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Abstract— Swarm Intelligence (SI) is a biological phenomenon
in which groups of organisms amplify their combined intelligence
by forming real-time systems. It has been studied for decades in
fish schools, bird flocks, and bee swarms. Recent advances in
networking and Al technologies have enabled distributed human
groups to form closed-loop systems modeled after natural swarms.
The process is referred to as Artificial Swarm Intelligence (ASI)
and has been shown to significantly amplify group intelligence.
The present research applies ASI technology to the field of
medicine, exploring if small groups of networked radiologists can
improve their diagnostic accuracy when reviewing chest X-rays
for the presence of pneumonia by “thinking together” as an ASI
system. Data was collected for individual diagnoses as well as for
diagnoses made by the group working as a real-time ASI system.
Diagnoses were also collected using a state-of-the-art deep learning
system developed by Stanford University School of Medicine.
Results showed that a small group of networked radiologists, when
working as a real-time closed-loop ASI system, was significantly
more accurate than the individuals on their own, reducing errors
by 33%, as well as significantly more accurate (22%) than a state-
of-the-art software-only solution using deep learning.

I. INTRODUCTION

Artificial Intelligence has made major advances in the field
of Radiology in recent years, enabling automated diagnoses of
medical images that rivals, and in some cases exceeds, the
accuracy of human practitioners. For example, the CheXNet
system developed at Stanford University School of Medicine
was recently shown to diagnose the presence of pneumonia with
significantly greater accuracy than expert radiologists [1]. In the
field of dermatology, researchers recently found that a
convolutional neural network outperformed a majority of human
dermatologists tested in diagnosing melanoma [2,3]. And in the
field of ophthalmology, a recent study by Google Deepmind has
shown that algorithms trained by machine learning (ML) can be
as good as human experts in detecting eye conditions [4].

Results like this have raised concerns in some medical fields
about the future of the profession for human practitioners. This
is particularly true in the field of radiology, where machine
learning has made significant strides. This prompted, Geoffrey
Hinton, a leading Al researcher to famously tell the New Y orker
magazine last year that medical schools “should stop training
radiologists now” [5]. These growing concerns, whether they
prove justified or overblown, raise a significant question — what
can be done to ensure that human judgement remains a valued
and consequential factor in fields like radiology?
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One approach is to use artificial intelligence to amplify the
diagnostic abilities of human practitioners, rather than replace
them. While there are numerous paths for exploring this notion,
the present study looks at one promising technology known as
Artificial Swarm Intelligence (ASI). Inspired by the natural
principle of Swarm Intelligence (SI), this technology connects
distributed groups of networked human participants into real-
time systems modeled after natural swarms and moderated by
Al algorithms. In layman’s terms, this technology uses real-time
networks and Al algorithms to build a “hive mind” of human
practitioners, enabling the groups to converge on solutions
together that are significantly more accurate than the individuals
could achieve on their own [6-10]. In one recent study of ASI
technology, researchers at Oxford and Unanimous Al tasked
groups of financial traders with predicting four economic
indicators: the S&P Index (SPX), the price of gold (GLD), the
gold miners index (GDX) and the price of crude oil. Across
three months of weekly forecasts, results showed a 26% increase
in prediction accuracy (p<0.001) for the ASI-based predictions
as compared to individual forecasts [11].

While prior studies have shown that ASI technology can
amplify human accuracy in predictive tasks such as predicting
sports and forecasting financial markets, no prior research has
tested the use of distributed swarm-based technologies for
medical diagnosis. The present study explores the use of ASI in
the medical field, with a specific focus on diagnostic radiology.
Specifically, we apply ASI technology to the diagnosis of chest
x-rays for the presence of pneumonia. This diagnostic task was
chosen because evaluating chest x-rays for pneumonia is the
most commonly performed radiological procedure in the US and
because machine learning systems like CheXNet have already
shown that algorithms alone can outperform individual human
practitioners. The question thus remains, can small groups of
networked radiologists, working as a real-time ‘“hive-mind,”
outperform the software only machine learning systems that
currently exceeded individual human performance.

II. SWARMS AS INTELLIGENT SYSTEMS

When reaching decisions as an ASI system, distributed
human groups “think together” as a real-time swarm in which
participants act, react, and interact as a population, converging
on optimized solutions in synchrony, moderated by intelligence
algorithms. The swarming process is modeled on biological
systems such as schools of fish, flocks of birds, and swarms of
bees. The present study uses Swarm AI® technology from
Unanimous Al, which is modeled primarily on the collective
decision-making processes of honeybee swarms [6-10].
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This framework was chosen because honeybee swarms have
been shown to converge upon optimized solutions to complex
problems that are far beyond the capabilities of their individual
members [11]. The decision-making processes in honeybee
swarms have been found to be surprisingly similar to the
decision-making in neurological brains [12,13]. Both are
distributed systems that employ large populations of simple
excitable units (i.e., bees and neurons) that function in parallel
to integrate noisy evidence, weigh competing alternatives, and
converge on decisions in real-time synchrony [14-16].

I11. ENABLING SWARMS

Unlike birds, bees and fish, humans have not evolved the
natural ability to form closed-loop swarms, as we lack the subtle
connections that other organisms use. Schooling fish detect
vibrations in the water around them. Flocking birds detect
motions propagating through the population. Swarming bees use
complex body vibrations called a “waggle dance.” To enable
real-time swarming among networked human groups, unique
interfaces, algorithms, and communication protocols are needed
to close the loop around the full the set of members. To address
this need, a software platform called swarm.ai was developed to
enable distributed human groups, connected in real-time form
anywhere in the world, to form closed-loop swarms over
standard internet connections [10].

Modeled after the decision-making processes of honeybee
swarms, swarm.ai enables networked groups to work in parallel
to integrate noisy evidence, weigh competing alternatives, and
converge on decisions in synchrony. As shown in Figure 1, the
platform enables “human swarms” to answer questions by
collaboratively manipulating a graphical puck to select from
among a set of alternatives. Each participant provides input by
moving a graphical magnet with a mouse, touchpad, or
touchscreen. By positioning their magnet with respect to the
puck, participants apply their will on the system. The input from
each user is not a discrete vote, but a stream of vectors that
varies freely over time. Because all members adjust their intent
continuously, the swarm explores the decision-space, not based
on the input of any single individual, but based on the dynamics
of the system. This enables complex deliberations to emerge,
empowering the group to converge on optimal solutions.
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Fig. 1. ASI converging upon a solution as a real-time system

It is important to note that participants do not only vary the
direction of their intent, but also modulate the magnitude of their
intent by adjusting the distance between their magnet and the
puck. Because the puck is in continuous motion across the
decision-space, users need to continually move their magnet so

that it stays close to the puck’s outer rim. This is significant, for
it requires participants to be engaged continuously throughout
the decision process, evaluating and re-evaluating their intent. If
they stop adjusting their magnet with respect to the changing
position of the puck, the distance grows and their applied
sentiment wanes.

Thus, like bees vibrating their bodies to express sentiment in
a biological swarm, or neurons firing activation signals to
express conviction levels within a biological neural-network, the
participants in an artificial swarm must continuously update and
express their changing preferences during the decision process,
or lose their influence over the collective outcome. In addition,
intelligence algorithms monitor the behaviors of all swarm
members in real-time, inferring their implied conviction based
upon their relative motions over time. This reveals a range of
behavioral characteristics within the swarm population and
weights their contributions accordingly, from entrenched
participants to flexible participants to fickle participants.

IV. PNEUMONIA DIAGNOSIS STUDY

Researchers at Stanford University School of Medicine and
Unanimous Al conducted a study in which a “hive mind” of
eight radiologists connected by ASI swarming algorithms was
tasked with diagnosing a set of 50 chest X-rays by working
together as a real-time system. For each of the 50 trials, a chest
X-ray was presented simultaneously to the radiologists. After a
few seconds of individual assessment, the group worked
together as an ASI swarm, converging on a probabilistic
diagnosis as to the likelihood that the patient has pneumonia. All
eight radiologists participated from their own unique locations,
each connecting to the swarm.ai platform through a standard
internet browser. For each of the 50 trials, the assessment was
performed through a two-step process in which the swarm first
converged on a coarse range of probabilities and then converged
on a refined value for the probability. This is shown below.

What is the probability that this patient has pneumonia?

SWARMA!

Fig. 2. ASI in the process of Diagnosing Pneumonia

Figure 2 shows a screenshot of the ASI system in the process
of selecting the coarse range of probabilities for an X-ray image
displayed to all participants at the same time. It’s important to
note that the screenshot above is a momentary snapshot of the
system as the collaboratively controlled puck moves across the
decision-space and converges upon an answer. This full process
of Al moderated deliberation generally takes between 15 and 60



seconds. In the example shown above, the swarm converged on
the range 40-60% within 18 seconds.

The swarm was then immediately tasked with selecting a
specific value within the chosen coarse range. Figure 3 below
shows a screenshot of the ASI system in the process of
converging upon a probability that the patient has pneumonia.
This generally takes an additional 15 to 30 seconds. In this way,
each diagnosis was converged upon by the ASI system in under
90 seconds for each one of the 50 chest X-ray trials evaluated.

What is the probability that this patient has pneumonia?

Fig. 3. ASI in process refining a diagnosis

Following this two-step process, the ASI system captured
input from the distributed group of radiologists for each of the
50 trials. Because each participant is both a member of the
system as well as a source of individual data, their initial input,
before the swarm starts, was collected as a representation of their
individual probabilistic forecast. This enables a performance
comparison between the individuals, assessing on their own, and
ASI system converging in synchrony.

Separately, the same set of 50 chest X-rays were run through
a state-of-the-art ML system to generate algorithmic assessment
for the presence of pneumonia. Specifically, the CheXNet deep
learning software developed at Stanford University was used.
This is a 121-layer convolutional neural network (CNN). It was
employed to generate algorithmic probabilities as to whether
each patient has pneumonia. In this way, three sets of diagnostic
probabilities were generated, (a) individual diagnoses, (b) ASI
diagnoses, and (c) software-only ML diagnoses. These three
sets of probabilities were then scored against Ground Truth and
compared using a variety of statistical techniques.

V. RESULTS

We compared the performance of the ASI system against
both (a) individual human performance, and (b) the software-
only CheXNet system. When comparing ASI to individual
radiologist, we compute three metrics - (i) Binary Classification
accuracy and (ii) Mean Absolute Error, and (iii) F1 scores, also
known as harmonic mean. As shown in the figures below, the
ASI system outperformed the individuals in all four metrics.

Binary Classification: Using fifty-percent probability as the
cutoff for classifying a positive diagnosis, the individuals
achieved 73% diagnostic accuracy (i.e. 27% error rate) against
Ground Truth across the 50 test cases, while the ASI system
achieved 82% diagnostic accuracy (i.e. 18% error rate) across

the same 50 cases. This corresponds to a 33% reduction in errors
when working as an ASI system as compared to direct individual
performance. To assess significance, a bootstrap analysis was
performed on 10,000 samples, as shown in Figure 4a. The swarm
was found to be significantly more accurate than the individuals
alone (p<0.01, difference = 9.1%).
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Figure 4a. Percent Correct (ASI vs Individuals)

Mean Absolute Error: MAE is calculated as the absolute
value of the Ground Truth minus the Predicted Probability. A
bootstrap analysis revealed that the swarm of radiologists had
significantly higher probabilistic accuracy than the individuals
(p<0.002, Wdifference = 8.6%), as shown in Figure 4b.
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Figure 4b. Mean Absolute Error (ASI vs Individuals)

F1 Score: We compare the performance of the ASI system
to individual radiologists on the F1 metric, which is defined as
the harmonic average of the precision and recall achieved during
binary classification. As shown in Figure 4c below, we find that
the ASI system averages an F1 score of 0.75 while the individual
radiologist achieve a lower average F1 score of 0.64. To assess
statistical significance, we bootstrap across 10,000 samples. We



find that the F1 score of the Swarm was not sufficiently higher
than the F1 for individuals for statistical significance (p > 0.05),
suggesting that a set of 50 trials was not adequate to demonstrate
statistical significance on F1 scores, which vary substantially in
average magnitude based on the sample data set.

Bootstrapped F1 Score over All Data Points

BN Swarm: average F1 = 0.75
1000 { MWW Individuals: average F1 = 0.64

800 4

600 +

Bootstrapped Frequency

400

200 1

ol : .|||I||I|‘
2

0.0 0. 0.4 0.6 0.8 1.0
Bootstrapped F1 Score

Figure 4c. Bootstrapped F1 Scores (ASI vs Individuals)

When comparing ASI to the ML system, we compute four
metrics - (i) binary classification accuracy, (ii) Mean Absolute
Error, (iii) ROC analysis, and (iv) F1 scores. As shown in the
figures and text below, the ASI system outperformed the
software-only deep learning system across all three metrics.

Binary Classification: Using fifty-percent probability as the
cutoff for classifying a positive diagnosis, the ML system
achieved 60% accuracy against Ground Truth across 50 trials,
while the ASI system achieved 82% accuracy across the same
50 trials. To assess statistical significance, a bootstrap analysis
was performed on 10,000 samples as shown in Figure Sa. The
swarm was significantly more accurate in binary classification
than the ML system (p<0.01, pdiference = 21.9%).
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Figure 5a. Percent Correct (ASI vs ML)
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Mean Absolute Error: MAE is calculated as the absolute
value of the Ground Truth minus the Predicted Probability. A
bootstrap analysis of MAE revealed the swarm had significantly
higher probabilistic accuracy than the ML system (p<0.001,
Wdifference = 21.6%), as shown in Figure 5b. To address the
possibility that Ground Truth could be error prone, we also
looked at “Agreed Truth”, defined as only those cases where the
ASI and ML systems agreed on the diagnosis. Even in this
conservative case, the swarm significantly outperformed ML
(p<0.001, pdifference = 21.3%), as shown in Figure Sc.
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Figure 5b. Mean Absolute Error (ASI vs ML)
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Figure 5c. Mean Absolute Error (ASI vs ML) using Agreed Truth

ROC Analysis: Because the Swarm Al system and the
Machine Learning system have different approaches to
probabilistic forecasting, a ROC analysis was performed to
compare the true positive rate to the false positive rate across
different cut-off points, the higher the ratio the better the



classification. We computed the Area Under the ROC Curve
(AUROC) for both methods and found that the swarm of
radiologists achieved an AUROC of 0.906, while the ML system
achieved 0.708. Bootstrapping across 10,000 trials, we find that
the ASI system scores significantly higher than the pure ML
system (p<0.01, giference = 0.197), as shown in Figure 5d.

10,000-Bootstrapped AUROC

N Swarm

1000 1 s Machine Learning

800

600

Number of Instances

=1

T
o7 08 0.9 10

..,..|I|‘||‘ l|H
0.5 06
AUROC

Figure 5d. AUROC Analysis (ASI vs ML)

We can also compare the ASI system to the ML system by
plotting Receiver Operating Characteristic (ROC). As shown in
Figure 5e below, the swarm outperforms the ML system across
most discrimination levels, with higher true positive rates for
each false positive. In fact, the swarm is able to find all instances
of pneumonia in this dataset, while only mis-identifying 40% of
the non-pneumonia cases. The AUROC of the ASI system is
0.91, while that of ML is 0.71 for this dataset.

1.0 T
=
| -
1.—_‘ ,’
N F
0.8 4 r o
— =7
— -~
b | ”
= — ’f
x -
o 0.6 I -
2 — e
2 ?[ .
g P
1]
204 | —m— #
= |_J -
L/ o
-
’I'
-
0.2 | e
’I
ol = Swarm ROC curve (area = 0.91)
_,z’ ——— CheXNet ROC curve (area = 0.71)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure Se. Receiver Operating Characteristic (ASI vs ML)

F1 Score: We compare the performance of the ASI system
to ML system on the F1 metric. As shown in Figure 5f below,
we find that the ASI system achieves an average F1 score of 0.75
while the ML system achieves a lower average F1 score of 0.63.

To assess significance, we bootstrap across 10,000 samples and
find insufficient difference (p > 0.05), suggesting that a set of 50
trials was too small for significant F1 comparison.
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Figure 5f. Bootstrapped F1 Scores (ASI vs ML)

VL CONCLUSIONS

We compared the ASI system to both individuals and to the
state-of-the-art in ML diagnosis of chest X-rays for the presence
of pneumonia and found that the hybrid ASI system that
combined real-time human diagnosis and software optimization
significantly outperformed both the individuals working on their
own and a pure software system when compared with respect to
(i) binary classification, (ii) mean absolute error, and (iii) ROC
analysis. Because Ground Truth could be error prone, we also
compared using “Agreed Truth” and still found the ASI system
to outperform the ML system. Previous studies on the CheXNet
system on a larger set of cases [1] achieved a higher AUROC
(0.7680) as compared to 0.708 in this study, indicating that the
50 questions in this test set may be harder than average.
Additional research is warranted using more definitive Ground
Truth and a wider range of cases. In addition, the method for
collecting individual responses in this study used only five levels
of probability (0-20%, 20-40%, 40-60%, 60-80% and 80-100%).
Future research should be performed that utilizes a higher
resolution method for individual response mechanism.

Overall this study suggests that swarm-based technologies
are quite promising for use in medical diagnosis, enabling small
groups of medical professionals to combine their insights in real-
time under software moderation and thereby achieve diagnostic
accuracies that significantly exceed the accuracies of individual
human practitioners as well as software-only solutions. It is
likely that the ASI system excels in certain types of cases, while
the software-only ML system excels in others. We believe future
research should identify these differences so that each method
can be applied to those cases which are most appropriate.
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