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ABSTRACT: We use the quasi-diabatic (QD) propagation scheme to perform on-the-fly
nonadiabatic simulations of the photodynamics of ethylene. The QD scheme enables a
seamless interface between accurate diabatic-based quantum dynamics approaches and
adiabatic electronic structure calculations, explicitly avoiding any efforts to construct global
diabatic states or reformulate the diabatic dynamics approach to the adiabatic representation.
Using the partial linearized path-integral approach and the symmetrical quasi-classical
approach as the diabatic dynamics methods, the QD propagation scheme enables direct
nonadiabatic simulation with complete active space self-consistent field on-the-fly electronic
structure calculations. The population dynamics obtained from both approaches are in a close
agreement with the quantum wavepacket-based method and outperform the widely used
trajectory surface-hopping approach. Further analysis of the ethylene photodeactivation
pathways demonstrates the correct predictions of competing processes of nonradiative
relaxation mechanism through various conical intersections. This work provides the
foundation of using accurate diabatic dynamics approaches and on-the-fly adiabatic electronic structure information to
perform ab initio nonadiabatic simulation.

N onadiabatic molecular dynamics (NAMD) simulation
plays an indispensable role in investigating photo-

chemical and photophysical processes of molecular systems.1−7

The essential task of NAMD1 is to solve the coupled
electronic−nuclear dynamics governed by the total Hamil-
tonian of the molecular system

̂ = ̂ + ̂H T V r R( , ) (1)

where r and R represent the electronic and nuclear degrees of

freedom (DOF), respectively; ̂ = − ∇ℏ
T

M R2

2
2

is the nuclear

kinetic energy operator, and V̂(r,R) is the electronic
Hamiltonian operator that describes the kinetic energy of
electrons and electron−electron, nuclear−nuclear, as well as
electronic−nuclear interactions.
Rather than directly solving the time-dependent Schrödinger

equation (TDSE) governed by Ĥ, NAMD simulation is often
accomplished1,2 by performing on-the-fly electronic structure
calculations that provide the energy and gradients and the
quantum dynamics simulations that propagate the motion of
the nuclear DOFs (described by trajectories or nuclear wave
functions). In particular, the electronic structure calculations
solve the eigenequation

̂ |Φ ⟩ = |Φ ⟩α α αV r R R E R R( , ) ( ) ( ) ( ) (2)

which provides the adiabatic state |Φα(R)⟩ and energy Eα(R).
Because of the readily available electronic structure

information in the adiabatic representation, quantum dynamics
approaches formulated in this representation have been
extensively used to perform on-the-fly NAMD simulations,

including the popular fewest-switches surface hopping
(FSSH),4,8−15 ab initio multiple spawning (AIMS),3,7,16 and
several recently developed Gaussian wavepacket ap-
proaches,17−21 coupled-trajectory approaches,22−25 and the
ab initio multiconfiguration time-dependent Hartree
(MCTDH) approach.26−30 Among them, FSSH is one of the
most popular approaches in NAMD, which uses mixed
quantum-classical (MQC) treatment of the electronic and
nuclear DOFs that provide efficient nonadiabatic simulation.
As a MQC method, however, FSSH treats quantum and
classical DOFs on different footings,1 generating artificial
electronic coherence8,12 that could give rise to incorrect
chemical kinetics12 or the breakdown of the detailed balance.31

Recently developed nonadiabatic quantum dynamics ap-
proaches32−42 have shown great promise to address the
deficiency and limitations of the MQC approximation.
However, these approaches are usually developed in the
diabatic representation and are incompatible with the available
adiabatic electronic structure calculations. Reformulating them
back to the adiabatic representation requires additional and
sometimes nontrivial theoretical efforts. One common strategy
to address this challenge is constructing global diabatic
states.2,43−48 Another related direction is to build the “on-
the-fly” diabatic state through a diabatization procedure,28−30

which has enabled ab initio quantum dynamics calculations for
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the variational multiconfiguration Gaussian method49 and the
direct-dynamics MCTDH approach.26−30

We have developed the quasi-diabatic (QD) propagation
scheme50,51 to address this challenge from an alternative
perspective, which avoids performing any explicit diabatization
procedure. The central idea behind the QD scheme is realizing
that to propagate quantum dynamics with diabatic dynamics
approaches one needs only locally well-defined diabatic states,
and these local diabatic states can simply be adiabatic states
with a reference geometry (which are commonly referred to as
the crude adiabatic states). We emphasize that this idea is
fundamentally different from the quasi-diabatization proce-
dure52,53 or the propagation-based diabatization,30,49 which
requires the explicit adiabatic to diabatic transformation. The
QD scheme50 directly uses the adiabatic states associated with
a reference geometry as the local diabatic states during a short-
time quantum propagation and dynamically updates the
definition of the QD states along the time-dependent nuclear
trajectory. Historically, this scheme was introduced to
propagate the electronic amplitudes in surface-hopping
simulations9,54−57 (which is commonly referred to as the
“local diabatic” basis approach). It has also been used in
Gaussian wave packet dynamics approaches,18−21,58 which is
termed the “moving crude adiabatic” scheme.20 In the context
of our QD propagation scheme, we use the “moving crude
adiabatic states” as the local diabatic state to address the
discrepancy between the diabatic quantum dynamics ap-
proaches and adiabatic electronic structure calculations.50 It
allows a direct interface between diabatic dynamics approaches
with adiabatic electronic structure calculations. It also enables
using realistic ab initio test cases to assess the accuracy and
limitations of recently developed quantum dynamics ap-
proaches.59

In this Letter, we provide an ab initio on-the-fly example of
using the QD scheme50 for nonadiabatic simulations with a
diabatic quantum dynamics approach and the adiabatic
electronic structure calculations. In particular, we use two
recently developed diabatic dynamics approaches33,60 to
perform on-the-fly NAMD simulations of the well-studied
ethylene photodynamics. On-the-fly electronic structure
calculations are performed at the level of the complete active
space self-consistent field (CASSCF) approach. The results
obtained from these quasi-diabatic quantum dynamics
simulations are in close agreement with the AIMS approach.3

Thus, this Letter provides the first on-the-fly example of the
QD propagation scheme and completes the establishment of it
in the field of ab initio nonadiabatic dynamics as a powerful
tool to enable accurate diabatic quantum dynamics approaches
for on-the-fly simulations.
Theoretical Approach. In this work, we demonstrate that the

QD scheme enables a direct interface between diabatic
dynamics approaches and adiabatic electronic structure
calculations. In particular, we use the partial-linearized density
matrix (PLDM) path-integral approach,5,33 as well as the
symmetrical quasi-classical (SQC) approach60 as the diabatic
dynamics approach. Both methods are originally developed in
the diabatic representation and are based on the Meyer−
Miller−Stock−Thoss61−63 (MMST) mapping representation.
Here, we briefly summarize the PLDM approach, whereas the
SQC approach is discussed in the Supporting Information.
PLDM is an approximate quantum dynamics method based

on the real-time path-integral approach.33 Using the MMST
mapping representation,63 the nonadiabatic transitions among

discrete electronic states {|i⟩, |j⟩} are exactly mapped63 onto
the phase-space motion of the fictitious variables through the

relation |i⟩⟨j| → a ̂i
†a ̂j, where ̂ = ̂ − ̂†a q ip( )/ 2i i i

and

̂ = ̂ + ̂a q ip( )/ 2i i i
. After performing the linearization approx-

imation on the nuclear DOFs, we obtain the following PLDM
reduced density matrix:33

∫∑

ρ ρ

τ ρ

= [ ̂ | ⟩⟨ | ]

≈ [ ̂ ] ′

̂ ℏ − ̂ ℏt i j

T t T t

( ) Tr (0)e e

d (0) ( ) ( )

ij R
iHt iHt

kl

kl ki jl

/ /

W

(3)

where ∫ ∫τ ≡ ′ ′ ′
πℏ

d dRdPd d d d G Gq p q p
1

2 0 0 represents the

phase space integration for all DOFs; G0 and G′0 represent
coherent state distribution of mapping oscillators;

= + −T t q t ip t q ip( ) ( ( ) ( ))( (0) (0))ki i i k k

1

2
and Tjl′(t) = 1

2
-

(ql′(0) + ipl′(0))(qj′(t) − ipj′(t)) are the electronic transition
amplitudes associated with the forward mapping trajectory {q,
p} and the backward mapping trajectory {q′, p′}, respectively.
[ρ̂(0)kl

W] is the partial Wigner transform (with respect to the
nuclear DOFs) of the klth matrix element of the initial total
density operators ρ̂(0).
Classical trajectories are used to evaluate the approximate

time-dependent reduced density matrix. The forward mapping
variables are evolved based on the Hamilton’s equations of
motion5,33

̇ = ∂ ∂ ̇ = −∂ ∂q H p p H q/ ; /
i i i im m (4)

where = + ∑ [ + ]H R V R pp q qp q( , , ) ( )
P

M ij ij i j i jm 2

1

2

2

is the

PLDM mapping Hamiltonian.5,33 The backward mapping
variables are propagated with the similar equations of motion
governed by Hm(p′, q′, R). The nuclei are evolved with the
force

∑= − ∇ [ + + ′ ′ + ′ ′ ]F V R pp q q p p q q
1

4
( )

ij

ij i j i j i j i j

(5)

For a trajectory-based quantum dynamics approach, such as
PLDM (as well as SQC51), the above equation of motion often
requires the energy and nuclear gradients. These quantities can
be conveniently evaluated as follows: Consider a short-time
propagation of the nuclear DOFs during t ∈ [t0, t1], where the
nuclear positions evolve from R(t0) to R(t1), and the
corresponding adiabatic states are {|Φα(R(t0))⟩} and
{|Φλ(R(t1))⟩}. The QD scheme uses the nuclear geometry at
time t0 as a reference geometry, R0 ≡ R(t0), and uses the
adiabatic basis {|Φα(R(t0))⟩} as the quasi-diabatic basis during
this short-time propagation, such that

|Φ ⟩ ≡ |Φ ⟩ ∈ [ ]α αR R t t t t( ) ( ( )) , for ,0 0 0 1 (6)

With the above QD basis defined independent of R(t) within
each propagation segment, the derivative couplings vanish
while V̂(R) in the QD basis becomes off-diagonal. With this
local diabatic basis, all of the necessary diabatic quantities can
be evaluated and used to propagate quantum dynamics during
t ∈ [t0, t1].
The electronic Hamiltonian operator V̂(R(t)) in the QD

basis is evaluated as

= ⟨Φ | ̂ |Φ ⟩αβ α βV R t R V R t R( ( )) ( ) ( ( )) ( )0 0 (7)
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For on-the-fly simulations, this quantity is obtained from a
linear interpolation9 between Vαβ(R(t0)) and Vαβ(R(t1)) as

= +
−

−
[ − ]αβ αβ αβ αβV R t V R

t t

t t
V R t V R( ( )) ( )

( )

( )
( ( )) ( )0

0

1 0
1 0

(8)

where Vαβ(R0) = ⟨Φα(R0)|V̂(R(t0))|Φβ(R0)⟩ = Eα(R(t0))δαβ.
The matrix elements Vαβ(R(t1)) are computed as

∑=αβ

λν

αλ λν βν
†V R t S V R t S( ( )) ( ( ))1 1

(9)

where Vλν(R(t1)) = ⟨Φλ(R(t1))|V̂(R(t1))|Φν(R(t1))⟩ =
Eλ(R(t1))δλν, and the overlap matrix between two adiabatic
electronic states (with two different nuclear geometries) are
Sαλ = ⟨Φα(R0)|Φλ(R(t1))⟩ and Sβν

† = ⟨Φν(R(t1))|Φβ(R0)⟩.
These overlap matrices are computed based on the approach
outlined in ref 64.
The nuclear gradients ∇Vαβ(R(t1)) ≡ ∂Vαβ(R(t1))/∂R are

evaluated as

∑

∇ = ∇⟨Φ | ̂ |Φ ⟩

= ⟨Φ |∇ ̂ |Φ ⟩

= ⟨Φ |∇ ̂ |Φ ⟩

αβ α β

α β

λν

αλ λ ν βν
†

V R t R V R t R

R V R t R

S R t V R t R t S

( ( )) ( ) ( ( )) ( )

( ) ( ( )) ( )

( ( )) ( ( )) ( ( ))

1 0 1 0

0 1 0

1 1 1

(10)

Here, we have used the fact that {|Φα(R0)⟩} is a diabatic
basis during the [t0, t1] propagation, which allows moving the
gradient operator to bypass ⟨Φα(R0)|. Moreover, we have
inserted the resolution of identity ∑λ|Φλ(R(t1))⟩⟨Φλ(R(t1))| =
1 in the second line of eq 10, where we explicitly assume that
the QD basis at nuclear position R(t1) is complete. We
emphasize that eq 10 includes derivatives with respect to all
possible sources of the nuclear dependence, including those
from the adiabatic potentials as well as the adiabatic states.59,65

The details of this derivation are provided in the Supporting
Information.
During the next short-time propagation segment t ∈ [t1, t2],

the QD scheme adapts a new reference geometry R′0 ≡ R(t1)
and new diabatic basis |Φμ(R′0)⟩ ≡ |Φμ(R(t1))⟩, instead of
using the old basis |Φα(R0)⟩. With the nuclear geometry
closely following the reference geometry at every single
propagation step, the QD basis forms a convenient and
compact basis. Note that in principle, one needs infinite crude
adiabatic states {|Φα(R0)⟩} to represent the time-dependent
electronic wave function, because the electronic wave function
could change rapidly with the motion of the nuclei, and the
crude adiabatic basis is convenient only when the nuclear
geometry R is close to the reference geometry R0. By
dynamically updating the basis in the QD scheme, the time-
dependent electronic wave function is expanded with the
“moving crude adiabatic basis”20 that explores the most
relevant and important parts of the Hilbert space, thus
explicitly addressing this problem.
On the other hand, the commonly used diabatization

schemes (which construct global diabatic states) often require
a much larger set of the diabatic basis to represent an accurate
adiabatic state.66 We have encountered the same behavior in a
photoinduced proton-coupled electron-transfer model sys-
tem,65 where 100 strict diabatic states are needed to accurately
represent the lowest 10 adiabatic states.65 However, we
emphasize that the quasi-diabatic states (i.e., the moving

crude adiabatic states) used here are local diabatic states, not
global diabatic states. Thus, we are free of the commonly
encountered basis completeness problem in diabatization
schemes,49,66 because we are not trying (nor attempting) to
construct global diabatic states. We further emphasize that
there is always a nonremovable part of the derivative coupling
for polyatomic systems.2,44,47 Here, the QD scheme circum-
vents this challenge by requiring only locally defined diabatic
states such that the derivative couplings vanish in this
configurational subspace around the reference geometry.
Between [t0, t1] and [t1, t2] propagation segments, all of

these quantities will be transformed from {|Φα(R0)⟩} to
{|Φμ(R′0)⟩} basis using the relation

∑|Φ ⟩ = ⟨Φ |Φ ⟩|Φ ⟩λ

α

α λ αR t R t R t R t( ( )) ( ( )) ( ( )) ( ( ))1 0 1 0

(11)

When performing the above transformation in eq 11, the
eigenvectors maintain their mutual orthogonality subject to a
very small error when they are expressed in terms of the
previous basis because of the incompleteness of the basis.56,57

This small numerical error (with a typical value of 10−3−10−2

deviating from the strict orthogonality in the current
calculation) generated from each step can, however, accumu-
late over many steps and cause a significant error at longer
times, leading to a nonunitary dynamics.56,57 This problem can
be easily resolved by using the Löwdin orthogonalization
procedure67 as commonly used in the local diabatization
approach,56 and this is discussed in detail in the Supporting
Information.
Note that the QD propagation scheme does not explicitly

require the derivative couplings dλν(R) = ⟨Φλ(R)|∇Φν(R)⟩ or

nonadiabatic couplings ⟨Φ | Φ ⟩ = ̇
β α βα

∂
∂

R t R t d R R( ( )) ( ( )) ( )
t

.

However, the remnants of these quantities do show up in
the QD scheme: the nuclear gradient ∇Vαβ(R(t1)) now
contains ⟨Φλ(R(t1))|∇V̂(R(t1))|Φν(R(t1))⟩ (see eq 10), which
is reminiscent of the derivative coupling because of
⟨Φλ|∇V̂|Φν⟩ = dλν(Eν−Eλ), and the QD scheme uses
transformation matrix elements ⟨Φβ(R(t1))|Φα(R(t2))⟩ instead

of ⟨Φ | Φ ⟩β α
∂
∂

R t R t( ( )) ( ( ))
t

. It is worth noting that both dλν(R)

and ⟨Φ | Φ ⟩β α
∂
∂

R t R t( ( )) ( ( ))
t

can become singular. The QD

scheme explicitly alleviates this difficulty by using well-behaved
quantities ∇Vαβ(R(t1)) and ⟨Φβ(R(t1))|Φα(R(t2))⟩. Thus, a
method that directly requires derivative couplings and/or
nonadiabatic couplings might suffer from numerical insta-
bilities near trivial crossings or conical intersections, with
exceptions such as the recently developed norm-preserving
interpolation scheme68,69 that provides a stable integration of
TDSE in the adiabatic representation despite the explicit

presence of ⟨Φ | |Φ ⟩β α
∂
∂t

. The QD scheme, on the other hand,

uses only well-behaved quantities for propagating quantum
dynamics, which thus allows using a much larger nuclear time-
step51 and can significantly reduce the number of required
electronic structure calculations that are typically performed at
every nuclear time step.
All simulations are performed using a modified version of

the SHARC nonadiabatic dynamics interface package,70,71 with
the on-the-fly electronic structure calculations performed with
MOLPRO.72 Computational details of the QD-PLDM and
QD-SQC quantum dynamics simulations, a detailed numerical
algorithm of the QD propagation scheme, and other technical
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details, including system initialization, Wigner initial sampling
of the nuclei, the algorithm to track the phase of adiabatic
states, and Löwdin orthogonalization, are provided in the
Supporting Information.
Results and Discussion. Ethylene exhibits a complex photo-

dissociation dynamics by visiting several conical intersections
and undergoing various reaction pathways during the non-
radiative decay processes. It is thus considered as a prototype
for investigating photoisomerization reactions through conical
intersections3 and has been extensively studied through
theoretical73−78 and experimental79−82 investigations. To
provide an accurate description of the electronic structure of
ethylene, we follow the previous theoretical studies76,83 and use
the CASSCF approach that has been shown to provide
accurate potential around conical intersections. To avoid the
root-flipping problem,76,77,83 the CASSCF calculations are
performed using state-averaging over three states, at the level
of SA-3-CASSCF(2,2) with 6-31G* basis set as implemented
in MOLPRO.72 The nonadiabatic dynamics simulation is
propagated in the {|S0(R)⟩,|S1(R)⟩} electronic states subspace,
i.e., the ground and the first excited states, by using the
information from the on-the-fly CASSCF calculations. All of
the QD-PLDM and QD-SQC approaches are implemented in
a modified version of NAMD interface code SHARC,70,71

which is used to perform all of the simulations in this Letter.
Figure 1 presents the adiabatic potential energy surface

(PES) of ethylene, with both the S1 state (upper surface) and

S0 state (lower surface) along the pyramidalization and the
twist reaction coordinates, obtained from the PES scanning.
The conical intersections between these two surfaces are also
indicated with a dotted circle, located at a twist angle of 90°
and the pyramidalization angle around 108°. Upon the
photoexcitation (indicated by the solid arrow), ethylene first
relaxes on the S1 surface along the twist angle (indicated by the
dashed arrow), then pyramidalizes on the S1 surface and
reaches to the region of the conical intersection (which is
commonly termed the twisted-pyramidalized conical inter-
section), and quickly relaxes back to the S0 surface. This, of
course, is only a very simplified picture. The actual non-
adiabatic dynamics are much more complex, and a direct on-
the-fly NAMD simulation is often necessary to reveal the
fundamental mechanistic insights into these complex reaction
channels.3,75,77,81,84

Figure 2 presents the adiabatic population dynamics
obtained from the QD scheme. The CAS adiabatic states
(many-electron wave functions) at a reference geometry are
used as the diabatic states during a propagation segment, which
are then dynamically updated for the subsequent propagation
step. In Figure 2A, the canonical orbitals (HOMO and
LUMO) of the on-the-fly CAS(2,2) calculations are visualized
along a given trajectory that forms the ethylidene structure.
This is one of the most likely reactive trajectories at the end of
our QD-PLDM simulations (when t = 200 fs), which accounts
for more than 40% of all possible reaction pathways. The
dynamics are propagated with the PLDM or the SQC
approaches, with the results presented in panels B and C of
Figure 2, respectively. For comparison, FSSH with decoher-
ence correction85 and the local-diabatization propagation
scheme56 is also used to generate the photodynamics. For
the trajectory-based approaches, a total of 120 trajectories are
used to compute the population, with a nuclear time step dt =
0.1 fs, although a much larger time step dt = 0.5 fs can be used
to generate nearly identical results at a single-trajectory level.
The amount of trajectories used here is sufficient to provide
the basic trend of the population dynamics, and the
convergence tests with up to 500 trajectories are provided in
the Supporting Information. The nuclear initial configurations
are sampled from the Wigner distribution of the ground
vibrational state (ν = 0) on the ground electronic state S0, with
the harmonic approximation based on the approach outlined in
ref 86. The mapping variables (i.e., the electronic DOF) in
PLDM and SQC calculations are propagated based on the QD
scheme with 200 time steps during each nuclear time step.
Additional numerical details of these calculations, the
convergence test with an increasing number of trajectories,
as well as the energy conservation analysis are provided in the
Supporting Information. Further, results obtained from AIMS
simulation77 are presented for comparison. Because AIMS is a
wavepacket-based approach which has been extensively
tested,7,16,87 we consider it as an accurate solution for the
quantum dynamics of the “CAS ethylene model system” and
use it as the benchmark of our calculations. Other recently
developed wavepacket approaches, such as the multiconfigura-
tional Ehrenfest (MCE) method, provide essentially the same
results as AIMS for this test case at the same level of electronic
structure theory.17

Figure 2B presents the comparison of the population
dynamics obtained from QD-PLDM (solid lines) and the
decoherence-corrected FSSH (dashed lines), in addition to
AIMS (filled circles) where the data points are directly taken
from ref 77. The population differences between the trajectory-
based approaches and AIMS are presented in the bottom
panel. All three approaches provide the same plateau of the S1
population (t = 0−20 fs), which corresponds to the initial
adiabatic nuclear relaxation process on the S1 surface. During t
= 20−75 fs, the system starts to exhibit quick nonadiabatic
transitions between S1 and S0 states through conical
intersections. Here, QD-PLDM agrees reasonably well with
AIMS throughout the entire nonradiative decay process. FSSH,
on the other hand, predicts a much faster relaxation dynamics
and exhibits a large deviation compared to the AIMS, likely
caused by the overcoherence problem despite being corrected
by a simple decoherence scheme in this calculation. More
sophisticated decoherence corrections12 might further improve
the results of FSSH. It is worth noting that the
experimentally81 measured S1 decay time is ∼89 fs, agreeing

Figure 1. CASSCF potential energy surface of S1 (upper surface) and
S0 (lower surface) along two main reaction coordinates of
photodissociation pathways in ethylene. Upon photoexcitation, the
system quickly relaxes to the minimum along the twist angle on the S1
surface; it then pyramidalizes and relaxes back to the S0 through the
twisted-pyramidalized conical intersection.
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well with the AIMS value when using the CASPT2 level of the
electronic structure calculations that include dynamical
correlation.77 Our intention in this Letter, on the other
hand, is not trying to compare to or recover the experimental
results, but rather comparison to the “CAS(2,2) ethylene
model” provided by AIMS. We emphasize that the AIMS
results should be viewed only as an approximate (yet accurate)
solution of the TDSE of the system. Numerically exact
simulations (based on the MCTDH calculations) for ethylene
diabatic models66,88 have been performed. The numerically
exact solution for this CAS(2,2) model as the ultimate
theoretical benchmark is likely to be obtained with on-the-fly
simulations through the direct-dynamics MCTDH ap-
proach.30,49

Figure 2C presents a similar comparison of the population
dynamics obtained from QD-SQC (solid lines), the decoher-
ence corrected FSSH (dashed lines), and AIMS (filled circles)
with the difference between the trajectory-based approaches
and AIMS provided in the bottom panel. Here, we choose to
use the simplest possible square window function60 proposed
by Cotton and Miller. The QD-SQC provides a similar level of
accuracy for the population dynamics compared to QD-PLDM
and agrees reasonably well with AIMS throughout the
nonradiative decay process. A slightly noisy population is
obtained because only a fraction of the mapping trajectories
landed in all population windows at any given time, thus
reducing the quality of the data and at the same time requiring
normalization of the population.60 The detailed analysis of the

Figure 2. Population dynamics obtained from the QD propagation scheme. (A) Frontier molecular orbitals (HOMO and LUMO canonical
orbitals) along a given nuclear trajectory. (B) Adiabatic electronic populations of S1 (blue) and S0 (red) obtained from QD-PLDM (solid lines),
FSSH (dashed lines), and AIMS (filled circles) with data points taken from ref 77, respectively. AIMS, which is an approximate Gaussian
wavepacket-based nonadiabatic method, is used as the benchmark result. The bottom panel presents the time-dependent error between the
trajectory-based approach and AIMS. (C) Adiabatic electronic populations obtained from QD-SQC (solid lines), with the rest same as presented in
panel B.

Figure 3. Representative QD-PLDM reactive trajectories for (A) hydrogen transfer, (B) pyramidalization, and (C) H2 dissociation pathways. The
C−H bond lengths are defined in the inset of panel A and are used in both panels A and C. The pyramidalization angle is defined in the inset of
panel B.
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fraction of mapping trajectories landing outside both windows
is provided in the Supporting Information. Nevertheless, QD-
SQC still outperforms FSSH in this on-the-fly CAS(2,2)
model. We note that more accurate results for model systems
can be obtained by using triangle windows89 and the
trajectory-specific zero-point energy correction technique.90

These new developments will be investigated through the ab
initio NAMD simulations by using the QD scheme. Through
results presented here, we demonstrate that the QD scheme
enables many possibilities of using recently developed diabatic
quantum dynamics approaches for accurate ab initio on-the-fly
NAMD simulations with the adiabatic electronic structure
calculations. Further, the QD propagation scheme also
provides new opportunities to assess the performance of
approximate diabatic dynamics approaches, with ab initio test
cases beyond simple diabatic model systems.
Figure 3 presents three representative reactive trajectories

obtained from QD-PLDM, whereas the averaged populations
of different nuclear configurations are provided in Figure 4. A

qualitatively similar ensemble of reactive trajectories are also
obtained from QD-SQC (not shown). These reactive
trajectories provide intuitive time-dependent mechanistic
insights into the competing nonradiative decay channels,
although a physically meaningful interpretation should be
drawn only from the expectation values (such as those
presented in Figure 4). Figure 3A presents the time-evolution
of the bond distance between carbon and hydrogen atoms that
are not initially bonded. At t ≈ 50 fs, one of these four
distances suddenly drops from ∼2.2 to ∼1.25 Å, indicating the
formation of an ethylidene structure through the ethylidene-
like conical intersection77 (which is different than the twisted-
pyramidalized conical intersection shown in Figure 1). Figure
3B presents the time evolution of the (modulus of)
pyramidalization angle defined in the inset of this panel,
forming a persisting oscillation pattern. The zero value of the
angle indicates that the molecule goes through the planar
structure and vibrates on the other side of the molecular plane.

The inset provides the structure of the largest pyramidalization
angle at ≈100°, which is close to the twisted-pyramidalized
conical intersection74 shown in Figure 1. Figure 3C presents a
reactive trajectory of H2 dissociation, which occurs at t ≈ 70 fs
after one H atom abstraction process, as can be seen from the
inset of this panel (C−H(1) bond length shrinking indicated
by the red curve). These reactive trajectories are in a close
agreement with the similar reactive channels discovered from
the AIMS simulation.76,77

Figure 4 presents the population of various nuclear
configurations obtained from QD-PLDM through the
ensemble average of trajectories. These nuclear configurations
are defined based on the criteria in ref 84, with the
representative geometries provided in the top of this figure
(squared with the same color coding used in the population
curve). At the short time t ∈ [0, 20] fs, the system evolves
adiabatically on the S1 surface, moving along both the twisted
and pyramidalized reaction coordinates, accumulating the
population for both configurations. The twisted configuration
on S1 also converts into the pyramidalized configuration during
this time. Note that the oscillation period of twisted
configuration is around 20 fs, consistent with results obtained
from AIMS76 and MCE approaches.17 After the early time
relaxation on the S1 surface, the system exhibits various conical
intersections and makes a nonadiabatic transition to the S0
surface, relaxing back to the ethylene configuration (red),
ending up with ethylidene configuration (magenta), or
dissociating H2 out of ethylene (with only 8 reactive
trajectories out of 120 trajectories, and thus not shown in
this figure). Our QD-PLDM simulation predicts that about
50% of the molecules go through the ethylidene-like conical
intersection and that the other 50% of the molecules go
through the twisted-pyramidalized conical intersection, which
agrees well with the AIMS results performed at the CASSCF
level of theory.76,77

Conclusions. In this Letter, we provide the first ab initio on-
the-fly example of using the QD scheme50 for nonadiabatic
simulations with diabatic quantum dynamics approaches. With
two recently developed diabatic dynamics approaches (PLDM
and SQC) and on-the-fly CASSCF calculations, we simulate
the on-the-fly nonadiabatic dynamics of the ethylene photo-
deactivation process. During each short-time propagation
segment, the adiabatic states associated with a reference
geometry are used as the quasi-diabatic (local diabatic) states,
allowing any diabatic dynamics approach to propagate the
quantum dynamics during this time step. Between two
consecutive propagation segments, the definition of the
quasi-diabatic states is updated. The QD scheme thus allows
a direct interface between diabatic trajectory-based quantum
dynamics approaches with adiabatic electronic structure
calculations and completely eliminates the necessity of any
representation reformulating efforts, such as constructing
global diabatic states through diabatization or reformulating
the diabatic dynamics approach to adiabatic representation.
The results obtained from both QD-PLDM and QD-SQC

are in close agreement with AIMS; both outperform the widely
used FSSH approach. The QD scheme thus enables many
recently developed diabatic quantum dynamics approaches for
ab inito on-the-fly simulations, providing the nonadiabatic
community a wide variety of approaches (such as PLDM and
SQC) beyond the well-explored methods (such as trajectory
surface-hopping or ab initio multiple-spawning methods).
Further, the QD scheme also enables using realistic test cases

Figure 4. Population dynamics of various dissociation products
obtained from the QD-PLDM simulations, with representative
geometries presented in the top panels.
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that go beyond simple model systems to assess the accuracy
and limitations of recently developed quantum dynamics
approaches and will foster the development of new quantum
dynamics approaches.
This work completes the establishment of the QD scheme in

the field of ab initio nonadiabatic dynamics simulation,
demonstrating the QD scheme as a powerful tool to enable
accurate diabatic quantum dynamics approaches for on-the-fly
simulations. The development of the QD scheme provides a
valuable addition to the existing quantum dynamics
approaches that rely on building the on-the-fly diabatic
representation, such as the direct-dynamics variational multi-
configuration Gaussian method49 or direct-dynamics MCTDH
approach.26−30 It also sends out the following assuring
messages to the quantum dynamics community: (i) To
propagate quantum dynamics with diabatic dynamics ap-
proaches, one needs only locally well-defined diabatic states (in
this case, the moving crude adiabatic basis20), as opposed to
the global diabatic states obtained from diabatization
procedures.2,43−49 (ii) A diabatic dynamics approach can be
directly interfaced with adiabatic electronic structure calcu-
lations to perform on-the-fly simulations without additional
representation reformulating efforts.91−93
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