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Abstract
The mitochondrial DNA of trypanosomes, called kinetoplast DNA (kDNA)
contains thousands of minicircles that are topologically linked into a single
structure that resembles a medieval chainmail. This biological chainmail is
characterized by two parameters: the link type between minicircles, and the
number of minicircles linked to each minicircle (i.e. the minicircle valence).
In previous works, a protocol was proposed to determine the mean value of
the minicircle valence. In these experiments, minicircles were excised from
the network and the products compared with those obtained from fragmenting
idealized structures. These idealized structures assumed a negligible variance
in the distribution of valences of the initial network. It is therefore unclear to
what extent this theoretical analysis captures the true topology of the kDNA
network when kDNA samples are extracted from unsynchronized cells or from
cells with silenced kDNA replication genes. Subsequent studies proposed that
there is a critical percolation density during network formation. We asked
whether this density can be estimated using fragmentation reactions.

The goal of this work is to develop a mathematical method that can be used
to estimate the mean valence of networks when the variance of the valence
is non-negligible. We first show microscopy data on Crithidia fasciculata
that, in agreement with the original experimental results, show a distribution
of valences with nonzero variance. Second, we use computer simulations of
network fragmentation to show that the predicted and actual mean valence are
different when the valence distribution has nonzero variance. We propose a
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more general mathematical formulation and computer simulations of kDNA
fragmentation to estimate this value. Last, we show that fragmentation
experiments may lead to errors in the estimation of the critical percolation
density since the collapsing density depends on the initial density of the
network, and on the fragmentation reaction.

Keywords: statistical mechanics, polymeric systems, minicircle networks,
kinetoplast DNA, network fragmentation, DNA linking

(Some figures may appear in colour only in the online journal)

1. Introduction

Trypanosomatids are single celled organisms whose mitochondrial DNA, called kinetoplast
DNA (kDNA), contains thousands of small circular DNA molecules (e.g. minicicles). These
minicircles are topologically (rather than chemically) linked and their centers are confined
into a plane, forming a two dimensional topological network. The evolutionary origin of this
network remains to be determined, however, evidence is mounting towards a model driven
by confinement [4, 10, 15] together with its corresponding induced evolutionary advantage
[14, 19].

A few quantitative characteristics have been identified to describe the topology of these
networks. In a sequence of experimental studies, Chen and colleagues identified two exper-
imentally measurable parameters that helped characterize kDNA networks isolated from the
model organism Crithidia fasciculata [2, 3]. These two characterizing parameters are the link
type between two minicircles and the mean minicircle valence, the latter defined as the aver-
age number of minicircles topologically linked to any chosen minicircle in the kKDNA net-
work. In their studies, they found that minicircles in C. fasciculata are linked through Hopf
links [17] and that the mean valence was three [3]. In their approach, Chen and colleagues
gradually removed minicircles from kDNA networks purified from C. fasciculata using lim-
ited digestion (i.e. fragmentation). As the network collapsed due to the random lineariza-
tion of minicircles, clusters containing a small number of minicircles (monomers, dimers
and trimers) were separated by gel electrophoresis and their topology identified by electron
microscopy. The link type and the frequency of the different clusters were compared with
those predicted by ideal tessellations of the plane. The mathematical models for fragmentation
proposed on these tessellations all assumed that each minicircle is linked to each of its neigh-
bors (see figure 1(A)). It is therefore unclear to what extent the same mathematical modeling
can be applied to kKDNA samples purified from unsynchronized cell cultures, from strains that
are deficient in kDNA replication (reviewed in [10]) or even from other organisms [14].

More recent computational studies have identified properties of topological networks that
can only be uncovered when the network is being formed. These are the critical percola-
tion and mean saturation densities [4, 15]. During network formation, and as the density of
minicircles grows, initial small clusters of minicircles join into larger clusters until a ‘large’
cluster forms. This density is called the critical percolation density [6]. Similarly, as the den-
sity of minicircles are further confined, a network in which most of the minicircles (>90%) are
linked into a single structure is formed. This new density is called the mean saturation density.
A key question is whether these computational properties can be estimated experimentally by
gradually fragmentation minicircles.
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Figure 1. Two networks built on a grid in the hexagonal lattice with the same dimension.
Vertices represent minicircles and edges represent topological links. (A) A non-random
network in which all minicircles have valence three; (B) a random network with random
linking distributions due to the random orientations of minicircles.

The main goal of the work presented here is to reproduce some of the experimental results
proposed by Chen and colleagues and further extend their mathematical method. First, we
show electron microscopy data illustrating that the valence of minicircle networks may have a
large variance. Second, we qualitatively show that the fragmentation products of these kDNA
networks in which a significant variance of the valence is observed are consistent with those
previously reported in [3]. Third, we test the limit of the original mathematical model by
comparing its predictions with those obtained using Monte-Carlo computer simulations of
fragmentation of minicircle networks with nonzero variance of the valence. We show that
deviations from the predicted values rapidly accumulate, suggesting that the originally pro-
posed method is not valid to analyze situations when the variance is non-trivial. To address
this problem we propose a mathematical model that generalizes the model in the original
publication by Chen and colleagues and to use computer simulations to analyze fragmentation
reactions. We also investigate whether the percolation density can be estimated by the same
fragmentation reactions. In particular, we ask whether the percolation density is the same as
the density at which the minicircle network does not have a large component any more (i.e. the
network no longer percolates). We find that in general these two densities do not agree with
each other and that this difference is strongly dependent on different initial factors, including
the initial minicircle density and the mechanism of fragmentation.

2. Methods

2.1. Cell growth and kDNA purification

C. fasciculata (clone HS6) promastigotes were grown at 27 °C with gentle agitation in serum-
free BHI (37 g 17! containing 20 x1g ml~! hemin. Mid-log phase cells (~4 x 107 cells ml~}
were harvested and washed once with 10mM Tris-HCI pH 8.0, containing 100 mM NaCl and
100mM EDTA (NET 100) and then resuspended in NET 100 at a density of 1 x 10° cells
ml~!. Cells were lysed in 0.5% SDS. Cell lysate was then incubated with 0.2 mg ml~! protein-
ase K (56 °C, overnight), and then treated with 0.1 mg ml~'RNase A (37 °C, 15 min). Using a
modified kDNA purification method, 500 ul of cell lysate was layered on top of 700 pl of 20%
sucrose in TE and centrifuged at 20000 rpm for 60 min using a microcentrifuge. Supernatant
was removed (950 ul) leaving behind approximately 250 pl. The remaining sample was resus-
pended with 250 ul TE and applied to a new sucrose cushion (700 ul) and centrifuged again
at 20000 rpm for 60 min. After removing the supernatant (1.1 ml), the remaining sample was
resuspended with 400 ul of TE and layered onto a new sucrose cushion and centrifuged a final
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time at 20000rpm for 60min. The last supernatant was carefully removed leaving behind
about 35 ul (containing purified kDNA). kDNA samples were dialyzed at 4 °C overnight
against 1000 ml vol of TE buffer and precipitated by ethanol. If necessary the samples were
ethanol precipitated before proceeding with the restriction enzyme digestion.

2.2. Restriction assay

To digest kDNA, 20 pl containing 100 mM NaCl, 50 mM Tris-HCI (pH 7.9 at 25 °C), 10mM
MgCl,, 100 ug ml~!BSA, 2 ug of kDNA and 2 U of the restriction enzyme Xhol were incu-
bated at 37 °C for times ranging from 5 to 15 min. Buffer and enzyme were purchased from
New England Biolabs. After heat deactivating Xhol at 65 °C for 20 min, the DNA was nicked
with 10U of Nb.Bsml by incubation at 65 °C for 1 h to compact each link type into a single
band.

2.3. Gel electrophoresis

DNA links were then separated by electrophoresis (2V ¢cm™!) through a 0.8% agarose gel
in containing containing 80 mM Tris-HCI (pH 7.5), 5mM sodium acetate, | mM EDTA, and
0.03% SDS. After electrophoresis, gels were stained with ethidium bromide and photographed
under UV light using a Amersham Imager 600. DNA was extracted from the gels using a
QIAquick Gel Extraction Kit.

2.4. Electron microscopy

Electron microscopy was used to identify kDNA fragments after extraction from agarose gels.
DNA-cytochrome C samples were prepared according to [16, 20]. A mixture of DNA (2.5ng
p1~1) and cytochrome C (60ng u1~") was prepared in tris-EDTA (TE) buffer. A droplet (50
wl) was placed on a piece of parafilm and allowed to sit for 2 min. Paladion-coated copper
grids were touched to droplets. The grids were then rinsed with 95% ethanol for 10 s, 5%
uranyl acetate for 30 s, and then again with 95% ethanol for 10 s. The grids were air dried,
shadowed with Pt/Pd alloy (80%/20%) at an angle of 7°, and viewed in a JEOL-1230 electron
microscope.

2.5. Assembling simulated kDNA networks

We used our previously proposed lattice models for simulating KDNA networks. These models
have been detailed in our previous works [4, 5] and were based on sound biological and math-
ematical observations/assumptions (see [7] for the list of assumptions). In brief, we modeled
minicircles by unit circles. There are two main reasons for using this model: first, minicircles
in KDNA are linked by Hopf links and this is the only link type possible between two circles
[17], and second their sequence is AT-rich [9, 11, 13] and therefore their folding may be dif-
ferent from the standard wormlike chain (e.g. [8]). The minicircle network is generated over
a planar lattice grid such that the centers of the minicircles of the network are the grid points
and at each grid point exactly one minicircle is placed [4, 5, 18]. Here we use the term grid to
refer to a finite portion of the lattice on which the minicircle network is built. The orientations
of the minicircles (defined as the normal vectors of the plane that contain the minicircles)
are identical independent random variables that are either uniformly distributed over the unit
sphere or of some other distributions [1, 7]. Thus two randomly generated minicircle networks
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over the same grid will have the same number of minicircles and minicircle density, but differ
in the orientations of the minicircles. Naturally, the density of minicircles in such a network is
defined as the number of minicircles per unit area where the linear unit is defined by the radius
of the minicircles, which is not to be confused with the distance between two adjacent vertices
in the lattice. Since at each grid point exactly one minicircle is placed, the minicircle density
is the same as the number of the grid points per unit area. Thus if we let a be the distance
between two adjacent vertices in the lattice, then for large networks, the minicircle density
can be expressed as a simple function of a. For example, it is 1/a* for the square lattice and
2/(v/3a?) for the triangular lattice.

We have identified two key densities during the formation of minicircle networks: the criti-
cal percolation density and the mean saturation density. Roughly speaking, the critical per-
colation density is the density beyond which a ‘large component spanning over the entire
network of linked minicircles’ forms with a probability > 0, while the mean saturation density
is the average density beyond which a high percentage of minicircles are linked to the same
component (here the percentage is a user defined parameter). Different densities, obtained by
changing the distance a between adjacent lattice points in the lattice, and topological structures
of the kDNA network were selected according to the hypothesis being tested. These included:
(1) hexagonal lattice in which all minicircles valence equal to three [3] (figure 1(A)), (2)
triangular and square lattices with a random distribution of valences centered around valence
three due to differently oriented circles or when the percolation or saturation were obtained.

For any two grid points on a grid of certain lattice, we define the lattice distance between
the two points as the minimum number of lattice steps needed to walk from one point to the
other. For two minicircles in a minicircle network of a lattice model, we define the lattice dis-
tance between the two minicircles as the lattice distance between their centers. Notice that the
lattice distance between two minicircles is scale invariant. It is important to note that in our
previous models linking between any two minicircles in the network, no matter how far away
they are as measured by their lattice distance, is possible when the minicircle density is high
enough. This is apparently an artificial effect due to our use of circles as minicircles [4, 5, 18].
From a biological point of view, it makes sense to assume that each minicircle can only link
to those minicircles that are not too far from it in terms of the lattice distance. For the purpose
of this paper, we shall only consider linking between a minicircle and its immediate neighbors
for the triangular and hexagonal lattices. In the square lattice model, other than considering
the linking of a minicircle with its four immediate neighbors, we will also consider linking
between it and four minicircles closest to it along a diagonal line. Thus, if we let x be the num-
ber of minicircles to which each minicircle can link with, then throughout this paper, £ = 3 for
the hexagonal lattice, x = 6 for the triangular lattice and x = 8 for the square lattice.

Next, we introduce some definitions that are needed in section 3.6. Let us consider two
realizations, M; and M,, of a network based on the same lattice type and with the same
number of minicircles; hence the connectedness of the network is uniquely determined by the
individual orientations of the minicircles. We say that M| is more connected than M, if any
two neighboring minicircles in M, are linked so long as their counterparts are linked in M5.
This is illustrated in figure 1 where, following the work by [3], each minicircle is represented
by a vertex and topological linking between two neighboring minicircles is represented by
an edge connecting the two vertices corresponding to these minicircles. Figures 1(A) and (B)
show two hexagonal lattice based minicircle networks. In figure 1(A) each minicircle is linked
to all of its neighbors (so there is no variance in linking) and in figure 1(B) two neighboring
minicircles may or may not be topologically linked (hence there is a nonzero variance in link-
ing) due to the random distributions of the orientations of the minicircles. In general, if M;
and M, are two minicircle networks whose only difference is that M has a higher density than
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M, (i.e. the distance between any two neighboring minicircles in M, is smaller than that of
their counterparts in M;), then M, is more connected than M, since in our model two linked
minicircles will stay linked when they are moved closer [4].

A minicircle network is said to be completely saturated if each minicircle in the network
is linked to each of its neighboring minicircles. If M, is completely saturated then it is more
connected than any other network realization M,. The network in figure 1(A) is completely
saturated.

Let us assume that the network has an initial density above the critical percolation density
and as before p the probability that a minicircle in the network is linearized (or equivalently
the percentage of minicircles linearized in the network). Let pg be the critical value of p such
that if p < po, then the minicircle network remains percolated, but if p > py, then the minicir-
cle network is no longer percolated (collapses). py depends on the initial density D. We call
the mean density Dy of the network that is obtained by linearizing minicircles with probability
po the collapsing density of the network. Notice that Dy is the mean number of minicircles
of the networks with py divided by the area of the grid, which is no longer the same as the
density of the grid points.

2.6. Modeling of the fragmentation reaction by restriction enzymes

We simulated different fragmentation reactions in this study: (1) each minicircle in the entire
network was linearized with a probability p [3]; (2) minicircles were uniformly selected and
linearized until the network was no longer percolated; (3) minicircles were uniformly selected
and all minicircles within a distance r were linearized. For example, in the case that the square
lattice is used for the kDNA network, if a is the edge length between two adjacent lattice
points, then if r < a, the result would not be any different from Case 2. Butifa < r < ﬁa,
then the four vertices closest to the chosen one would be removed, and if V2a < r < 2a, then
all eight neighbors of the chosen vertex would be removed.

2.7 Estimation of network parameters

(1) We used the method described in [3] for networks in which all minicircles had equal
valence. This method calculates the valence v of the network from the fragmentation
probability p and its complement 1 — p = g, the average number of monomer minicircles
released after the enzyme’s minicircle linearization M, and the number of minicircles
remaining in the network g. The formula is given by:

- logM — log N — logg
B log p '

In [3], this expression was used to estimate the mean valence to be 2.96 + 0.19.

(2) When the network is random, the above approach would not apply. Here we generalize
the above approach so that we can still use the quantity M to estimate the mean valence
of the network. Let x be the number of neighbors a minicircle has in the lattice. For
example x = 3 for the honeycomb lattice, x = 6 for the triangle lattice and x = 8 for the
square lattice. We assume that 7; (0 < i < k), the probability that a minicircle is linked
to i of its neighboring minicircles, is the same for all minicircles in the network. This is
a reasonable assumption and is not a strong condition. Thus the mean valence of a single
minicircle is simply



J. Phys. A: Math. Theor. 52 (2019) 034001 L Ibrahim et al

Z Ji=T1+2m 4+ + KT

0Lk

Now let p be the probability that a minicircle is linearized and ¢ =1 — p. For a
randomly chosen minicircle in the network, given that it is linked to j neighboring
minicircles, the probability that it will become a monomer is gp/. Thus the probability
that a randomly chosen minicircle becomes a monomer in the network after the enzyme
has been applied is

> ap'ti=qno+aqpri+ gt + -+ gp T

0<k
Let N be the total number of minicircles in the network, then N3 ;. qp’Ti =
Ng Zog;gn pjTj is the mean number of monomers in the network. Let M be the mean
number of monomers after the enzyme is applied, then we have M = Ng Zoggm it
and

M 2 K
— =To+pTi+p Tt FpT,

Ng
is a polynomial function of p. If we write f(p) = NMq, then f/(1) =7 +2m + -+ + K7y
gives the mean valence of the network. In other word, without any prior knowledge about
the network (such as how the minicircles are generated and placed in the network), the
mean valence can be estimated by computing (f(p2) —f(p1))/(p2 — p1) for values
P1 # P2, p1» p» — 1. Notice that for a randomly selected minicircle, under the given
condition that it is already linked to one neighboring minicircle, the probability that it is
linked to j additional neighboring minicircles (0 < j < k — 1) is given by 7541 /(1 — 70),
hence the probability that this minicircle is not linearized but all of its neighboring minicir-
cles are (except the one given in the condition) is given by

g1 +pm+ -+ p" ') /(1 = 70) = ghi(p),

and the probability that this minicircle, as well as exactly one additional of its neigh-
boring minicircles are not linearized, but all their neighboring minicircles are (except the
minicircle given in the condition), is given by

Thi(p)(m2+2p73 + -+ (k= 1) p" 1) /(1 = 10) = ¢ hi (p)ha(p).

It follows that the probabilities for a randomly selected minicircle to belong to a dimer
and a trimer can be expressed as

(11 +2pm + -+ 5p" 1) (p)

and

(724 3p73 + -+ Coap" 1)@ (p) + (11 + 2p72 + -+ + Kp" ') hi (p)ha(p)

respectively.
Notice that for a non-random network, we have 7; = 1 for some j and 7; = 0 for all other

i # j. In which case Nﬂq = p/ hence j can be readily estimated by computing W.

Correspondingly, the theoretical probability for a minicircle to be in a dimer or a trimer
is given by jg°p¥ =2 and 3j(j — 1)g°p¥~*/2. In the case that j = 3, we obtain 3¢*p* and
9¢°p°, matching the results of [3].
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(3) We compute the mean valence of the network directly by generating large samples of
random minicircle networks, and examine how each minicircle in each sampled network
is linked to its neighbors. This method is the most accurate one, but it averages the number
of minicircles linked to each of the minicircles in the network and then averages the entire
ensemble of networks obtained at a given density.

3. Results

All numerical results presented in this section are based on grids of size 50 x 50 with a sample
size of 10 000.

3.1. Electron microscopy of purified networks suggest a distribution of valences with nonzero
variance

To test whether purified networks had a distribution of valences with nonzero variance, we
visualized them using electron microscopy. Figure 2 shows a large section of the network and
different magnified subsections. Although the topology of the network cannot be appreciated
from these pictures the entanglement complexity and the local aggregation of minicircles can
be directly observed. Figure 2(A) shows a section of the purified network. The network is
bounded by a structure that has been attributed to the more efficient spreading of DNA on the
boundaries of networks [12]. Figures 2(B) and (E) show a magnification of the section near
the boundary with some broken minicircles, and two regions with different minicircle den-
sities. Figures 2(C) and (D) show regions in the interior of the network with two different
minicircle densities. These figures, in particular the observations of minicircles released from
the network, suggest that the distribution of valences has nonzero variance, as suggested by
the experiments in [3]. These released minicircles could be from biological origin or a product
of the purification process of kKDNA.

3.2. Products of fragmentation reactions of kDNA networks are consistent
with those previously reported

To test whether the topology of the isolated networks was consistent with previously reported
results on kDNA fragmentation, we performed restriction reactions as first reported in [3].
Purified networks were treated with restriction enzyme Xhol, an enzyme that is known to cut
minicircles at only one location. Figure 3 shows the product of a time course fragmentation
experiment. Consistent with previous reports, minicircle networks do not enter the gel (due to
their elevated molecular weight) and fractions of linear fragments, monomers, dimers, trimers
can be identified. In this gel, linear fragments cannot be distinguished from circular monomers
and migrate together at the bottom of the gel (near the 2.5kb linear band). Bands associated
to dimers and trimers can also be observed. Our results suggest that purified kKDNA networks,
with a distribution of valences with nonzero variance, produce results consistent with those
previously reported [3].

3.3. Our simulations can reproduce previously published analytical results

To test whether our simulations produced outcomes consistent with previous studies [3], we
generated tessellations of the plane in which all minicircles had equal valence (such as the
one shown in figure 1(A) where every minicircle had equal valence 3). Simulations of KkDNA
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Figure 2. Electron microscopy images of KNDA networks purified from C. fasciculata.
(A) The kDNA network visualized by electron microscopy. Insets (B) and (E) show
regions of high density of minicircles with some minicircles detached from the network.
The minicircles and maxicircles at the periphery of the network. Insets (C) and (D)
show the interior of the network that is less dense.

fragmentation were performed as described before and results were compared with those
obtained using the mathematical model presented in [3]. Figure 4(A) shows the proportion of
minicircles present in the monomer, dimer and trimer populations as a function of the linear-
ization probability p. Solid lines are the theoretically derived proportions presented in [3]: gp*
for monomers, 3¢*p* for dimers and 9¢°p° for trimers. Figure 4(B) shows the estimated mean
valence around 3. For a valence three network with zero variance of the valence distribution,
the estimated value of the mean minicircle valence is accurately estimated for all values of p.

These calculations suggest that our simulations can reproduce the results presented in [3].

3.4. Initial configurations with nonzero variance produce results that may significantly
deviate from those of networks with zero variance

Next, we hypothesized that the proportion of minicircles in monomers, dimers and trimers as
well as the estimated mean valence should change when the ensemble of initial network con-
figurations consisted of randomly generated networks, with a fixed mean valence but nonzero
variances. As shown in figure 1(B), an underlying hexagonal lattice cannot produce mean
valence three upon removing linkage between neighboring minicircles, we thus tested this
hypothesis using the triangular and square lattices as the underlying lattices. We have previ-
ously analyzed networks built on these lattices and estimated that the critical percolation den-

sities for both lattices are Dfiy. ~ Dig ~ 0.637 and mean valence three is achieved when

D;’S:; ~ 0.925 and DZSFS ~ 0.923 [5]. We generated ensembles of simulated networks with
density 0.91 for the triangular lattice and 1.02 for the square lattice which are both near the
densities corresponding to a mean valence 3; since both are larger than their corresponding
percolation densities, we expect that the generated networks will have a ‘large component’
and a distribution of small clusters with variable amounts of minicircles in them. When purify-

ing kDNA networks, one would expect to lose most of these small clusters. We therefore only
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Figure 3. Electrophoretic analysis of kDNA decatenation products obtained by Xhol
restriction enzyme. After partial digestion of 2 p1g of KDNA, the products were resolved
by electrophoresis through a 0.8% agarose gel. Lane 1 contains 1kb linear DNA
ladder (Promega). Lane 2 contains the undigested kDNA network. Lane 3-5 contains
the products after digestion with 2 U of Xhol enzyme for 5, 10, and 15min. A trimer
(link with three components) is illustrated but other possibilities for the links type are
possible.
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Figure 4. (A) Estimation of the frequency of monomers, dimers and trimers and (B)
estimation of the mean valence for minicircle networks with zero variance as a function
of fragmentation probability p. The data points are obtained from our simulations.

show the expected distributions of minicircles belonging to monomers, dimers and trimers
excised from the large component. Results are shown in figure 5(A). Both lattices give results
clearly distinct from the predictions in [3] (solid lines) but, interestingly very similar to each
other. This similarity suggests that the distributions of monomers, dimers and trimers are
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Figure 5. Fragmentations of a triangular and a square lattice at densities at which
minicircles have mean valence near or slightly over 3. (A) Fragmentation of randomly
generated networks. Solid lines correspond to the predictions presented in [3]; (B) mean
valence of the starting network determined theoretically from the simulation output.

sensitive to the valence distribution of the network but not to the different lattices used in the
simulations. Interestingly the estimated mean valence, figure 5(B), is clearly dependent on the
value of p and reflects the variance of the valence distribution.

3.5. Computer simulations can be used to estimate the distribution of valences in kDNA

In order to use the computer simulations proposed above to estimate the distribution of
valences in kDNA experiments, we tested whether the results were independent of the cho-
sen model (i.e. triangular and square lattices) and whether the distributions of monomers,
dimers and trimers would be different for different mean valences. To test this hypothesis we
selected the percolation and 95% saturation densities for the triangular and square lattices

which for the latter are D3/ ~ Dya.e. ~ 0.85 and correspond to mean valences ~.2.68 and
~2.69 [5]. Figure 6 shows the proportion of minicircles in the monomer, dimer and trimer
populations for percolation ((A) and (C)) and for 95% saturation ((B) and (D)) for both lat-
tices. As expected, the graphs are very similar for both lattices but different for different densi-

ties, even within the same underlying lattice.

3.6. The collapsing density of a minicircle network is dependent on the initial minicircle den-
sity and on the fragmentation reaction

Next we wanted to address the question of whether the percolation density can be estimated
by the collapsing density, that is by the number of minicircles that need to be removed from
the network to lose the ‘large component’. To address this question we first present a new ana-
Iytical result that states that the collapsing density depends only on the number of minicircles
linked on the initial network; second we present computer simulations results that estimate the
collapsing density. We illustrate these results in the square lattice although they hold for any
of the other regular lattices we have previously studied [5].

Theorem 1. If the minicircle network is modeled by unit circles with random normal vec-
tors and centers placed on the points of some planar lattice with an initial density D, then the
collapsing density po(D) is a non-decreasing function of D with py(D) /D having a horizontal
asymptote, where the value of the asymptote can be obtained from the collapsing density of a
completely saturated minicircle network.
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Figure 6. Fragmentation results on square and triangular lattices for key network
densities: (A) percolation density in a square lattice; (B) 95% saturation density in a
square lattice; (C) percolation density in a triangular lattice and (D) 95% saturation
density in a square lattice.

Proof. Let M, and M, be the two minicircle networks generated under the same model
but corresponding to two different densities Dy and D, such that Dy > D,. That is, M; and
M, have the same number of minicircles that are placed on two lattice grids that differ only
by scale. By the remark above, M; is more connected than M. Thus if we consider a fixed
minicircle network in M, (meaning each minicircle has a fixed orientation), then two neigh-
boring minicircles in M, remain linked if they are linked in M,. This means that the prob-
ability of two neighboring minicircles in M, are linked after the enzyme is applied is the
same as its counterpart in M, if the two minicircles are linked in M, (hence also in M), or
are not linked in M; (hence not linked in M, either), but is higher in the case that they are
linked in M; yet not in M, (which is possible). Thus under the same enzyme action (namely
the same value of probability p), the minicircle network M; is more connected than M, af-
ter the enzyme action is applied. Let Dy be the critical percolation density of the minicircle
network. If Dy < Dy then po(D,) = 0 since the network is below the critical percolation
level for any p > 0. So in this case we apparently have po(D;) > po(D2). If D, > Dy, then
for p < po(D,), the network under M, remains percolated after the enzyme is applied by
the definition of py(D,). However M; is more connected than M;, hence the network under
M, will also remain percolated if the same enzyme level (namely probability p) is applied.
That is, po(D1) = po(D2) by definition. This argument applies to any M, if M, is completely
saturated. However, if M is completely saturated, then increasing its density will not change
that. Thus at the collapsing density the same number of minicircles should remain regardless
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Figure 7. Average collapsing density as a function of the initial density. Minicircles
were removed (A) one at a time in a uniformly random fashion and (B) in groups of
five.

of its initial density. Let N be the number of minicircles initially in M; and N, be the number
of minicircles remaining when M| reaches its collapsing density, then D; = N/A,, where A;
is the area of the grid upon which M is built. It follows that po(D;) = No/A| = (No/N)D;.
Since Ny and N are constants, this proves that the collapsing density of M| is proportional to
its initial density if M; is completely saturated. [l

Remark. Notice that in the above proof, the argument does not depend on the value of x.
So the statement of the theorem in fact holds for models with different choices of the x values.

We performed the corresponding simulations based on square lattice with x = 8. Here we
varied the initial density values between 0.7 and 1.5 (in increments of 0.1). The values of the
network collapsing density were estimated and results averaged over the whole ensemble of
networks. Figure 7(A) shows the average collapsing density as a function of the initial density
in the lattice. Not surprisingly we observed that the average collapsing density is different
from the critical percolation density (D, = 0.64) since it depends on the initial density Dy in
a strong linear fashion as predicted by the theorem. Therefore the collapsing density can be
lower than, equal to or larger than the critical percolation density.

Next we wanted to test whether the way in which minicircles were removed from the
network could affect our estimation of the percolating density. To test this hypothesis we
implemented a program that removed minicircles in clusters (see methods) rather than indi-
vidually. Results for the removal of minicircles in groups of five are presented in figure 7(B).
We observe that when minicircles were removed in clusters, the larger the number of minicir-
cles in the cluster, the smaller the average collapsing density. However the overall behavior of
po(D) with respect to D is very similar in all cases as shown in figure 7. We therefore conclude
that without information on the initial density of minicircles and the fragmentation reaction
one cannot estimate the percolation density by fragmentation reactions.

4. Conclusion

In recent years the three dimensional organization of genomes has taken center stage due
to its connections with functional aspects of the cell. However, determination of the topo-
logical properties of any genome remains elusive. This is clearly illustrated by the numerous
and diverse, and in many cases contradictory, set of 3D organization models that have been
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proposed for chromatin. There are a few examples where evolution has selected topologically
complex genomes. One of them is the mitochondrial DNA of trypanosomatids that is partly
organized into several thousand minicircles that are topologically linked into a single network.
Several parameters determine the topology of the network. In this study we have investigated
the distribution of minicircle valences and the critical percolation density.

At any given time point the network can be described by two parameters: the distribution
of valences and the link type between every pair of minicircles. Chen and colleagues [3] pro-
posed a combination of experiments and mathematical modeling to determine the mean of
the distribution of valences. Our experimental results, in agreement with those in [3] suggest
that kDNA purified from C. fasciculata have nonzero variance. In [3], a mathematical method
to analyze these experiments was proposed. In their method several tessellations of the plane
were considered, and the estimated fragmentation probabilities derived. Since these were reg-
ular tessellations of the plane the variance of the distribution of valences was assumed to be
equal zero. Whether these theoretical results could be generalized to cases where the distribu-
tion of valences are affected by the distribution of cells in the different phases of the cell cycle
or whether they could be applied to situations in which it is firmly known that the topology
of the network deviates from the wild-type remained open. In this work, we have presented a
more general mathematical formulation of the problem (section 2.7) and performed Monte-
Carlo simulations of fragmentation reactions of networks with nonzero variance. We therefore
suggest simulations provide a method to estimate the parameters of the network such as the
variance of the distribution of valences and the number of holes.

The percolation density, first proposed in [4, 6], is an important property of the minicircle
networks that may provide information on the evolution of the topological structure of the
kDNA network. Our results, however show that the estimated value depends on the initial
minicircle density and of the fragmentation reaction mechanism. It is our goal to use the meth-
ods presented here to estimate the topological properties of kDNA networks purified from
replication deficient mutants and other organisms.
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