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Abstract—1In this paper, we want to find out the determin-
ing factors of Chernoff information in distinguishing a set
of Gaussian graphs. We find that Chernoff information of
two Gaussian graphs can be determined by the generalized
eigenvalues of their covariance matrices. We find that the unit
generalized eigenvalues do not affect Chernoff information and
their corresponding dimensions do not provide information for
classification purpose. In addition, we can provide a partial or-
dering using Chernoff information between a series of Gaussian
trees connected by independent grafting operations. By exploit-
ing relationship between generalized eigenvalues and Chernoff
information, we can do optimal classification linear dimension
reduction with least loss of information for classification.
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I. INTRODUCTION

Gaussian graphical models are widely used in construct-
ing the conditional independence of continuous random
variables. It is used in many applications such as social
networks [1], economics [2], biology and so on. Among
Gaussian graphical models, we are particularly interested
in Gaussian trees because of its sparse structure and the
existence of computationally efficient algorithms in learning
the underlying topologies.

In our study, we focus on classification i.e. hypothesis
testing against a set of given Gaussian distributions with
sparse graph structures. In this M-ary hypothesis testing
problem, we infer which hypothesis a data sequence is
generated from. The error probability decreases while data
sequence size increases. SO we use error exponent to measure
how fast error probability decreases along with data. Error
exponent is important when we want to estimate how much
testing data we need to achieve a given error probability.

In particular, we aim at the error exponent associated
with average error probabilities. The resulting error exponent
characterizing the vanishing rate of average error probability
approaching zero is thus determined by the minimum Cher-
noff information among all M-choose-2 pairs of hypotheses
[3]. It should be noted that in literature (e.g. [4], [5]),
because of the complexity in attaining closed form solutions
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to Chernoff information, KL distance was often adopted as
a bound to Chernoff information.

In algebraic analysis of hypothesis testing problem, we
also use generalized eigenvalues of covariance matrices as a
metric of the difference between them [6], [7]. Clearly, Cher-
noff information and generalized eigenvalues of covariance
matrices are respectively probabilistic and algebraic ways to
describe the difference between two Gaussian graphs. There
must be relation among topology, statistical distributions
(Chernoff information), and algebra (generalized eigenval-
ues). This paper shows how Chernoff information can be
determined by generalized eigenvalues. In addition, we show
how topological differences affect generalized eigenvalues
and thus Chernoff information. Our work, to the best of our
knowledge, is the first one investigating such relationship
from Chernoff information point of view.

More specifically, we find that two Gaussian graphs can
be linearly and inversely transformed to two graphs whose
covariance matrices are diagonal. Entries of the diagonal
matrices are related to generalized eigenvalues. Thus we
find that Chernoff information between two Gaussian graphs
is an expression of generalized eigenvalues and a special
parameter A", which is also determined by generalized
eigenvalues. In addition, we find that the unit generalized
eigenvalues do not affect Chernoff information and the corre-
sponding dimensions make no contribution to differentiating
two Gaussian graphs for classification problem.

Our former paper [8] dealt with the classification prob-
lem related to Gaussian trees. We found that some spe-
cial operations on Gaussian trees, namely adding operation
and division operation, do not change Chernoff information
between them. Now in this paper, we find that these two
operations only add one extra unit generalized eigenvalue
and do not affect other generalized eigenvalues. We can
use generalized eigenvalues to prove the same proposition.
Paper [8] also dealt with two Gaussian trees connected by
one grafting operation and showed that Chernoff information
between them is the same as that of two special 3-node trees
whose weights are related to the underlying operation. In
this paper, we extend this result to a Gaussian tree chain
connected by independent grafting operations and provide a
partial ordering of Chernoff information between these trees.

In practical scenarios, we may not have access to all
the output of the model. Instead, we may have some con-
straint on observation costs, which prompts us to reduce
the dimension of observation vectors in order to meet
such constraints [9], [10]. A good choice here is doing
linear dimension reduction in collection stage. We name this



dimension reduction as classification dimension reduction
to distinguish it from traditional dimension reduction. We
only deal with a 2-ary hypothesis testing in this part. We
linearly transform an [V dimensional Gaussian vector X to an
No < N dimensional vector y = Ax, through an Np x N
matrix A. We want to find the optimal linear transformation
A* which can maximize Chernoff information of two low-
dimensional distributions. Our former paper [8] only dealt
with a simple, but non-trivial case with No = 1. In this
work, we offer an optimal method to maximize the resulting
Chernoff information after a linear transformation for an
arbitrary No > 1.

We can divide the features of two distributions into two
parts, namely shared features and discrepant features. The
aim of classification dimension reduction is to keep dis-
crepant features while discard shared features. Traditional
dimension reduction methods, such as Principal Component
Analysis (PCA) and other Representation Learning [11], aim
to find the optimal features with maximum information.
In traditional dimension reduction, we can also divide the
features of high-dimensional distributions into two parts. But
they are main features and minor features. The aim of tra-
ditional dimension reduction is to keep main features while
discard minor features. In this way, traditional dimension re-
duction can recover most high-dimensional informtion from
low-dimensional data. Our classification dimension reduc-
tion problem have different purpose compared to traditional
dimension reduction methods. Some important features in
traditional dimension reduction methods may be useless
in our method because these features in two hypotheses
are similar. In addition, our method needs to compare two
distributions, while traditional dimension reduction methods,
however, only consider one distribution.

Our major and novel results can be summarized as follows.
We first provide the relationship between Chernoff informa-
tion and generalized eigenvalues, which shows that general-
ized eigenvalues which are equal to 1 make no contribution
to Chernoff information. We use this result to explain why
adding and division operations of [8] do not affect Chernoff
information between Gaussian trees. These results build a
relationship between topology, statistical distribution and
algebra. In addition, we deal with Gaussian trees connected
by more than one grafting operation and show a partial
ordering inside the chain. At last, we provide an optimal
classification linear dimension reduction method.

This paper is organized as follows. In Section II, we
propose the models of our analysis. The relationship between
topology, Chernoff information and generalized eigenvalues
is shown in Section III. The partial ordering of Gaussian
trees in independent grafting chain is presented in Section I'V.
Section V shows the optimal classification linear dimension
reduction method. In Section VI, we conclude the paper.

II. SYSTEM MODEL

Gaussian tree models can represent the dependence of
multiple Gaussian random variables by tree topologies. For
simplification, we normalize the variance of all Gaussian
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variables to be 1 and the mean values to be 0. For an N-
node tree G = (V, E, W) with vertex set V = {1,...,N},
edge set B = {e;|(i,j) C V x V} and edge weights set
W =A{w;; € [-1,1]|e;; € E}, E satisfies |[E| = N — 1 and
contains no cycles. A distribution x = [z, 29, ..., zx]T
N(0,Y) is said to be a normalized Gaussian distribution on
the tree G = (V, E, W) if

~

1 i=j
Oij = § Wij €5 € E (1)
WimWmn, - - - Wpj €ij ¢ E

where o;; is the (4,7) term of ¥ and e;;me€mn . . . €p; is the
unique path from node 7 to node j.

A normalized covariance matrix of a Gaussian tree has
a very simple inverse matrix and determinant, as shown in
Proposition 1 which has been proved in our former paper
[8].

Proposition 1: Assume Y is a normalized covariance ma-
trix of Gaussian tree G = (E,V,W), so |[Z] =[], cp(1 -
wfj) and the elements [u;;] of X! follow the following
expressions:

—Wij
2
ij

i#jande; € B
0 1 # _] and €ij ¢ FE
D D 17_”7 i=j.

Consider a set of Gaussian trees, namely, Gy (x),k =
1,2,..., M, with their prior probabilities given by
w1, Mo, ..., Tar. We want to do an M-ary hypothesis test-
ing to find out from which Gaussian distribution the data
sequence X = [X1,...,X¢] (x; = [xl)l,...,xN}l]T) comes
from. We define the average error probability of the hy-
pothesis testing to be P., and let F, = lim;_, o, *ht‘ Le pe
the resulting error exponent, which depends on the smallest
Chernoff information between the trees [5] , namely

2

1—w
uij =
2

E. =

min

1(3;]|1%;
Lmin | CI(S[|%)

(3)
where C'I(3;||3;) is the Chernoff information between the
it" and j*" trees.

For two 0-mean N-dim Gaussian joint distributions, x; ~
N(0,3) and x2 ~ N(0, X3), their Kullback-Leibler diver-
gence is as follows
o] 1

1
=—Iln—=—+ztr

_ N
E'E)-5 @
where tr(X) = )", x;; is the trace of square matrix X. We
define a new distribution N (0, X) in the exponential family

of the N(0,X;) and N(0,33), namely

S =S+ - ) (5)
so that Chernoff information can be given as
CI(31]|X2) = D(Zx+||22) = D(Zx+||21) (6)

where A\* is the unique point in [0,1] at which the latter
equation is satisfied [3].



We already know that the overall Chernoff information
in an M-ary testing is bottlenecked by the minimum pair-
wise difference [3], thus we next focus on the calculation of
Chernoff information of a pair of Gaussian trees.

We also consider classification dimension reduction prob-
lem in 2-ary hypothesis testing problem. If we can only
observe a low Np-dim vector, namely y = Ax, where A is
an No x N matrix and x € RV,y € RNo, the new low
dimensional variables follow joint distributions N(0,3;)
and N(0,35), where 3, = AX;AT i = 1,2. For fixed
No, we want to find out the optimal A* and its Chernoff
information result C'T(3%||3%), s.t

A* = argm2x01(21||22) (7

III. GENERALIZED EIGENVALUES, CHERNOFF
INFORMATION AND TOPOLOGY

Chernoff information is the measurement of the difference
between statistical distributions. It is hard to be calculated
directly and we rarely study its insights about the relation-
ship between Chernoff information and structure characters.
Chernoff information and generalized eigenvalues are both
important parameters to describe the difference of Gaussian
distributions. We expose the relationship among generalized
eigenvalues, Chernoff information and topology.

A. Linear transformation to diagonal covariance matrix
related to generalized eigenvalues

For two N-node 0-mean Gaussian graphs G; and G4 on
random variables x, whose covariance matrices are X7 and
39, we can use an inverse linear transformation matrix P
to transform them to x’ = Px whose covariance matrices
3% and 3 are diagonal and related to the generalized
eigenvalues of 37 and 3.

3, and 3, are real symmetric positive definite matrices,
so the eigenvalues of ;35 L are all positive, as shown in
[12]. The eigenvalue decomposition of 33;3; lis QAQ,
where Q is an N x N matrix and A = Diag({\;}) is a
diagonal matrix of eigenvalues, in which we put repetitive
eigenvalues adjacent. {);} are the eigenvalues of 3,35 1
namely the generalized eigenvalues of 3; and X,. Note that
Q may be non-orthogonal when 3;35 ! is not symmetric.

Proposition 2: For two N-node 0-mean Gaussian graphs
G4 and GG» whose covariance matrices are X; and X
respectively, we can construct a linear transformation matrix

- (Q—lEg(Q— )T) Q! and thus

>, =PX,PT =1y (8)
¥ =P, PT =A 9)

where eigenvalue decomposition of ;35 lis QAQ.

The proof of Proposition 2 is shown in [12].

We can treat X} and X/ as two covariance matrices of
graphs G} and G on x’ obtained from G; and Gs by
inverse linear transformation P. G and G, are graphs with
N independent variables.
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The distances of G} and G are as follows. The distances
between G; and G5 are the same with the distances of G
and G because P is non-singular.

li I 1
D(%4]%2) =D(X1[|%3) = 5 Z (=InAi + X — 1)
(10)
1 1
D) =D =5 3 (mh+ 5 1)
(11)
D(2,][%1) =D(Z}]|Z))
1 1
(12)
D(2,][%2) =D(XZ}]|X3)
1 A (1= X)N Ai
_QXi:(ln ¥ +)\+(1—)\))\i_1)
(13)
CI(31]|%2) =CI(Z}]|%5) = D(Z).[|%]) = D(Z).[|25)
(14)
where £ = 27+ 351 (1 - A) and B, =2 A+

>, - /\) Matrix 3/ is also diagonal. Parameter \*
in (14) is the unique root of D(X. 2’) = D(X4.]1%5),
namely ). (ﬁ +1In )\ )

In this way, we can conclude that the KL and CI diver-
gences between two Gaussian graphs can be determined by
their generalized eigenvalues.

B. Relationship between generalized eigenvalues and Cher-
noff information

Here we show the relationship between Chernoff informa-
tion of two Gaussian graphs and generalized eigenvalues of
their covariance matrices X; and X5. We define Hf\il A =
5]/ = B here.

Proposition 3: For two N-node Gaussian distributions
whose covariance matrices are 1,35 and |3|/|3q| = 8
their Chernoff information satisfies

A 1,
SO

where {);} are the generalized eigenvalues of 31,35, and
A* € 1]0,1] is the unique result of

Z)\* 17)\*)/\
Z)\* 1— i

The results of equatlon (16) and (17) are the same. We
can prove this proposition from equation (14), as shown in
[12].

CI(31][%2) =
;Z{ln{u—v)ﬁJr %)lnﬁ

15)

=N+ —1)lng (16

=N+ X1ng (17)
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Fig. 1. Adding and Division operations of two trees

We find that generalized eigenvalues of covariance ma-
trices 3; and 3, are the key parameters of Chernoff
information. We can get Chernoff information with these N
generalized eigenvalues, so these N parameters contain all
the information about the difference between two Gaussian
trees. The generalized eigenvalues are so important that we
need more properties about them.

C. Effect of Unit Generalized Eigenvalue on Chernoff Infor-
mation

By carefully examining the relationship between general-
ized eigenvalues and Chernoff information, we have found
that unit generalized eigenvalue has some interesting prop-
erties as detailed in this section.

Proposition 4: Assuming that the generalized eigenvalues
of (N + 1)-node G and G} are the same with that of V-
node G; and G4 except a newly additional unit generalized
eigenvalue, the optimal parameter \* of (X, X) is the same
with that of (3, 35) and C’I(E’ [1X5) = CI(Eq]|%2).

Under this assumption, |2}} = (I, M)x1=8= }2;}
Proposition 4 can be proved from Proposition 3 as shown in
[12].

Proposition 4 shows a possible way to do dimension
reduction that we can reduce the dimension of Gaussian
graphs from N + 1 to N without decreasing their Chernoff
information.

Paper [8] dealt with the classification on Gaussian trees.
In that paper, we defined two special operations on Gaussian
tree pairs, namely adding operation and division operation as
shown in Fig. 1. The circles in the figure represent Gaussian
trees. For adding operation, we add the same leaf node N+1,
which has the same neighbor ¢ with weight w, to both trees.
Division operation only appears when two trees have the
same edge e,, with the same weight w;w,, for which we
split this edge into two edges and add a node N+1 in the path
of p—q which has edges e(y41), and e(n41), With weights
wy and ws, respectively. After these operations, we get a new
pair of Gaussian trees with different dimensions compared
to original Gaussian tree pairs. These two operations do not
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change Chernoff information between two Gaussian trees.
Next we show how generalized eigenvalues change after
adding or division operation. The covariance matrices of
Gaussian trees are normalized.

Proposition 5: Assume that Gaussian trees G and G, are
obtained from G; and G2 by adding operation or division
operation. Their covariance matrices are (X}, 33%), (X1, 32)
respectively. The generalized eigenvalues of (X, X)) are
the same with that of (¥;,32) except a newly added unit
eigenvalue.

Proposition 5 is proved in [12]. From Proposition 4 and
5, we can conclude that adding and division operations do
not affect Chernoff information between two Gaussian trees,
which has been proved in our former paper [8]. We prove it
using generalized eigenvalues now.

IV. PARTIAL ORDERING IN INDEPENDENT GRAFTING
CHAIN

Grafting operation is a kind of topological operation by
cutting down a subtree from another tree and pasting it to
another location as shown in Fig. 2. In this figure, i,p,q
are the nodes in both trees, representing random variables
T4, Tp, Tq. We separate subtreel and subtree2 by cutting the
edge e;, with weight w and paste subtree2 to subtreel by
adding new edge e¢;, with the same weight w. We do not
actually cut any edges from Gaussian trees, though the name
of the operation suggests otherwise. We use it to describe the
topological difference between two Gaussian trees.

In our former paper [8], we have shown that two Gaussian
trees connected by one grafting operation have the same
Chernoff information with two special 3-node Gaussian trees
whose weights are related to the underlying operation. Now
we consider a more complex situation: two Gaussian trees
connected by more than one grafting operation. According to
Proposition 1, grafting operations do not change determinant
of normalized Gaussian trees.

Gaussian trees connected by more grafting operations can
not be simplified to a fixed couple of small trees because
the interaction of these grafting operations varies. Our initial
expectation was that bigger difference in topology between
two Gaussian trees leads to larger Chernoff information. This
may not be true for all situations.

Before we deal with a sequence of grafting operations, we
need to constrain the interaction among them. We define the
independence of grafting operations at first.

Definition 1: If all the grafting operations can be divided
into different subtrees, as shown in Fig. 3, then these grafting
operations are independent. After regrouping all the nodes,
the whole tree has star-shaped topology. The subtree in
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the center is unchanged during grafting operations. Grafting
operations are involved in disjoint super leaf nodes of the
star.

In Fig. 3, we show 4 independent grafting operations
around the unchanged subtree. There are three types of
grafting operations in the star-shaped topology. From left
to right, the 1-st, 2-nd grafting operations belong to the first
type, the 4-th one belongs to the second type and the 3-rd
operation belongs to the third type. For the first type, we can
cut a subtree, represented by a small circle with a number
in it, from the super leaf node and paste it to another part
of this super leaf node. In the second type, we can cut the
unchanged subtree outside the super leaf node and paste it
to another location in this super leaf node. But for the third
type, we cut a subtree, represented by a small circle with a
number in it, from a super leaf node and paste it to another
super leaf node. The third kind of grafting operations involve
two super leaf nodes of the star while the first and second
kinds of operations only involve one.

If all the grafting operations are independent, then we can
make the following conclusion.

Proposition 6: For two Gaussian trees connected by sev-
eral independent grafting operations, \* = 1/2 holds.

We can prove it as follows. The trees have the same
number of nodes and the same entropy due to grafting
operations. Parameter \* satisfies tr (- (27! -5 1)) = 0,
which can be transformed from the definition formulas of \*.
Expression tr(Xy- (X7 — 35')) is a summation formula
with 4n term, where each 4 terms are related to one single
grafting operation. We can deal with the terms respectively
and prove tr(Zo5(E7! — 251)) 0 eventually. More
details can be found in [12].

Proposition 7: For the grafting chain T} < 15 <> 15 <

- ¢ T, where all the grafting operations in the chain are
independent, we can conclude that CI(T;||T;) < CI(T,||T,)
ifp<i<j<q.

Detail of the proof can be found in [12].

If we want to find out the minimum Chernoff information
in this chain, we only need to try n — 1 pairs of T; — T;41,
rather than all the (%) pairs. The number of candidates is
significantly reduced.

We can not compare CI(T1||T2) and CI(T3||T5) even
in a simple chain 7} < T, <> T3 without knowing the
weights. We can only compare Chernoff information pairs
CI(T;||T;), CI(Tp||Ty) with p < ¢ < j < ¢ ordering, so
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this result is a partial ordering relationship, rather than a full
ordering relationship.

In Proposition 7, we constrain the grafting operations
independent. We may wonder whether the result suits for all
the possible grafting chains without independent assumption.
Taking grafting chain 77 < T, < T3 in Fig. 4 as an
example, the path of the first operation is 6 —1 — 5 — 3 — 4,
which is destroyed in the second operation. The chain does
not conform to definition 1 and the two grafting operations
are not independent. Intuition tells us that CI(Ty||T5) is
likely larger than CI(Ty||T2) and CI(T5||T3), because the
difference between 17 and T3 is the accumulation of T —
T5’s difference and Ty — T3’s difference. Some numerical
cases are shown in Table I. In this table, we can find that
CI(Th||T3) < CI(Ty||T2) can hold. This is a counter-
intuitive result because more topological differences can not
lead to larger Chernoff information between Gaussian trees.

V. DIMENSION REDUCTION

The situations in the former section are all about full
observation cases, where we can observe all Gaussian vari-
ables in the trees each time. In practice, we may have
some constraints on observation costs, which prompts us
to reduce the dimension of observation vectors in order to
meet such constraints. We can only use linearly transformed
low-dimensional samples to do the classification. The linear
transformation matrix should make sure that the reduced data
have the maximum information for classification.

In section III-A, we have shown Proposition 2. With this
proposition, we can inversely and linearly transform two
original Gaussian graphs into isolated node graphs of new
linear space. That is to say, variables of two distributions
in new space are independent from each other. In this way,
we can decompose difference information into independent
dimensions. After decomposition, we can choose the di-
mensions with most difference information as classification
dimension reduction result. The choice of dimensions is
shown as follows.

In these new space, x}, the i-th variable of x' = Px,
follows N (0, 1) in hypothesis 2 and N (0, A;) in hypothesis
1. If \; is farther from 1, this dimension can provide more
information for classification than other dimensions.

Assume that m of all the N eigenvalues {);} are greater
than 1 and the other N — m eigenvalues are no more than
1. If we want to reduce the observation dimension from
N to Ng, we choose the dimensions of x’ corresponding
to the first k rank and last No — k rank of {)\;}, where
max{Np +m — N,0} < k < min{m, No}. The No x N



Cases | A% 7y A Clpyjmy | Ol | Clry)imy
T 05191 | 19.5746,0.0433, 1.5439,0.7642,1,1,1 | 0.8983 09142 0.0251
2 05073 | 9.2341,0.1019, 1.2982,0.8185,1, 1,1 | 0.5402 05418 0.0113
3 05254 | 9.4328,1.653,0.0844, 07603, 1, 1, 1 0.5982 0.6103 0.0392
7 05082 | 5.0195,0.1863,1.2201,0.8766,1,1,1 | 03102 03132 0.0056

TABLE I
NUMERICAL CASES DISSATISFYING PROPOSITION 7 IN THE CHAIN OF FIG. 4

linear transformation matrix Ay is the corresponding No
rows of P corresponding to the chosen eigenvalues.

Matrices Ay, are candidate matrices of optimal classifica-
tion linear dimension reduction matrix A*, as shown below.

Proposition 8: Matrix A* is the optimal No x N
linear transformation matrix to maximize the Cher-
noff information in transformed space, namely A*
arg Maxa v . n CI(3%||%;) where 33; = AX;AT for i =
1,2.

A" € {Ag|max{No +m — N,0} < k < min{m, No}}
(18)
Proof of proposition 8 can be seen in [12] and this
proposition ensure the optimality of our method.
The observation is y = A*x and the covariance matrices
of y in two hypotheses are

1= A*S,AT = Iy,
! =ASA*" = Diag({1u:})

19)
(20)

where 37/ and ¥J are Np x Np diagonal matrices and

{p1, b2, - .., in, } (including multiple eigenvalues) are No
chosen eigenvalues.

The main idea of our method is similar as that of PCA. We
first decompose the information into independent dimensions
and then choose the dimensions with largest weights. But the
methods by which we decompose information and choose
dimensions are quite different.

VI. CONCLUSION

In this paper, we show the relationship between topol-
ogy, statistical distribution and algebra. Chernoff information
between two Gaussian graphs can be determined by the
generalized eigenvalues of their covariance matrices. Unit
generalized eigenvalues are very special and do not affect
the Chernoff information. Adding and division operations on
Gaussian trees only add a newly unit generalized eigenvalues
and do not change other generalized eigenvalues. Thus these
operations keep the Chernoff information. We also extend
our former result about grafting operation to Gaussian trees
connected by more than one independent grafting operation
and provide a partial ordering among these trees. In addi-
tion, we provide an optimal classification linear dimension
reduction method with the metric of Chernoff information.
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