can define LHC ob-

servables to best constrain them. In particular, we need to determine if the established

simplified template cross sections serve this purpose, or if they can be improved.

The Fisher information is an ideal tool to analyze questions on where in phase space we

can search for new physics signals and how we can extract this information from kinematic

analyses [21, 22]. The first question we discuss is the impact of detector effects, which can

hide information that in principle exists at the parton level but is not accessible in a realistic

measurement [23, 24]. As described in Sec. 4 we can use machine learning to calculate the

actually observable information at the detector level. We will illustrate this aspect in

Sec. 5.1. Next, in Sec. 5.2 we will discuss how the sensitivity to different dimension-6

operators is distributed over phase space, both linearized in the Wilson coefficients and

including the Wilson coefficients squared. In Sec. 5.3 we will study the information in

two-dimensional and multivariate distributions. We analyze how much of the available

information is captured by simplified template cross sections and discuss their proposed

form. Finally, we calculate expected exclusion limits for this channel based on the use of

STXS as well as a multivariate analysis [19, 20].

5.1 Information after detector effects

Fisher information calculations for fully reconstructable signals and their irreducible back-

grounds, also including leading detector effects, have been studied in the past [21, 22]. Using

MadMiner we can also study signatures which cannot be fully reconstructed. Specifically

in the WH production process, we study the information based on the smeared missing

transverse energy rather than the full neutrino momentum. In this section we analyze

the loss of information due to these detector effects, comparing three sets of observables:

first, keeping the full information on all initial and final state particles at parton level,

second, using all final state particles after detector smearing, and third, keeping only the

observable missing transverse momentum in place of the neutrino momentum, including

all detector-level smearing.

To gain some intuition about the impact of detector effects on the information content

of the hard process we analyze two of the three operators given in Eq. (2.5) at a time, setting

†We leave it to the reader to imagine a carefully chosen acronym.
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Figure 1. 95% CL limits based on the (linearized) Fisher information on pairs of Wilson coefficients

with Λ = 1 TeV, for WH production only (top) and including the QCD background (bottom). We

include full parton-level information without detector effects (dotted black), detector effects, but

retaining the full neutrino 4-momentum (dashed orange), and finally retaining only the transverse

neutrino momentum (solid blue). We also show the information using only the signal rate in grey.

the third Wilson coefficient to zero. We also limit ourselves to linearized differential cross

sections in each of the Wilson coefficients at this point, the effects of the squared terms

will be discussed in detail later.

In Fig. 1 we show how the full information about the dimension-6 signal at the parton

level is reduced when we move from parton-level truth to realistic observables step by step.

The dotted black line corresponds to retaining the full parton-level information without

detector effects that is used for the evaluation of the matrix elements. This includes

unobservable degrees of freedom such as the initial-state parton flavors, particle helicities

and the un-smeared momenta. Removing this information and introducing a realistic

smearing of the particle momenta washes out possible structures, for example asymmetries

in the rapidity distributions, as can be seen when going from the black to the orange line.

In this step we still assume that we can measure the full neutrino four-momentum. Finally,

we remove the unobserved longitudinal neutrino momentum and neutrino energy, which

changes the orange line into the blue line. While the longitudinal neutrino momentum

can in principle be reconstructed if we assume an on-shell W boson, this reconstruction is

spoiled by the detector smearing.

In the top panels of Fig. 1, we neglect the QCD backgrounds and consider only

WH production with linear dimension-six contributions. The loss of information has the
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We now examine how the kinematic variables introduced in the previous section can be

used to set constraints on the full multi-dimensional parameter space.

Simplified template cross sections (STXS) have been proposed to provide experimental

results on kinematic distributions for global analyses [19, 20]. For the WH production

process they include rate measurements binned in pT,W . At stage 1, the three bins are

defined by pT,W = 0−150 GeV, pT,W = 150−250 GeV, and pT,W > 250 GeV. For increased

statistics, stage 1.1 proposes five bins, now split at pT,W = 75, 150, 250, 400 GeV, as shown

in Fig. 7. Results using this approach have recently been presented by ATLAS [56] using

the 0-jet, single lepton data sample, to obtain limits on anomalous couplings, assuming

only one non-zero Wilson coefficient at a time. Unfortunately, they do not consider the

most interesting 4-point vertex from O(3)
Hq, for which boosted V H production provides the

strongest constraints [9].

We evaluate these proposals by calculating the Fisher information in the STXS bins.

From Fig. 3, it is clear that the stage 1.1 STXS version will not capture the full information

on O(3)
Hq, so we consider a 6-bin setup with

pbinsT,W = ( 0− 75, 75− 150, 150− 250, 250− 400, 400− 600, 600−∞ ) GeV . (5.3)

We compare the results to the full information in the high-dimensional phase space using

the Sally method discussed in Sec. 4.1. In addition, we train a neural network with the

Sally method on just pT,W as input variable, which lets us calculate the information in

the full pT,W distribution in the infinite-bin limit; see App. D for more details.

In Fig. 5, we show the expected limits on pairs of Wilson coefficients from the pT,W
distribution. First, we see the almost flat direction in the ÕHD − OHW plane, reflecting

the fact that both operators are constrained at low transverse momenta, as long as we only

consider linearized predictions. This flat direction will be broken by other observables in a

proper global analysis [9], so it is of less interest for our purposes. The situation changes

once we consider the correlation of either of these two operators with O(3)
Hq, because now

the two directions are tested by distinctly different pT,W regimes. The only requirement in

this case is that we include enough pT,W bins to distinguish the two regimes, as is provided

by the stage 1.1 setup. Indeed, this framework collects essentially all information on our

set of three operators affecting the pT,W distribution.

In the second row of Fig. 5 we switch from the linear terms in the Wilson coefficient

to the squared terms alone. In the left panel we see hardly any effect of the different

binnings for ÕHD, but the flat direction has vanished and the reach in OHW is increased

dramatically by including the high pT,W bins. Because this sensitivity to OHW comes

from high momentum transfer, we start to observe a strong anti-correlation with O(3)
Hq. To

break it, we need to resolve the high-pT,W range, and for this purpose the additional bin

in Eq. (5.3) is crucial. Indeed, we see that it improves the situation considerably.

In the lower six panels of Fig. 5 we show the same kind of information, but now

profiled over the respective third operator. The results are generally much weaker, and the

flat directions are more significant. As mentioned above, this is not a big concern, since our
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WH analysis has to be embedded in a global analysis. An interesting aspect is that with

three operators actually contributing to the analysis the gap between the few-bins STXS

approach and the full information from the entire pT,W distribution widens. Some details

on the scaling with larger number of bins and on the number of bins needed to saturate the

information in a kinematic distribution are given in App. D. Altogether, it becomes even

more important that we extract as much information for instance on O(3)
Hq by sufficiently

covering the dedicated phase-space regions.

After having established that the currently used STXS for WH production need to

be supplemented by another high-energy bin, we can test how much of the available infor-

mation of the full phase space is captured in the binned pT,W distribution. The reasoning

behind picking an additional observable scaling like momentum is that the signal process

is dominantly 2 → 2 scattering, described by two kinematic observables, and the scattering

angle or rapidity are not found to be particularly useful, as shown in Fig. 4. On the other

hand, if the signal from dimension-6 operators populates phase space far away from the

SM we will become sensitive to the background kinematics, and the simple picture of a

2 → 2 process can completely change [55, 57].

In the top row of Fig. 6 we show the limits from the Sally approach trained on

linearized effects in the Wilson coefficients as a blue line. The dotted pink line comes from

limiting the information of the Sally training to the observables pT,W and mT,tot, which

can be understood as the constraints computed from the infinite-bin limit of a 2-dimensional

histogram. It is not clear a priori which second observable complements pT,W best, but we

found that mT,tot as defined in Eq. (5.2) works well. In the linearized approach, we confirm

that compared to the full phase space we still lose a significant amount of information

on the three operators. The next question is how much of the information from the two-

dimensional contribution we can capture in a reasonable number of STXS bins. Motivated

by Fig 3, we propose to further split each of the six bins in pT,W into three mT,tot bins in

mbins
T,tot = ( 0− 400, 400− 800, 800−∞ ) GeV , (5.4)

as illustrated in Fig. 7. Because mT,tot and pT,W are by no means uncorrelated, this

captures the effects of the 2 → 3 background phase space and adds an implicit sub-division

in pT,W . In the top row of Fig. 6, we see that for the linearized case our new proposed

STXS definition performs extremely well, but the STXS stage 1.1 also does fine. In the

second row, we show the same effects, but now for the squared new physics terms only

and not including the imposed positivity condition. The blue curve is now generated

consistently based on the squared terms, using the Harry method. As expected, the

improved 2-dimensional STXS outperform the stage 1.1 results when we test O(3)
Hq, as a

better understanding of the information in high pT,W or mT,tot bins is effective. The lower

panels of Fig. 7 show the same effect, but profiled over the full range of the respective third

Wilson coefficient. The large effect related to O(3)
Hq now propagates through the entire set

of measurements. Moreover, the limited number of bins in the STXS stage 1.1 become an

issue.
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Figure 6. As Fig. 5, now comparing various approaches: The solid blue curve shows the limits

from training on the full phase space. The dotted pink line shows training only on the pT,W vs

mT,tot histogram. The limits obtained from the STXS stage 1.1 are shown in dashed red, and the

dot-dashed green curve shows the limits obtained by six pT,W bins subdivided into three mT,tot

bins.
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Figure 7. Definition of the old STXS [19, 20] and our proposed improved version based on Eqs. (5.3)

and (5.4).

5.4 Limits with consistent squared terms

Finally, we go beyond the linearized Fisher-information approach and calculate expected

exclusion limits on the dimension-6 Wilson coefficients with the squared terms included

in a physically consistent way. Generally, power counting in 1/Λ2 suggests that the linear

effects should be dominant. However, in some directions of parameter space the interference

contribution to the analyzed distributions is small, the analysis is only sensitive further

away from the SM, and the squared terms are the dominant effects of new physics. We

thus expect the squared terms to break the flat directions of the linearized results.

This is exactly what we find in Fig. 8, where we show the expected limits for a rate-only

analysis (gray), the improved STXS defined in the previous section (green), and a multi-

variate analysis of the full phase-space information based on the Sally technique described

in Sec. 4.1 (blue). In the plane spanned by C̃HD and CHW (left panel) we can clearly see

that the squared contributions remove the approximate flat direction in the improved STXS

limits. More generally, the full exclusion limits based on the Sally method differ from

those obtained from the linearized Fisher information, indicating the importance of squared

new physics effects in this region of parameter space. In these parameter-space regions we

expect that even stronger limits can be constructed with techniques that estimate the full

likelihood function to all orders in the Wilson coefficients [23–26]. Closer to the SM, we

find that the full limits are well approximated by the Fisher information, confirming that

the linear operator effects dominate there. Generally, these full limit calculations confirm

the main result of the last section: the simplified template cross sections, in particular our

improved version, are substantially more informative than a simple rate measurement, but
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Figure 8. Expected exclusion limits at 95% CL based on a rate-only analysis (grey), from the

improved STXS (green), and from a multivariate analysis of the full phase-space information with

the Sally algorithm. We show (linearized) limits based on the Fisher information (dashed) and

full exclusion limits that take into account the effects of linearized and squared new physics effects

(solid). In each panel, we set the operator not shown to zero.

fall short of capturing all of the kinematic information in the high-dimensional final state.

6 Conclusions

We have, for the first time, performed a comprehensive benchmarking of simplified template

cross sections (STXS) in the WH channel with a leptonic W decay. The Fisher information

allowed us to quantify the reach of different analysis strategies and to identify which phase-

space regions are sensitive to the three dimension-6 operators ÕHD, OHW , and O(3)
Hq. We

compared the STXS to a machine-learning-based analysis of the full, high-dimensional

final state, using the Sally technique of Refs. [23–25] implemented in MadMiner [26] to

calculate the statistically optimal observables and the maximal new physics reach of an

analysis.

We found that pT,W is the most promising kinematic observable, but that the STXS

stage 1.1 criteria benefit from being supplemented by an additional high-energy bin. The

ability to distinguish different operator signatures is further enhanced when we include a

second observable in the definition of the STXS, mT,tot being one workable option. We

showed that for the WH process such a two-dimensional approach is promising, even

though it cannot obtain all of the kinematic information in the process that can be un-

earthed with machine-learning-based techniques. More generally, this study presents a

blueprint for a systematic benchmarking of STXS or any other method of publishing re-

sults needed for a global Higgs analysis.
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A Detector effects

The leading detector effect relevant for this analysis is the smearing of the di-jet invariant

mass peak. The distribution has been carefully simulated by CMS [71] (see Fig. 9) and

we aim to reproduce it for our analysis. In the MadMiner framework, this smearing can

be simulated in three different ways: i) In the simplest approach, we explicitly smear the

parton level b-quark energies after event generation. This is parameterized by a gaussian

transfer function with width σE/E = 0.1. ii) Alternatively, we can include the smearing

already in the event generation process by modifying the Higgs propagator [21, 22, 57]. To

reproduce the mbb distribution obtained by CMS, the Breit-Wigner propagator is simply

replaced by the square-root of the Gaussian with mean mH , and width σ = 15 GeV. As a

result, the joint scores already include the smearing and can therefore be used as estimator

for the score, making this approach a useful tool for validation (see Appendix B). iii)

Finally, it is also possible to simulate parton shower, hadronization and detector response

using Pythia and Delphes.

In the left panel of Fig. 9 we compare the three approaches to the di-jet mass distri-

bution obtained by CMS [71] (solid black). We can see that both the parton level energy

smearing (dashed red) and propagator modifcation (dashed blue) approach can reproduce

the CMS mass spectrum, while a fast detector simulation using Pythia 8 [64] andDelphes

3 [58] with default settings (dotted green) systematically underestimates the di-jet mass.

Another important detector effect is the smearing of the missing transverse energy

/ET . In this work, we aim to reproduce the most recent ATLAS performance [40] and

explicitly smear the transverse components of the missing energy using a Gaussian transfer

function with width σ/ET
= 12.5 GeV. An additional smearing at higher energies is induced
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