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Abstract 

Shotgun metagenomics has greatly advanced our understanding of microbial 

communities over the last decade. Metagenomic analyses often include assembly and genome 

binning, computationally daunting tasks especially for big data from complex environments such 

as soil and sediments. In many studies, however, only a subset of genes and pathways involved 

in specific functions are of interest; thus it is not necessary to attempt global assembly. In 

addition, methods that target genes can be computationally more efficient and produce more 

accurate assembly by leveraging rich databases, especially for those genes that are of broad 

interest such as their involvement in biogeochemical cycles, biodegradation, antibiotic resistance 

or use as phylogenetic markers. Here we review six gene-targeted assemblers with unique 

algorithms for extracting and/or assembling targeted genes: Xander, MegaGTA, SAT-assembler, 

HMM-GRASPx, Genseed-HMM and MEGAN. We tested these tools using two datasets with 

known genomes, a synthetic community of artificial reads derived from the genomes of 17 

bacteria, shotgun sequence data from a mock community with 48 bacteria and 16 archaea 

genomes, and a large soil shotgun metagenomic dataset. We compared assemblies of a universal 

single copy gene (rplB) and two N cycle genes (nifH and nirK). We measured their 

computational efficiency, sensitivity, specificity and chimera rate, and found Xander and 

MegaGTA, which both use a probabilistic graph structure to model the genes, have the best 

overall performance with all three datasets, although MEGAN, a reference matching assembler, 

had better sensitivity with synthetic and mock community members chosen from its reference 

collection. Also Xander and MegaGTA are the only tools that include post-assembly scripts 

tuned for common molecular ecology and diversity analyses. Additionally, we provide a 



mathematical model for estimating the probability of assembling targeted genes in a metagenome 

for estimating required sequencing depth.  

 

Introduction 

Metagenomics, involving the shotgun sequencing of DNA extracted from environmental 

samples, has transformed our understanding of microbial ecology in many environments (Qin et 

al., 2010; Howe et al., 2014; Sunagawa et al., 2015). This method produces reads from random 

DNA fragments from genomes in the community (National Research Council, 2007). Thus it has 

the potential to both overcome the primer bias issue of amplicon-based methods and to provide a 

broader functional picture of the sampled microbiome (Frank et al., 2008; Klindworth et al., 2013; 

Guo et al., 2016). To accomplish this, the reads need to be assembled and/or binned in a meaningful 

way. 

Global assembly and local (targeted) assembly are two common strategies for assembling 

shotgun reads. Global assembly attempts to recover most if not all genomes in metagenomes and 

has become a common step for shotgun metagenomic analyses. Many assemblers have been 

developed for this task including meta-velvet, IDBA-UD, MEGAHIT, and metaSPAdes (Namiki 

et al., 2012; Peng et al., 2012; Li et al., 2015; Nurk et al., 2017). While major improvements 

have been made in recent years, global assembly still faces challenges including repeats, 

sequencing errors, uneven coverage and the sheer size of data sets, especially for complex 

environments such as soil (Li et al., 2015; Nurk et al., 2017; Sczyrba et al., 2017). Many studies, 

however, only focus on genes involved in certain pathways such as the biogeochemical cycles or 

other genes that are directly responsible for important ecological functions. In these cases it is 

not necessary to assemble all of the shotgun metagenomic data, and local assemblers that target 



these genes of interest may be more advantageous because they focus computational efforts only 

on assembly of alleles of a specified gene. In parallel with global assembly, significant progress 

with local assembly has been made in the last five years (Zhang et al., 2014; Wang et al., 2015; 

Alves et al., 2016; Gregor et al., 2016; Zhong et al., 2016; Huson et al., 2017; Li et al., 2017). 

This has enabled microbial ecologists to recover full-length (or nearly so) marker genes of 

phylogenetic or functional interest from complex environmental samples without relying on PCR 

primers that often amplify only partial gene sequences and have well known biases (Frank et al., 

2008; Klindworth et al., 2013; Guo et al., 2016) resulting in more reliable taxonomic 

assignments and microbial community diversity analyses. Although the target of local assembly 

can be any genomic segments including genes, gene cassettes, plasmids, or even whole genomes, 

we focus on protein coding gene-targeted assemblers in this review. 

There are potential problems with all assembly-based methods. First, the assembled contigs 

may be chimeric. While some of these can be detected and removed using paired end information, 

there is no method to verify all in silico (Edgar, 2016). Second, sequence variations from closely 

related strains are collapsed in the assembly process (Awad et al., 2017; Nurk et al., 2017; Brown 

et al., 2018). Thus the assembled contigs are not suitable for SNP (single nucleotide 

polymorphism), primer design, or diversity analyses that involve fine taxonomic (species or strain) 

level discrimination. Third, rare members do not have enough coverage to assemble. All of the 

above are more problematic in complex metagenomes from environments that have high diversity 

with many closely related strains and many strains with low coverage (Howe et al., 2014). 

Gene-targeted assemblers have potential advantages over global assemblers that may minimize 

such problems: 1) assembly guided by reference can reduce chimera formation and assembly errors 

arising from sequencing errors; 2) better efficiency from reduced graph and/or search space 



enables gene-targeted assemblers to use more sophisticated algorithms to explore micro-

heterogeneity of closely related strains (Wang et al., 2015; Huson et al., 2017); 3) the most 

common current genome binning approach, which relies on the results from global assembly, 

misses even more low coverage members than targeted assembly since only bins with high 

completeness and low contamination are usually selected for downstream analyses (Brown et al., 

2018). While many gene-targeted assemblers reviewed here demonstrated better performance than 

global assembly in their original studies (Zhang et al., 2014; Wang et al., 2015; Li et al., 2016; 

Huson et al., 2017; Li et al., 2017), continual improvements in global as well as gene-targeted 

assemblers may result in different performances which may also depend on data size, quality and 

gene characteristics. Here we focus on comparing gene-targeted assemblers rather than gene-

targeted assemblers versus global assemblers. 

While assembly outputs are linear sequences, assembly processes require more 

sophisticated graph data structures. The two most common data structures are de Bruijn graph 

(DBG) and overlap graph (Myers, 2016). The DBG method first chops reads into even smaller 

kmers and then builds a graph connecting kmers that share k-1 bases. The overlap graph method 

first finds overlaps (larger than a length cutoff) among all reads and then connects reads based on 

the overlapping information (Peltola et al., 1984; Simpson and Durbin, 2012). Earlier methods 

for constructing the overlap graph required all-against-all pairwise read comparisons and thus 

were computationally expensive. Recently, efficient overlap detection methods using advanced 

data structures such as FM-index and Burrows and Wheeler Transform (Lippert et al., 2005; 

Simpson and Durbin, 2012) have been developed and make overlap detection highly efficient. 

The DBG is anti-intuitive by breaking down the reads first but it achieves faster CPU time by 

avoiding the expensive all-against all pairwise comparisons since the connections among the 



kmers are implicit (there are only eight possible neighboring kmers for each kmer by extending 

A, T, C, or G on both ends). DBG is very sensitive to sequencing errors because each sequencing 

error can cause k spurious kmers and greatly increase the complexity of the graph. Overall, for 

global metagenomic assembly the overlap graph works well with long reads by preserving the 

integrity of the reads, whereas the DBG fits well with the massive amounts of short reads that 

second generation sequencing platforms produce (Simpson and Pop, 2015; Myers, 2016). 

Protein coding gene-targeted assemblers 

Here we review and compare the efficiencies and assembly quality of several gene-

targeted assembly tools: Xander, MegaGTA, SAT-Assembler, HMM-GRASPx, Genseed-HMM, 

and MEGAN’s gene-centric assembler (Zhang et al., 2014; Wang et al., 2015; Alves et al., 2016; 

Huson et al., 2016; Li et al., 2016; Zhong et al., 2016; Huson et al., 2017; Li et al., 2017). Our 

goal is to give biologists an easy-to-understand review on the gene-targeted assembly algorithms. 

This is not a complete list of all gene-targeted assemblers. Rather, our selection criteria were 1) 

unique innovations in assembly algorithms and 2) scalability with large shotgun metagenomic 

data.  

The tools reviewed here use a wide range of algorithms and can be divided into two main 

categories (Table S1): 1) read filtering, potentially iteratively, using sequences or pHMMs as 

search queries, and 2) assembly by alignment, where pHMMs are used for guiding graph 

traversal in assembly. Among the tools reviewed, pHMM-GRASPx, Genseed-HMM, and SAT-

assembler belong to first category. HMM-GRASPx and Genseed-HMM use iterative read 

filtering steps to potentially elongate nascent contigs and then apply third party tools for 

assembly, while SAT-assembler has a novel assembly algorithm. MEGAN’s gene centric 

assembly function is similar to the first category except that it first aligns all reads against NCBI-



nr and subsets reads that align to target genes. Further, Xander and MegaGTA belong to the 

second category and share a novel pHMM guided graph traversal algorithm.  

 

1) Xander 

Xander combines a DBG with a protein profile Hidden Markov Model (pHMM) built from a 

reference set of target gene sequences. The probabilities from the pHMM guide gene assembly 

(Wang et al., 2015). The DBG is encoded as a lossy (approximate) data structure which compresses 

the sequence data (Pell et al., 2012). The memory needed for this data structure is dependent on 

the data complexity, not total data size. Xander requires the user to specify the amount of memory 

before compression. If too little memory is specified for an accurate compression, the user will 

need to re-run the time-consuming compression.  Xander searches start at all nucleotide kmers 

with sequences that potentially encode short protein sequences found in one or more target gene 

reference sequences. These starting kmers are extended in both 5’ and 3’ directions using the 

encoded pHMM probabilities to find high-probability paths in the graph structure, analogous to 

the way a pHMM is used to find high-probability alignments in a (linear) DNA sequence. The 

traversal advances three graph nodes (three kmers) at a time (one codon) to select a single reading 

frame for the pHMM. Xander uses the “A*” algorithm (Hart et al., 1968) to find the path with the 

highest probability, and can also find multiple paths from one start, important when studying allelic 

diversity, using the modified Yen’s K shortest path algorithm (Yen, 1971; Lawler, 1972), further 

modified to require each additional path to contain at least one unique kmer. Therefore, pHMM 

guided graph traversal not only reduces the search space compared to global assembly but also 

provides a probability measure analogous to the familiar BLAST bits score for how likely a contig 

would have matched the pHMM by chance, and thus reduces assembly error. 



To assemble sequences, Xander requires forward and reverse pHMMs built from a relatively 

small set of protein sequences (e.g. 117 for rplB) that capture the diversity of the target gene, and 

a larger set of aligned protein sequences (1,743 for rplB but can be several thousand) for finding 

starting kmers. The current Xander package includes models for the single copy ribosomal protein 

gene rplB and a few N cycle genes (AOA, AOB, nifH, nirK, nirS, norB_cNor, norB_qNor, 

nosZ_cladeI and nosZ_cladeII).  A tutorial is provided for preparing the required pHMMs and 

references for additional genes (https://github.com/rdpstaff/Xander_assembler#per-gene-

preparation-requires-biological-insight). 

Another unique aspect of Xander is that it is designed for microbial diversity analyses and thus 

includes post assembly utilities such as chimera checking, de novo OTU clustering, taxonomic 

classification (the nearest neighbor in the reference database with percent identity), and 

quantification. After assembly, the contigs are clustered at 99 % to remove redundancy and the 

chimeras are removed by UCHIME (Edgar et al., 2011). For these post-assembly tasks, Xander 

requires a large set of protein sequences with taxonomy information in the descriptions (usually 

the same as those used for finding starting kmers) and a comparable set of nucleotide sequences. 

2) MegaGTA 

MegaGTA is designed based on Xander’s analysis framework and claims several 

improvements: 1) MegaGTA uses a different space-efficient variant of DBG, the succinct de 

Bruijn graph (sDBG) that was first implemented in the popular global assembly tool MEGAHIT 

(Li et al., 2015). The sDBG is highly parallelizable and can also be used to build an iterative de 

Bruijn graph (Peng et al., 2010), which is difficult to achieve with the bloom filter employed by 

Xander. The iterative de Bruijn graph allows the use of multiple kmer sizes, increasing 

sensitivity and specificity. 2) Xander is designed to remove erroneous kmers caused by 

https://github.com/rdpstaff/Xander_assembler#per-gene-preparation-requires-biological-insight
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sequencing errors by filtering out kmers with low abundance but then keeps single-copy “mercy-

kmer” (Li et al., 2015) if they are the only kmers connecting two abundant kmers in a read for 

the purpose of retaining low abundance species in metagenomes. These are common in complex 

environments, but this could potentially reintroduce kmers that are sequencing errors. Although 

pHMM-guided graph traversal should reduce the chance of erroneous kmers entering assemblies, 

MegaGTA does penalize kmers with low coverage in the guided assembly step. This reduces 

assembly error from sequencing errors but might also introduce bias against low abundant 

members. Overall, MegaGTA achieves better sensitivity and specificity, although its memory 

requirement can still be a hindrance for large and complex metagenomes. 

3) SAT-assembler 

Similar to Xander and MegaGTA, SAT-Assembler also uses pHMM but it is a string graph 

based-assembler that includes two main steps. The first step searches for target gene fragments in 

reads using pHMM with HMMER3 with a permissive cutoff (e-value cutoff of 1000), which 

greatly reduces the input data size for the next step without losing sensitivity. The second step 

builds a string graph for each targeted gene and assembles contigs. The read alignment location 

information against the model from the first step is used to guide the overlap calculation among 

reads. Multiple types of information such as paired ends, overlap connection, and coverage are 

used to guide graph traversal and avoid chimeras.  Contigs are merged into scaffolds using paired 

end information as the final step. To run SAT-Assembler, a file containing pHMMs of targeted 

genes is required. The pHMM for a specific gene can be built from aligned protein sequences of 

the gene using the hmmbuild command in HMMER3 (Eddy, 2009). Additionally, SAT-Assembler 

is also designed to work with pHMMs in the Pfam database, which has ~ 18,000 pHMMs in 



version 32.0 and covers ~ 80% of protein sequences in UniProtKB (Finn et al., 2016; Schaeffer et 

al., 2017). 

As mentioned briefly above, Xander/MegaGTA and SAT-Assembler use pHMMs in very 

different ways. In Xander/MegaGTA, pHMMs are used to guide graph’s traversal in DBG. 

Although the graph traversal space is reduced to those paths related to the target gene, it is still 

computationally expensive (CPU time and memory) to load all reads into the graph and identify 

all starting kmers in a large graph. In contrast, SAT-Assembler uses pHMMs to filter reads 

belonging to target genes as a data reduction step and then uses the reduced dataset to build the 

assembly graph, thus greatly reducing the memory and CPU cost of graph building. SAT-

Assembler further uses read pHMM alignment information to speed up overlap computation 

among reads for building string graphs. It, however, does not apply pHMM to guide graph traversal 

on the resulting string graph, which could potentially improve the assembly. 

4) HMM-GRASPx 

HMM-GRASPx is also pHMM based but it integrates many tools including gene callers 

(MetaGeneAnnotator/FragGeneScan) (Noguchi et al., 2008; Rho et al., 2010), HMMER3 (Eddy, 

2009), nucleotide sequence assembler (SPAdes) (Nurk et al., 2017) and protein sequence 

assembler (SFA-SPA) (Yang et al., 2015). Its core algorithm, iterative search and assembly, is 

based on an overlap graph in protein space and hence can increase the sensitivity of gene 

identification. Short reads are not ideal for gene identification because they may not have enough 

information to be recognized as the target gene. HMM-GRASPx tackles this problem by iterative 

search and assembly. Intuitively, homologous protein sequences translated from reads with low 

sequence identity could be identified by being assembled first with other high identity reads into 

longer contigs. More specifically, 1) overlaps among reads are first computed; 2) reads with high 



pHMM alignment scores are identified and used as starting contigs; 3) contigs are extended 

using overlapping reads; 4) the extended contigs are aligned with pHMM to decide whether to 

continue extending. If the alignment score is below a certain threshold or there are no more 

overlapping reads, then the extension stops; 5) the resulting contigs are assembled again based 

on their overlap; 6) finally reads from the target gene are retrieved by mapping them to the 

assembled gene contigs. This core algorithm functions both as a finder and assembler. HMM-

GRASPx’s authors suggest that for quantitative results, the identified contigs be assembled with 

another program, i.e. SPAdes for nucleotide and SFA-SPA for protein reads. This is because the 

algorithm outputs all possible contigs to increase sensitivity and thus can produce redundant 

assemblies. However, it should be possible to simply remove the redundant contigs, which would 

improve the overall computational efficiency. 

5) Genseed-HMM 

Genseed-HMM applies an iterative assembly and extension strategy similar to that used 

by HMM-GRASPx. The key difference is Genseed-HMM can extend beyond the gene 

boundaries, while HMM-GRASPx will automatically stop extending when the pHMM alignment 

score drops. Genseed-HMM has the advantage of being able to use nucleotide, protein sequences 

or pHMMs as references, which gives the users more flexibility. Internally, it applies blastn with 

nucleotide references and tblastn for protein references to search against the (nucleotide) reads, 

and hmmsearch for pHMM search of the translated reads. At the assembly step, it uses third 

party assembly tools such as SOAPdenovo, ABySS, and CAP3 (Huang and Madan, 1999; 

Simpson et al., 2009; Li et al., 2010; Luo et al., 2012), and the choice of third party assembly 

tools might have an impact on its overall computational efficiency and assembly quality. For 

contig extension iterations, contig ends are extracted and used for as new references for the next 



search iteration. If no contigs are extended, it will trim the extended part from the previous 

iteration and try new extension up to three iterations. Once a contig reaches or exceeds the 

maximum length set it will not be included in subsequent iterations. Genseed-HMM is not a 

typical gene-targeted assembler since its contigs may extend beyond gene boundaries. This 

makes it useful to study the nearby genes (genomic context) of the target gene. For marker gene 

based microbial diversity studies, however, the parts beyond the gene boundaries would have to 

be trimmed before further analyses. 

6) MEGAN assembler 

MEGAN assembler is part of MEGAN version 6 (Huson et al., 2016; Huson et al., 2017) 

and its key algorithm is protein alignment guided assembly, an overlap graph-based method. It 

requires an all against all pairwise alignment of query metagenomes and reference database such 

as NCBI-nr using BLAST or DIAMOND (Altschul et al., 1997; Buchfink et al., 2015) as the first 

step, the same as all other analyses in MEGAN. MEGAN utilizes the above alignment 

information to find the overlap among reads based on their alignment to the same target 

references, and further constructs overlap graphs based on 100% sequence match in the 

overlapped portion of the alignment. In this way, MEGAN avoids the expensive computation of 

all against all comparisons among query reads for constructing overlap graphs (similar to SAT-

assembler). Further, MEGAN weights overlap graph edges (connection between reads) by 

overlap sizes and then traverses the graph by finding an acyclic path with a maximum weight. It 

reports contigs with a minimal length, removes the reads used for the assembled contigs in 

overlap graphs, and iterates the above process until no more paths remain. Contigs are further 

extended if two contigs have overlap and an overlap identity larger than a certain thresholds (by 

default 20 bp and 98%, respectively). Although inducing the read overlap from alignment against 



references is a good strategy to improve computational efficiency, the first step of all vs. all 

comparison of query to NCBI-nr is still a daunting task for large metagenomes. 

Methods 

Data 

We evaluated the performance of these gene-targeted assemblers using three data sets. 

The synthetic data consisted of 150 bp single reads without errors generated from the 17 

genomes in Table S2 using Grinder (Angly et al., 2012) with the parameters “-rd 150 -cf 10” to 

give 10X coverage of each genome. The seven species of Pseudomonas were selected as a 

challenge for assemblers regarding their production of chimeric contigs. The mock community 

data, generated from a mixture of known amounts of gDNA from 16 archaeal and 48 bacterial 

strains (Shakya et al., 2013),  consisted of 100 bp paired Illumina reads downloaded from NCBI 

as run SRR606249. These reads were trimmed using fastq-mcf (version 1.04.662) 

(http://code.google.com/p/ea-utils) with the parameters “-q 30 -l 50 -w 4 -x 10 -max-ns 0 -X”. 

The soil metagenome sample was Sample C1 that was included in the original Xander paper 

(Wang et al., 2015) and is available from NCBI as run SRR3989263.  Fifty million reads 

sampled from C1 were trimmed with fastq-mcf with the same parameters above and converted to 

fasta format to give 33.7 million paired reads designated C1-50M. 

Programs 

Xander is included in RDPTools, available as source on GitHub 

(https://github.com/rdpstaff/RDPTools). It requires Python 2.7+, Java 1.6+, HMMER 3.1 

(http://hmmer.janelia.org), and UCHIME (http://drive5.com/usearch/manual/uchime_algo.html). 

All of these dependencies may be met by instead installing the Bioconda package from 

https://www.dropbox.com/referrer_cleansing_redirect?hmac=1nSfHC7JZQZPeRZdW98JxhRuRa99DCNQ9Vy3bt4Z6I4%3D&url=http%3A%2F%2Fcode.google.com%2Fp%2Fea
https://github.com/rdpstaff/RDPTools
http://hmmer.janelia.org/
http://drive5.com/usearch/manual/uchime_algo.html


https://bioconda.github.io/recipes/rdptools/README.html. Instructions for Xander are available 

at https://github.com/rdpstaff/Xander_assembler and https://john-

quensen.com/workshops/workshop-2/xander. We installed RDPTools from source. All required 

reference files for rplB, nifH, and nirK are included in the installation. 

Two of Xander’s parameters depend on the input file size. We set FILTER_SIZE to 32, 

36, and 38, and MAX_JVM_HEAP to 4G, 12G, and 64G for the synthetic, mock and C1-M50 

data, respectively. We set MIN-COUNT to 1 and left all other parameters at their default values 

for all cases. Resulting false positive error rates were always less than 3.20E-05. 

 MegaGTA is a re-write in C++ of the first two portions of Xander: build and find. It may 

be installed from source from https://github.com/HKU-BAL/megagta or as a Bioconda package 

from https://bioconda.github.io/recipes/megagta/README.html. MegaGTA requires RDPTools. 

If installed from source, RDPTools is included. If installed from Bioconda, RDPTools must be 

installed separately. We installed the Bioconda package. 

We limited the available memory for MegaGTA to 19.2G for the synthetic data and left 

all other parameters at their default values, including memory, for the other data sets. Memory is 

set as a fraction (0.8 by default) of available memory. The gene_list.txt configuration file used 

pointed to the for_enone.hmm, rev_enone.hmm and ref_aligned.fasta files for each gene (rplB, 

nifH, and nirK) in the RDPTools/Xander_assembler/gene_resource directory,  

We installed SAT-Assembler from the forked version on GitHub at 

https://github.com/jiarong/SAT-Assembler, following the instructions on that web page. Older 

versions of SAT-Assembler on SorceForge.net and at https://github.com/zhangy72/SAT-

Assembler no longer work because of updates to some of the modules the program requires. For 

https://github.com/rdpstaff/Xander_assembler
https://github.com/rdpstaff/Xander_assembler
https://john-quensen.com/workshops/workshop-2/xander
https://john-quensen.com/workshops/workshop-2/xander
https://github.com/HKU-BAL/megagta
https://github.com/HKU-BAL/megagta
https://bioconda.github.io/recipes/megagta/README.html
https://bioconda.github.io/recipes/megagta/README.html
https://github.com/jiarong/SAT-Assembler
https://github.com/jiarong/SAT-Assembler
https://github.com/jiarong/SAT-Assembler
https://github.com/zhangy72/SAT-Assembler
https://github.com/zhangy72/SAT-Assembler
https://github.com/zhangy72/SAT-Assembler


this program, HMM-GRASPx, and Genseed-HMM we used pHMMs downloaded from the 

FunGene web page (http://fungene.cme.msu.edu/). 

We installed HMM-GRASPx from https://sourceforge.net/projects/hmm-graspx/ and 

followed the directions under the Files tab on that page. To generate input files for HMM-

GRASPx, we ran FragGeneScan with parameters “-complete 0 -train illumine_5 –thread 4”. For 

HMM-GRASPx we left all parameters at their default values. 

We installed the Linux version of MEGAN and its auxiliary mapping files from 

http://ab.inf.uni-tuebingen.de/data/software/megan6/download/welcome.html. Use of MEGAN 

for gene-centric assembly from metagenomic data requires that all sequences are first aligned 

against NCBI’s non-redundant protein database (NCBI-nr). We used DIAMOND (Buchfink et 

al., 2015) (https://github.com/bbuchfink/diamond) because of its speed and output format 100 

since the resulting daa (DIAMOND alignment archive) files are more rapidly imported into 

MEGAN. We “meganized” the daa files using the protein accession to InterPro mapping file 

acc2interpro-June2018X.bin downloaded from the MEGAN site using the command line tool 

daa-meganizer. For both DIAMOND and MEGAN assembler, we used the default values for all 

parameters. 

GenSeed-HMM is a Perl script available at https://sourceforge.net/projects/genseedhmm/. 

It operates by making calls to a variety of third-party tools including BLAST+, hmmsearch, 

EMBOSS, bowtie, and at least one assembler. We used the ABySS assembler for all of our tests 

with this program. We used conda to create an environment containing these programs and their 

dependencies and ran GenSeed-HMM from within this environment. An yml file for creating the 

same environment is available at https://github.com/jfq3/Virtual-Environments.  

Assembly quality 

http://fungene.cme.msu.edu/
https://sourceforge.net/projects/hmm-graspx/
https://sourceforge.net/projects/hmm-graspx/
http://ab.inf.uni-tuebingen.de/data/software/megan6/download/welcome.html
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We evaluated two aspects of assembly quality: 1) Contigs should capture all target gene 

sequences known to be in the data (sensitivity), and 2) Contigs should not include irrelevant 

sequences (specificity). Both aspects were evaluated by conducting a BLAST search of contigs 

against target gene sequences extracted from the genomes, or in the case of the soil sample C1-

50M against NCBI-nr. Sequence similarity was defined as “alignment length” * identity / “length 

of shorter sequence”. Some contigs were too different from the target sequences to appear in the 

BLAST results. The relationships of such contigs to the target genes were investigated by 

searching against NCBI-nr and/or against the genomes themselves and viewing the alignment in 

NCBI’s genome browser. Potentially chimeric sequences assembled from the synthetic and mock 

data were also flagged by UCHIME using target gene sequences extracted from the genomes as 

the reference. 

To make these tests comparable among assemblers, we compared comparable contigs. 

For Xander and MegaGTA we used the intermediate file “_prot_merged_rmdup.fasta”. Post-

assembly per se, Xander and MegaGTA outputs are normally processed through a pipeline that 

removes potential chimeras and short sequences and clusters the remaining sequences at a user 

defined distance, thus decreasing sequence variation in their final outputs.  The file 

“_prot_merged_rmdup.fasta” has not been subjected to these processes and contains all unique 

contigs assembled. To investigate chimeras produced by Xander and MegaGTA, corresponding 

nucleotide sequences were selected from the “nucl_merged.fasta” files; these files are all 

nucleotide contigs assembled. As well as testing SAT-Assembler and Genseed-HMM output 

directly, we also removed duplicate sequences and filtered to a minimum length of 450 bp (using 

RDPTool’s r rm-dupseq command) to produce results more comparable to Xander’s and 



MegaGTA’s “_prot_merged_rmdup.fasta” files. We also compared MEGAN results filtered to 

the same minimum length. 

Sequencing depth estimation 

In genome sequencing, the relation between sequencing depth and genome coverage is 

already a well-studied problem. Lander-Waterman statistics (Lander and Waterman, 1988), show 

that with “L” as read length, “N” as number of reads, “G” as genome length (much larger than 

read length), the average coverage of genome (“a”) is “LN/G”, and the probability of each base 

not being covered (“p”) is “e-a”. In the context of metagenomics, however, a targeted species is 

only “R” (relative abundance) of the total community, so “a” (the average coverage of genome) 

should be redefined as “LNR/G” (we assume that all species have the same genome size, “G”, to 

simplify the problem). We can further deduce that the probability (“P”) of at least “M” 

continuous positions (a contig with at least “M” bp) in a target gene with a size of “S” bp being 

covered is: 

𝑃 =∑ (𝑆 − 𝑖 + 1)𝑝𝑆−𝑖(1 − 𝑝)𝑖𝑆𝑖=𝑀  

Further, the above only considers whether a position is covered but not the read overlaps that are 

needed for assembly. In DBG graph with kmer size of “k”, the minimal overlap required for two 

reads to connect is “k - 1”. To account for the “k - 1” overlap in either DBG or overlap graph, we 

can simply define the effective read to be the first “L - (k - 1)” position of each read, so when one 

shortened read follows right after where a preceding one ended, they effectively have an overlap 

of “k - 1”. Therefore, “p” can be redefined as the probability of a position not being covered by 

reads of effective length (“L - k + 1”) with the value: 𝑝 = 𝑒−(𝐿−𝑘+1)𝑁𝑅/𝐺  



To evaluate the effect of sequencing depth on gene-targeted assembly, we first evenly 

divided our soil metagenome (C1) into 2, 4, 8, 16 and 32 subsamples. For each sample, we ran 

Xander to assemble rplB with the same parameters mentioned above. The coverage information 

was retrieved from mean kmer coverage in “_rplB_45_coverage.txt” output file. We also 

included rpsC as a confirmation of rplB results. The reference files of rpsC for Xander can be 

download from http://doi.org/10.5281/zenodo.1410823 (Guo, 2018). 

Results 

Time and Memory Requirements 

Comparisons of computer time and memory resources required are complicated by the 

programs having different prerequisites and end points. Overall, SAT-Assembler was the most 

efficient requiring less than 6 min wall time and only 78 MB of memory to process the synthetic 

data for rplB (Table 1).  SAT-Assembler stops short of providing quantitative results allowing 

sample comparisons as Xander does; such further processing would be close to that for 

MegaGTA’s post-processing step. Xander’s three steps took only slightly longer (7 min 31s) to 

provide quantitative results but required approximately 1.5 GB of memory. Xander’s build step 

is considered a bottleneck because it is not multithreaded, and MegaGTA is advertised as 

advancement over Xander in part because of greater speed. This is true only for wall time and if 

enough threads are used; the actual CPU time (78 min) was much greater than Xander’s but did 

require slightly less memory. The memory requirement for Genseed-HMM was comparable to 

that of Xander, but the processing time was approximately twice as long without including any 

of the post-processing steps required for making sample comparisons. 

http://doi.org/10.5281/zenodo.1410823


The pre-processing required by HMM-GRASPx and MEGAN made them much less 

efficient to implement. HMM-GRASPx requires that all fragments first be translated into peptide 

reads by FragGeneScan or MetaGeneAnnotator. Furthermore, to obtain accurate quantitative 

results, the authors recommend that the contigs be re-assembled by another program; time and 

memory requirements for that process are not included in Table 1. MEGAN is by far the least 

efficient, requiring that all fragments first be aligned against NCBI’s non-redundant protein 

database. For this task, DIAMOND is preferred over BLAST due to its much greater speed (still 

required over 95 h CPU time), but the speed comes with a higher memory requirement (20 GB). 

Assembly quality tested with synthetic data 

Genseed-HMM was the most successful at capturing exact matches to the rplB genes in 

the synthetic data, matching all 17 with 100% identity (Table 2). HMM-GRASPx, MEGAN and 

SAT-Assembler did nearly as well, matching 16 of the sequences at 100% identity. HMM-

GRASPx missed P. putida while MEGAN missed L. limnophila even at a lower 97% identity 

threshold. Many of the exact matches produced by HMM-GRASPx, MEGAN, and Genseed-

HMM were short, however; they captured only about half of the target genes if comparisons 

were restricted to contigs of at least 450 nucleotides. Xander and MegaGTA were the worst at 

producing exact matches, capturing only 12 of the 17 genes at 100% identity.  

These same two assemblers were the best, however, at excluding irrelevant sequences; all 

28 contigs were at least 96% identical to rplB gene sequences, and all 17 taxa were captured at a 

97% identity threshold. HMM-GRASPx also did well, with only 5% of its assemblies having 

BLAST matches to rplB of less than 97% identity. MEGAN, on the other hand, assembled 32 

contigs (58% of the total) that were perfect matches to portions of the reference genomes but 

entirely unrelated to rplB, and 58 to 60% of the SAT-Assembler assemblies had less than 97% 



identity to rplB genes in the synthetic data. Genseed-HMM also assembled some sequences 

unrelated to the target sequences. 

Except for SAT-Assembler, all tools assembled contigs matching all 6 nifH (nitrogenase 

reductase) sequences present in the synthetic data with at least 97% identity (Table S3). SAT-

Assembler did not match any of the reads to nifH and so did not assemble any contigs for the 

gene. MEGAN and Genseed-HMM also produced high proportions of contigs (11 of 20 and 71 

of 127, respectively) unrelated to nifH sequences in the synthetic data. 

HMM-GRASPx, MEGAN, SAT-Assembler and Genseed-HMM all assembled contigs 

with 100% identity to all 4 nirK (nitrite reductase) sequences present in the synthetic data (Table 

S4). Xander and MegaGTA performed identically, each producing contigs which matched only 2 

of the nirK sequences present in the synthetic data, but with 100% identity. MEGAN, SAT-

Assembler and Genseed-HMM again produced non-relevant contigs. 

Assembly quality tested with mock data 

Overall, MegaGTA was the most successful at assembling rplB contigs from the mock 

data, producing 86 unique contigs of more than 450 bp with at least 97% identity to 46 of the 48 

bacterial rplB sequences present (Table 3). While SAT-Assembler using an overlap length of 40 

produced more (1,318) contigs with 100% identities to 47 of the 48 rplB sequences present, most 

of the contigs were very short. There were only 61 unique contigs of at least 450 bp, and only 13 

of these matched expected rplB sequences with 100% identity. Xander did nearly as well as 

MegaGTA, while for MEGAN’s contigs over 450 bp matched only 33 of the rplB sequences 

with at least 97% identity and Genseed-HMM’s matched 28 with 100% identity. All the 

assemblers produced “missing” contigs, i.e. ones that did not appear in the BLAST tables due to 

very low sequence similarity to reference sequences. By BLAST to NCBI-nr, all of these 



produced by Xander, MegaGTA, and SAT-Assembler matched known rplB sequences at more 

than 99% identity. Only one, however, of the 45 produced by MEGAN was related to rplB. 

Genseed-HMM and MEGAN did slightly better than Xander and MegaGTA in capturing 

nifH sequences in the mock data (Table S5), but both again produced high proportions of 

unrelated contigs and many of Genseed-HMM’s were very short. As with the synthetic data, 

SAT-Assembler did not match any of the reads to nifH and so did not assemble any contigs for 

the gene. 

SAT-Assembler did assemble nirK contigs, matching all 5 sequences present in the data 

at 100% identity (Table S6), but again most contigs were short. Only two were over 450 bp, and 

these matched only one of the 5 nirK sequences in the mock data. Genseed-HMM did better, 

producing contigs matching all 5 target genes with 100% identity even after they were filtered 

for length, but also a high proportion of contigs unrelated to the nirK sequences in the data. 

MEGAN contigs matched 4 of the 5 at 100% identity, but also produced a high proportion of 

unrelated sequences. MegaGTA and Xander produced 3 and 2 contigs respectively, matching 2 

of the target sequences. 

Assembly quality tested with soil metagenome 

For the C1-50M shotgun data, Genseed-HMM produced the most contigs and matched 

the highest number of rplB sequences in NCBI-nr (Table 4). But most of the contigs were very 

short such that over 70% did not match rplB with an e-value of less than 10. Only two were over 

450 bp. Considering only contigs over 450 bp, MegaGTA produced the most (316), all of which 

matched rplB sequences in NCBI-nr, and Xander was a close second. MEGAN produced far 

fewer contigs (30), only 3 of which were over 450 bp, and 11 of which were not rplB. 



Chimera 

The synthetic data set was meant to be challenging with regard to chimera formation, 

especially for rplB. Xander, MegaGTA, and SAT-Assembler all produced high proportions of 

rplB chimeras from this data set (Table S7). For the first two, chimeras were almost exclusively 

(10 of 11, over 90%) between species of Pseudomonas. For SAT-Assembler, however, 

approximately one fourth of the chimeras were between different genera, and the proportion of 

chimeras increased with contig length. None of MEGAN’s or Genseed-HMM’s contigs were 

flagged as chimeras. 

The same trend held for the mock data (Table S8).  Xander and MegaGTA produced 

fewer rplB chimeras than SAT-Assembler, and when they occurred, they were exclusively 

between species of the same genus. In contrast, approximately 30 to 40% of the chimeras 

(depending on length) produced by SAT-Assembler were between different genera. As with the 

synthetic data, none of MEGAN’s rplB contigs were flagged as chimeras, and only one of 408 

produced by Genseed-HMM was a chimera. 

Xander and MegaGTA also produced a high percentage of nifH chimeras from the 

synthetic data (Table S9), but exclusively between sequences from the same genus. In fact, for 

Xander two of the five and for MegaGTA three of the five chimeras were between nifH copies 

within the same species. There were only two other instances of chimera formation. Xander 

formed a nifH chimera with the mock data between strains S2 and C5 of Methanococcus 

maripaludis and MEGAN formed a nifH chimera, between Azotobacter vinelandii and A. 

chroococcum. There were no nirK chimeras from either data set by any of the assemblers. 



Sequencing depth 

With the derived model, we estimated that ~ 40 Gbp of sequences is needed to assemble 

a contig (>450 bp) from a gene with a length of 800 bp in a species that is 0.1% of the 

metagenome (assuming all genome sizes are 5 Mbp) (Fig. 1). Additionally, when we evaluated 

the effect of sequencing depth on assembly by subsampling, we found the number of genes 

assembled decreased much faster than sequencing depth for both rplB and rpsC (Fig. 2). 

Discussion 

Computer time and memory requirements can be limiting factors in deciding a method to 

process metagenomic data. SAT-Assembler required the least time and memory because it first 

selects a limited number of reads related to the target gene to assemble. HMM-GRASPx employs 

a similar strategy to reduce time and memory requirements, but by relying on FragGeneScan as a 

pre-step it requires far more total time. Furthermore, its pHMM alignment at each contig 

extension is also computationally expensive and slows down the simultaneous search and 

assembly step. Similarly, Genseed-HMM bogs down trying to extend both ends of the numerous 

sequences it finds in a first pass through complex data, and MEGAN’s reliance on conducting a 

BLAST search of all sequences against NCBI-nr makes it computationally very expensive to 

implement. We were only able to compare assembler performance with an environmental sample 

by reducing the C1 sample to 50 million reads. The full sample is five times as large, and neither 

Genseed-HMM nor DIAMOND blastx finished processing the full C1 sample within the seven-

day limit on our cluster. By contrast, Xander processing of the full C1 data set, including all 

post-assembly processing, for all three genes considered here took only 18 h 13 min wall time 

(40 h 30 min CPU time). 



SAT-Assembler’s savings in resource cost comes at great expense in performance, 

notably in the production of mostly short contigs. The similarity search step may have missed 

remote homologs of the references in pHMM despite the loose cutoff used in hmmsearch. Thus, 

by selecting relatively few reads to assemble, there are not enough left to fill gaps in the gene 

sequence, i.e. to join the shorter contigs. The same problem is seen with HMM-GRASPx. Since 

it utilizes all reads (in protein space) in its simultaneous search and assembly algorithm, short 

contigs might be caused by different factors in its pipeline such as the re-calibration step where 

locally extended contigs are merged. Xander, MegaGTA and MEGAN, on the other hand, are 

able to assemble longer contigs because they work from all reads in the sample (at the cost of 

much larger memory usage and CPU time to load all data) and might also have more robust 

algorithms to maximize contig lengths. 

Sensitivity is also of paramount importance. Considering the number of target genes 

matched with 100% identity, Genseed-HMM scored highest, matching all target sequences in the 

synthetic and mock data. SAT-Assembler scored nearly as well, not considering nifH. It matched 

all nirK genes in both the synthetic and mock data, all rplB genes in the synthetic data, and all 

but one of the 48 bacterial rplB genes in the mock data. HMM-GRASPx did as well for the 

synthetic data, and additionally assembled contigs that matched all nifH genes in the synthetic 

data, something SAT-Assembler failed to do. MEGAN did just as well with the synthetic data 

but matched only 35 rplB genes in the mock data and only 4 of the 5 nirK genes in the mock 

data. It did the best at matching 16 of the 18 nifH genes in the mock data at 100% identity. It is 

easy to understand MEGAN’s performance at providing 100% matches to the target genes. 

Because of the way it works, the contigs it produces are essentially genes in NCBI-nr. As long as 

a gene in NCBI-nr is well represented in the sample, that is what you get back as the contig. This 



also means that MEGAN is less likely to capture novel gene diversity in environmental samples. 

Thus with different datasets, different genes, and identity cutoff, it is difficult to find the tool 

with highest sensitivity. It is, however, also important to take assembly length into consideration 

since the sequence length is critical for target gene based molecular ecology and diversity 

analyses. After filtering assemblies with length cutoff of 450 bp, Xander and MegaGTA 

provided the best sensitivity with all three datasets for rplB and nifH. 

Another aspect of assembly quality is the production of non-target sequences, i.e. false 

positives. All assemblers produced some, but Xander and MegaGTA by far produced the fewest 

while Genseed-HMM, MEGAN and SAT-Assembler produced the most. Some produced by 

MEGAN were exceedingly long and matched portions of a genome in the synthetic or mock 

community with 100% identity. MEGAN assembler works by assembling all reads mapped to a 

GO (in our case) or KEGG category (Huson et al., 2017). We suspect that the production of non-

target contigs has to do with how reads are mapped, and possibly with errors in the mapping file 

that maps NCBI IDs to functional categories in GO.  

In most cases, chimeras are to be expected among close relatives from assembly of 

shotgun data whether gene-targeted or whole genome. MEGAN is the exception here because, as 

mentioned above, contigs are usually essentially genes or genome segments of what is in NCBI-

nr. Our results are therefore somewhat surprising and encouraging. With the exception of SAT-

Assembler, nearly all chimeras detected were between the most closely related sequences 

suggesting accurate taxonomic classification to the genus level. 

“How much sequencing do I need” is often the first question asked when designing a 

metagenomics project. The answer depends on the target species (usually with specific 

functions) of interest, since it is difficult to estimate the true diversity (Rodriguez and 



Konstantinidis, 2014; Rodriguez-R et al., 2018) and also costly to sequence deep enough to 

cover most species in complex environments (Locey and Lennon, 2016). Therefore, sequencing 

depth estimates based on a target species or function is critical for experiment planning. With our 

derived model, the relation between the amount of sequencing data and the probability of 

assembling a contig with at least “M” bp of the target gene with a size of “S” bp from taxa with a 

relative abundance of “R” can be determined (Fig. 1). The relative abundance (“R”) can be 

estimated using common 16s rRNA gene amplicon or qPCR methods. This estimate is a lower 

bound, since sequencing error, repeats, and micro-heterogeneity among closely related strains 

could complicate assembly of the target gene. 

Because it is difficult to have enough sequencing depth to cover most species in a high 

diversity sample, follow up questions are “how many rare members are not assembled” and “how 

does sequencing depth change the assembled read ratio?” Even though each rare member is only 

a small percentage of the total community, their sum could be a significant part of the community 

and thus have a significant role in community function. Missing rare members is an unavoidable 

problem for all assembly-based methods because there is simply not enough coverage (Guo et al., 

2018). There are two cases of rare members: 1) those that are too rare to yield any read coverage 

and 2) those that have some coverage but not enough to assemble the target gene with minimum 

length. Here we focus on the latter. In our soil sample (C1), the number of rplB assembled 

decreased much faster than linear decrease with sequencing depth (Fig. 2), suggesting that 

sequencing depth has a strong impact on gene-targeted assembly in diverse communities and thus 

careful planning on sequencing depth is critical. As an upper bound, the quantity of a targeted gene 

can be assessed from the number of short reads annotated as the targeted gene without assembly. 

While this minimizes missing low coverage members, it often includes false positives (low 



specificity) when there are conserved motifs among protein families. There have been efforts to 

tackle this problem such as finder function in HMM-GRASPx and ROCKer (Orellana et al., 2017). 

Also, ROCKer builds gene specific models that set specific sequence similarity score thresholds 

for different regions of a gene. These kinds of tools can not only improve gene quantification but 

also could be used as a preprocess step for all above gene-targeted tools, e.g. ROCKer has been 

shown to improve the accuracy of Xander (Orellana et al., 2017). 

All tools reviewed here except MEGAN make use of pHMMs built from reference 

sequences. The use of pHMMs has clear advantages. It is a faster and more effective way to search 

gene fragments compared to pairwise alignment as implemented by BLAST or DIAMOND. 

Additionally, pHMM-based profile search can improve the sensitivity for remotely related protein 

identification (Eddy, 2009; Zhang et al., 2014; Reyes et al., 2017). The performance of pHMM 

based tools, however, is dependent on the quality of the pHMMs used, which in turn is dependent 

on the appropriateness of the reference sequences used to build them. Ideally the pHMMs will 

selectively capture all diversity in the gene family. 

The availability of reliable pHMMs may influence the choice of tools used. MEGAN does not 

require them, and SAT-Assembler is designed to work with pHMMs downloaded from Pfam. 

Xander (and hence MegaGTA), however, come with a limited set of pHMMs and required 

reference sequences for finding starting kmers. Instructions are provided for adding capability for 

additional genes to Xander. The FunGene (Fish et al., 2013) website is provided to help with this 

task, but knowledge of the gene’s diversity is required. Profile HMMs are built to capture 

conserved regions (domains) of a gene family, and there is usually enough variation to divide the 

gene family into sub-groups. If the sequences used to build the pHMM do not include all subgroups 

of the gene, then not all gene diversity will be captured from metagenomic data. In some cases, as 



was shown for nosZ (Sanford et al., 2012), there is too much diversity to be captured by a single 

pHMM, hence multiple models are necessary. Based on our experience, if there is large sequence 

variation in a gene (< 50% identity), then it should be split and subgroups can be defined based 

their segregation on a phylogenetic tree. Thus, results are strongly dependent on the care with 

which the models are built.  

Microbial ecologists are interested in comparing microbiomes among environments or 

treatments with respect to diversity and function. Metagenomic analyses can answer these 

questions, but the tools used must accurately assemble and quantify target genes in a manner that 

allows comparisons among samples. Of the tools reviewed here, only Xander and MegaGTA offer 

this capability directly (Table S9). Their search script includes steps for removing chimeras, 

clustering reads based on a user defined distance, providing coverage adjusted counts, and 

taxonomically matching representative sequences to sequences in a database. An additional script 

is provided to combine this information from multiple samples to create files that may be imported 

into phyloseq (McMurdie and Holmes, 2013) as a coverage adjusted OTU table, representative 

sequences, and, with a function in RDPutils (Quensen, 2018), a corresponding taxonomy table. 

This gives great flexibility for subsequent analyses. MEGAN can also generate OTU tables and 

ordinate samples based on taxonomy from all reads, but not in a way that the results are based on 

a particular set of (pathway related) genes. Additionally, the high proportion of false positives we 

observed with MEGAN makes using its results for comparative analyses of functional genes 

questionable. Using SAT-Assembler or Genseed-HMM results to make like comparisons would 

require writing additional custom scripts. HMM-GRASPx failed to assemble sequences from 

complex data, and its authors caution that its results are not quantitative. Most tools except Xander 

and MegaGTA do not have post-assembly diversity analyses across samples, but they can be 



improved by applying the post-assembly processing method in Xander. Further improvements can 

be made on Xander and MegaGTA, too. Currently, their post-assembly processing method is 

designed for assembling each sample individually, but not for pooled assembly, which is common 

practice applied to increase coverage of rare species. Moreover, they do not directly provide a 

BIOM table that integrates both OTU table and taxonomy information (McDonald et al., 2012) 

and can be imported into other commonly used microbial diversity analysis tools such as Mothur 

(Schloss et al., 2009) and QIIME (Caporaso et al., 2010).  

We tested the tools under comparable conditions by using default parameters, which by no 

means are the optimal parameters; especially kmer or overlap size can strongly impact contig 

length and number, and chimera number. We did not try to find the optimal set of parameters for 

each tool, and only adjusted them when a tool performed significantly more poorly than others, i.e. 

SAT-assembler produced too many short and chimeric contigs and we improved its results by 

increasing the overlap length. 

Summary and outlook 

Gene-targeted assembly offers advantages for metagenome analysis over whole genome 

assembly and binning because of 1) higher quality assembly (fewer chimera), 2) more extensive 

recovery of genes of interest (more sensitivity), 3) faster and less costly analysis of complex 

communities which also makes these analyses available to a larger set of researchers. It does, 

however, give up information on gene context and host taxa that come from genome binning. 

Long read sequencing, now available but in its infancy, has the potential to make assembly 

obsolete, but the present high error rates and low capacity make its reliable, routine use some 

years away. In the meantime, further improvements of gene-targeted tools, some of which are 



noted above, will help speed the analysis of the now huge metagenomic data in public databases 

plus the data from even larger sequencing efforts underway. 
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pHMM: protein profile hidden Markov model 

DBG: de bruijn graph 

Kmer: subsequence of length K 

OTU: Operation taxonomic units 

Gbp: One billion base-pairs 

GB: One billion bytes 

rplB: the gene encoding 50S ribosomal large subunit L2 

rpsC: the gene encoding 30S ribosomal small subunit protein S3 

nifH: the gene encoding nitrogenase reductase 

nirK: the gene encoding nitrite reductase 
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Tables 

Program Stage Threads 

Wall Time 

hh:mm:ss 

CPU Time 

hh:mm:ss 

Peak memory 

(KB) 

Xander Build 1 00:03:52 00:03:57 736,860 

 Find 4 00:00:57 00:04:48 1,512,728 

http://www.microbiomejournal.com/content/3/1/32


 Search 4 00:02:42 00:04:28 867,776 

MegaGTA Main 8 00:10:06 01:15:02 1,133,248 

 Post processing 4 00:00:47 00:02:16 729,624 

FragGeneScan  4 00:24:20 01:29:15 65,356 

HMM-GRASPx  4 00:05:28 00:05:28 8,159,504 

SAT-assembler  NA 00:05:55 00:06:38 77,620 

MEGAN diamond 8 14:38:57 95:11:48 19,810,188 

 meganize NA 00:05:46 00:15:57 21,659,968 

 assembly NA 00:00:03 NA NA 

Genseed-HMM  4 00:07:46 00:16:57 1,425,368 

Table 1: Time and memory requirements for processing the synthetic data for rplB. Except for 

MEGAN BLAST/DIAMOND performed on MSU’s cluster, all times are for running on an HP 

ProBook 450 G5 with Intel i7-8550U CPU and 32 Gb RAM running Ubuntu 18.04 LTS. 

  



Method Contigs Length Non-

target 

<97%  97% 98% 99% 100% 

Xander 28 807-828 0 1 17/27 15/23 12/16 12/12 

MegaGTA 28 807-828 0 1 17/27 15/23 12/16 12/12 

HMM-GRASPx 63 102-261 0 3 16/60 16/60 16/59 16/59 

HMM-GRASPx 0 >=450 - - - - - - 

MEGAN1 55 204-3,822 32 0 16/23 16/23 16/23 16/23 

MEGAN2 20 453-3,822 11 0 9/9 9/9 9/9 9/9 

SAT-assembler3 

176 150-997 49 60 17/67 17/50 16/28 16/23 

SAT-assemlber4 

106 465-997 0 58 16/48 15/33 13/14 11/11 

Genseed-HMM5 
97 32-1340 4 0 17/93 17/93 17/93 17/93 

Genseed-HMM6 
9 724-1340 1 0 8/8 8/8 8/8 8/8 

Table 2: BLAST summary for rplB assembled from the synthetic data. There were 17 rplB 

sequences in the synthetic data. Entries in the % ID columns give the number of taxa matched 

over the number of contigs that match rplB by BLAST identity at the specified percentage. 

MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a minimum length of 450 bp. 

SAT-Assembler3: all contigs assembled with an overlap length of 40 bp. SAT-Assembler4: 

contigs were de-replicated, duplicates removed, and filtered to a minimum length of 450 bp. 



Genseed-HMM5: all contigs assembled; Genseed-HMM6: contigs were filtered to a minimum 

length of 450 bp.  



Method Contigs Length Non-

target 

<97% 97% 98% 99% 100% 

Xander 95 459-

849 

2 5 44/88 43/85 40/80 30/30 

MegaGTA 94 453-

849 

2 6 46/86 44/83 42/80 32/32 

MEGAN1 93 201-

1,611 

45 1 39/47 39/47 38/46 35/39 

MEGAN2 50 450-

1,611 

16 1 33/33 33/33 32/32 28/28 

SAT-

assembler3 2,765 50-750 751 107 48/1,907 48/1,865 48/1,689 47/1,318 

SAT-

assembler4 61 

458-

750 1 18 29/42 27/37 25/31 13/13 

Genseed-

HMM5 408 

31-

1360 60 7/9 47/339 47/330 46/187 43/183 

Genseed-

HMM6 44 

450-

1360 11 1/1 28/32 28/32 27/31 23/27 

Table 3. BLAST summary for rplB contigs assembled from the mock data. There were 48 

bacterial rplB sequences in the mock data set. Entries in the % ID columns give the number of 

taxa matched over the number of contigs that match rplB by BLAST identity at the specified 



percentage. 1Data for all MEGAN contigs assembled from reads mapping to IPR005880 using 

default parameters. 2Data for MEGAN contigs filtered to a minimum length of 450 bp.  3All 

SAT-Assembler rplB contigs assembled from the mock data with an overlap length of 40 bp. 

Notice that the minimum length is one-half of the read length. 4SAT-Assembler contigs were 

assembled with an overlap length of 40 bp, de-replicated, duplicates removed, and filtered to a 

minimum length of 450 bp.  HMM-GRASPx failed to complete with this data set. Genseed-

HMM5: all contigs assembled; Genseed-HMM6: contigs were filtered to a minimum length of 

450 bp. 

  



Method Contigs Length 

Non-

target 

<97% 97% 98% 99% 100% 

Xander 269 

453-

825 

0 56/250 11/19 8/16 4/8 3/3 

MegaGTA 316 

450-

825 

0 82/290 13/26 12/19 8/11 4/4 

MEGAN1 30 

207-

705 

11 2/2 14/17 11/14 9/12 9/12 

MEGAN2 3 

462-

705 

1 2/2 2/2 2/2 2/2 2/2 

SAT-

assembler3 

705 51-436 9 

125/20

7 

179/46

9 

154/3

81 

132/3

16 

131/3

12 

SAT-

assembler4 

0 - - - - - - - 

Genseed-

HMM5 

4340 

31-

1058 

3109 

334/59

6 

311/63

5 

284/5

62 

277/5

35 

273/5

35 

Genseed-

HMM6 

4 

458-

1058 

0 2/2 2/2 2/2 1/1 1/1 

Table 4. BLAST summary for bacterial rplB contigs assembled from C1-50M aligned against 

NCBI-nr. Entries in the % ID columns give the number of taxa matched over the number of 

contigs that match rplB by BLAST identity at the specified percentage. MEGAN1: all contigs 



assembled. MEGAN2: contigs filtered to a minimum length of 450 bp. SAT-Assembler3: contigs 

assembled with an overlap length of 40 bp and de-replicated. SAT-Assembler4: contigs 

assembled with an overlap length of 40 bp were de-replicated, and filtered to a minimum length 

of 450 bp. Genseed-HMM5: all contigs assembled; Genseed-HMM6: contigs were filtered to a 

minimum length of 450 bp. 

  



Figures: 

 

Figure 1. Relation between the probability of having a target gene from a species assembled and 

the relative abundance of the species at different sequencing depth. X axis is at log10 scale, the 

target gene length is set to 800 bp and the minimum contig length is set to 550 bp. 

  



 

 

Figure 2. The effect of sequencing depth on the fold coverage of rplB or rpsC assembled. X axis 

is the number of subsamples C1 is evenly divided into. Y axis is rplB or rpsC fold coverage of a 

subsample divided by expected folded coverage as if it decreases linearly with sequencing depth 

(the fold coverage of original sample divided by number of even subsamples). 
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  Search 

filter 

pHMM Graph Post 

process 

Output 

DNA 

Output 

Protein 

Xander N Assembly DBG Y Y Y 

MegaGTA N Assembly DBG Y Y Y 



SAT Y Filter Overlap N Y N 

HMMGRASPx Y Filter, assembly  Overlap N Y Y 

Genseed-HMM Y Filter NA N Y N 

MEGAN N NA Overlap N Y N 

Table S1. Overview of gene-targeted assembers. Finder: function to filter reads that are 

fragments of target genes. pHMM: where pHMM is used in algorithms. Post assembly process: 

steps after assembly to enable diversity analyses and comparison among samples. Y - function is 

provided. N – function is not provided. Genseed-HMM’s assembly graph is “NA” since it 

depends on the third party tool that was chosen in its pipeline. MEGAN’s pHMM is “NA” since 

it is not pHMM-based tool. 

 

 

 

 

 

 

 

 

ID Description Phylum 

NZ_CP009257.1 Acinetobacter baumannii strain AB030 Gammaproteobacter 

NZ_CP007793.1 Azospirillum brasilense strain Az39 Alphaproteobacteria 

NZ_CP007794.1 Azospirillum brasilense strain Az39 plasmid 

AbAZ39_p1 

Alphaproteobacteria 

NC_012483.1 Acidobacterium capsulatum ATCC 51196 Acidobacteria 



NZ_CP010415.1 Azotobacter chroococcum NCIMB 8003 Gammaproteobacteria 

NZ_CP010421.1 Azotobacter chroococcum NCIMB 8003 

plasmid pAcX50f 

Gammaproteobacteria 

NC_012560.1 Azotobacter vinelandii DJ Gammaproteobacteria 

NC_014638.1 Bifidobacterium bifidum PRL2010 

chromosome 

Actinobacterium 

NC_004722.1 Bacillus cereus ATCC 14579 chromosome Firmicutes 

NC_008255.1 Cytophaga hutchinsonii ATCC 33406 Bacteriodetes 

NC_012489.1 Gemmatimonas aurantiaca T-27 DNA Gemmatimonadetes 

NZ_CP016094.1 Lacunisphaera limnophila strain IG16b 

chromosome 

Verrucomicrobia 

NC_002516.2 Pseudomonas aeruginosa PAO1 chromosome Gammaproteobacteria 

NZ_CP014784.1 Pseudomonas alcaligenes strain NEB 585 Gammaproteobacteria 

NC_016830.1 Pseudomonas fluorescens F113 Gammaproteobacteria 

NC_009439.1 Pseudomonas mendocina ymp Gammaproteobacteria 

NC_002947.4 Pseudomonas putida KT2440 chromosome Gammaproteobacteria 

NZ_CP027543.1 Pseudomonas stutzeri strain DW2-1 

chromosome 

Gammaproteobacteria 

NC_007005.1 Pseudomonas syringae pv. syringae B728a 

chromosome 

Gammaproteobacteria 



Table S2. Genomes used to create the synthetic data set. 

  



Method Contigs Length Non-

target 

<97% 97% 98% 99% 100% 

Xander 11 585-876 0 3 6/8 5/5 3/3 3/3 

MegaGTA 11 585-876 0 3 6/8 5/5 3/3 3/3 

HMM-GRASPx1 43 66-354 0 14 6/29 6/29 6/27 6/27 

HMM-GRASPx2 0 >=450 - - - - - - 

MEGAN3 20 204-1,464 11 0 6/9 6/9 6/9 6/7 

MEGAN4 11 474-1,464 6 0 5/5 5/5 5/5 3/3 

SAT-assembler NF - - - - - - - 

Genseed-HMM5 127 33-1360 71 0 6/56 6/56 6/56 6/56 

Genseed-HMM6 48 453-1360 46 0 2/2 2/2 2/2 2/2 

Table S3. BLAST summary for nifH contigs assembled from the synthetic data. There were 6 

nifH sequences present in the synthetic data. Entries in the % ID columns give the number of 

taxa matched over the number of contigs that match the target gene by BLAST identity at the 

specified percentage. HMM-GRASPx1- all contigs; HMM-GRASPx2 – filtered to at least 450 bp 

in length; MEGAN3 – all contigs; MEGAN4 – filtered to at least 450 bp in length. Genseed-

HMM5: all contigs assembled; Genseed-HMM6: contigs were filtered to a minimum length of 

450 bp. 

  



Method Contigs Length Non-target <97%  97%  98%  99%  100% 

Xander 2 456-465 0 0 2/2 2/2 2/2 2/2 

MegaGTA 2 456-465 0 0 2/2 2/2 2/2 2/2 

HMM-GRASPx1 21 78-195 0 11 4/10 4/10 4/10 4/10 

HMM-GRASPx2 0 >=450 - - - - - - 

MEGAN3 8 423-1,497 3 0 4/5 4/5 4/5 4/5 

MEGAN4 7 567-1497 3 0 4/4 4/4 4/4 4/4 

SAT-assembler5 53 155-947 46 0 4/7 4/7 4/7 4/7 

SAT-assembler6 5 460-947 0 0 4/5 4/5 4/5 4/5 

Genseed-HMM7 29 94-1376 25 0 4/4 4/4 4/4 4/4 

Genseed-HMM8 18 492-1376 14 0 4/4 4/4 4/4 4/4 

Table S4. BLAST summary for nirK contigs assembled from the synthetic data. There were 4 

nirK sequences in the synthetic data. Entries in the % ID columns give the number of taxa 

matched over the number of contigs that match the target gene by BLAST identity at the 

specified percentage. HMM-GRASPx1- all contigs; HMM-GRASPx2 – filtered to at least 450 bp 

in length; MEGAN3 – all contigs; MEGAN4 – filtered to at least 450 bp in length; SAT-

Assembler5 – all contigs; SAT-Assembler6 – contigs were de-replicated, and filtered to at least 

450 bp in length. Genseed-HMM7: all contigs assembled; Genseed-HMM8: contigs were de-

replicated and filtered to a minimum length of 450 bp. 

  



Method Contigs Length Non-

target 

<97%  97%  98% 99% 100% 

Xander 27 537-879 0 5 16/22 16/22 16/22 14/15 

MegaGTA 28 537-879 0 5 16/23 16/23 16/23 15/16 

MEGAN1 68 204-3702 45 1 17/22 17/21 17/21 16/20 

MEGAN2 39 450-3702 25 1 12/13 12/12 12/12 11/11 

SAT-

assembler NF               

Genseed-

HMM3 439 31-1614 290 6/13 18/136 18/132 18/100 18/100 

Genseed-

HMM4 198 452-1614 184 2/2 11/12 11/12 10/11 10/11 

Table S5. BLAST summary for nifH contigs assembled from the mock data. There were 18 nifH 

sequences in the strains included in the mock data. Entries in the % ID columns give the number 

of taxa matched over the number of contigs that match the target gene by BLAST identity at the 

specified percentage. MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a minimum 

length of 450 bp. NF – not found. Mock data by HMM-GRASPx failed to complete. Genseed-

HMM3: all contigs assembled; Genseed-HMM4: contigs were filtered to a minimum length of 

450 bp. 

  



Method Contigs Length Non-

target 

<97% 97%  98%  99%  100%  

Xander 2 621-702 0 0 2/2 2/2 2/2 2/2 

MegaGTA 3 507-702 0 0 2/3 2/3 2/3 2/2 

MEGAN1 30 210-2238 26 0 4/4 4/4 4/4 4/4 

MEGAN2 13 480-2,238 9 0 4/4 4/4 4/4 4/4 

SAT-

assemlber3 256 60-533 156 0 5/100 5/100 5/98 5/88 

SAT-

assembler4 2 533-533 0 0 1/2 1/2 1/2 0 

Genseed-

HMM5 43 61-1343 35 0 5/8 5/8 5/8 5/8 

Genseed-

HMM6 27 509-1343 21 0 5/6 5/6 5/6 4/5 

Table S6. BLAST summary for nirK contigs assembled from the mock data. There were 18 nifH 

sequences in the strains included in the mock data. There were 5 nirK sequences in the strains 

included in the mock data. MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a 

minimum length of 450 bp. SAT-Assembler3: all contigs assembled. SAT-Assembler4: contigs 

were de-replicated, duplicates removed, and filtered to a minimum length of 450 bp.  

  



Assembler Contigs Chimera % Chimera Same Genus 

Xander 28 12 42.9 11 

MegaGTA 28 12 42.9 11 

SAT-assembler 176 79 44.9 57 

SAT-assembler-450 106 74 69.8 54 

MEGAN 55 0 0.0 NA 

MEGAN-450 20 0 0.0 NA 

Genseed-HMM 97 0 0.0 NA 

Genseed-HMM-450 9 0 0.0 NA 

Table S7. UCHIME summary for rplB contigs assembled from the synthetic data. 

  



Assembler Contigs Chimera % Chimera Same Genus 

Xander 95 5 5.3 5 

MegaGTA 94 5 5.3 5 

SAT-assembler 2,765 104 3.8 60 

SAT-450 61 18 29.5 13 

MEGAN 93 0 0 NA 

MEGAN-450 50 0 0 NA 

Genseed-HMM 408 1 0.2 1 

Genseed-HMM-

450 

44 0 0 NA 

Table S8. UCHIME summary for rplB contigs assembled from the mock data. 

  



Assembler Contigs Chimera % Chimera Same Genus 

Xander 11 5 45.5 5 

MegaGTA 11 5 45.5 5 

MEGAN 20 2 10.0 2 

MEGAN-450 11 2 18.2 2 

Genseed-

HMM 

127 0 0 NA 

Genseed-

HMM -450 

48 0 0 NA 

Table S9. UCHIME summary for nifH contigs assembled from the synthetic data. 
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