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Abstract: Proper identification of oriented knots and 2-component links requires a precise link

nomenclature. Motivated by questions arising in DNA topology, this study aims to produce

a nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing

a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible

symmetry types for each link type. The study revisits the methods previously used to disambiguate

chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo

simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two

prime 2-component links with up to nine crossings. Guided by geometrical data, linking number,

and the symmetry groups of 2-component links, canonical link diagrams for all but five link types

(92
5, 92

34, 92
35, 92

39, and 92
41) are proposed. We include complete tables for prime knots with up to ten

crossings and prime links with up to nine crossings. We also prove a result on the behavior of the

writhe under local lattice moves.

Keywords: writhe; chirality; nomenclature; link symmetries; link table; knot table; lattice polygons;

DNA topology

1. Introduction

The unambiguous identification of links that are not topologically equivalent is of utmost

relevance when studying links in a natural setting. Of special interest in the field of DNA topology is

the action of enzymatic processes that produce DNA links. In this setting, one needs proper distinction

between a link and its mirror image, or between two links related by reflection, orientation reversal,

or component relabeling. For example, enzymes in the family of type II topoisomerases pass a segment

of a DNA molecule through another thus introducing crossing changes (Figure 1b). Another class

of enzymes, site-specific recombinases, bind to two DNA segments, cleave and reconnect the ends

(Figure 1a). The local action of these enzymes on circular DNA molecules often results in global

topological changes. Rigorous identification of the product links is used to study the topological

mechanism of action of the enzymes. A mislabeling of the component orientation, or a mistaken

chirality of the product can have severe implications on the mechanistic study. See more on this topic

at the end of this section and in.

One of the primary goals of knot theory is to distinguish between link types. Knot theory is the

mathematical study of links, i.e., embeddings of one or more disjoint circles in three-dimensional space.

Each circle is a component of the link. A knot is a link with one component. Two links are topologically

equivalent if there is an ambient isotopy between them. Intuitively, two links are equivalent if one

can be smoothly deformed into the other without allowing phantom crossings between the curves.

Each equivalence class is called a link type, and throughout this paper we may refer to an equivalence

class as an isotopy class.
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Figure 1. (a) Example of a coherent band surgery use to model DNA recombination; (b) Contribution

of each type of crossing to the projected writhe calculation.

Traditionally, links have been tabulated following the Alexander–Briggs notation [1] that organizes

them by their minimal crossing number. The order of the links sharing the same crossing number

is somewhat arbitrary. The link table in most common use is the Rolfsen table [2]. There, links are

labeled using Conway’s notation [3] and an extension of the Alexander–Briggs notation [1]. In the

Rolfsen table, each knot diagram represents the unoriented knot K and its mirror image K∗. For a link

of two or more components, in addition to L and L∗, the link diagram represents the link type with any

component relabeling. However, the link L and its mirror image L∗ may be in different isotopy classes

(i.e., may not be topologically equivalent). Such links are known as chiral links. Similarly, one could

orient the link or label the components in several different ways which may yield non-equivalent

links. Links which differ only in these ways share many properties, and are represented by a single

unoriented link diagram in the standard link tables. In sum, the Rolfsen table provides no way to refer

to chirality, orientations or component labeling [2]. Hence, there has been a need to provide explicit

diagrams in studies requiring any of this information. The objective here is to provide a link table that

accounts for chirality, orientation, and component labeling.

One could of course compile yet another table with an arbitrary choice of mirroring, orientation,

and component labeling motivated by an application at hand. Far from solving the problem, this

would lead to further confusion. We instead propose to use geometric and topological properties of

links to determine a standard diagram for each link. Our goal is to achieve a more clear relationship

between isotopy classes of different link types. This is particularly useful when studying enzymatic

actions and trying to establish relationships of link types before and after crossing changes or coherent

band surgery (Figure 2). More specifically, we propose to use writhe and linking number (introduced

in Section 2) to classify the different isotopy classes formed by mirroring, orientation reversal, and

component relabeling.

Here by “classify”, rather than any deeper topological classification, we mean to distinguish

isotopy classes of links in such a way that they can be consistently referenced. In Section 3, we review

previous efforts in this direction. In Section 4, we propose a classification based on linking number

and total writhe (defined in Section 2) and define a canonical isotopy class for links. In Section 4 we

define the BFACF algorithm. In Section 5, we use numerical data obtained from BFACF simulations

to estimate the total writhe for all prime links with up to nine crossings. In Section 6 we describe

the numerical methods. We use self-avoiding polygons in Z3 to represent knots and links with two

components. For any given polygon length n, we estimate the mean writhe values of all length n

representations of a given isotopy class. This extends previous work on knots [4,5] and our numerical

methods may be applied to any other link type.

Portillo et al. conjectured that given a chiral knot K, the mean writhe of all length n conformations

in Z3 is bounded as n varies, and furthermore is either positive for all n or negative for all n [4].

The numerical data in [4] for knots with up to eight crossings supported this conjecture. Brasher et al. [5]

extended the numerical work to knots with up to 10 crossings; their data remained consistent with

the conjecture. Table S6 is the table of canonical knot diagrams extended from that presented by

Brasher et al. [5]. We extend the conjecture to links as follows:
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method. It is worth noting that previous approaches only partially disambiguate link isotopy classes

(see Sections 3.5 and 4.2 for more details). Additionally, the numerical methods used here to explore

random conformations have been extensively used in studies of random knotting in the simple cubic

lattice Z3 [6,7], and in applications to DNA studies. For example to explore whether or not biological

processes, such as those performed by topoisomerases and recombinases, are truly random or have some

order [8]. Relevance of proper link identification in DNA topology is discussed at the end of this section.

The structure of the paper is as follows. We start in Section 2 by defining writhe and linking

number, which we will use to help distinguish the symmetry classes. Link symmetries and existing

nomenclatures are reviewed and extended in Section 3. We describe a systematic way to define

a canonical isotopy class for each link (Figure A1) in Section 4. In Section 5, we discuss the results of

the numerical simulations used to distinguish between isotopy classes of links, and how they relate to

Conjecture 1. Additional numerical results are included in the Supplementary Materials online. In

Section 5, we also prove Theorem 2 that determines the difference in writhe between two polygons

related by BFACF moves. This theorem deals with the boundedness of writhe for lattice links within

the same isotopy class. The numerical methods used are described in Section 6. The key outcome

of our work is Figure A1, the table of oriented link diagrams with labeled components based on our

proposed nomenclature. For completeness, we have included Table S6, the writhe-based knot table

extended to 10 crossings based on the work of Portillo et al. and Brasher et al. [4,5].

Importance of Link Symmetries in DNA Topology

Complete distinction between links related by reflection, orientation changes, and component

relabeling is important in many problems in physics and biology. Our motivation for this study comes

from the need to unambiguously identify knots and links arising from biological processes that change

the topology of DNA. In its most common form, the B form, DNA forms a right-handed double helix

consisting of two sugar phosphate backbones held together by hydrogen bonds. The backbones have

an inherent antiparallel chemical orientation (5′ to 3′) and a circular molecule could be modeled as

an orientable 2-component link where each backbone is represented by one link component.

More often, in DNA topology studies, the molecule is modeled as the curve drawn by the

axis of the double helix. The axis can inherit the orientation of one of the backbones or be

assigned an orientation based on its nucleotide sequence. In this way, one circular DNA molecule

is modeled naturally as an oriented knot and two interlinked molecules are modeled as oriented

2-component links.

Different cellular processes can alter the topology of DNA. A notable example is that of replication

of circular DNA. Replication is the process that makes two identical copies of a chromosome in

preparation for cell division. If the chromosome is circular, as in the case of bacteria, replication gives

rise to two interlinked chromosomes. If the original DNA circle is unknotted, then the newly replicated

link is a right-handed torus link of type T(2, N) = N2
1 (Figure 2) [9]. The orientation given to the

DNA circle before replication is naturally inherited by the components of the newly replicated link.

Replication links are typically unlinked by enzymes in the family of type II topoisomerases which

simplify the topology of their substrate DNA by a sequence of crossing changes. In [10], Grainge et al.

showed that in Escherichia coli, in the absense of the topoisomerase Topo IV, replication links could be

unlinked by site-specific recombination. Site-specific recombinases act by local reconnection, which can

be modeled as a coherent band surgery on the substrate link (see Figure 1a). This process was studied

in [8,11]. Importantly, the outcome of recombination can be dependent on the exact symmetry class of

the link being acted on as illustrated in Figure 2.

Furthermore, links arising as products of enzymatic reactions on circular substrates may have

distinguishable components if the nucleotide sequence differs from one component to the other. In

addition, some enzymes in the group of topoisomerases and site-specific recombinases have been

found to have a chirality bias when identifying their targets (topological selectivity) or to tie knots or

links of particular topology and symmetry type (topological specificity).
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2. Writhe and Linking Number

Linking number is a standard topological invariant of oriented links which may be calculated from

a spatial conformation or a regular diagram. To calculate linking number of an oriented link L from

a regular diagramof L, number the inter-component crossings from 1 to m, and assign characteristic

ǫi to crossing i, where ǫi is either +1 or −1 according to the convention in Figure 1b. The linking

number is lk(L) = 1
2 ∑

m
i=1 ǫm. For a 2-component link embedded in space parametrized by curves

γ1, γ2 : S1 → S3, the linking number is calculated by the Gaussian integral

lk(L) =
1

4π

∫
γ1

∫
γ2

(dr2 × dr1) · (r2 − r1)

|r2 − r1|3
, (1)

where ri are the vectors representing points along the curve γi [12].

Space writhe is a geometric invariant of a link conformation that measures entanglement

complexity. The space writhe of a knot conformation σ parametrized by γ : S1 → S3 is found by

taking the integral

w(σ) =
1

4π

∫
γ

∫
γ

(dr2 × dr1) · (r2 − r1)

|r2 − r1|3
, (2)

where ri are the vectors representing points along the curve γ [12]. Note that space writhe is not

a topological invariant.

For links with c components, each component has its own self-writhe calculated as above.

We denote self-writhe of component i by s(σi) where σi is the conformation of the ith component.

The sum of self-writhes of a c-component link conformation σ = ⊔c
i=1σi is s(σ) = ∑

c
i=1 s(σi). We define

the total writhe of a link conformation σ as w(σ) = s(σ) + 2lk(σ). Note that, for a link L with

conformation σ, we can write lk(σ) = lk(L) since linking number is an invariant. However,

this substitution cannot be made for s(σ), as writhe is not a topological invariant.

3. Link Symmetries and Nomenclature

In this section, we define the different types of link symmetries and introduce the proposed

link nomenclature.

3.1. Isotopy Classes

Two links are equivalent if there is an ambient isotopy that transforms one into the other. The set of

all conformations which are isotopically equivalent form an isotopy class. When a link L is not equivalent

to its mirror image L∗, then L and L∗ form two distinct isotopy classes. However, when link diagrams

are listed in a table of unoriented links, only one of these two isotopy classes is represented. It is easy

to obtain the mirror image L∗ from the diagram of L by changing all over-crossings to under-crossings

and vice versa. The number of potential isotopy classes is increased by assigning orientations and

labeling components. For an oriented c-component link with labeled components, there are up to

2 · 2c · c! distinct isotopy classes. This number comes from the 2 reflections, 2c orientations, and c!

labelings of the components.

In this paper, we consider links with c = 1 or 2, but strive to develop methods which can be

generalized to c ∈ N. When c = 1, there are two possible unoriented isotopy classes (the knot and its

mirror image), and four possible oriented isotopy classes. For 2-component links, there are 16 possible

isotopy classes for each oriented link with labeled components.

3.2. Doll and Hoste Notation

We use the notation of Doll and Hoste to differentiate isotopy classes of links [13]. Consider

an oriented 2-component link of link type L with labeled components. We will refer to this initial link

as L++. If we have a link in which the ith component is reversed from L++, then we replace the ith +

with a −. If an oriented link is fully invertible (see below), the +’s and −’s may be omitted. The mirror
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3.3. Link Symmetries

The symmetries of a c-component link can be described by a subgroup of Γc = Z2 × (Zc
2 ⋊ Sc) [14].

The generator from the first Z2 represents a reflection. The generator of the ith copy of Z2 in Zc
2

represents a reversal of the ith component. A permutation α ∈ Sc represents a relabeling where

component i is relabeled as α(i).

We adopt the notation for symmetry group names used in Cantarella et al. (Figure 1 of [15]).

Specifically, each group is given a designation Σk,j where k is the order of the group and j is an index

(as determined by Cantarella et al. [15]). After cross-referencing with the work of Berglund et al. [14]

and Henry and Weeks [16], we found that only 8 of the 27 subgroups occur for 2-component links with

crossing number 9 or less. Find details of each of these subgroups in Table 1. The symmetry names

used come from the work of Berglund et al. [14] and are defined for a 2-component link L as follows:

• L is purely invertible if it is isotopic to the link found by simultaneously reversing both components

(L++= L−−).

• L is fully invertible if it is isotopic to L with every other choice of orientation.

• L has even operations symmetry if it is isotopic to links obtained by an even number of reflections

and/or component reversals.

• L has pure exchange symmetry if it is isotopic to L with the component labels exchanged

(L++= τL++).

• L has a non-pure exchange symmetry if it is isotopic to L with a combination of exchanged labels

with a reflection and/or with component reversals, but L++ 6= τL++.

• L has no exchange symmetry, if it is not isotopic to L with the component labels exchanged

regardless of any reversals or reflections.

• L has full symmetry if it is isotopic to every link obtained by component relabeling, component

reversal, and reflection.

• L has no symmetry if it is not isotopic to any link obtained by component relabeling, component

reversal, or reflection.

Table 1. Symmetry groups for two-component links with up to nine crossings. Listed are names for

the groups and their notation as a subgroup of Γ2 [14,15]. Also listed are generators for the subgroup

where ǫ is a reflection, r1 and r2 are reversals of components 1 and 2, respectively, and p is the exchange

of the component labels. The final column indicates which of the 16 different possible isotopy classes

are equivalent to L++. Here τ is the non-trivial element of S2.

Symmetry Name
Occurences
for c(L) ≤ 9 Subgroup of Γ2

Generators of
Subgroup Equivalence Class of L ++

Full Symmetry 1 Γ2 〈ǫ, r1, r2, p〉

{L++, L+−, L−+, L−−, L∗++,
L∗+−, L∗−+, L∗−−, τL++, τL+−,
τL−+, τL−−, τL∗++, τL∗+−,
τL∗−+, τL∗−−}

Purely Inv. (Pure Ex.) 25 Σ4,1 〈r1r2, p〉 {L++, L−−, τL++, τL−−}
Purely Inv. (No Ex.) 32 Σ2,1 〈r1r2〉 {L++, L−−}

Fully Inv. (Pure Ex.) 5 Σ8,1 〈r1, r2, p〉
{L++, L+−, L−+, L−−,
τL++, τL+−, τL−+, τL−−}

Fully Inv. (no Ex.) 22 Σ4,2 〈r1, r2〉 {L++, L+−, L−+, L−−}

Even Op. (Pure Ex.) 3 Σ8,2 〈ǫr1, ǫr2, p〉
{L++, L−−, L∗+−, L∗−+, τL++,
τL−−, τL∗+−, τL∗−+}

Even Op. (Non-Pure Ex.) 1 Σ4,5 〈ǫr1 p, ǫr2 p〉 {L++, L−−, τL∗+−, τL∗−+}
No Symmetry 3 {e} 〈e〉 {L++}

It is interesting to note that of the eight symmetry types observed for prime 2-component links

with no more than nine crossings, only links with no symmetry lack any kind of inversion symmetry.

More specifically, every prime 2-component link with at most nine crossings has L++= L−− except

for the 92
34, 92

35, and 92
39 links which have no symmetry. In addition, the only links which have any kind



Symmetry 2018, 10, 604 8 of 24

of reflection symmetry are those with even operations symmetry or full symmetry. There are only four

prime 2-component links with crossing number up to 9 that have even operations symmetry, and the

only observed 2-component link with full symmetry is 02
1 [15]. All other prime 2-component links lack

reflection symmetry.

For the purposes of classification of isotopy types, the more interesting links are those which

lack certain symmetries, as there will be more isotopy classes to disambiguate. As we will see in

Section 3.4, writhe is connected to the isotopy class of links which lack pure exchange and/or reflection

symmetries. Because of this, those links will be of particular interest to the results of our writhe

experiments described in Section 6. Of the 92 prime 2-component links with crossing number 9 or less,

58 lack pure exchange symmetry and 87 lack reflection symmetry.

3.4. Symmetries, Writhe and Linking Number

Consider a 2-component link L++ with linking number lk(L++) 6= 0. A link diagram for

the mirror image L∗++ can be obtained by taking a diagram for L++ and switching all of the

over/under-crossings. This changes the sign of each crossing’s contribution to the linking number,

hence lk(L++) = −lk(L∗++). Thus, an oriented link with non-zero linking number cannot be

equivalent to its mirror image as an oriented link. Note that it could, for example, have even operations

symmetry, which would make it equivalent to its mirror as an unoriented link.

Similarly, reversing the orientation of one of the components will change the characteristic of each

inter-component crossing, i.e.,

lk(L++) = lk(L−−) = −lk(L−+) = −lk(L+−). (3)

Thus, the linking number can help discern choices of orientation. Note that reversing the

orientation of a link component does not change self-writhe of that component.

Taking the mirror image of a link will yield the opposite self-writhes, linking number, and total

space writhe. That is, for a c-component link L in conformation σ with components σi,

s(σi) = −s(σ∗
i ), s(σ) = −s(σ∗), lk(σ) = −lk(σ∗), and w(σ) = −w(σ∗), (4)

where σ∗ is the reflection of conformation σ. We observe that writhe is in some way dependent on

chirality, but not orientation, whereas linking number is dependent on both.

3.5. Previous Classification Schemes

There have been previous attempts to classify link isotopy classes. For chirality, Liang et al. [17]

classified alternating links into chiral designations of either D or L based on a method called writhe

profiles, which is related to projected writhes. While writhe profiles provide a useful way to classify

many alternating knots and links, they do not classify non-alternating knots and links. Moreover,

there is a discrepancy in the work of Liang et al. between how oriented and non-oriented links

are classified.

For non-oriented links, in [17] the authors checked the sign of the projected writhe and assigned a

D for a positive value and an L for a negative value. If the sum of self-writhes was zero, writhe profiles

were calculated in order to specify a designation of D or L. For oriented links, the sign of the linking

number was checked first and the link was assigned a D for a positive value and an L for a negative

value. If the linking number was zero, the designation process for the non-oriented links was followed

with minor changes to account for orientation.

A discrepancy arises when linking number is non-zero. Chirality is a property independent

of orientation but linking number very much depends on orientation. Thus, linking number is not

a good choice for a chiral designator. To see the issue more clearly, take the link 42
1 as an example.

The oriented 42
1 link has four oriented symmetry classes which can be represented by 42

1++, 42
1+−,

42∗
1 ++, and 42∗

1 +−(see Figure 3). The unoriented 42
1 link only has two unoriented symmetry classes
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where

Ξ(z) =
∞

∑
n=4

nzn
µn(L), (6)

and µn(L) is the total number of length n lattice links in the same isotopy class as L. This distribution

has the property that all conformations of the same length have equal probability, dependent only on z

and on the link type. Thus, the BFACF algorithm may be used to uniformly sample conformations of

certain link isotopy class and length. The reader is directed to ([21], chapter 9) for a full treatment of

the BFACF algorithm.

4.2. Canonical Isotopy Class

References to links in the literature most commonly use the name listed in the Rolfsen table [2].

This is effective for communicating general properties of links, but when working with oriented links

or links with distinguished components, one must still explicitly draw a picture of the link for full

clarity. Doll and Hoste provided a link table which included orientation and component labels in

addition to providing a nomenclature for reversing components [13]. While the diagrams in the Doll

and Hoste table were chosen in a systematic way (using Conway notation), there is inconsistency in

which isotopy classes of each link are actually represented. For example, the two diagrams listed for 72
3

are reflections of each other and are non-isotopic, since 72
3 lacks reflection symmetry.

Our goal is to propose a systematic way to identify a representative isotopy class for each link

type. We use writhe and linking number to aid in this. Let Cn(L) be the set of all length n lattice

conformations of L. Let the average of the sum of self-writhes of the elements of Cn(L) be Sn(L), i.e.,

Sn(L) =
1

|Cn(L)| ∑
σ∈Cn(L)

s(σ). (7)

Analogously, let σi be the self-avoiding polygon representing the ith component of σ ∈ Cn(L),

then we define the average of the self-writhes of component i of L as

Sn(L, i) =
1

|Cn(L)| ∑
σ∈Cn(L)

s(σi). (8)

Case 1, L is a knot (c = 1)

In the case of knots, we follow the writhe-guided nomenclature proposed in Portillo et al. and

Brasher et al. [4,5]. This nomenclature specified the canonical knot K as the one where Sn(K) > 0.

In [4,5], the authors also provided numerical data in support of the conjecture that for each chiral

knot K, Sn(K) was either consistently positive or consistently negative regardless of n, thus pointing

to an unambiguous designation. Using the data from those papers and previously unpublished

10-crossing data, we constructed a table of knots through 10 crossings (Table S6). Note that these knots

do not include orientation information, as the methods used do not discern orientations of knots.

Case 2, L is a 2-component link (c = 2)

The case of 2-component links is more complicated due to the extra link symmetries as detailed in

Section 3 and Table 1. We appeal to Conjecture 1 and use self-writhes and linking number to define

the canonical isotopy class of a link, and denote it by L++. In particular, we choose L++ so that

Sn(L++) > 0, lk(L++) > 0, and Sn(L, 1) > Sn(L, 2) when possible. Once L++ is chosen, it can be

used as a point of reference for obtaining all other isotopy classes of the link as described in Section 3.2,

and illustrated in Figure 3.

As long as Sn(L++) 6= 0, then half of the isotopy classes will have Sn(L++) > 0.

Then, if lk(L++) 6= 0, half of those isotopy classes will have lk(L++) > 0. Then, as long as

Sn(L, 1) 6= Sn(L, 2), half of those isotopy classes will have Sn(L, 1) > Sn(L, 2). This narrows down the
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Table 2. Columns 2, 3, and 4 show confidence intervals for the average of the sum of self-writhes

(S200(L++)), and self-writhes of components 1 and 2 (S200(L++, 1) and S200(L++, 2)) for length

200 links in Z3. For each 2-component link indicated in column 1, the average is taken over an ensemble

of statistically independent length 200 lattice links of type L as described in the numerical methods

section. Combined with the linking number (column 7), these confidence intervals are used to determine

which diagram appears as L++ in Figure A1. The Rolfsen ([2]) diagram’s designation under our

notation is presented in column 5. Column 6 lists which isotopy class is represented by default KnotPlot.

Note that the KnotPlot conformations are reflections of those in the Rolfsen table. Symmetry groups

(column 8) are taken from the work of Henry and Weeks, Berglund et al., and from SnapPy [14,16,22].

L S200(L) S200(L, 1) S200(L, 2) Rolfsen KP lk(L) Sym

02
1 [− −] [− −] [− −] 02

1 02
1++ 0 Γ2

22
1 [−0.037 0.102] [−0.054 0.043] [−0.106 0.087] 22

1 22
1++ 1 Σ8,2

42
1 [0.755 0.877] [0.391 0.481] [0.336 0.424] 42

1
∗ 42

1+− 2 Σ4,1

52
1 [1.401 1.607] [0.685 0.844] [0.657 0.822] 52

1
∗ 52

1++ 0 Σ8,1

62
1 [1.624 1.692] [0.812 0.862] [0.795 0.847] 62

1
∗ 62

1++ 3 Σ4,1

62
2 [−0.156 0.042] [−0.144 0.014] [−0.067 0.083] 62

2 62
2++ 3 Σ8,2

62
3 [1.957 2.225] [0.979 1.207] [0.892 1.105] 62

3
∗ 62

3+− 2 Σ4,1

72
1 [2.188 2.364] [1.027 1.167] [1.109 1.249] 72

1
∗ 72

1++ 1 Σ4,1

72
2 [0.413 0.788] [0.211 0.509] [0.093 0.389] 72

2
∗ 72

2+− 1 Σ4,1

72
3 [2.667 2.728] [1.318 1.373] [1.324 1.38] 72

3
∗ 72

3++ 0 Σ8,1

72
4 [4.292 4.348] [3.992 4.04] [0.289 0.319] 72

4 72
4
∗++ 0 Σ4,2

72
5 [2.532 2.602] [2.843 2.904] [−0.326 − 0.286] 72

5
∗ τ72

5++ 2 Σ2,1

72
6 [1.411 1.445] [1.381 1.41] [0.023 0.042] 72

6
∗ τ72

6++ 0 Σ4,2

72
7 [3.51 3.592] [3.458 3.527] [0.036 0.081] 72

7 72
7
∗++ 2 Σ2,1

72
8 [3.248 3.324] [3.304 3.368] [−0.07 − 0.03] 72

8
∗ τ72

8++ 0 Σ4,2

82
1 [2.443 2.477] [1.225 1.251] [1.209 1.235] 82

1
∗ 82

1+− 4 Σ4,1

82
2 [0.761 0.79] [0.373 0.396] [0.379 0.403] 82

2 82
2
∗++ 4 Σ4,1

82
3 [2.861 2.907] [1.435 1.474] [1.41 1.449] 82

3
∗ 82

3++ 3 Σ4,1

82
4 [0.868 0.94] [0.417 0.476] [0.429 0.486] 82

4
∗ 82

4+− 4 Σ4,1

82
5 [1.171 1.22] [0.575 0.618] [0.578 0.62] 82

5
∗ 82

5++ 3 Σ4,1

82
6 [3.29 3.33] [1.632 1.671] [1.639 1.678] 82

6
∗ 82

6++ 2 Σ4,1

82
7 [2.829 2.864] [1.415 1.445] [1.402 1.431] 82

7
∗ 82

7+− 1 Σ4,1

82
8 [−0.002 0.033] [0.006 0.035] [−0.02 0.01] 82

8 82
8++ 1 Σ8,2

82
9 [0.777 0.92] [0.471 0.599] [0.276 0.35] 82

9 τ82
9
∗++ 2 Σ2,1

82
10 [0.893 0.927] [0.594 0.625] [0.291 0.309] 82

10 82
10

∗++ 0 Σ4,2

82
11 [4.944 4.98] [4.423 4.455] [0.512 0.534] 82

11 82
11

∗++ 2 Σ2,1

82
12 [1.904 1.932] [2.422 2.447] [−0.526 − 0.508] 82

12
∗ 82

12++ 0 Σ4,2

82
13 [1.945 2.0] [1.917 1.965] [0.018 0.046] 82

13
∗ 82

13++ 0 Σ4,2

82
14 [3.13 3.185] [3.17 3.218] [−0.051 − 0.022] 82

14 82
14

∗++ 2 Σ2,1

82
15 [0.029 0.056] [0.034 0.048] [−0.01 0.014] 82

15 τ82
15

∗++ 0 Σ4,2

82
16 [0.188 0.219] [0.132 0.16] [0.05 0.065] 82

16 82
16

∗++ 2 Σ2,1

4.3. Proposed Link Table

The canonical isotopy class was chosen for each link as described in Section 4.2 using data

obtained as described in Sections 5 and 6. The 92
5, 92

34, 92
35, 92

39, and 92
41 links were each narrowed

down to two potential candidates by this process, differing by the simultaneous reversal of both

components. For each of these links, some extra criterion is required to select a canonical link from the

two candidates. We made an arbitrary choice between the two possible candidates for each of these

five links, in order to provide a complete table and thus avoid the ambiguities of nomenclature that we

set out to eliminate. The canonical or otherwise chosen link diagrams are represented in Figure A1.

4.4. Note on Minimum Lattice Links

In Portillo et al., an ideal lattice knot of type K was defined as a minimal step number (msn)

lattice embedding of K [4]. The authors conjectured that the mean writhe of random polygons of given
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knot type and fixed length could be approximated by the mean writhe of the corresponding ideal

msn conformation. They provided numerical evidence that there exists a constant αK such that the

mean writhe of a random lattice polygon of type K and length n belongs to (wI(K)− αK, wI(K) + αK),

independently of the value of n, where wI(K) is the mean writhe of the ideal lattice conformations of

K. We here inquire if this conjecture can be extended to links. Methods and results are presented in

Sections 5 and 6.

5. Results and Discussion

5.1. Numerical Results

Statistically independent ensembles of linked lattice polygons were obtained as described in

Sections 4.1 and 6. We calculated s(σ), s(σ1), and s(σ2) for each sampled conformation σ. Using batch

mean analysis to account for autocorrelation, these values were used to calculate 95% confidence

intervals for Sn(L), Sn(L, 1), Sn(L, 2) with n ∈ {76, 100, 150, 200, 250, 300}. For each link without

reflection symmetry, each confidence interval for Sn(L) was found to be either entirely positive or

entirely negative. Moreover, the signs of these confidence intervals are consistent across all sampled

lengths for each link as predicted by Conjecture 1.

For links which lack pure exchange symmetry, confidence intervals for Sn(L, 1) and Sn(L, 2) are

disjoint at each n. Moreover, we can choose a labeling of component 1 and component 2 for each

link so that Sn(L, 1) > Sn(L, 2) for n ∈ {76, 100, 150, 200, 250, 300}. From this, we were able to choose

canonical link isotopies for most links as described in Section 4. The data for Sn(L), Sn(L, 1) and

Sn(L, 2) for links with up to nine crossings are included in supplementary Tables S2–S4.

A regular diagram for each chosen isotopy class can be found in Figure A1. All data presented

in this paper have been converted from sampled isotopy classes to L++ by relabeling components

and negating writhe and linking number where appropriate. The confidence intervals of the mean

writhes at n = 200 for links up to crossing number 8 are presented in Table 2 while an extended table

including 9-crossing information is included in supplementary materials (Table S5). These tables also

list the link isotopy class from Rolfsen’s table and Knotplot using the notation from Section 3.2 based

on our choice as L++ [2,15,23].

When the estimated values of Sn(L) and Sm(L) are compared for n, m ∈

{76, 100, 150, 200, 250, 300}, they are found to only vary by a small amount. We estimated

|Sn(L)− Sm(L)| for each link, L, and pair of lengths, n and m. The largest difference for Sn(L) was

found in the 82
1 link, where S250(L) is estimated to be about 2.411 compared to 2.589 for S76(L) for

a difference of about 0.178. Figure 5 illustrates this behavior of Sn(L).

For individual component self-writhe, the largest difference was in Sn(92
40, 1), where S250(9

2
40, 1)

was estimated at 2.439 compared to 2.211 for S76(9
2
40, 1), giving a difference of about 0.228.

For comparison, writhe in Z3 is always a multiple of 1/4, so no two links or link components can differ

in writhe by less than 0.25 [24]. In this way, Sn(L) and Sn(L, i) appear to be well-behaved.

We also analyzed minimum step links (described in Section 6.2, Table 3 and in the supplementary

materials Table S1) and found that Smin(L) and Smin(L, i) also stayed reasonably close to the other

values of Sn(L) and Sn(L, i). We did, however, find Smin(8
2
15++, 1) = 0 and Smin(8

2
15++, 2) ≈ 0.2157,

while Sn(82
15, 1) > Sn(82

15, 2) for all other sampled lengths, which shows that component self-writhe

of minimum step conformations may not be a sufficient indicator of self-writhe as n increases.

We examined the minimum step 82
15 conformations in our dataset and observed that component

1 was identical in all of them; it was planar rectangle which always has 0 writhe. One of the minimum

step conformations for 82
15 can be found in Figure 4b.
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Table 3. Mean self-writhes of minimum step prime 2-component links with 8 or fewer crossings.

Numbers based on all conformations found in the preprint by Freund et al. [25].

Link Smin(L) Smin(L, 1) Smin(L, 2)

02
1 0.0 0.0 0.0

22
1 0.0 0.0 0.0

42
1 0.8125 0.4063 0.4063

52
1 1.3492 0.6746 0.6746

62
1 1.65 0.825 0.825

62
2 0.0 0.0 0.0

62
3 1.9438 0.9719 0.9719

72
1 2.1636 1.0818 1.0818

72
2 0.7 0.35 0.35

72
3 2.4903 2.4427 0.0476

72
4 4.2553 4.1811 0.0743

72
5 2.3625 2.7563 −0.3937

72
6 1.4375 1.4375 0.0

72
7 3.5368 3.5368 0.0

72
8 3.0479 3.0479 0.0

82
1 2.597 1.2985 1.2985

82
2 0.8123 0.4062 0.4062

82
3 2.7172 1.3586 1.3586

82
4 0.8164 0.4082 0.4082

82
5 1.1765 0.5883 0.5883

82
6 3.1666 1.5833 1.5833

82
7 2.7215 1.3607 1.3607

82
8 0.0 0.0 0.0

82
9 0.9355 0.6021 0.3333

82
10 0.9525 0.7288 0.2236

82
11 4.6944 4.6667 0.0278

82
12 2.0538 2.2909 −0.237

82
13 2.1324 2.1324 0.0

82
14 3.0967 3.0967 0.0

82
15 0.2157 0.0 0.2157

82
16 0.5 0.5 0.0

5.2. Boundedness of Writhe under BFACF Moves

BFACF moves not only define our sampling method, but also function as Reidemeister moves

for lattice links in the sense that any lattice link conformation can be transformed into any other

lattice conformation of the same link by a finite sequence of BFACF moves [6]. It is of interest, then,

how BFACF moves may affect space writhe. We find that not only do BFACF moves affect space writhe

in a bounded way, but writhe changes in a way entirely predicted by the local geometry of the edges

within two steps of the BFACF move. To prove this, we will appeal to a special formulation of space

writhe for lattice links proven by Lacher and Sumners [26].

To perform the lattice link writhe calculation, we first define the push-off σ(ε1,ε2,ε3)
of a lattice link

σ for εi ∈ (−1, 0) ∪ (0, 1). We obtain σ(ε1,ε2,ε3)
by translating σ along the vector [ε1, ε2, ε3]

T .

Theorem 1. The total writhe of a lattice link may be calculated as follows:

w(σ) =
lk(σ, σ( 1

2 , 1
2 , 1

2 )
) + lk(σ, σ(− 1

2 , 1
2 , 1

2 )
) + lk(σ, σ( 1

2 , 1
2 ,− 1

2 )
) + lk(σ, σ(− 1

2 , 1
2 ,− 1

2 )
)

4
, (9)

where lk(σi, σj) is the linking number of σi ⊔ σj [26].
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Since we can calculate the total writhe of a link from the self-writhes of the individual components,

Equation (9) is sufficient to find writhe for links with any number of components. This yields the

following interesting corollary:

Corollary 1. If σ is a simple cubic lattice representation of a link, then w(σ) = k
4 for some k ∈ Z [26].

A BFACF move is performed by taking an edge of a self-avoiding polygon in Z3 and pushing it

one unit in one of the four directions perpendicular to the direction of the edge. We will refer to the

edge being pushed as the BFACF edge. If an endpoint of the BFACF edge traces an existing edge of the

polygon during that push, then the traced edge is deleted. On the other hand, if an endpoint of the

BFACF edge does not trace another edge of the polygon, then an edge is added in the traced space.

With this in mind, we prove the following theorem:

Theorem 2. If σ1 and σ2 are related by a single BFACF move, then |w(σ2)− w(σ1)| ≤
1
2 . More specifically,

(w(σ2)− w(σ1)) ∈ {− 1
2 ,− 1

4 , 0, 1
4 , 1

2}.

Proof. We will consider the BFACF move which transforms σ1 into σ2. Without loss of generality,

we may assume that

1. the BFACF edge runs from (0, 0, 0) to (0, 1, 0), and

2. the result of the BFACF move will push the BFACF edge to an edge from (0, 0,−1) to (0, 1,−1).

We may rotate and translate the conformation to make these assumptions true, which will not

affect the writhe of the conformations.

Now consider the BFACF move. This move may pass the lattice through one of the push-offs from

Theorem 1, changing the linking number of the polygon with that push-off. One such strand passage

will change the linking number by ±1, in turn changing the space writhe by ±1/4. If the move passes

the polygon through a push-off edge, then the push-off edge must have endpoints (−1/2, 1/2,−1/2)

and (1/2, 1/2,−1/2) (e.g., the black BFACF edge and orange push-off edge in Figure 6). Checking

where this edge must come from in the original polygon by reversing the push-off, we see it is necessary

that this edge either has an endpoint at (0, 0, 0) or at (0, 0,−1). In the former case, this means that

the edge before to the BFACF edge runs in the x-direction, and there are two such possible edges.

In the latter case, the edge before the BFACF edge must run from (0, 0,−1) to (0, 0, 0) and the edge

before that must run in the x-direction, and there are two such possible edges. If there is no edge from

(0, 0,−1) to (0, 0, 0), then this second case will result in a self-intersection of the link and is not a valid

BFACF move. We can see that the four possible edges to result in this change are all mutually exclusive,

so from all of these cases, only one can contribute the ±1/4 change in writhe.

Now suppose that one of the push-offs of the BFACF edge passes through an edge of the original

link when the BFACF move is performed (e.g., the blue push-off edge being pushed through the

yellow edge in Figure 6). The four push-offs of the BFACF edge run from (−1/2, 1/2,−1/2) to

(−1/2, 3/2,−1/2), (1/2, 1/2,−1/2) to (1/2, 3/2,−1/2), (−1/2,−1/2,−1/2) to (−1/2, 1/2,−1/2),

and (1/2,−1/2,−1/2) to (1/2, 1/2,−1/2). We note that in each of these cases the edge which the

crossing change is occuring with must be running in the x-direction and have an endpoint at either

(0, 1, 0) or (0, 1,−1). Similar to the previous cases, each of these possible edges are mutually exclusive

and must either be the edge after the BFACF edge or the edge after that. Again, since they are mutually

exclusive cases, the change in writhe from these cases can only be ±1/4.

Thus, at most two of the above cases may be true at any given time, each contributing to a

change in writhe of ±1/4. Thus, the total change in writhe from any BFACF move is in the set

{− 1
2 ,− 1

4 , 0, 1
4 , 1

2}.
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6.2. Minimum Length Links

In addition to these BFACF simulations, results were obtained for minimum length lattice links

from preliminary data produced by Freund et al. [25]. The data obtained were the set of all known

minimum length conformations of each 2-component link with crossing number up to 9. We took

the assumption that these sets of conformations were complete, and calculated the mean self-writhes

of the minimum lengths directly. We use the notation Smin(L), Smin(L, 1), and Smin(L, 2) to refer

to the mean self-writhes of the minimum length lattice links and their components. We took only

the set of conformations representing L++, as determined here, for each link. The results through

eight crossings are presented in Table 3, and the results through nine crossings can be found in the

supplementary materials in Table S1.

7. Conclusions

Using the BFACF algorithm, we here provide numerical support for Conjecture 1 for each of the

ninety-two prime 2-component links with up to 9 crossings. Our results show that, on average, the

values of component self-writhes maintain an ordering for sufficiently long lattice links. Using the

linking number and the gathered writhe data we are able to unambiguously designate a canonical

isotopy class for each prime 2-component link with crossing number up to 9, except for 92
5, 92

34, 92
35,

92
39, and 92

41. These five exceptional links are not fully disambiguated by our method; in each case we

chose one out of two possible isotopy classes for inclusion in our link table. Figure A1 includes all

regular minimal diagrams corresponding to the canonical isotopy classes of 2-component links with 9

or fewer crossings. This table can be used in conjunction with the provided nomenclature to clearly

communicate precise link isotopy classes in future research. In addition, we prove a theorem about the

boundedness of changes in writhe under the BFACF moves. This result can be useful in proving or

finding a counterexample to conjecture 1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/10/11/604/
s1, Table S1: table of mean self-writhes for minimum length lattice links extended from Table 3, Table S2: table
of Sn(L++) for all sampled n, Table S3: table of Sn(L++, 1) for all sampled n, Table S4: table of Sn(L++, 2) for
all sampled n, Table S5: summary of link information extended from Table 2, Table S6: table of canonical knot
diagrams extended from the table presented by Brasher et al. [5].
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