Intelligent Token-Based Code Clone Detection System for Large
Scale Source Code

Abdulrahman Abu Elkhail
abdulrahman_abuelkh1@baylor.edu
Baylor University
Waco, Texas , 76706

ABSTRACT

Fragments of source-code that are similar are known as code-clones
and can cause many difficulties within software applications. As
developers develop large-scale applications, code-clones can be-
come more and more pervasive throughout the code-base. There
are many proposed methods for detecting such clones in applica-
tions and in this paper, we present a novel method for code-clone
detection in large-scale repositories. Our token-based code-clone
detector, called Intelligent Clone Detection Tool (ICDT) can detect
both exact and near-miss clones from large repositories. We present
our method for detecting clones and then report the evaluation
of ICDT using a large-scale code-clone benchmark, BigCloneEval.
Lastly, we compare ICDT to other publicly available and state-of-
the-art tools. We find that ICDT is more than capable of finding
code-clones in large-scale repositories to a high degree of accuracy.

CCS CONCEPTS

« Software and its engineering — Software configuration man-
agement and version control systems;Software maintenance
tools;Formal software verification;

KEYWORDS
Code Clone, Clone Detection, BigCloneBench, Case Study

ACM Reference Format:

Abdulrahman Abu Elkhail, Jan Svacina, and Tomas Cerny. 2019. Intelligent
Token-Based Code Clone Detection System for Large Scale Source Code. In
Proceedings of International Conference on Research in Adaptive and Conver-
gent Systems, Chongqing, China, September 24-27, 2019 (RACS °19), 5 pages.
https://doi.org/10.1145/3338840.3355654

1 INTRODUCTION

Unchecked software development can lead to code-clones being in-
troduced into software applications as developers grow the applica-
tion through copying-and-pasting code. This can make maintaining
such an application quite difficult [21, 36], especially in the case of
software bugs. Without managing code-clones, the possibilities of
bug pervasiveness through code-clones remains exceedingly high
during the software development life-cycle. Another issue with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RACS 19, September 24-27, 2019, Chonggqing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6843-8/19/09...$15.00
https://doi.org/10.1145/3338840.3355654

256

Jan Svacina
jan_svacina2@baylor.edu
Baylor University
Waco, Texas , 76706

Tomas Cerny
tomas_cerny@baylor.edu
Baylor University
Waco, Texas , 76706

code-clones is the overall size of the application which will grow
larger than it should be as clones are introduced [5]. It can be easier
for developers to use copied code instead of properly abstracting
reusable components [36]. However, abstracting away reusable
components mitigates the issue of duplicated source-code and also
keeps the deliverable small [7] since when code is copied, the appli-
cation grows by the size of the clone as well. Clearly it is necessary
to keep the amount of code-clones within an application minimal
and to document any clones that do arise within the application.
However, keeping all clone information is a generally expensive
process especially for a large and complex system. Therefore, in
this paper, we propose a new token-based tool called ICDT in order
to detect the code clones for a large scale software system. The
ICDT tool extracts a list of a token sequence form the input source
code through a lexical analyzer and applies the rule-based trans-
formation to the sequence in order to detect clone code portions
that have different syntax but have a similar meaning and to filter
out code portions with specified structure patterns. Representing a
source code as a token sequence enables us to detect clones with dif-
ferent line structures, which cannot be detected by the line-by-line
algorithm.

The rest of the paper is organized as follows. Section 2 presents
the basic definitions of code clones and clone types. Section 3 re-
views the previous work related to this study. In Section 4, the
proposed tool ICDT is presented in detail. It is followed by our
description of various experiments conducted to evaluate the scal-
ability of ICDT against state-of-the-art tools. Finally, the paper is
concluded with threats to validity and future directions for research
in this area.

2 BACKGROUND

Detection of code-clones is a well-documented area of research
with tools and applications stretching back many decades. The
high-level recognized clone classification is broken into two cat-
egories - syntactic and semantic clones. Syntactic clones refer to
two code fragments which are similar based on their text [1, 24],
while semantic clones are two code fragments similar based on
their functions [9]. Furthermore, from the more detailed perspec-
tive, there are four types of code clones where the first three types
fit the syntactic clone category and the fourth one fits the semantic
clones.

Type-1: A type-1 code-clone is one in which the two fragments
are exactly identical. However, the two code fragments do not
need to be exactly the same with regards to whitespace, blanks,
and comments as these are generally removed for the code-clone
detection process.

https://doi.org/10.1145/3338840.3355654
https://doi.org/10.1145/3338840.3355654

RACS ’19, September 24-27, 2019, Chonggqing, China

Type-2: A type-2 code-clone is one in which two code fragments
are similar except for the renaming of some unique identifiers such
as function/class names and variable identifiers. In a seminal paper
on type-2 clones, Baker identifies the replacement of these unique
identifiers as "parameterizing” the code fragment [2, 3].

Type-3: A type-3 code-clone is essentially a type-2 code-clone
however the fragments may be modified. This includes adding and
removing portions of the code from the two fragments or reordering
statements within a code block.

Type-4: A type-4 code clone is different than the previous three
in that a type-4 clone is semantically similar but not syntactically
similar. These are much more difficult to find and generally code-
clone detection tools either focus on types 1-3 or type 4.

Defining a code-clone is a difficult problem within itself, however,
for the purposes of this paper we use a combination of well-accepted
definitions of code clones and clone types [6, 22], as well as the
definitions from a 2016 comprehensive study on code-clones [27]:

Code Fragment: A continuous segment of the source code, spec-
ified by ([s, e), including the source file , the line the fragment
starts on, s, and the line it ends on, e.

Clone Pair: A pair of code fragments that are similar, specified
by (f1, 2, @), including the similar code fragments f1 and f2, and
their clone type @.

Clone Class: A set of code fragments that are similar. Specified
by the tuple (f1, f2... ., fn, @). Each pair of distinct fragments is a
clone pair: (fi, fj, @), i,j€1...n,i #j.

Code Block: A sequence of code statements within braces.

3 LITERATURE REVIEW

Several techniques have been reported in the literature to detect
the software clones. One of those techniques is a token-based tech-
nique that has been used in the CCFinder and the SourcererCC
clone detection tools [12, 26]. The CCFinder tool which consists of
the transformation of the input source text and a token-by-token
comparison. Furthermore, it can extract code clones in C, C++, Java,
COBOL, and other source files. The SourcererCC tool that can de-
tect both exact and near-miss clones from large scale projects using
a standard workstation. They proposed another token-based tool
which is based on a filtering heuristic that reduces the number of
token comparisons when the two code blocks are compared [25].
Another technique to detect the software clones is the abstract
syntax tree which has been used to detect the exact tree matches; a
number of adjustments are needed to detect equivalent statement
sequences, commutative operands, and nearly exact matches [5, 15].

Several frameworks have been introduced in order to evalu-
ate the clone detection tools [24]. Juergens et al and Svajlenko et
al introduced the CloneDetective framework and Bellon’s bench-
mark framework, respectively [11, 30]. Those frameworks are open
source frameworks that have been used to evaluate the clone detec-
tion tools. Another framework to evaluate the clone detection tools
is the BigCloneBench [31] which is a collection of eight million val-
idated clones within IJaDataset-2.0, a big data software repository
containing 25,000 open-source Java systems. BigCloneBench con-
tains both intra-project and inter-project clones of the four primary
clone types [31].

257

A.A.Elkhail et al.

An approach has been proposed to examine if the differences
present between the clones can be safely parameterized without
causing any side-effects [32]. Another study has been presented
in order to investigate whether a combination of clone detection
and latent semantic indexing improves the detection of candidate
re-implementations [4]. Another code clone search technique called
Siamese has been used to improve clone search performance [20].
Kim et al proposed VUDDY which is capable of detecting security
vulnerabilities in large software programs [14]. Roy and col. intro-
duced NICAD [20] which clusters code clone candidates and then
uses a set of techniques to extract actual clones [23], among them
powerful source normalization which ensures high precision.

Learning-Based detection techniques have been used to detect
the software clones. Matsushita et al present a novel algorithm for
detecting clones by focusing on gaps by function applications [18].
Another learning-based detection technique has been used to detect
the syntactic level clones based on deep learning algorithms [35].

A novel technique for detecting Android application clones have
been presented [8, 16, 33]. Andarwin tool [8], WuKong tool [33],
and SUIDroid tool [16] have been proposed in order to detect sim-
ilar Android apps based on their semantic information. Another
novel technique has been used to detect Android application clones
based on the analysis of user interface (UI) information collected
at runtime [28]. LibRadar tool [17] has been proposed to detect
third-party libraries used in an Android app based on stable API
features that are obfuscation resilient in most cases.

4 PROPOSED APPROACH

In this section, we present the clone detection process of a new
token-based tool called ICDT. It can detect the code clones for a

Source Files

| Directory Scan |

Java Files

|

| Lexical Analysis |

Token Sequence

| Transformation |

Transformed Token Sequence

| Match Detection |

Clone on Transformed Sequence

| Formatting

Clone Pairs

Figure 1: The clone detecting process of ICDT.

Intelligent Token-Based Code Clone Detection System for Large Scale Source Code

RACS 19, September 24-27, 2019, Chonggqing, China

Table 1: Applied transformation rules.

Rule Description

Remove package names The package name is a word that begins with a small letter and ClassName is a capitalized word (PackageName . ClassName)
ex. java.lang.Math.sqrt(). The transformation neglects the attribution so that they are considered equivalent in clone
detection. For instance, java.lang.Math.sqrt() is transformed to Math.sqrt().

Remove initialization lists The initialization list is a sequence of Name, Number, Strings, and Operators. This rule is applied where the array is created
with initialization by new expression. For example, return new int[] {1,2,3};

Remove accessibility keywords This removes the accessibility keywords, e.g., protected void functionName() is transformed to void functionName().

Separate class definition Prevents extracting clone pairs of code portions that begin in the middle of one class and end in the middle of another.

Convert to a single block Each statement is transformed to a single block. Ex. if (x==true) foo=1; is transformed to if (x==true) {foo=1;3}

large scale software system. The clone detection process of ICDT is
a process in which the input is source files and the output is clone
pairs. Figure 1 shows the entire process of our token-based clone
detecting technique. The process consists of five phases:

Phase-1 (Directory Scan): The directory scan is a utility class to
list all java files in a directory.

Phase-2 (Lexical Analysis): In this phase, the Java Lexer ana-
lyzer has been used to divide each line in source files into tokens
corresponding to a lexical rule of java. The tokens of all source
files are concatenated into a single token sequence, so that finding
clones in multiple files is performed in the same way as single file
analysis. This removes the white spaces between tokens from the
token sequence.

Phase-3 (Transformation): In this phase, the token sequence is
transformed with two steps, the first step the token sequence is
transformed, for instance, tokens are added, removed, or changed
based on the transformation rules. Table 1 shows the transforma-
tion rules, Rulel, Rule2, and Rule3 have been used to remove the
package name, initialization lists and accessibility keywords, re-
spectively. Rule4 and Rule5 have been used to separate the class
definition and to transform each statement into a single block. The
second step is parameter replacement, in this step, each identifier
related to types, variables, and constants is replaced with a special
token. This replacement makes code portions with different vari-
able names to become clone pairs. At the same time, the mapping
information from the transformed token sequence into the original
token sequences is stored for phase five.

Phase-4 (Match Detection): In this phase equivalent pairs from
all the substrings on the transformed token sequence are detected
as clone pairs. Each clone pair is represented as start and end flags
which indicate to starting and ending of a clone pair.

Phase-5 (Formatting): In this phase, each location of the clone
pair is converted into line numbers on the original source files.

Table 2: Number of clones found by ICDT

Clone Description # Clone Pairs
Type

T1 Exact clones 35,787

T2 Renamed/Parameterized 4,573
VST3 Very strongly gapped clones 4,156
ST3 Strongly gapped clones 14,997
MT3 Moderately gapped clones 79,756
WT3/T4 Weakly gapped clones 7,729,291

and semantic clones

258

5 THE PERFORMANCE EVALUATION

In this section, we evaluate the detection performance of ICDT in
order to evaluate its scalability using a big benchmark of real clones.
We measure its clone recall using the most recent benchmark, Big-
CloneBench [29, 31]. Clone recall is measured as a comparison
between the output cluster (found code clones) and ground truth
cluster (actual clones) [30].

BigCloneBench [29] is a clone detection benchmark consisting
of manually validated clones in IJaDataset 2.0 [10], a big data source
code repository containing 2.3 million Java source files (365MLOC)
from 25,000 open-source projects. The benchmark was created,
without the use of clone detection tools, by mining for functions
implementing specific functionalities. Each clone pair is seman-
tically similar to its target functionality and is one of the four
primary clone types by their syntactical similarity. The published
version of the benchmark considers 10 target functionalities [29].
There is no agreement on when a clone is no longer syntactically
similar, therefore it is difficult to separate the Type-3 and Type-4
clones in BigCloneBench. Instead of that the Type-3 and Type-4
clones have been divided into four categories based on their syn-
tactical similarity, as follows. Very Strongly Type-3 (VST3) clones
have a syntactical similarity between 90% inclusive and 100% ex-
clusive, Strongly Type-3 (ST3) in 70-90%, Moderately Type-3 (MT3)
in 50-70% and Weakly Type-3/Type-4 (WT3/4) in 0-50%. Table 2
summarizes the number of clones in BigCloneBench per clone type.

We measure the recall of ICDT using BigCloneBench and com-
pare it to four publicly available and state-of-the-art tools. A snap-
shot of the BigCloneBench benchmark with 43 target functionalities
has been used for this study. We use only the clones that are at
least 6 lines and 50 tokens in length. This is the standard minimum
clone size for measuring recall [6, 31]. By specifying this both in
lines and tokens we are able to configure the tools appropriately
for clone size. Clone size is a primary clone detection configuration,
and this prevents it from biasing the comparison of the tools’ recall.
We measure recall of ICDT with a 70% threshold. Table 3 shows the
configurations of these tools for the experiment.

Table 3: Configuration of Code-Clone Detection Tools

Tool Min length Min similarity
ICDT 6 lines 70%
NiCad [23] 6 lines 70%
CloneDR [5] 6 lines 95%.
Jplag [19] 6 lines 1 character per line

CCfinder[13] 50 tokens 12 token types

RACS ’19, September 24-27, 2019, Chonggqing, China

A.A.Elkhail et al.

Table 4: BigCloneBench Recall Results.

Tool ~ T1 T2 VST3 ST3 MT3 WT3/T4
ICDT 100 98 91 63 1 0
CCfinder 100 93 62 15 1 0
NiCad 100 100 100 95 1 0
CloneDR 100 94 71 21 1 0
Jplag 89 74 46 8 0 0

The recall measured by BigCloneBench is summarized in Table 4.
It is summarized per clone type and per Type-3/4 category for all
clones. ICDT has perfect detection of the Type-1 clones in Big-
CloneBench. It has near-perfect Type-2 detection. This shows that
the 70% threshold is sufficient to detect the Type-2 clones without
identifier normalizations. ICDT has excellent Type-3 recall for the
VST3 category. ICDT Type-3 recall begins to drop off for the ST3
recall (63%). This is due to Type-3 clones having a higher incidence
of Type-2 differences, causing them to not exceed ICDT 70% over-
lap threshold. Furthermore, ICDT does not normalize the identifier
token names in order to maintain precision and index efficiency.
Lowering the ICDT threshold would allow these to be detected,
but could hurt precision. ICDT has a poor recall for the MT3 and
WT3/T4 as these clones fall outside the range of syntactical clone
detectors [31]. Compared to the competing tools, ICDT has the
second-best recall overall, with NiCad taking the lead. Both tools
have perfect Type-1 recall, and they have similar Type-2 recall,
with NiCad taking a small lead. NiCad has better Type-3 recall
due to its powerful source-normalization capabilities. CCfinder and
ICDT tools have comparable Type-1 and Type-2 recall, with ICDT
having the advantage of also detecting Type-3 clones. Jplag and
CloneDR are the other competing clone detectors. Both ICDT and
cloneDR have perfect Type-1 recall, but ICDT exceeds cloneDR in
both Type-2 and Type-3 detection. Jplag has a poor overall recall
for all clone types. ICDT has better recall and makes it an ideal
choice for large-scale clone detection.

6 THREATS TO VALIDITY

Different configurations of the tools may result in a better or worse
recall. Wang et al. [34] refer to this as the confounding configuration
choice problem, and it is a challenge in all clone studies. However,
we carefully experimented with its configurations to achieve ap-
propriate results for our study. We used configurations that target
the known properties of the benchmark, such as clone types and
clone size. As for the other tools, we referred to the defaults and
recommendations of the tools with respect to our knowledge of
the benchmarks. This is the process a user would use to config-
ure a tool for their own system, so our results reflect what a user
should expect to receive. We did not execute the tools for various
settings until an optimal result is found, as it is not possible for
users to do this in practice. For the Type-3 clone detectors, low-
ering their thresholds would allow them to detect more clones in
BigCloneBench [35]. However, the tools would have poor precision
for low similarity thresholds.

259

7 CONCLUSION

In this paper, we introduced ICDT, a token-based clone detection
tool, which can detect both exact and near-miss clones from large
repositories using a standard workstation. We measure its recall
using a state-of-the-art clone benchmark, the BigCloneBench. We
find that ICDT is competitive with even the best of the state-of-
the-art of Type-1, Type-2, and Type-3 clone detectors. Among tools
using the token-based technique for detecting code clones, ICDT
had exceptional results and compare to the clustering approach
proved to be competitive. We believe that this technique can be
improved on each stage (transformation, match detection, etc.) and
bring even precise results in finding code clones. As future work,
we are trying to extend the tool to accept source programs written
in several programming languages at the same time.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049

REFERENCES

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

Brenda S. Baker. 1993. A Theory of Parameterized Pattern Matching: Algorithms
and Applications. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Theory of Computing (STOC °93). ACM, New York, NY, USA, 71-80. https:
//doi.org/10.1145/167088.167115

Brenda S. Baker. 1996. Parameterized Pattern Matching. 7. Comput. Syst. Sci. 52,
1 (Feb. 1996), 28—-42. https://doi.org/10.1006/jcss.1996.0003

V. Bauer, T. Volke, and S. Eder. 2016. Combining Clone Detection and Latent
Semantic Indexing to Detect Re-implementations. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 3.
23-29. https://doi.org/10.1109/SANER.2016.26

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone Detection Using Abstract Syntax Trees. In Proceedings of the
International Conference on Software Maintenance (ICSM ’98). IEEE Computer
Society, Washington, DC, USA, 368-. http://dl.acm.org/citation.cfm?id=850947.
853341

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. 2007. Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering
33, 9 (Sep. 2007), 577-591. https://doi.org/10.1109/TSE.2007.70725

Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwe. 2005.
On the Use of Clone Detection for Identifying Crosscutting Concern Code. IEEE
Trans. Softw. Eng. 31, 10 (Oct. 2005), 804-818. https://doi.org/10.1109/TSE.2005.
114

[8] J.Crussell, C. Gibler, and H. Chen. 2015. AnDarwin: Scalable Detection of Android
Application Clones Based on Semantics. IEEE Transactions on Mobile Computing
14, 10 (Oct 2015), 2007-2019. https://doi.org/10.1109/TMC.2014.2381212

Mark Gabel, Lingxiao Jiang, and Zhendong Su. 2008. Scalable Detection of
Semantic Clones. In Proceedings of the 30th International Conference on Software
Engineering (ICSE "08). ACM, New York, NY, USA, 321-330. https://doi.org/10.
1145/1368088.1368132

Ambient Software Evoluton Group. 2013. IJaDataSet 2.0. (2013). https://sites.
google.com/site/asegsecold/projects/seclone

E. Juergens, F. Deissenboeck, and B. Hummel. 2009. CloneDetective - A work-
bench for clone detection research. In 2009 IEEE 31st International Conference on

[2]

[9]

https://doi.org/10.1145/167088.167115
https://doi.org/10.1145/167088.167115
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1109/SANER.2016.26
http://dl.acm.org/citation.cfm?id=850947.853341
http://dl.acm.org/citation.cfm?id=850947.853341
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/TSE.2005.114
https://doi.org/10.1109/TSE.2005.114
https://doi.org/10.1109/TMC.2014.2381212
https://doi.org/10.1145/1368088.1368132
https://doi.org/10.1145/1368088.1368132
https://sites.google.com/site/asegsecold/projects/seclone
https://sites.google.com/site/asegsecold/projects/seclone

Intelligent Token-Based Code Clone Detection System for Large Scale Source Code

[12]

[13]

[14]

=
)

[16]

[17]

[18

[19]

[20

[21

[22]

[23]

[24]

Software Engineering. 603-606. https://doi.org/10.1109/ICSE.2009.5070566

T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions
on Software Engineering 28, 7 (July 2002), 654-670. https://doi.org/10.1109/TSE.
2002.1019480

T. Kamiya, F. Ohata, K. Kondou, S. Kusumoto, and K. Inoue. 2001. Maintenance
support tools for Java programs: CCFinder and JAAT. In Proceedings of the 23rd
International Conference on Software Engineering. ICSE 2001. 837-838. https:
//doi.org/10.1109/ICSE.2001.919197

S. Kim, S. Woo, H. Lee, and H. Oh. 2017. VUDDY: A Scalable Approach for
Vulnerable Code Clone Discovery. In 2017 IEEE Symposium on Security and
Privacy (SP). 595-614. https://doi.org/10.1109/SP.2017.62

Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone Detection Using
Abstract Syntax Suffix Trees. In Proceedings of the 13th Working Conference on
Reverse Engineering (WCRE "06). IEEE Computer Society, Washington, DC, USA,
253-262. https://doi.org/10.1109/WCRE.2006.18

F. Lyu, Y. Lin, J. Yang, and J. Zhou. 2016. SUIDroid: An Efficient Hardening-
Resilient Approach to Android App Clone Detection. In 2016 IEEE Trust-
com/BigDataSE/ISPA. 511-518. https://doi.org/10.1109/TrustCom.2016.0104
Z.Ma, H. Wang, Y. Guo, and X. Chen. 2016. LibRadar: Fast and Accurate Detection
of Third-Party Libraries in Android Apps. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). 653-656.

Tsubasa Matsushita and Isao Sasano. 2017. Detecting Code Clones with Gaps
by Function Applications. In Proceedings of the 2017 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (PEPM 2017). ACM, New York, NY,
USA, 12-22. https://doi.org/10.1145/3018882.3018892

Lutz Prechelt and Guido Malpohl. 2003. Finding Plagiarisms among a Set of
Programs with JPlag. Journal of Universal Computer Science 8 (03 2003).
Chaiyong Ragkhitwetsagul and Jens Krinke. 2019. Siamese: scalable and incre-
mental code clone search via multiple code representations. Empirical Software
Engineering 24 (03 2019). https://doi.org/10.1007/s10664-019-09697-7
Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165 - 1199. https://doi.org/10.1016/j.infs0f.2013.01.008

Chanchal Kumar Roy and James R. Cordy. 2007. A Survey on Software Clone
Detection Research. School of Computing TR 2007-541, Queen’s University 115
(2007).

C. K. Roy and J. R. Cordy. 2008. NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normalization. In
2008 16th IEEE International Conference on Program Comprehension. 172-181.
https://doi.org/10.1109/ICPC.2008.41

C.K. Roy and J. R. Cordy. 2009. A Mutation/Injection-Based Automatic Frame-
work for Evaluating Code Clone Detection Tools. In 2009 International Con-
ference on Software Testing, Verification, and Validation Workshops. 157-166.

260

[25

[26

[27

[29

[30

[31

[32

[33

[34

[35

[36

]

]

]

]

]

]

RACS 19, September 24-27, 2019, Chonggqing, China

https://doi.org/10.1109/ICSTW.2009.18

H. Sajnani and C. Lopes. 2013. A parallel and efficient approach to large scale
clone detection. In 2013 7th International Workshop on Software Clones (IWSC).
46-52. https://doi.org/10.1109/IWSC.2013.6613042

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-code. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE '16). ACM,
New York, NY, USA, 1157-1168. https://doi.org/10.1145/2884781.2884877
Abdullah Sheneamer and Jugal Kalita. 2016. A Survey of Software Clone Detection
Techniques. International Journal of Computer Applications 137 (03 2016), 1-21.
https://doi.org/10.5120/ijca2016908896

C. Soh, H. B. K. Tan, Y. L. Arnatovich, and L. Wang. 2015. Detecting Clones
in Android Applications through Analyzing User Interfaces. In 2015 IEEE 23rd
International Conference on Program Comprehension. 163-173. https://doi.org/10.
1109/ICPC.2015.25

J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. 2014. Towards a Big
Data Curated Benchmark of Inter-project Code Clones. In 2014 IEEE International
Conference on Software Maintenance and Evolution. 476-480. https://doi.org/10.
1109/ICSME.2014.77

J. Svajlenko and C. K. Roy. 2014. Evaluating Modern Clone Detection Tools.
In 2014 IEEE International Conference on Software Maintenance and Evolution.
321-330. https://doi.org/10.1109/ICSME.2014.54

J. Svajlenko and C. K. Roy. 2015. Evaluating clone detection tools with Big-
CloneBench. In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 131-140. https://doi.org/10.1109/ICSM.2015.7332459

N. Tsantalis, D. Mazinanian, and G. P. Krishnan. 2015. Assessing the Refactora-
bility of Software Clones. IEEE Transactions on Software Engineering 41, 11 (Nov
2015), 1055-1090. https://doi.org/10.1109/TSE.2015.2448531

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. WuKong: A
Scalable and Accurate Two-phase Approach to Android App Clone Detection. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis
(ISSTA 2015). ACM, New York, NY, USA, 71-82. https://doi.org/10.1145/2771783.
2771795

Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for Better
Configurations: A Rigorous Approach to Clone Evaluation. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
ACM, New York, NY, USA, 455-465. https://doi.org/10.1145/2491411.2491420
M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. 2016. Deep learning
code fragments for code clone detection. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). 87-98.

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto.
2015. Classification model for code clones based on machine learning. Empirical
Software Engineering 20 (08 2015). https://doi.org/10.1007/s10664-014-9316-x

https://doi.org/10.1109/ICSE.2009.5070566
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ICSE.2001.919197
https://doi.org/10.1109/ICSE.2001.919197
https://doi.org/10.1109/SP.2017.62
https://doi.org/10.1109/WCRE.2006.18
https://doi.org/10.1109/TrustCom.2016.0104
https://doi.org/10.1145/3018882.3018892
https://doi.org/10.1007/s10664-019-09697-7
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1109/ICPC.2008.41
https://doi.org/10.1109/ICSTW.2009.18
https://doi.org/10.1109/IWSC.2013.6613042
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.5120/ijca2016908896
https://doi.org/10.1109/ICPC.2015.25
https://doi.org/10.1109/ICPC.2015.25
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.54
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/TSE.2015.2448531
https://doi.org/10.1145/2771783.2771795
https://doi.org/10.1145/2771783.2771795
https://doi.org/10.1145/2491411.2491420
https://doi.org/10.1007/s10664-014-9316-x

	Abstract
	1 Introduction
	2 Background
	3 Literature Review
	4 Proposed Approach
	5 The Performance Evaluation
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

