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ABSTRACT The fecal indicator bacterial species Escherichia coli is an important
measure of water quality and a leading cause of impaired surface waters. We investi-
gated the impact of the filter-feeding metazooplankton Daphnia magna on the inac-
tivation of E. coli. The E. coli clearance rates of these daphnids were calculated from
a series of batch experiments conducted under variable environmental conditions.
Batch system experiments of 24 to 48 h in duration were completed to test the im-
pacts of bacterial concentration, organism density, temperature, and water type. The
maximum clearance rate for adult D. magna organisms was 2 ml h�1 organism�1.
Less than 5% of E. coli removed from water by daphnids was recoverable from ex-
cretions. Sorption of E. coli on daphnid carapaces was not observed. As a compari-
son, the clearance rates of the freshwater rotifer Branchionus calyciflorus were also
calculated for select conditions. The maximum clearance rate for B. calyciflorus was
6 � 10�4ml h�1 organism�1. This research furthers our understanding of the im-
pacts of metazooplankton predation on E. coli inactivation and the effects of envi-
ronmental variables on filter feeding. Based on our results, metazooplankton can
play an important role in the reduction of E. coli in natural treatment systems under
environmentally relevant conditions.

IMPORTANCE Escherichia coli is a fecal indicator bacterial species monitored by the
U.S. Environmental Protection Agency to assess microbial water quality. Due to the
potential human health implications linked to high levels of E. coli, it is important to
understand the inactivation or reduction mechanisms in surface waters. Our research
examines the capacities of two types of widespread filter-feeding freshwater meta-
zooplankton, Daphnia magna and Brachionus calyciflorus, to reduce E. coli concentra-
tions. We examine the impacts of different environmentally relevant conditions on
the clearance rates. Our results contribute to a better understanding of the impor-
tance of metazooplankton in controlling E. coli concentrations and what conditions
will reduce or increase grazing. These results provide baseline data to support future
efforts to develop a quantitative model relating zooplankton uptake rates to rele-
vant environmental variables.
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Microbial pollution is a leading cause of impaired waterways, and the fecal indicator
bacterial species Escherichia coli is commonly used to assess microbial pollutant

loads. While there is uncertainty regarding the utility of indicator organisms as a tool to
monitor public health (1), most studies on the removal of pathogens measure non-
pathogenic indicator organisms. Hence, removal of these indicator organisms is well
characterized. Disinfection during traditional wastewater treatment adequately reduces
microbial loads, but microbial inactivation in natural treatment systems, such as
treatment wetlands and bioretention basins, is less predictable. Current models pre-
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dicting E. coli inactivation in natural systems focus on abiotic mechanisms, such as
sedimentation, sunlight, and temperature, and neglect to quantify biotic processes by
organisms of higher trophic levels, such as zooplankton filter feeding (2, 3), yet
zooplankton can contribute significantly to removal of microbial pollutants via filter
feeding. When seasonal population density peaks, natural zooplankton communities
have the ability to filter all the water in a lake within a 24-h time period (4–6).
Zooplankton are often abundant in natural treatment systems and can filter feed on
particles of various size ranges, including bacteria (7–10). The contributions of zoo-
plankton filter feeding to bacterial inactivation under variable environmental condi-
tions are not well studied, and the viability of microbial pollutants after ingestion is
uncertain.

Freshwater metazooplankton are a morphologically diverse group of organisms,
varying in size (by orders of magnitude), feeding mechanisms, and habitat require-
ments. Metazooplankton like cladocerans, copepods, and rotifers often dominate fresh-
water systems. Daphnia spp., cladocerans, can filter a wide range of particle sizes, from
less than 1 �m to greater than 1 mm, and have been shown both to impact phyto-
plankton abundance and suppress the microbial food web (11, 12). Daphnids have
been found to be abundant in stabilization ponds and remove suspended solids in
activated sludge effluent (13, 14). Brachionus spp., filter-feeding bdelloid rotifers, filter
smaller particles, less than 20 �m (15–17), and can also influence the microbial food
web (18). Rotifers play a primary role in the activated sludge process, clarify wastewater,
and are abundant in treatment wetlands (19, 20). Despite the many studies examining
the filter-feeding ability of both daphnids and rotifers, the results are variable when
quantifying the ability of these two types of metazooplankton to influence water
quality under changing environmental conditions that may be encountered in a natural
treatment system.

The aim of this research was to quantify the impacts of variable environmental
conditions and different E. coli strains on Daphnia magna filter feeding. We hypothe-
sized that manipulation of temperature, E. coli concentration, organism density, water
type, and particle type will have a significant impact on the filter-feeding capability of
D. magna. We calculated clearance rates (ml h�1) under these different conditions by
measuring the viable E. coli concentration in water as a function of time using a batch
system. The fate of E. coli in other system compartments, such as surface attachment on
the D. magna carapace and excretion in feces, was also quantified. In addition, the
filter-feeding ability of D. magna was compared to that of the freshwater rotifer
Branchionus calyciflorus. Overall, this study provided a better understanding of the
impacts of different environmental conditions on the filter feeding of metazooplankton
and showed the potential significance of metazooplankton filter feeding for improving
water quality through reduction of microbial pollutants.

RESULTS AND DISCUSSION
Uptake of E. coli K-12 by D. magna using synthetic freshwater. Experiments were

conducted to calculate individual uptake or clearance rates of E. coli by D. magna. Time
series of viable E. coli concentrations show exponential decay followed, in some cases,
by tailing (Fig. S1 in the supplemental material). The base conditions used for batch
experiments were 40 daphnids in 150 ml of moderately hard synthetic freshwater
(MHSFW) at 22°C spiked to a concentration of 108 CFU/100 ml. Base conditions resulted
in a clearance rate of 1.4 � 0.1 ml h�1 organism�1 (mean � standard deviation).

The impact of temperature was assessed by testing uptake at 15 and 10°C (Fig. S2).
The clearance rate at 15°C was statistically equivalent to the rate obtained at 22°C
(P � 0.15). At 10°C, the clearance was statistically equivalent to the results for the
control beaker without daphnids (P � 0.22), indicating that filter feeding was signifi-
cantly reduced at 10°C (Fig. 1A).

The number of organisms in each beaker was increased from 40 to 60 to 80
daphnids in 150 ml of MHSFW (Fig. S1). Increasing the number of daphnids from 40 to
60 resulted in a significant increase in clearance rate (P � 0.001), with the value almost
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doubling per organism (2.4 � 0.3 ml h�1 organism�1), but further increasing the
number of daphnids to 80 resulted in a reduction in clearance rate (1.8 � 0.2 ml h�1

organism�1) (Fig. 1B). The results indicate that, under the conditions tested, 60 daph-
nids in the system resulted in maximal uptake of E. coli per organism (Fig. 1B).

The concentration of the E. coli spike was varied by 3 orders of magnitude. Reducing
the initial concentration of the system by an order of magnitude from 108 to 107

CFU/100 ml did not have a significant impact on the clearance rate (P � 0.38) (Fig. S3).
Further reduction to 106 CFU/100 ml resulted in a significant increase in clearance rate
(almost double) (P � 0.001). Another reduction to 105 CFU/100 ml did not further
increase the clearance rate but, instead, reduced the clearance rate to a value statisti-
cally equivalent to the 107 CFU/100 ml spike (Fig. 1C).

Our results align with those of previous studies that report changes in daphnid
clearance or filtration rates in response to temperature. These studies showed changes
in the filtration rates of algal and yeast cells with variations in temperature, but the
magnitudes of change varied significantly based on study conditions and daphnid
species (21–24). This may be due to the acclimatization procedure used to adapt
daphnids to different temperatures. Rapid temperature change has been shown to
have a negative impact on immediate filtration rate, but daphnids could acclimate to
new temperatures and recover filtration rates within a week (25), and yet some studies
acclimated organisms in a few hours or less at each new temperature (23). Hence,
studies showing filtration rates differing by orders of magnitude may be influenced by
rapid temperature changes. Here, we observed that a slow acclimation period of
1°C/day resulted in daphnids adapting to the temperature change with minimal
mortality or exhibition of stress relative to what would be observed with a rapid change
in temperature (data not shown). Consequently, our results only showed a small,
statistically nonsignificant increase in clearance rates when the temperature changed
from 15°C to 22°C.

Variable results have also been obtained in relation to how food concentration
impacts the filtration or clearance rate. The incipient limit level of food is based on a
level of food in which there is not a limiting effect of food supply, and above this level,
maximum filtration can be achieved (26, 27). Some studies show that the feeding rate,
which is the clearance rate multiplied by the concentration of particles, is proportional
to the concentration below the incipient limit, and the feeding rate is not impacted
above this concentration (28). Other studies show that feeding is inhibited at high or
low concentrations of particles (29). Many of the previous studies examining bacte-
rivory in zooplankton used fluorescent beads as surrogates (30, 31), radiolabeled
bacteria (28), or stained bacteria (32). These approaches with chemically altered bac-
teria or beads may impact the feeding rate and do not consider inactivation, which is
important when considering water quality implications.

FIG 1 Comparison of E. coli clearance rate values for D. magna organisms under various test conditions. Experiments were conducted using 150 ml of MHSFW
and E. coli K-12. Error bars represent the standard errors of the means for triplicate beakers and are indicative of variation in daphnid feeding behavior. (A)
Comparison of results at different temperatures using 40 daphnids and a 108 CFU/100 ml initial spike of E. coli. (B) Comparison of results at different D. magna
densities using 108 CFU/100 ml spike of E. coli and 22°C. (C) Comparison of results at different E. coli concentrations using 40 daphnids at 22°C.
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A recent study investigated the impact of bacterial concentration and daphnid
density on the ingestion and inactivation of E. coli by Daphnia pulex using culture-based
techniques (10). The observed trends and calculated uptake rates were different than
those observed herein and could not be directly compared due to the different
methodology and species used. The variability of results for how concentration and
temperature impact feeding behavior demonstrates the complexity of feeding behavior
over a range of different conditions and that generalizations cannot be made that apply
to all systems. Also, differences in observed rates cannot be simplified to measurable
organism characteristics, such as body size (11, 33), supporting the importance of
completing studies on different types of zooplankton and different matrices to start
understanding the behavior of metazooplankton assemblages in natural systems.

Uptake of E. coli K-12 and environmental E. coli isolates by D. magna in pond
water. Pond water filtered through a sterile 50-�m sieve was spiked with E. coli K-12
to test whether clearance rates of bacteria were impacted when other food sources
were available to the daphnids and E. coli only represented a fraction of the particulate
matter. Including other particulate matter represents more realistic conditions for
feeding studies (8, 10). E. coli K-12 was inactivated at a significantly lower rate in pond
water (0.56 � 0.1 ml h�1 daphnid�1) than in synthetic freshwater (1.4 � 0.1 ml h�1

daphnid�1) (P � 0.001) (Fig. 2A and C). A 30% reduction of particulate matter, in the
range of 3 to 8 �m, was also observed during the experiment, in comparison to 98%
reduction in E. coli during the same time frame. Subsequently, the inactivation of
environmentally isolated E. coli in pond water was compared to the inactivation of E.
coli K-12 in pond water. The uptake of environmentally isolated E. coli (0.92 � 0.1 ml
h�1 daphnid�1) was significantly higher than the uptake of E. coli K-12 spiked in the
same type of pond water (0.55 � 0.1 ml h�1 daphnid�1) (P � 0.001) (Fig. 2B and D).

Previous studies have shown that daphnid feeding behavior may involve passive
size selection (34) or selective grazing (11, 27). For example, D. magna was shown to
allow 30 to 70% of particles to pass through the carapace unharmed via bolus rejection
or outwashing (35). In addition, passive rejection of particles was observed in daphnids
through alteration in the motion of the feeding appendages (36). One study using
radioactively labeled particles showed increased feeding on bacteria in the presence of
algae coupled with reduced feeding on algae in the presence of bacteria. Since this
study measured uptake based on radioactivity, the inactivation of bacteria was not
examined, but this could indicate selective grazing by daphnids (37). In the present
study, the decrease in the E. coli K-12 clearance rate in the presence of other particles,
as well as the preferential feeding on environmentally isolated E. coli, may be due to
selective grazing. With both E. coli K-12 and environmentally isolated E. coli, bacteria
were still consumed in the presence of other particles in the system, which may support
the idea that bacteria can be an important part of the diet of zooplankton (38, 39). The
suitability of bacteria as a sole food source for daphnids varies based on the type of
bacteria studied, with some studies showing low growth and high mortality and others
showing no detrimental impacts (38, 40). In natural treatment systems, E. coli will not
be the sole food source available to daphnids, but it may be a dominant food source
within the system. E. coli ingestion may be enhanced by attachment to other organic
particulate matter with high nutritional value, such as algae.

E. coli uptake by D. magna with respike of E. coli. To test whether the tailing
observed in some experiments (Fig. S1) was due to reduced filtration rates resulting
from satiation or low particle concentration, a respike experiment was conducted.
Daphnids were allowed to feed on an initial spike of 108 CFU/100 ml environmentally
isolated E. coli in pond water at 22°C for 36 h to allow for sufficient feeding time. E. coli
was then respiked at 108 CFU/100 ml and exposure to the daphnids continued for an
additional 12 h (Fig. S4). The log-linear clearance rate calculated for the first 36 h from
the exposure period (0.91 � 0.3 ml h�1 daphnid�1) was not statistically different from
the clearance calculated after the respike (0.87 � 0.1 ml h�1 daphnid�1). These results
indicate that the tailing observed may be due to lack of particle availability. The
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apparently decreased feeding behavior can be related to depletion of particles well
below the incipient limit, which is the critical concentration when the feeding rate is a
proportional to the particle concentration (26). As shown by the results in Fig. S1, tailing
was most evident when daphnid density was increased without a proportional increase
in food availability (E. coli), which may relate to the incipient level being reached. In
addition, the lack of particles may result in reduced filtration rates, since fewer particles
are encountered during grazing.

Changes in E. coli concentrations attributed to adhesion or excretion. Adhesion
of E. coli cells to D. magna carapaces was negligible. Depuration experiments resulted
in recovery of viable E. coli cells, but excretion reintroduced less than 5% viable E. coli
cells. The lack of viable E. coli cells reintroduced into the system may be indicative of
inactivation of bacteria by D. magna.

Visualization of E. coli in the D. magna gut. Inactivation of E. coli in the gut of D.
magna was qualitatively observed using the BacLight LIVE/DEAD kit. Unstained D.
magna organisms showed a natural green fluorescence when viewed with a fluores-
cence microscope (FM), but absence of red fluorescence in the unstained D. magna gut
was confirmed. Feeding stained E. coli cells to D. magna organisms resulted in red
fluorescence in the gut, which is indicative of inactivated cells. In contrast, red fluores-

FIG 2 Uptake kinetics and clearance rate values for D. magna when varying water and E. coli type. All experiments were conducted using 150 ml of water and
40 D. magna organisms at 22°C. Error bars represent the standard errors of the means for triplicate beakers. Closed symbols in panels A and B represent the
mean concentration (C) values measured in triplicate experimental beakers, and open symbols represent C values from the control beakers. (A) Uptake kinetics
of E. coli K-12 in pond water and MHSFW. (B) Uptake kinetics using pond water spiked with E. coli K-12 and an environmental isolate of E. coli. (C) Clearance
rate values for water types using E. coli K-12. (D) Clearance rate values for E. coli types in pond water.
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cence was not present in the D. magna gut when fed unstained E. coli. Due to the
natural green fluorescence of the D. magna organisms and the algal cells retained in
the organism, viable E. coli cells could not be differentiated from other material by
using the FM.

Previous studies examining DAPI (4=,6-diamidino-2-phenylindole)-labeled E. coli cells
fed to D. pulex showed that E. coli was contained within the food boluses of D. pulex,
and uptake was observed within minutes of exposure (10). These studies also showed
passage of E. coli cells within the gut, but DAPI stain could not be used to indicate
viability (10). For D. magna, we determined that 30 min of exposure was a sufficient
time period to allow uptake and digestion (inactivation) while avoiding complete
passage of E. coli through the gut.

Our initial protocol followed previously published procedures to stain D. magna
organisms after exposure to E. coli cells, but the propidium iodide stained the D. magna
carapaces, making it difficult to interpret images (41). Hence, the protocol was modified
to stain E. coli cells before feeding them to D. magna organisms. D. magna organisms
fed stained E. coli could be clearly visualized (Fig. 3A), and a confocal laser scanning
microscope (CLSM) was used for subsequent analysis. The hindgut region was imaged
with the CLSM, and individual E. coli colonies were visualized. A qualitative analysis of
the imaging indicates that E. coli is inactivated in the gut, with the majority of colonies
imaged appearing red (Fig. 3B). Other material in the gut of D. magna also showed
green fluorescence, but the shapes and sizes of the material and comparison with
control organisms allowed differentiation from E. coli. Further imaging is necessary to
obtain quantitative data on the amount of E. coli cells that are inactivated, though this
exceeds the scope of the current study.

Previous studies have shown that both the carapace and gut lining can support the
growth of bacteria in various zooplankton, and bacterial abundances associated with
zooplankton may be greater than the concentrations in the surrounding water (42–44).

FIG 3 D. magna images after exposure to E. coli cells stained using BacLight LIVE/DEAD kit. (A) Whole-organism image using a Zeiss light microscope. The red
portion in the hindgut is indicative of inactivation of E. coli (scale bar � 200 �m). The boxed portion was imaged by confocal microscopy. (B) Image of the
hindgut using a Leica confocal laser scanning microscope focused on the hindgut region. The individual red and green dots represent E. coli colonies (scale
bar � 50 �m).
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In addition, studies have examined the importance of symbiotic relationships between
bacteria and daphnids (44, 45). The stained E. coli bacteria fed to D. magna organisms
in this study were inactivated in the daphnid gut rather than attaching to the carapace
or remaining viable in the gut. The specific mechanisms of inactivation of E. coli in the
gut of D. magna are not fully characterized, but the gut microbiota within daphnids
likely play an important role. Studies have shown that dietary conditions impact the
role of the gut microbiota and that the structure of the microbiota could even impact
the ability of daphnids to tolerate different food sources, including toxic cyanobacteria
(45, 46). The visual confirmation of inactivation of E. coli in the gut of D. magna in this
study is important when considering the use of daphnids in natural systems to reduce
microbial pollutants through inactivation rather than just mechanical removal and gut
retention. The microscopy analysis further confirms results from the previously de-
scribed experiments that showed insignificant levels of viable E. coli bacteria excreted
from depurating daphnids.

Comparative uptake of E. coli by B. calyciflorus. Tests conducted with B. calyci-
florus rotifers required a longer duration and a higher organism density than D. magna
experiments to achieve at least a 1-log reduction in E. coli (Fig. 4). The rotifers showed
a more dramatic response to temperature than daphnids, with 22°C resulting in
maximal clearance rate values under the conditions studied. Decreasing the tempera-
ture to 15°C resulted in significantly reduced uptake in comparison to the uptake at
22°C (P � 0.004). Due to the significant reduction of the clearance rate at 15°C, an
additional experiment at 18°C was conducted for comparison. The clearance rates at 18
and 15°C were not significantly different (P � 0.41), and the clearance rate at 18°C was
still significantly lower than the rate at 22°C (P � 0.003) (Fig. 5A, Fig. S5). Similar to that
of D. magna, rotifer feeding at 10°C did not result in a measurable change in E. coli
concentration in comparison to the results for the control (Fig. 5A).

Rotifers showed a slightly greater clearance rate for environmentally isolated E. coli
than for E. coli K-12 spiked in pond water (P � 0.03) (Fig. 5B, Fig. S6). Even when other
particulate matter was present in the system, 90% reduction of E. coli bacteria was
observed, versus 10% reduction of particles in the 3- to 8-�m range. Similar to
daphnids, rotifers can thus exhibit selective feeding. Rotifers have been observed to

FIG 4 Comparison of uptake kinetics of B. calyciflorus (220 organism/ml) and D. magna (0.5 organism/ml)
in 150 ml of MHSFW spiked with 108 CFU/100 ml E. coli K-12 at 22°C. Error bars represent the standard
errors of the means for triplicate beakers and are indicative of variation in metazooplankton feeding
behavior. Closed symbols represent the mean C values measured in triplicate experimental beakers, and
open symbols represent C values from the control beakers.
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prevent the entrance of particles by using a pseudotrochal screen (7). In addition, B.
calyciflorus organisms can use bacteria as a food source and can even thrive without a
decline in the reproductive or growth rate if bacteria are the sole food source (7).

While our study shows that D. magna clearance rates are orders of magnitude
greater than those of B. calyciflorus, both these organisms have the potential to exert
control on bacteria concentrations, depending on environmental factors. Studies have
shown that daphnids can graze more intensively on phytoplankton and bacteria than
can rotifers, but the density of daphnids in comparison to that of rotifers can vary by
orders of magnitude in systems, depending on habitat conditions like water chemistry
and ingestible particle availability (5, 47). For example, in one lake that was sampled,
rotifer abundance ranged from 247 to 6,597 individuals liter�1, and in the same system,
cladocerans (daphnids) ranged from 1 to 115 individuals liter�1 (47). In addition,
seasonal variation of population dynamics can alter the numbers and types of zoo-
plankton in a system. One study showed the variability of rotifer versus daphnid
populations based on seasonality and food particle availability, with rotifers having the
highest grazing impact in the spring versus daphnid grazing dominating in autumn (5).
In addition, the approach to grazing for rotifers and daphnids may be complementary,
with daphnids being able to graze on substrates (48, 49) while rotifers can retain
smaller particles (16–18). Hence, these two organisms could coexist in natural treat-
ment systems to control E. coli in the water column, as well as E. coli associated with
sediment or sorbed to larger particles.

Implications of predation impacts of D. magna and B. calyciflorus on E. coli. This
study focused on two species that can dominate many freshwater natural systems and,
hence, may produce significant predation pressure on E. coli. The importance of the
effects of environmental variables like temperature and particle type and availability on
the rates of clearance of E. coli by daphnids and rotifers was also demonstrated. While
previous work has shown uptake of bacteria by daphnids and rotifers, culture-based
methods showing inactivation by these two species had not been completed. In
addition, the fate and viability of the microbial pollutants following uptake was
uncertain (50, 51). Using culture-based methods to quantify the inactivation of E. coli
cells, coupled with microscopy to understand the fate of the bacteria after ingestion, we
show that the metazooplankton studied will not act as E. coli reservoirs but, instead,
serve as living filters that can inactivate microbial pollutants.

FIG 5 Comparison of clearance rate values for B. calyciflorus. Error bars represent the standard errors of
the means for triplicate beakers and are indicative of variation in rotifer feeding behavior. (A) Comparison
of results at different temperatures. (B) Comparison of results for E. coli K-12 and an environmental isolate
of E. coli in pond water.
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Results from these studies will help inform the development of models relating
environmental variables to clearance rates, which can help stakeholders interested in
applying zooplankton in natural treatment systems predict the expected removal of
microbial pollutants. The clearance rate responses to the variables tested in this study
could not be modeled with simple regression, highlighting the complexity of filter-
feeding behavior by these organisms. Previous models have examined zooplankton
functional responses based on single and multiple nutritional sources and have pro-
vided important information on understanding ecosystem dynamics (52, 53). While
some of these models have included bacteria as a potential nutritional input, the
existing models do not couple nutritional resources with environmental variables and
do not consider inactivation. The ability to predict inactivation by zooplankton is
important when considering the role of predation in reducing microbial pollutants in
natural treatment systems.

The results obtained from these experiments demonstrate that both D. magna and
B. calyciflorus have the potential to inactivate E. coli via filter feeding, but other studies
have shown that not all metazooplankton exhibit bacterivory (54, 55). When consider-
ing the application of zooplankton in natural treatment systems, it will be important to
select for certain species that can ingest bacteria by providing favorable conditions for
these organisms. In addition, zooplankton may be able to adapt to ingestion of
different food particles in a system based on availability. For example, zooplankton that
were regularly exposed to Microcystis sp. cyanobacteria and had an adapted micro-
biome were able to ingest the cyanobacteria, while zooplankton that had not been
exposed could not (46, 56, 57). The adaptation of zooplankton to different food sources
is an important trait that will be advantageous in considering their application in
natural treatment systems. In natural systems, zooplankton will be exposed to a variety
of particulate matter and E. coli uptake may occur not only through filtration of
unattached bacteria but also aggregates and bacteria sorbed on other organic partic-
ulate matter with high nutritional value, such as algae. While algae are often considered
the dominant food source for these organisms, exposing zooplankton to high levels of
E. coli and other microbial pollutants may result in adaptation of their microbiome over
time, resulting in natural selection of organisms best adapted to natural treatment
system conditions. Conducting long-term studies with mixed zooplankton assemblages
and examining how manipulating food type availability impacts these assemblages will
be important in determining the clearance rates of E. coli and other microbial pollutants
in natural systems.

Zooplankton as biological filters are currently not incorporated as part of the design
of natural treatment systems. While the clearance rates from these batch systems
cannot be directly applied to flowthrough natural treatment systems, these experi-
ments provide initial data and inform the direction for future studies to model the
impact of zooplankton on microbial inactivation in natural treatment systems.

MATERIALS AND METHODS
Metazooplankton culture. Daphnia magna (Connecticut Valley Biological, Southampton, MA) and

Brachionus calyciflorus (Florida Aqua Farms, Dade City, FL) were cultured in moderately hard synthetic
freshwater (MHSFW) or 50 �m filtered pond water (Paradise Pond, Northampton, MA). D. magna
daphnids were fed Nannochloropsis species (4- to 6-�m diameter; Florida Aqua Farms, Dade City, FL), and
B. calyciflorus rotifers were fed Nannochloris species (1.5- to 2.5-�m diameter; Florida Aqua Farms, Dade
City, FL). Over a time period of 1 to 7 days, a subset of organisms were acclimated to the experimental
conditions. D. magna organisms were selected for experiments using a pipette and counted manually,
while B. calyciflorus organisms were filtered through a 53-�m sieve, resuspended in water to concentrate
them, and then counted using a Sedgewick Rafter counting chamber under �4 magnification.

Escherichia coli preparation and enumeration. Frozen stock of E. coli K-12 (ATCC 10798) was
spread plated on tryptic soy agar for 24 h at 37°C, and then a single colony was incubated in tryptic soy
broth (TSB) at 37°C for 22 to 24 h to reach the stationary growth phase. Environmental isolates of E. coli
from the Mill River (Northampton, MA) were obtained by spread plating river water on modified mTec
agar (BD Falcon) and incubating according to the agar manufacturer’s instructions. After incubation, a
single colony was grown in TSB at 37°C for 22 to 24 h to reach the stationary growth phase. Prior to
spiking into experimental systems, aliquots of E. coli in TSB were then pelletized by centrifuging at
10,000 � g for 10 min, the overlying TSB was removed, and experimental water was added. The samples
were vortexed to resuspend the pellet and then recentrifuged. This procedure of vortexing, resuspend-
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ing, and centrifuging was completed two additional times using experimental water. After completing
this procedure, 1-ml aliquots were spiked into each beaker to reach the desired final concentration. E. coli
cells were enumerated using EPA Method 1603 (58). Prior to membrane filtration, samples were serially
diluted (10�6 to 10�1 depending on sample time point and initial concentration) as necessary using a
phosphate buffer to achieve plate counts in the 10- to 100-CFU range.

Uptake experiments. Batch experiments were performed by placing D. magna organisms in beakers
containing 150 ml of spiked filtered pond water or MHSFW with light aeration. Prior to use in experi-
ments, daphnids were rinsed and then depurated for a minimum of 12 h to help remove residual algae
or other food sources. A 12- to 24-h depuration period did not result in increased death or a significant
difference in clearance rates for daphnids. Light aeration helped maintain a well-mixed environment in
the control beaker and provide sufficient dissolved oxygen in the experimental treatments without
impacting daphnid behavior or survival. Laboratory strain or environmentally isolated E. coli bacteria
were spiked in each of the beakers. Three replicate beakers with daphnids were prepared for each
experimental condition, in addition to one control beaker containing E. coli-spiked aerated water. E. coli
cells in water samples were enumerated as a function of time for the experiment’s duration. For samples
containing pond water, a Coulter counter was utilized to determine changes in concentrations of
particles in the system depending on size range. The size ranges examined were 3 to 8 �m and above
8 �m. The majority of particles in the pond water fell within the 3- to 8-�m range (88%), and hence, this
size range was selected for experimental measurements. Select experiments using B. calyciflorus were
completed for a comparison with D. magna. The experimental conditions are detailed in Table 1. The
base conditions used for batch experiments were 40 daphnids in 150 ml of MHSFW at 22°C spiked to a
beaker with a concentration of 108 CFU/100 ml E. coli. A series of experiments were conducted to test the
impacts of temperature, density, and concentration (Table 1). Only a single condition was varied with
each iteration of the experiment.

Excretion experiments. In addition to sampling water to determine uptake rates, potential excretion
of E. coli in feces was tested after exposure of D. magna to E. coli. Forty D. magna organisms were
exposed to a spike of 108 CFU/100 ml E. coli K-12 in 150 ml of MHSFW with light aeration for 24 h in
triplicates. A control beaker containing the E. coli spike without D. magna was also tested. E. coli cells in
water samples during exposure were enumerated at time zero (t � 0), 6, 12, and 24 h to confirm uptake
by the daphnids. Following exposure, the contents of the experimental beakers were filtered through
5-�m filters (Fisher Scientific) in order to separate the daphnids from the contaminated water. The
daphnids were then rinsed in 1 liter of MHSFW. The rinsing cycle was repeated five times using new filters
to remove any residual E. coli. During the rinsing, care was taken to minimize exposure of the daphnids
to air. After the rinsing, the daphnids were transferred to beakers containing 100 ml of MHSFW. The
daphnids were transferred three more times into fresh water to further remove or dilute any remaining
E. coli cells. After the third transfer, the 40 daphnids were placed in 150 ml of lightly aerated MHSFW for
depuration. Water was sampled at t � 0, 24, 48, and 72 h to test for excreted E. coli. The water was
refreshed after each 24-h sample period. The control beaker was also sampled at t � 0, 24, 48, and 72 h
after the initial spike.

Adhesion experiments. Potential adhesion of E. coli to D. magna carapaces was tested by using
euthanized D. magna in E. coli K-12 spiked into 150 ml of MHSFW. Water was tested over a time period
of 24 h with aerated beakers containing various numbers of dead D. magna organisms (40, 60, and 80
organisms) in triplicate, as well as a control without organisms. Water was sampled at t � 0, 6, 12, and
24 h to test for changes in E. coli concentrations.

BacLight dead/alive assay. The viability of E. coli cells after uptake by D. magna organisms was
examined using the BacLight LIVE/DEAD kit (Invitrogen, Carlsbad, CA). E. coli cells were grown and
prepared as described for the uptake experiments. A series of experiments were conducted to examine
the optimal staining procedure and feeding time. Initially, experiments were conducted by feeding D.
magna organisms unstained E. coli cells and then staining the whole organisms after feeding. The
feeding time periods ranged from 15 to 120 min. Subsequent experiments fed D. magna organisms
prestained E. coli cells. For both types of experiments, organisms were stained using a 1:1 mixture of
Syto9 and propidium iodide, and 3 �l of the dye mixture was added to each sample. The samples were
incubated in the dark for 15 min. After feeding experiments were completed, the individual D. magna
organisms were fixed with 37% formaldehyde for 15 min and then rinsed with up to 1 liter of MHSFW
before being mounted on a slide with one drop of mounting oil (component C; Invitrogen). A series of
comparative slides were also prepared, including stained D. magna organisms without E. coli cells,
unstained D. magna organisms fed unstained E. coli cells, and unstained D. magna organisms without E.
coli cells. All experiments and slide preparations were completed in the darkroom due to light sensitivity
of the assay.

Fixed D. magna organisms were imaged on a Zeiss Axio Imager M2 fluorescence microscope (FM)
using a 90 HE DAPI filter and an Axiocam 503 color camera. A Colibri 7 light-emitting diode (LED) light

TABLE 1 Summary of experimental conditions

Condition Values or types

Temp (°C) 22, 15, 10
E. coli concn (CFU/100 ml) 108, 107, 106, 105

No. of daphnids per 150 ml 40, 60, 80
Water type Moderately hard synthetic freshwater, pond water
E. coli type E. coli K-12, E. coli environmental isolate
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source (475 nm excitation) was used to excite both red and green fluorescence, where red indicates
membrane permeability in damaged cells and green indicates viable E. coli cells. Images were acquired
using a 5�/0.16 EC Plan-Neofluor objective and processed using Zen image processing software (Zeiss).
Four separate images of portions of each D. magna organism were taken and then compiled to form a
single whole-organism image. Additional microscopy was completed using a Leica TCS SP5 confocal laser
scanning microscope (CLSM) to image single particles within the D. magna gut using a 40.0� 1.25 HCX
PL APO CS oil objective. An argon 488 and a HeNe543 laser were used for excitation, and green (500 to
550 nm, line average 2) and red (650 to 750 nm, line average 8) signals were collected, respectively
(1,024 by 1,024 pixels, 400 Hz). A z-stack of 37 images (total volume, 18.127 �m; step size, 0.5 �m) was
collected, the images were overlaid, and a maximum projection image was generated using LAS AF
software (Leica).

Quality assurance. Method blanks for E. coli were taken at every sample point. All blanks fell below
the detection limit. The detection limit was 100 CFU/100 ml for batch system samples. Experimental
triplicates were taken for each beaker at least once during each experiment to test for procedural
variability.

Data analysis. The uptake rates (k, h�1) for the metazooplankton were calculated by fitting the entire
experimental time series to the following log-linear model with tailing:

Ct � �C0 � Cres�e�kt � Cres (1)

where C0 is the E. coli concentration at t � 0, Ct is the E. coli concentration at a given time point, t is time
in hours, k is the uptake rate per hour (h�1), and Cres is the residual E. coli concentration as represented
in the tail portion of the model; when tailing is not observed, Cres is zero. Also, k values were obtained
for the control beakers to account for changes in E. coli concentrations due to processes other than
metazooplankton filter feeding, such as E. coli death or adsorption to vessel surfaces. The clearance rate
of E. coli was defined as the volume from which E. coli was cleared (removed) per unit of time. Since E.
coli cells were quantified by culture-based techniques, the clearance rate is comparable to the inactiva-
tion rate of E. coli cells due to filter feeding by these organisms. Clearance rate was determined by
multiplying kdaphid or krotifer by the volume of the system.

One-way analysis of variance (ANOVA) was conducted using R software. ANOVA was used for
comparing the means of the clearance rates of each experimental condition. Each variable (i.e., temper-
ature, daphnia density, and E. coli concentration) was treated as the nominal variable, and the corre-
sponding clearance rate was regarded as the measurement variable. Results were considered significant
at a P value of �0.05. Standard errors are reported for clearance rates.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.02006-19.
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