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Abstract

The mitochondrial DNA of trypanosomes, called kinetoplast DNA (kDNA) 

contains thousands of minicircles that are topologically linked into a single 

structure that resembles a medieval chainmail. This biological chainmail is 

characterized by two parameters: the link type between minicircles, and the 

number of minicircles linked to each minicircle (i.e. the minicircle valence). 

In previous works, a protocol was proposed to determine the mean value of 

the minicircle valence. In these experiments, minicircles were excised from 

the network and the products compared with those obtained from fragmenting 

idealized structures. These idealized structures assumed a negligible variance 

in the distribution of valences of the initial network. It is therefore unclear to 

what extent this theoretical analysis captures the true topology of the kDNA 

network when kDNA samples are extracted from unsynchronized cells or from 

cells with silenced kDNA replication genes. Subsequent studies proposed that 

there is a critical percolation density during network formation. We asked 

whether this density can be estimated using fragmentation reactions.

The goal of this work is to develop a mathematical method that can be used 

to estimate the mean valence of networks when the variance of the valence 

is non-negligible. We first show microscopy data on Crithidia fasciculata 

that, in agreement with the original experimental results, show a distribution 

of valences with nonzero variance. Second, we use computer simulations of 

network fragmentation to show that the predicted and actual mean valence are 

different when the valence distribution has nonzero variance. We propose a 
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more general mathematical formulation and computer simulations of kDNA 

fragmentation to estimate this value. Last, we show that fragmentation 

experiments may lead to errors in the estimation of the critical percolation 

density since the collapsing density depends on the initial density of the 

network, and on the fragmentation reaction.

Keywords: statistical mechanics, polymeric systems, minicircle networks, 

kinetoplast DNA, network fragmentation, DNA linking

(Some figures may appear in colour only in the online journal)

1. Introduction

Trypanosomatids are single celled organisms whose mitochondrial DNA, called kinetoplast 

DNA (kDNA), contains thousands of small circular DNA molecules (e.g. minicicles). These 

minicircles are topologically (rather than chemically) linked and their centers are confined 

into a plane, forming a two dimensional topological network. The evolutionary origin of this 

network remains to be determined, however, evidence is mounting towards a model driven 

by confinement [4, 10, 15] together with its corresponding induced evolutionary advantage 

[14, 19].

A few quantitative characteristics have been identified to describe the topology of these 

networks. In a sequence of experimental studies, Chen and colleagues identified two exper-

imentally measurable parameters that helped characterize kDNA networks isolated from the 

model organism Crithidia fasciculata [2, 3]. These two characterizing parameters are the link 

type between two minicircles and the mean minicircle valence, the latter defined as the aver-

age number of minicircles topologically linked to any chosen minicircle in the kDNA net-

work. In their studies, they found that minicircles in C. fasciculata are linked through Hopf 

links [17] and that the mean valence was three [3]. In their approach, Chen and colleagues 

gradually removed minicircles from kDNA networks purified from C. fasciculata using lim-

ited digestion (i.e. fragmentation). As the network collapsed due to the random lineariza-

tion of minicircles, clusters containing a small number of minicircles (monomers, dimers 

and trimers) were separated by gel electrophoresis and their topology identified by electron 

microscopy. The link type and the frequency of the different clusters were compared with 

those predicted by ideal tessellations of the plane. The mathematical models for fragmentation 

proposed on these tessellations all assumed that each minicircle is linked to each of its neigh-

bors (see figure 1(A)). It is therefore unclear to what extent the same mathematical modeling 

can be applied to kDNA samples purified from unsynchronized cell cultures, from strains that 

are deficient in kDNA replication (reviewed in [10]) or even from other organisms [14].

More recent computational studies have identified properties of topological networks that 

can only be uncovered when the network is being formed. These are the critical percola-

tion and mean saturation densities [4, 15]. During network formation, and as the density of 

minicircles grows, initial small clusters of minicircles join into larger clusters until a ‘large’ 

cluster forms. This density is called the critical percolation density [6]. Similarly, as the den-

sity of minicircles are further confined, a network in which most of the minicircles (>90%) are 

linked into a single structure is formed. This new density is called the mean saturation density. 

A key question is whether these computational properties can be estimated experimentally by 

gradually fragmentation minicircles.
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The main goal of the work presented here is to reproduce some of the experimental results 

proposed by Chen and colleagues and further extend their mathematical method. First, we 

show electron microscopy data illustrating that the valence of minicircle networks may have a 

large variance. Second, we qualitatively show that the fragmentation products of these kDNA 

networks in which a significant variance of the valence is observed are consistent with those 

previously reported in [3]. Third, we test the limit of the original mathematical model by 

comparing its predictions with those obtained using Monte-Carlo computer simulations of 

fragmentation of minicircle networks with nonzero variance of the valence. We show that 

deviations from the predicted values rapidly accumulate, suggesting that the originally pro-

posed method is not valid to analyze situations when the variance is non-trivial. To address 

this problem we propose a mathematical model that generalizes the model in the original 

publication by Chen and colleagues and to use computer simulations to analyze fragmentation 

reactions. We also investigate whether the percolation density can be estimated by the same 

fragmentation reactions. In particular, we ask whether the percolation density is the same as 

the density at which the minicircle network does not have a large component any more (i.e. the 

network no longer percolates). We find that in general these two densities do not agree with 

each other and that this difference is strongly dependent on different initial factors, including 

the initial minicircle density and the mechanism of fragmentation.

2. Methods

2.1. Cell growth and kDNA purification

C. fasciculata (clone HS6) promastigotes were grown at 27 °C with gentle agitation in serum-

free BHI (37 g l−1) containing 20 µg ml−1 hemin. Mid-log phase cells (∼4 × 107 cells ml−1) 

were harvested and washed once with 10 mM Tris-HCl pH 8.0, containing 100 mM NaCl and 

100 mM EDTA (NET 100) and then resuspended in NET 100 at a density of 1 × 109 cells 

ml−1. Cells were lysed in 0.5% SDS. Cell lysate was then incubated with 0.2 mg ml−1 protein-

ase K (56 °C, overnight), and then treated with 0.1 mg ml−1 RNase A (37 °C, 15 min). Using a 

modified kDNA purification method, 500 µl of cell lysate was layered on top of 700 µl of 20% 

sucrose in TE and centrifuged at 20 000 rpm for 60 min using a microcentrifuge. Supernatant 

was removed (950 µl) leaving behind approximately 250 µl. The remaining sample was resus-

pended with 250 µl TE and applied to a new sucrose cushion (700 µl) and centrifuged again 

at 20 000 rpm for 60 min. After removing the supernatant (1.1 ml), the remaining sample was 

resuspended with 400 µl of TE and layered onto a new sucrose cushion and centrifuged a final 

Figure 1. Two networks built on a grid in the hexagonal lattice with the same dimension. 
Vertices represent minicircles and edges represent topological links. (A) A non-random 
network in which all minicircles have valence three; (B) a random network with random 
linking distributions due to the random orientations of minicircles.
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time at 20 000 rpm for 60 min. The last supernatant was carefully removed leaving behind 

about 35 µl (containing purified kDNA). kDNA samples were dialyzed at 4 °C overnight 

against 1000 ml vol of TE buffer and precipitated by ethanol. If necessary the samples were 

ethanol precipitated before proceeding with the restriction enzyme digestion.

2.2. Restriction assay

To digest kDNA, 20 µl containing 100 mM NaCl, 50 mM Tris-HCl (pH 7.9 at 25 °C), 10 mM 

MgCl2, 100 µg ml−1 BSA, 2 µg of kDNA and 2 U of the restriction enzyme XhoI were incu-

bated at 37 °C for times ranging from 5 to 15 min. Buffer and enzyme were purchased from 

New England Biolabs. After heat deactivating XhoI at 65 °C for 20 min, the DNA was nicked 

with 10 U of Nb.BsmI by incubation at 65 °C for 1 h to compact each link type into a single 

band.

2.3. Gel electrophoresis

DNA links were then separated by electrophoresis (2 V cm−1) through a 0.8% agarose gel 

in containing containing 80 mM Tris-HCI (pH 7.5), 5 mM sodium acetate, 1 mM EDTA, and 

0.03% SDS. After electrophoresis, gels were stained with ethidium bromide and photographed 

under UV light using a Amersham Imager 600. DNA was extracted from the gels using a 

QIAquick Gel Extraction Kit.

2.4. Electron microscopy

Electron microscopy was used to identify kDNA fragments after extraction from agarose gels. 

DNA-cytochrome C samples were prepared according to [16, 20]. A mixture of DNA (2.5 ng 

µl−1) and cytochrome C (60 ng µl−1) was prepared in tris-EDTA (TE) buffer. A droplet (50 

µl) was placed on a piece of parafilm and allowed to sit for 2 min. Paladion-coated copper 

grids were touched to droplets. The grids were then rinsed with 95% ethanol for 10 s, 5% 

uranyl acetate for 30 s, and then again with 95% ethanol for 10 s. The grids were air dried, 

shadowed with Pt/Pd alloy (80%/20%) at an angle of 7°, and viewed in a JEOL-1230 electron 

microscope.

2.5. Assembling simulated kDNA networks

We used our previously proposed lattice models for simulating kDNA networks. These models 

have been detailed in our previous works [4, 5] and were based on sound biological and math-

ematical observations/assumptions (see [7] for the list of assumptions). In brief, we modeled 

minicircles by unit circles. There are two main reasons for using this model: first, minicircles 

in kDNA are linked by Hopf links and this is the only link type possible between two circles 

[17], and second their sequence is AT-rich [9, 11, 13] and therefore their folding may be dif-

ferent from the standard wormlike chain (e.g. [8]). The minicircle network is generated over 

a planar lattice grid such that the centers of the minicircles of the network are the grid points 

and at each grid point exactly one minicircle is placed [4, 5, 18]. Here we use the term grid to 

refer to a finite portion of the lattice on which the minicircle network is built. The orientations 

of the minicircles (defined as the normal vectors of the plane that contain the minicircles) 

are identical independent random variables that are either uniformly distributed over the unit 

sphere or of some other distributions [1, 7]. Thus two randomly generated minicircle networks 
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over the same grid will have the same number of minicircles and minicircle density, but differ 

in the orientations of the minicircles. Naturally, the density of minicircles in such a network is 

defined as the number of minicircles per unit area where the linear unit is defined by the radius 

of the minicircles, which is not to be confused with the distance between two adjacent vertices 

in the lattice. Since at each grid point exactly one minicircle is placed, the minicircle density 

is the same as the number of the grid points per unit area. Thus if we let a be the distance 

between two adjacent vertices in the lattice, then for large networks, the minicircle density 

can be expressed as a simple function of a. For example, it is 1/a2 for the square lattice and 

2/(
√

3a2) for the triangular lattice.

We have identified two key densities during the formation of minicircle networks: the criti-

cal percolation density and the mean saturation density. Roughly speaking, the critical per-

colation density is the density beyond which a ‘large component spanning over the entire 

network of linked minicircles’ forms with a probability > 0, while the mean saturation density 

is the average density beyond which a high percentage of minicircles are linked to the same 

component (here the percentage is a user defined parameter). Different densities, obtained by 

changing the distance a between adjacent lattice points in the lattice, and topological structures 

of the kDNA network were selected according to the hypothesis being tested. These included: 

(1) hexagonal lattice in which all minicircles valence equal to three [3] (figure 1(A)), (2) 

triangular and square lattices with a random distribution of valences centered around valence 

three due to differently oriented circles or when the percolation or saturation were obtained.

For any two grid points on a grid of certain lattice, we define the lattice distance between 

the two points as the minimum number of lattice steps needed to walk from one point to the 

other. For two minicircles in a minicircle network of a lattice model, we define the lattice dis-

tance between the two minicircles as the lattice distance between their centers. Notice that the 

lattice distance between two minicircles is scale invariant. It is important to note that in our 

previous models linking between any two minicircles in the network, no matter how far away 

they are as measured by their lattice distance, is possible when the minicircle density is high 

enough. This is apparently an artificial effect due to our use of circles as minicircles [4, 5, 18]. 

From a biological point of view, it makes sense to assume that each minicircle can only link 

to those minicircles that are not too far from it in terms of the lattice distance. For the purpose 

of this paper, we shall only consider linking between a minicircle and its immediate neighbors 

for the triangular and hexagonal lattices. In the square lattice model, other than considering 

the linking of a minicircle with its four immediate neighbors, we will also consider linking 

between it and four minicircles closest to it along a diagonal line. Thus, if we let κ be the num-

ber of minicircles to which each minicircle can link with, then throughout this paper, κ = 3 for 

the hexagonal lattice, κ = 6 for the triangular lattice and κ = 8 for the square lattice.

Next, we introduce some definitions that are needed in section 3.6. Let us consider two 

realizations, M1 and M2, of a network based on the same lattice type and with the same 

number of minicircles; hence the connectedness of the network is uniquely determined by the 

individual orientations of the minicircles. We say that M1 is more connected than M2 if any 

two neighboring minicircles in M1 are linked so long as their counterparts are linked in M2. 

This is illustrated in figure 1 where, following the work by [3], each minicircle is represented 

by a vertex and topological linking between two neighboring minicircles is represented by 

an edge connecting the two vertices corresponding to these minicircles. Figures 1(A) and (B) 

show two hexagonal lattice based minicircle networks. In figure 1(A) each minicircle is linked 

to all of its neighbors (so there is no variance in linking) and in figure 1(B) two neighboring 

minicircles may or may not be topologically linked (hence there is a nonzero variance in link-

ing) due to the random distributions of the orientations of the minicircles. In general, if M1 

and M2 are two minicircle networks whose only difference is that M1 has a higher density than 
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M2 (i.e. the distance between any two neighboring minicircles in M1 is smaller than that of 

their counterparts in M2), then M1 is more connected than M2 since in our model two linked 

minicircles will stay linked when they are moved closer [4].

A minicircle network is said to be completely saturated if each minicircle in the network 

is linked to each of its neighboring minicircles. If M1 is completely saturated then it is more 

connected than any other network realization M2. The network in figure 1(A) is completely 

saturated.

Let us assume that the network has an initial density above the critical percolation density 

and as before p the probability that a minicircle in the network is linearized (or equivalently 

the percentage of minicircles linearized in the network). Let p0 be the critical value of p such 

that if p < p0, then the minicircle network remains percolated, but if p > p0, then the minicir-

cle network is no longer percolated (collapses). p0 depends on the initial density D. We call 

the mean density D0 of the network that is obtained by linearizing minicircles with probability 

p0 the collapsing density of the network. Notice that D0 is the mean number of minicircles 

of the networks with p0 divided by the area of the grid, which is no longer the same as the 

density of the grid points.

2.6. Modeling of the fragmentation reaction by restriction enzymes

We simulated different fragmentation reactions in this study: (1) each minicircle in the entire 

network was linearized with a probability p [3]; (2) minicircles were uniformly selected and 

linearized until the network was no longer percolated; (3) minicircles were uniformly selected 

and all minicircles within a distance r  were linearized. For example, in the case that the square 

lattice is used for the kDNA network, if a is the edge length between two adjacent lattice 

points, then if r < a, the result would not be any different from Case 2. But if a � r <
√

2a, 

then the four vertices closest to the chosen one would be removed, and if 
√

2a � r < 2a, then 

all eight neighbors of the chosen vertex would be removed.

2.7. Estimation of network parameters

 (1)  We used the method described in [3] for networks in which all minicircles had equal 

valence. This method calculates the valence v of the network from the fragmentation 

probability p and its complement 1 − p = q, the average number of monomer minicircles 

released after the enzyme’s minicircle linearization M, and the number of minicircles 

remaining in the network q. The formula is given by:

v =
logM − logN − log q

log p
.

  In [3], this expression was used to estimate the mean valence to be 2.96 ± 0.19.

 (2)  When the network is random, the above approach would not apply. Here we generalize 

the above approach so that we can still use the quantity M to estimate the mean valence 

of the network. Let κ be the number of neighbors a minicircle has in the lattice. For 

example κ = 3 for the honeycomb lattice, κ = 6 for the triangle lattice and κ = 8 for the 

square lattice. We assume that τi (0 � i � κ), the probability that a minicircle is linked 

to i of its neighboring minicircles, is the same for all minicircles in the network. This is 

a reasonable assumption and is not a strong condition. Thus the mean valence of a single 

minicircle is simply

L Ibrahim et alJ. Phys. A: Math. Theor. 52 (2019) 034001
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∑

0�j�κ

jτj = τ1 + 2τ2 + · · ·+ κτκ.

  Now let p be the probability that a minicircle is linearized and q = 1 − p. For a 

randomly chosen minicircle in the network, given that it is linked to j neighboring 

minicircles, the probability that it will become a monomer is qp j . Thus the probability 

that a randomly chosen minicircle becomes a monomer in the network after the enzyme 

has been applied is
∑

0�j�κ

qp jτj = qτ0 + qpτ1 + qp2τ2 + · · ·+ qpκτκ.

  Let N  be the total number of minicircles in the network, then N
∑

0�j�κ
qp jτj =

Nq
∑

0�j�κ
p jτj is the mean number of monomers in the network. Let M be the mean 

number of monomers after the enzyme is applied, then we have M = Nq
∑

0�j�κ
p jτj 

and

M

Nq
= τ0 + pτ1 + p2τ2 + · · ·+ pκτκ

  is a polynomial function of p. If we write f ( p) = M
Nq

, then f ′(1) = τ1 + 2τ2 + · · ·+ κτκ 

gives the mean valence of the network. In other word, without any prior knowledge about 

the network (such as how the minicircles are generated and placed in the network), the 

mean valence can be estimated by computing ( f ( p2)− f ( p1))/( p2 − p1) for values 

p1 �= p2, p1, p2 → 1−. Notice that for a randomly selected minicircle, under the given 

condition that it is already linked to one neighboring minicircle, the probability that it is 

linked to j additional neighboring minicircles (0 � j � κ− 1) is given by τj+1/(1 − τ0), 
hence the probability that this minicircle is not linearized but all of its neighboring minicir-

cles are (except the one given in the condition) is given by

q(τ1 + pτ2 + · · ·+ pκ−1τκ)/(1 − τ0) = qh1( p),

  and the probability that this minicircle, as well as exactly one additional of its neigh-

boring minicircles are not linearized, but all their neighboring minicircles are (except the 

minicircle given in the condition), is given by

q2h1( p)(τ2 + 2pτ3 + · · ·+ (κ− 1) pκ−2τκ)/(1 − τ0) = q2h1( p)h2( p).

  It follows that the probabilities for a randomly selected minicircle to belong to a dimer 

and a trimer can be expressed as

(τ1 + 2pτ2 + · · ·+ κpκ−1τκ)q
2h1( p)

  and

(τ2 + 3pτ3 + · · ·+ Cκ,2pκ−2τκ)q
3h2

1( p) + (τ1 + 2pτ2 + · · ·+ κpκ−1τκ)q
3h1( p)h2( p)

  respectively.

  Notice that for a non-random network, we have τj = 1 for some j and τi = 0 for all other 

i �= j. In which case M
Nq

= p j  hence j can be readily estimated by computing 
ln(M)−ln(Nq)

ln( p) . 

Correspondingly, the theoretical probability for a minicircle to be in a dimer or a trimer 

is given by jq2p2j−2 and 3j( j − 1)q3p3j−4/2. In the case that j = 3, we obtain 3q2p4 and 

9q3p5, matching the results of [3].

L Ibrahim et alJ. Phys. A: Math. Theor. 52 (2019) 034001
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 (3)  We compute the mean valence of the network directly by generating large samples of 

random minicircle networks, and examine how each minicircle in each sampled network 

is linked to its neighbors. This method is the most accurate one, but it averages the number 

of minicircles linked to each of the minicircles in the network and then averages the entire 

ensemble of networks obtained at a given density.

3. Results

All numerical results presented in this section are based on grids of size 50 × 50 with a sample 

size of 10 000.

3.1. Electron microscopy of purified networks suggest a distribution of valences with nonzero 

variance

To test whether purified networks had a distribution of valences with nonzero variance, we 

visualized them using electron microscopy. Figure 2 shows a large section of the network and 

different magnified subsections. Although the topology of the network cannot be appreciated 

from these pictures the entanglement complexity and the local aggregation of minicircles can 

be directly observed. Figure 2(A) shows a section of the purified network. The network is 

bounded by a structure that has been attributed to the more efficient spreading of DNA on the 

boundaries of networks [12]. Figures 2(B) and (E) show a magnification of the section near 

the boundary with some broken minicircles, and two regions with different minicircle den-

sities. Figures 2(C) and (D) show regions in the interior of the network with two different 

minicircle densities. These figures, in particular the observations of minicircles released from 

the network, suggest that the distribution of valences has nonzero variance, as suggested by 

the experiments in [3]. These released minicircles could be from biological origin or a product 

of the purification process of kDNA.

3.2. Products of fragmentation reactions of kDNA networks are consistent  

with those previously reported

To test whether the topology of the isolated networks was consistent with previously reported 

results on kDNA fragmentation, we performed restriction reactions as first reported in [3]. 

Purified networks were treated with restriction enzyme XhoI, an enzyme that is known to cut 

minicircles at only one location. Figure 3 shows the product of a time course fragmentation 

experiment. Consistent with previous reports, minicircle networks do not enter the gel (due to 

their elevated molecular weight) and fractions of linear fragments, monomers, dimers, trimers 

can be identified. In this gel, linear fragments cannot be distinguished from circular monomers 

and migrate together at the bottom of the gel (near the 2.5 kb linear band). Bands associated 

to dimers and trimers can also be observed. Our results suggest that purified kDNA networks, 

with a distribution of valences with nonzero variance, produce results consistent with those 

previously reported [3].

3.3. Our simulations can reproduce previously published analytical results

To test whether our simulations produced outcomes consistent with previous studies [3], we 

generated tessellations of the plane in which all minicircles had equal valence (such as the 

one shown in figure 1(A) where every minicircle had equal valence 3). Simulations of kDNA 
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fragmentation were performed as described before and results were compared with those 

obtained using the mathematical model presented in [3]. Figure 4(A) shows the proportion of 

minicircles present in the monomer, dimer and trimer populations as a function of the linear-

ization probability p. Solid lines are the theoretically derived proportions presented in [3]: qp3 

for monomers, 3q2p4 for dimers and 9q3p5 for trimers. Figure 4(B) shows the estimated mean 

valence around 3. For a valence three network with zero variance of the valence distribution, 

the estimated value of the mean minicircle valence is accurately estimated for all values of p.

These calculations suggest that our simulations can reproduce the results presented in [3].

3.4. Initial configurations with nonzero variance produce results that may significantly  

deviate from those of networks with zero variance

Next, we hypothesized that the proportion of minicircles in monomers, dimers and trimers as 

well as the estimated mean valence should change when the ensemble of initial network con-

figurations consisted of randomly generated networks, with a fixed mean valence but nonzero 

variances. As shown in figure  1(B), an underlying hexagonal lattice cannot produce mean 

valence three upon removing linkage between neighboring minicircles, we thus tested this 

hypothesis using the triangular and square lattices as the underlying lattices. We have previ-

ously analyzed networks built on these lattices and estimated that the critical percolation den-

sities for both lattices are D
perc
triang ∼ D

perc
sqr ∼ 0.637 and mean valence three is achieved when 

Dval=3
triang ∼ 0.925 and Dval=3

sqr ∼ 0.923 [5]. We generated ensembles of simulated networks with 

density 0.91 for the triangular lattice and 1.02 for the square lattice which are both near the 

densities corresponding to a mean valence 3; since both are larger than their corresponding 

percolation densities, we expect that the generated networks will have a ‘large component’ 

and a distribution of small clusters with variable amounts of minicircles in them. When purify-

ing kDNA networks, one would expect to lose most of these small clusters. We therefore only 

Figure 2. Electron microscopy images of kNDA networks purified from C. fasciculata. 
(A) The kDNA network visualized by electron microscopy. Insets (B) and (E) show 
regions of high density of minicircles with some minicircles detached from the network. 
The minicircles and maxicircles at the periphery of the network. Insets (C) and (D) 
show the interior of the network that is less dense.

L Ibrahim et alJ. Phys. A: Math. Theor. 52 (2019) 034001
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show the expected distributions of minicircles belonging to monomers, dimers and trimers 

excised from the large component. Results are shown in figure 5(A). Both lattices give results 

clearly distinct from the predictions in [3] (solid lines) but, interestingly very similar to each 

other. This similarity suggests that the distributions of monomers, dimers and trimers are 

Figure 3. Electrophoretic analysis of kDNA decatenation products obtained by XhoI 
restriction enzyme. After partial digestion of 2 µg of kDNA, the products were resolved 
by electrophoresis through a 0.8% agarose gel. Lane 1 contains 1 kb linear DNA 
ladder (Promega). Lane 2 contains the undigested kDNA network. Lane 3–5 contains 
the products after digestion with 2 U of XhoI enzyme for 5, 10, and 15 min. A trimer 
(link with three components) is illustrated but other possibilities for the links type are 
possible.

Figure 4. (A) Estimation of the frequency of monomers, dimers and trimers and (B) 
estimation of the mean valence for minicircle networks with zero variance as a function 
of fragmentation probability p. The data points are obtained from our simulations.

L Ibrahim et alJ. Phys. A: Math. Theor. 52 (2019) 034001
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sensitive to the valence distribution of the network but not to the different lattices used in the 

simulations. Interestingly the estimated mean valence, figure 5(B), is clearly dependent on the 

value of p and reflects the variance of the valence distribution.

3.5. Computer simulations can be used to estimate the distribution of valences in kDNA

In order to use the computer simulations proposed above to estimate the distribution of 

valences in kDNA experiments, we tested whether the results were independent of the cho-

sen model (i.e. triangular and square lattices) and whether the distributions of monomers, 

dimers and trimers would be different for different mean valences. To test this hypothesis we 

selected the percolation and 95% saturation densities for the triangular and square lattices 

which for the latter are D95%
sqr ∼ D95%

triang ∼ 0.85 and correspond to mean valences ∼2.68 and  

∼2.69 [5]. Figure 6 shows the proportion of minicircles in the monomer, dimer and trimer 

populations for percolation ((A) and (C)) and for 95% saturation ((B) and (D)) for both lat-

tices. As expected, the graphs are very similar for both lattices but different for different densi-

ties, even within the same underlying lattice.

3.6. The collapsing density of a minicircle network is dependent on the initial minicircle den-

sity and on the fragmentation reaction

Next we wanted to address the question of whether the percolation density can be estimated 

by the collapsing density, that is by the number of minicircles that need to be removed from 

the network to lose the ‘large component’. To address this question we first present a new ana-

lytical result that states that the collapsing density depends only on the number of minicircles 

linked on the initial network; second we present computer simulations results that estimate the 

collapsing density. We illustrate these results in the square lattice although they hold for any 

of the other regular lattices we have previously studied [5].

Theorem 1. If the minicircle network is modeled by unit circles with random normal vec-

tors and centers placed on the points of some planar lattice with an initial density D, then the 

collapsing density p0(D) is a non-decreasing function of D with p0(D)/D having a horizontal 

asymptote, where the value of the asymptote can be obtained from the collapsing density of a 

completely saturated minicircle network.

Figure 5. Fragmentations of a triangular and a square lattice at densities at which 
minicircles have mean valence near or slightly over 3. (A) Fragmentation of randomly 
generated networks. Solid lines correspond to the predictions presented in [3]; (B) mean 
valence of the starting network determined theoretically from the simulation output.
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Proof. Let M1 and M2 be the two minicircle networks generated under the same model 

but corresponding to two different densities D1 and D2 such that D1 > D2. That is, M1 and 

M2 have the same number of minicircles that are placed on two lattice grids that differ only 

by scale. By the remark above, M1 is more connected than M2. Thus if we consider a fixed 

minicircle network in M2 (meaning each minicircle has a fixed orientation), then two neigh-

boring minicircles in M1 remain linked if they are linked in M2. This means that the prob-

ability of two neighboring minicircles in M1 are linked after the enzyme is applied is the 

same as its counterpart in M2 if the two minicircles are linked in M2 (hence also in M1), or 

are not linked in M1 (hence not linked in M2 either), but is higher in the case that they are 

linked in M1 yet not in M2 (which is possible). Thus under the same enzyme action (namely 

the same value of probability p), the minicircle network M1 is more connected than M2 af-

ter the enzyme action is applied. Let D0 be the critical percolation density of the minicircle 

network. If D2 � D0  then p0(D2) = 0 since the network is below the critical percolation 

level for any p > 0. So in this case we apparently have p0(D1) � p0(D2). If D2 > D0 , then 

for p < p0(D2), the network under M2 remains percolated after the enzyme is applied by 

the definition of p0(D2). However M1 is more connected than M2, hence the network under 

M1 will also remain percolated if the same enzyme level (namely probability p) is applied. 

That is, p0(D1) � p0(D2) by definition. This argument applies to any M2 if M1 is completely 

saturated. However, if M1 is completely saturated, then increasing its density will not change 

that. Thus at the collapsing density the same number of minicircles should remain regardless 

Figure 6. Fragmentation results on square and triangular lattices for key network 
densities: (A) percolation density in a square lattice; (B) 95% saturation density in a 
square lattice; (C) percolation density in a triangular lattice and (D) 95% saturation 
density in a square lattice.
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of its initial density. Let N  be the number of minicircles initially in M1 and N0 be the number 

of minicircles remaining when M1 reaches its collapsing density, then D1 = N/A1, where A1 

is the area of the grid upon which M1 is built. It follows that p0(D1) = N0/A1 = (N0/N)D1. 

Since N0 and N  are constants, this proves that the collapsing density of M1 is proportional to 

its initial density if M1 is completely saturated. □ 

Remark. Notice that in the above proof, the argument does not depend on the value of κ. 

So the statement of the theorem in fact holds for models with different choices of the κ values.

We performed the corresponding simulations based on square lattice with κ = 8. Here we 

varied the initial density values between 0.7 and 1.5 (in increments of 0.1). The values of the 

network collapsing density were estimated and results averaged over the whole ensemble of 

networks. Figure 7(A) shows the average collapsing density as a function of the initial density 

in the lattice. Not surprisingly we observed that the average collapsing density is different 

from the critical percolation density (Dc ≈ 0.64) since it depends on the initial density D0 in 

a strong linear fashion as predicted by the theorem. Therefore the collapsing density can be 

lower than, equal to or larger than the critical percolation density.

Next we wanted to test whether the way in which minicircles were removed from the 

network could affect our estimation of the percolating density. To test this hypothesis we 

implemented a program that removed minicircles in clusters (see methods) rather than indi-

vidually. Results for the removal of minicircles in groups of five are presented in figure 7(B). 

We observe that when minicircles were removed in clusters, the larger the number of minicir-

cles in the cluster, the smaller the average collapsing density. However the overall behavior of 

p0(D) with respect to D is very similar in all cases as shown in figure 7. We therefore conclude 

that without information on the initial density of minicircles and the fragmentation reaction 

one cannot estimate the percolation density by fragmentation reactions.

4. Conclusion

In recent years the three dimensional organization of genomes has taken center stage due 

to its connections with functional aspects of the cell. However, determination of the topo-

logical properties of any genome remains elusive. This is clearly illustrated by the numerous 

and diverse, and in many cases contradictory, set of 3D organization models that have been 

Figure 7. Average collapsing density as a function of the initial density. Minicircles 
were removed (A) one at a time in a uniformly random fashion and (B) in groups of  
five.
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proposed for chromatin. There are a few examples where evolution has selected topologically 

complex genomes. One of them is the mitochondrial DNA of trypanosomatids that is partly 

organized into several thousand minicircles that are topologically linked into a single network. 

Several parameters determine the topology of the network. In this study we have investigated 

the distribution of minicircle valences and the critical percolation density.

At any given time point the network can be described by two parameters: the distribution 

of valences and the link type between every pair of minicircles. Chen and colleagues [3] pro-

posed a combination of experiments and mathematical modeling to determine the mean of 

the distribution of valences. Our experimental results, in agreement with those in [3] suggest 

that kDNA purified from C. fasciculata have nonzero variance. In [3], a mathematical method 

to analyze these experiments was proposed. In their method several tessellations of the plane 

were considered, and the estimated fragmentation probabilities derived. Since these were reg-

ular tessellations of the plane the variance of the distribution of valences was assumed to be 

equal zero. Whether these theoretical results could be generalized to cases where the distribu-

tion of valences are affected by the distribution of cells in the different phases of the cell cycle 

or whether they could be applied to situations in which it is firmly known that the topology 

of the network deviates from the wild-type remained open. In this work, we have presented a 

more general mathematical formulation of the problem (section 2.7) and performed Monte-

Carlo simulations of fragmentation reactions of networks with nonzero variance. We therefore 

suggest simulations provide a method to estimate the parameters of the network such as the 

variance of the distribution of valences and the number of holes.

The percolation density, first proposed in [4, 6], is an important property of the minicircle 

networks that may provide information on the evolution of the topological structure of the 

kDNA network. Our results, however show that the estimated value depends on the initial 

minicircle density and of the fragmentation reaction mechanism. It is our goal to use the meth-

ods presented here to estimate the topological properties of kDNA networks purified from 

replication deficient mutants and other organisms.
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