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Abstract— Distribution system state estimation (DSSE) has
recently been tested and experimentally deployed in some
practical distribution networks. Distinct features of distribution
systems, such as diverse and unsymmetrical configurations as
well as limited real-time measurements, prohibit the direct
application of mature state estimation methods for transmission
systems. Targeting at three-phase four-conductor configured
unsymmetrical medium-voltage distribution systems (MDS) with
neutral conductors and ground resistances, this paper proposes a
weighted least square (WLS) based DSSE approach, in which
voltages are chosen as state variables and load pseudo
measurements of low-voltage distribution systems (LDS) are
considered to compensate insufficient real-time measurements in
MDS. Both rectangular and polar coordinates are studies, and
voltage variables of neutrals and zero-injection phases are
eliminated to reduce the scale of the DSSE problem. Moreover, in
order to enhance load pseudo measurement accuracy of LDSs, a
clustering and partial least square (PLS) regression based load
estimation model is proposed to leverage real-time
communication ability of smart meters. Case studies on a
modified IEEE 123-bus distribution system with actual smart
meter data illustrate effectiveness of the proposed approaches.

Index Terms—Distribution system state estimation, load estima-
tion, partial least square regression, three-phase four-conductor.

I. INTRODUCTION

ISTRIBUTION system state estimation (DSSE)

processes raw measurements from the supervisory

control and data acquisition (SCADA) system and
supplementary pseudo measurements of loads to provide real-
time monitoring. DSSE is considered as the foundation of a
variety of key applications, such as voltage control, system
reconfiguration, and demand side management [1], that are
under development and testing to manage emerging
distribution systems with an increasing penetration of
distributed energy resources and flexible demand assets.
Moreover, DSSE could also facilitate the development of new
applications, aiming at the next-generation distribution
systems [2]. For instance, utilizing DSSE results, recent works
[3]-[4] determined electricity price signals that could be
potentially used in a deregulation paradigm of future
distribution systems.

Compared with transmission system state estimation
(TSSE) that has been developed and deployed for over half a
century, DSSE is relatively young since it was first studied in
the mid-1990s [5]. Indeed, most DSSE implementations are
originated from TSSE models with moderate modifications.
One notable implementation is the bus voltage based DSSE
models, which use bus voltages in polar or rectangular
coordinates as state variables [6]-[7]. In addition, in
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recognizing that majority of distribution systems are operated
in a radial topology, branch current based models are also
customized for DSSE studies by taking the advantage of their
computational benefits [8]-[9]. However, DSSE of medium-
voltage distribution systems (MDS), as studied in this paper, is
more challenging than TSSE because of the following two
facts: (i) unsymmetrical and heterogeneous system
configurations and (ii) limited real-time measurements.

Indeed, MDSs are essentially unsymmetrical because of
single-/two-phase laterals, untransposed lines, and unbalanced
loads. Consequently, a three-phase DSSE model is a must to
accurately simulate their unsymmetrical characteristics.
Reference [10] considered multi-phase distribution systems
with industry-grade models of various electrical components.
That is, a large number of additional state variables and
associated equations are involved to model details of electrical
components, and those equations are used as equality
constraints in the DSSE model. A hybrid particle swarm
optimization (PSO) based three-phase state estimation method
was proposed in [11], while solution quality and consistency
are of major concerns. An improved three-phase admittance
matrix based DSSE model for MDSs was proposed in [12], by
leveraging certain measurements so that the Jacobian matrix
can be reasonably treated as constant. Reference [13] used
discrete variables to indicate transformer tap positions in the
DSSE model, which was solved via the ordinary optimization
technique. Reference [14] proposed a two-step procedure for
multi-area DSSE, in which the second step uses information
from adjacent areas to refine local results from the first step.
However, case study showed that solution accuracies among
different areas were inconsistent and benefits over the
integrated DSSE were not noticeable.

Moreover, heterogeneous configurations of MDSs, in terms
of numbers, connection styles, and grounding modes of
conductors, further limit the universal applicability of a
specified DSSE model. Indeed, models developed in [10]-[14]
are customized for three-phase four-conductor MDSs with
solidly multi-grounded configuration, i.e., neutral voltages are
equal to zero and can be naturally excluded. In turn, an
original 4x4 line admittance matrix can be reduced to a 3x3
phase frame one. However, rather than solidly grounded, in
practice neutral conductors are usually grounded via
resistances, which render non-zero potentials for neutrals [15].
Actually, ground resistances have been widely studied in
power flow problems of three-phase four-conductor
distribution systems, and salient studies [16]-[17] have shown
that ground resistances of reasonably large values could
significantly impact branch flows and bus voltages. Thus, they
should be adequately considered in practical three-phase four-
conductor distribution system studies. However, to our best
knowledge, ground resistances have not been considered in
existing DSSE studies. Indeed, when neutrals are considered,



two issues need to be properly addressed. One is the increased
number of state variables and the increased size of Jacobian
matrix, which introduce significant computational burden. The
other is the difficulty in setting initial values of neutral
voltages. As phase angles of neutral voltages at different buses
could vary considerably, improper initial values will
deteriorate DSSE convergence performance. These two issues
will be properly mitigated by the proposed approach.

In addition, in an MDS, except the substation bus, very few
buses are equipped with real-time measurement devices to
record bus voltages and/or line currents. Indeed, existing real-
time measurements in an MDS are far from enough to
guarantee observability. Thus, load pseudo measurements of
connected low-voltage distribution systems (LDS) are usually
used to assist DSSE. In old-fashioned distribution systems
without advanced metering technology, load pseudo
measurements are estimated based on monthly electricity bills
of customers connected in LDSs [18], which are far from
accurate [19]. On the other hand, zero-injection buses are
considered as highly trusted virtual measurements in DSSE.
Therefore, in a weighted least square (WLS) based DSSE
model, large weights are assigned to virtual measurements for
enhancing solution accuracy, which however may cause
numerical issues. Alternatively, early work [20] formulated
zero injections as constraints in DSSE models and adopted
Hachtel’s augmented matrix method to seek for solutions.
Moreover, treating virtual measurements as fully trustworthy
sources, [21] eliminated voltages of zero-injection buses via
linear functions of voltages of non-zero injection buses.

Recently, proliferated smart meters [22] offer new
opportunities to improve DSSE accuracy via accurate load
pseudo measurements. Indeed, as smart meters can
automatically upload their measurements to control centers on
a daily or weekly basis [23], replacing monthly data with
higher-fidelity and more accurate records is expected to
achieve load pseudo measurements of higher accuracy for
LDSs [24]-[26]. An artificial neural network approach was
proposed in [27] to generate load pseudo measurements by
utilizing load profiles as training data, and the associated load
estimation error variances were obtained via a Gaussian
mixture model. A closed-loop state estimation framework was
proposed in [28], in which nonlinear auto-regressive
exogenous load estimation models were developed to provide
pseudo measurements, and their corresponding error variances
were iteratively adjusted base on the most recent performance.
Reference [29] proposed a Bayesian theory based DSSE
model to deal with pseudo measurements with non-Gaussian
estimation errors. The impact of integrating higher-fidelity
smart meter data to DSSE was discussed in [30] with well-
designed case studies. Reference [31] proposed a home energy
management system (HEMS) to optimize energy costs and
comfort levels in residential houses, and a sensitive analysis
framework was further developed to study the impact of
HEMS on DSSE.

Indeed, smart meters can upload measurements to the
control center in real time as long as communication is not an
issue [32]. Ideally, in an LDS with a full smart meter

coverage, if all smart meters can simultaneously upload their
measurements in real time, together with a reasonable
estimation on the network losses, the total load of the entire
LDS can be directly calculated. In reality, however,
simultaneously uploading massive measurement data from
multiple smart meters to a control center could potentially
compromise the communication network, while approaches to
alleviate communication network congestion such as the
random back-off method could induce significant delays [33].
Indeed, it is reported in [33] that the average communication
delay increases linearly in the number of smart meters.
Therefore, considering that an MDS connects dozens of LDSs
and each LDS contains dozens to hundreds of customers,
transmitting measurements from all smart meters to the
control center in real time will foreseeably cause unacceptable
delays. In order to effectively utilize accurate measurements of
smart meters in a timely manner to facilitate DSSE, a load
aggregation based idea is proposed in this paper. That is, by
leveraging actual communication capability, real-time
measurements from a limit number of selective smart meters
will be uploaded to the control center to estimate loads of the
entire LDS timely and accurately.

This paper targets at DSSE of three-phase four-conductor
configured MDSs with grounded wye-connected loads. The
proposed work targets on addressing certain industry’s
practical interests and needs, such as the “Data Analytics
Cases” described in the EPRI’s Data Mining Initiative on
Distribution Systems [34]. Specifically, one of the case
focuses on developing electrical load models via SCADA and
AMI data, which can be used to conduct accurate power flow
analysis and allow engineers to monitor, manage, and plan
operations of the distribution network [35]. The contributions
of this paper are summarized as follows:

o An accurate multi-phase DSSE model: A WLS based DSSE
model for three-phase four-conductor configured MDSs is
proposed, while neutral conductors and ground resistances are
explicitly considered. Voltages in rectangular or polar
coordinates are formulated as state variables.

o An effective state variable reduction approach to improve
DSSE computational performance: The number of state
variables and consequently the scale of the DSSE model are
reduced via two strategies: (i) by applying the KCL theorem at
neutrals, voltages of neutrals can be linearly represented by
those of non-neutral phases, and (ii) zero-injection phases are
defined by extending the concept of zero-injection bus, and
their voltages can be linearly represented by voltages of non-
neutral and non-zero injection phases. Finally, only voltages
of non-neutral and non-zero injection phases are state
variables, which significantly reduces the scale of the DSSE.

o An effective approach to leverage smart meter
measurements in a timely manner to improve DSSE accuracy:
A load estimation model is proposed to calculate load pseudo
measurements of LDSs, which is built by a regression oriented
agglomerative hierarchical clustering algorithm together with
real-time measurements from selective smart meters.

The rest of this paper is organized as follows. The DSSE
model is discussed in Section II. Section III presents the load



estimation model for LDSs. Case studies are discussed in
Section IV, and conclusions are drawn in Section V.

II. THE PROPOSED DSSE MODEL

A. Three-Phase Four-Conductor Distribution System Model
In this paper, matrices are shown as bold, vectors and sets
are shown as italic and bold, and scalars are shown as non-
bold italic style. For a distribution system with N buses, i and
Jj are used to index buses, and distribution lines are indexed as
i—j.%={ab,cn}and P = {a,b,c} are sets of phases
including and excluding the neutral. ¢ and ¢ are used to index
phases. Phase-to-ground and phase-to-neutral voltages of
phase ¢ at bus i are respectively denoted as complex variables

Vi¢ and Uid’ . Current injection at phase ¢ of bus i is denoted as
complex variable Il-¢ . Current on phase ¢ of line i —j is
denoted as complex variable Ifi j

For an equivalent w model of line i — j with a 4x4 series
admittance matrix y;_;, its carrying current can be calculated
by two terminal voltages as in (1). With the assumption of
solidly multi-grounded neutral, i.e., voltages of the two

terminals for the neutral line are zeros, namely V" = V;* = 0,

equation (1) can be simplified as (2), where y/f

series admittance matrix by removing the row and column
corresponding to neutral from y;_;. The 4x4 shunt admittance

matrix y;_; of line i — j can be similarly reduced to 3x3.

is a 3x3 line

(e 1ty 16, 1] =
Yi—j . ([Vz,a Vib ViC Vin]T _ [Vja ij VjC an]T) (1)
[ L.a_]. ]lb_] ic_j T — y,:a_bjc . ([Via Vib ViC]T _ [Vja ij Vjc]T) (2)

However, instead of solidly grounded, neutral conductors
are commonly grounded via resistances at buses, and the
assumption V;* = V;" = 0 will not hold. Thus, line admittance
matrix remains 4x4 to explicitly simulate neutral conductors.

Consequently, for a three-phase four-conductor distribution
system with neutral conductors and ground resistances, system
nodal admittance matrix Y shown in (3) can be built via (4)-
(5), where £2; is the set of buses adjacent to bus i. Equation (4)
calculates self-admittance Y;; of bus i, and equation (5)
calculates mutual-admittance Y;; between buses i and j,
where [0] represents a zero matrix of proper dimensions and 0
represents a zero column vector of proper size. In the last term
of (4), yig represents ground conductance, i.e., reciprocal of
ground resistance, at bus i. System current injection equations
can be written in a compact form as in (6), where I =
e b 1 15 15 T and  V=[VE VP VE VP
V¢ vE VS VT are respectively vectors of current injections
and phase-to-ground voltages.

Yi1 Yin
y=|: : (3)
YN,l YN,N
[0] O
Yii =Yjeq,Vi-j + Ljea,Vi-; + [OT y9 4)
L
Y=Y =-yi; Q)

I=Y-v (6)
B.  Model the Effect of Neutral Phases

Vectors I and V can be reordered as I2P°" = [I“T L G
"

~ T
permutation matrix A, where I¢ = [If) I;f ] and V? =

and VP = [paT ppT peT pnT]T via a  row

[V1¢ VN¢]T. Thus, the system current injection equation (6)

can be reformulated as in (7), where Y™ is defined in a

block form as (8).

Jeben — yaben | yaben (7)

Ya,a Ya‘b Ya,C Ya,Tl

L O e L ®
Y‘n,a Y‘n,b Yn,C YTl,ﬂ.

Equation (9) describes that the summation of current
injections at a neutral is zero. Thus, by substituting current
injections in (9) with voltages, equation (10) is derived.
"+I1°+1°+1r=0 )
S peware(gew YPP) VO + (Spep YO) - VP =0 (10)

Because of the presence of ground resistances, Y. ¢y YPn is
nonsingular. V" can be represented via V¢ =
[yaT ppT yeT]™ as in (11), where Tyy is a representation
matrix from V¢ to V" . By further defining IP¢ =
[yaT b7 7T and Y**¢ as in (12), we have equation I%’¢ =
yabe . yabe - Fyrthermore, equation V = A~1- Ty - V€ is
obtained, where Ty is extended from Tyy as in (13) and E is
an identity matrix of proper dimensions.

V" = _(Z¢EWY¢’n)_1 ) [Z¢EWY¢"1 Z¢EWY¢'D Z¢€‘1’Y¢‘C]

.y =Ty, - Vabe (11)
yaa yab yac yan
yabe — yba ybb ybe| 4+ ybmn|. Tyn (12)
yca yob yec yYon
E
T :[ ] 13
w1, (13)

Equations (11)-(13) can also properly handle the solidly-
grounded situation by adopting the following strategy: if bus i
is solidly grounded, y? = co and V* = 0; I? in I%?" for ¢ €

Yabcn

W and V" in V4" are removed; rows of corresponding

Yabcn

to Iid> and columns of corresponding to V;"* are removed.

C. Model the Effect of Zero-Injection Phases

A zero-injection phase refers to a physical phase of a non-
substation bus that is not connected with generators and loads.
In this paper, KCL is applied on each zero-injection phase to
derive the relationship of voltages for this phase and its
adjacent non-zero injection phases. That is, the voltage
variable of a zero-injection phase can be represented as a
linear function of those of adjacent non-zero injection phases,
and in turn be eliminated.

First, we define a row permutation matrix B to reorder 1#¢
and V%€ as in (14), with which 1%¢ = Y®¢ . yab¢ can be
represented in a block matrix form (15). In (14)-(15), I% is
the vector of current injections corresponding to non-zero
injection phases, the zero vector 0 corresponds to zero-
injection phases, and V4’ and V{5 are two reordered sub-



vectors of V¢ corresponding to zero and non-zero injection
phases. According to the first set of equations in (15), V3¢
can be represented via V45 as in (16), with which equation
(17) can be derived. We define T, as the representation matrix

Vabc .

from V5 to [V ane | . Furthermore, equation V®¢ = B~1- T, -
V§b¢ can be obtained.
) Vabc R

rebe| = B %% [Vﬁbc] = By,
(Y27 YN .

abc abc = B -yebe. B (14)
L NZ Z NZ NZ
» AN

abc] [ abc yabc Vabc (15)
- NZ Z NZ NZ
Vabc — abc Ygl[)vcz Vabc (16)
Vabc abc

abc] [ YZ NZ] VNbC Tz - Vabc (17)

By combining equations V=A"1-Ty V% and V° =
B™1- T, V%, phase-to-ground voltage vector V can be
represented as in (18) and further rewritten under rectangular
coordinates as in (19), where V, = Re(V), V; = Im(V), T,
Re(T) , T, =1Im(T) , V&, = Re(Viy*
Im(V&F). Re(:) and Im(-) respectively extract the real and
imaginary parts of a complex matrix/vector. T and T are
respectively representation matrices from V¢ to V in
complex and real domains.
V=A"1-Ty-B ™) T, V& =T V¢

[Ve] [T _Tf] [ ??fz] [V?’?fz]
Vel [Ty T }llz)vcz =Ts- V}HIJ\JCZ

D. Model Various Measurements

abc

, and Vg, =

(18)
(19)

Various types of measurements are considered in this paper,
including actual measurements on voltage and current
magnitudes from SCADA, voltage phasor measurements from
pPMUs, and pseudo measurements on active and reactive
demands from the proposed load estimation models.
Specifically, both phase-to-ground and phase-to-neutral
voltage magnitude measurements are included, while current
and voltage measurements of both neutrals and non-neutral
phases are also considered [36]-[37]. Squared current and
voltage magnitude measurements as well as active and
reactive load pseudo measurements are represented as
functions of state variable vectors as follows [38].

e  Measurements of Voltage Magnitudes
By defining <I>1V ? as in (20a), a squared phase-to-ground
voltage magnitude measurement is represented in a compact

matrix form as in (20b). In (20a), e‘f is a standard basis vector

with element corresponding to Vi¢ being 1. In (20b), V?b
represents the magnitude of Vi‘p. With known variance of the
phase-to-ground voltage magnitude measurement error o2, the
. —¢\? —
measurement error variance of (Vi ) is o7 sq =4 (VL ) .

o through error propagation.

Similarly, with <I>l.U ? defined as in (21a), a squared phase-
to-neutral voltage magnitude measurement is represented as in
The

. —p\? . —¢\?
measurement error variance of (U i ) 1s aﬁlsq =4 (Ui ) .

(21b), where ﬁf represents the magnitude of Ui¢ .

03, where ¢ is the measurement error variance of the phase-
to-neutral voltage magnitude

¢ (0T
e’ (e’
o/ =|" (eF) (20a)
[0] e (e¢)
—¢\2 V.
) =] et [7]
V) =lv: v
Vglz)vcz T Ve Ve,
[Vabc ] Tg" - d)i T Tg [Vabc ] (20b)
f.NZ fNZ
T
U e? " (e? n) (0] ¢-n _ b _ _n
@ = b-n , o-mT| € T E TE
[0] e, (ei )
(21a)
(ﬁqb)Z _ [Ve]T ¢ [Ve]
' Vy . Vy
v, vt
[ e [ o
f.NZ fNZ

e Measurements of Current Magnitudes
With S¢ and @,” ¢ defined in (22a)-(22b), a squared line
current magmtude measurement is represented as in (22c),

where I i—j represents the magnitude of I . In (22a), e®

[1000],e?=[0100], e = [0010],ande —[0001],

corresponding to superscript ¢p being a, b, ¢, and n; Subscript

of a zero vector explicitly indicates its size. The measurement
. —p \? —p \?

error variance of (IL-_]-) is 0f5g = 4~ ( M 1) - of, where o}

is the measurement error variance of the line current

magnitude.

st =[ol, —Y¥ o, Y) 0, ] Y/ =e?-Y,
(22a)
¢\ o ¢\ g¢
o4 = we (s H'SH) _Im((si_j?q SE) (22b)
i-j
m((s?;) -s?;) Re((s?)) -s?))
_¢ 2 V T I,¢ V
(7)) =[V;] 'q)i—j'[V;]
Vabc T Vabc
[Vfd’ff] T," @ T, - [Vf”’ff] (22¢)
f.NZ f.NZ

e Pseudo Measurements of Active and Reactive Loads

By defining Yid’, CDL.P‘¢, and CDL.Q'd) as in (23a)-(23c), pseudo
measurements of active and reactive loads can be represented
as in (23d) and (23e).

T
Ve ) v T
 |Re (P + (")) m((v) -v?)

o =1
(v?)) Re(¥f+(x))

Yt m (v? -

(23a)

(23b)
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AR 14
b _ e P,¢ e
= -Vf] P '[Vf]
_ T _ _
Vgl;VCZ T P,o Vglszcz
= e | Te P T pane (23d)
Y f,NZ] fNZ]
LA 14
ff) = e] . d)Q'd) . e]
Ql .Vf . i Vf
VEl v o Vehe,]
= lvae | T 0T Te | pane (23¢)
LY f,NZ] f,NZ]

e  Measurements of Voltage Phasors

Measurements on voltage real and imaginary parts of phase
¢ at bus i can be respectively represented as in (24a) and
(24b). As measurement error variances for magnitude and
phase angle are usually given, measurement variances of
voltage real and imaginary parts can be calculated as in (25)
[39], where 072 and o} are respectively measurement error
variances of voltage magnitude and angle.

¢ N or Vehz
Re(y?) = [(ef)" 0], |V (4
fINZ
¢ T (T Venz
m(V?) = [07 (ef)'] - Te- | one (24b)
fNZ
cos(6?) —V? -sin(8%) . oz 0]
sin(69) V? - cos(8%) 0 g5
1T
cos(6?) v sin(69) 25)
sin(6i¢) V? : cos(6i¢) ]
In summary, equations (20)-(24) describe that all

measurements can be represented via state variables ng’NCZ and

T

\ Ve, Ve, |
ViNz in the form of [ 7° “yave |- whose partial
fINZ f.NZ

enz| . [VeNz r :
Vabc] is [Vabc] (P +P"). It is also
fNZ FNZ
noteworthy that (20) and (22) are also applicable for
measurements on neutrals. Moreover, if maximum
measurement errors instead of error variances are known, with
a reasonable assumption that measurement errors follow the
normal distribution, by setting the triple standard deviation of
the normal distribution equal to the maximum measurement

error, the measurement error variance can be calculated [40].

derivative over [

E. Extension to Polar Coordinates

The DSSE model under polar coordinates is further
discussed in this subsection, in which the aforementioned
measurements are represented via V$5¢ in polar coordinates.

Val,’vcz and V}”,’VCZ can be represented by voltage magnitudes and

phase angles as new state variables. That is, Re(l/i¢) = Vi .

cos(6i¢) and Im(Vid’) = V;p -sin(é‘f), where 6i¢ represents

abc

abc

] can be represented via the
fINZ

voltage phase angels. Thus, [

. —abc abc —abc abc
function vector f(VNZ,SNZ ), where Vy, and 8y, are

vectors of voltage magnitudes and phase angles of V5.

By substituting V4, and V#y, with f (Vzvz ,8‘””) ,
equations  (20)- (23) can be written in the form of
—ab b
[f (VZ;, 5,%@6)] P - f(vi,;, salg) . whose partial

derivative over [(V;Z ) (8%5¢ T] can be calculated via (26).

It is noteworthy that (26) represents partial derivatives of real-
valued functions with respect to real-valued variables. In
addition, in (24)-(25) under rectangular coordinates, actual
measurements on voltage magnitudes and angles from uPMU
are converted to real and imaginary parts. However, under
polar coordinates, they are directly represented via V,T,I;C and
8%%¢ . Thus, the corresponding measurement error variances
can be directly obtained without conversion.

—abc abc apc
[f Vnz 51\12 ‘l’f(VNZ 51\12)

(V;‘Vl;c> (88b¢ ]

I (Vi 0329)] - (@ + o) -

F. WLS Based State Estimation

Using vectors Z and X to represent measurement values and
state variables, Z can be represented as h(X), where h(:) is
the vector of measurement functions. State variable vector X
can be estimated via WLS as in (27), where W is a diagonal
block weight matrix. In the matrix W, diagonal blocks
corresponding to measurements of phase-to-ground voltage
magnitudes, phase-to-neutral voltage magnitudes, line current
magnitudes, active loads, and reactive loads are respectively
set as reciprocals of 07, , 0 g, 0fsq> 05, and a5, while
diagonal blocks corresponding to measurements of voltage
phasors are set as inverse of 1‘)?. Estimation on X is obtained
by iteratively calculating AX* and updating X via (28a)-(28b),
until a certain threshold on AX* is met. H(X) is the Jacobian
matrix of h(X) over X.

ming J(X) ==+ [Z - h(X)]"
AXK = [(H(X"))T W H(X")]_

‘W [Z - h(X)] @7

1
(HX®)" - W [Z - h(X")]
(28a)
Xkt = xk 4 AX® (28b)
III. LOAD ESTIMATION MODEL TO CALCULATE LOAD PSEUDO
MEASUREMENTS OF LDSs

Individual customers in an LDS may present distinct load
patterns. In order to accurately characterize load profiles of the
entire LDS, we propose to divide customers into multiple
clusters, identify representative customers of each cluster to
build a load estimation model for the cluster, and finally
calculate the total load of the entire LDS by aggregating



estimated loads of individual clusters. In addition, only active
load models are built, and reactive loads are calculated via the
estimated active loads and pre-set power factors according to
historical data.

A. Establish Clusters and Their Load Estimation Models

Clusters of an LDS and their load estimation models are
established via a regression oriented agglomerative
hierarchical clustering algorithm. That is, given an initial
cluster scheme with a set of clusters, the algorithm merges two
clusters at a time according to a certain criterion to generate a
new cluster scheme, until only one cluster remains. Finally,
the cluster scheme with the best performance, together with its
load estimation models, is chosen as the final cluster scheme.
In this paper, quality of regression QR defined in (29) is used
as a metric to evaluate performance of each cluster scheme C,
where ¢ is index of clusters; d is index of customers; D
denotes the set of customers in an LDS on a certain phase; D,
is the set of customers in cluster ¢ of scheme C; S?° is
predicted residual error sum of squares (PRESS); S5 is
residual sum of squares for cluster ¢ [41]; card(:) is
cardinality of a set.

QR = Ycce(card(D,) - SP*/S55)/card (D) (29)

The proposed algorithm is described as follows:
Step 1: Setk = 1 and create an initial cluster scheme C*. As
communication bottleneck will restrict the number of smart
meters that can simultaneously upload measurements to the
control center in real time, M is used as the real-time
communication smart meter quota. A bisection K-means based
hierarchical division algorithm [42] is adopted to create the
initial cluster scheme €' with no more than M clusters, by
measuring the Euler distance of historical load profiles of
individual customers. Build PLS models for individual
clusters in €* and calculate QR?.
Step 2: Any two clusters in €* could potentially merge,
which presents a total of card(€*):[card(€*)—1]/2
options. Build a PLS regression model and calculate QR for
each option, and record the one with the smallest QR as Ck+1
together with the corresponding PLS models and QR***.
Step 3: If card(C**1) = 1, go to Step 4; Otherwise, set k =
k + 1 and go to Step 2.
Step 4: Among all ¥ for k =1,2,3,...,card(C), choose
the one with the smallest QR as the final cluster scheme. This
identified cluster scheme and its corresponding PLS models,
together with real-time smart meter measurements of selective

customers, are used to calculate load pseudo measurements Pi¢
and Q? of an LDS at phase ¢ of bus i in real time.

B. PLS Regression Based Load Estimation Model

This subsection describes a procedure to build regression
models of individual clusters in a given cluster scheme € and
to calculate the corresponding QR, as discussed in above Step
2. PLS regression [41] is used, given its advantages of
effectively combining ordinary least square regression and
principle analysis to handle issues of data collinearity and
observation insufficiency.

Specifically, the PLS regression based load estimation
model (30) is built for each cluster ¢ in cluster scheme C,
describing the relationship between independent variables L,
and dependent variable L; for d € Df. L. represents the
normalized total active load of all customers in cluster ¢, and
L4 represents the normalized active load of customer d. DS
denotes the set of selective customers in cluster c. Regression
coefficients a; are calculated via the normalized matrix of
historical loads of selective customers H} and the normalized
vector of historical loads Z.. For a weekday/weekend, only
history weekday/weekend data are used.

Le = Yaeps @a " La (30)

The detailed procedure for building PLS models and
calculating QR values is described as follows:

(i) Calculate VIP of Individual Customers: The variable
importance projection (VIP) of an independent variable is
used as a metric to evaluate its importance in representing
dependent variables through (30) [43]. That is, the bigger the
VIP, the more representative an independent variable. VIP of
each customer in a cluster is calculated via (31), where values
of parameters J,, and 5, 5 are calculated via Algorithm 1 with
inputs A =H,, Fy=Z,, and § =D, . cor(-) denotes
correlation coefficient, and H, is the normalized matrix of
historical loads of all customers in cluster c. M is a pre-
specified parameter representing the number of principle
components, which can be determined by the cross validation
method [41]. Parameter e, in Algorithm 1 is a standard basis
vector with the element corresponding to customer d being 1.

_ Cm’d(Dc)'Z%:l(COT(FoJm)Z'Bm,d),
ViFa = \[ M cor (FoJm)? ’ deD. (D
Algorithm 1: Regression Algorithm
Input: Ay, Fy,and §
For m = 1 to M, calculate
B. = Am—1 Fm_1 . — Am—lT']m, — Fm—lT']m,
LA 7 S WmlZ " 5™ Wl

Apn=An_1—Jn" PmT; Jm =Am_1 Bpy;
Fpo=Fu 1—Jm Rn
For each d € 8, calculate
e [l (E—By-Py") By; if m>1
,Bm,d = .
if m=1
end

end
Output: J,,, Ry, and B, g form =1,--- M

T .
e, - Bm,

(ii) Determine Selective Customers: Based on VIP values
calculated above, a selective customer identification problem
(32) is solved to determine DZ. The objective (32a) is to
maximize the total VIP value of selective customers, i.e.,
choosing the most representative customers in clusters in
terms of regression. I; is a binary variable with 1 indicating
customer d is selected; otherwise 0. Constraint (32b) limits the
number of selected customers to be no larger than the smart
meter quota M . Constraint (32c) forces that each cluster
includes at least one selective customer.

maxj,efo,1} Yaep VIP; - Iy (32a)



Yaepla < M; deD (32b)
1< Yaep, la; cecC (32¢)
Problem (32) can be effectively solved via the following
three-step process: (a) In each cluster, select the customer with
the largest VIP value; (b) Sort remaining customers from all
clusters in a descending order of VIP; (c) Combine the top
(M —card(C)) customers with those identified in (a) to
constitute the final D7 . Considering that Y ;cp VIP; =
card(D,.) [43] and VIP values of top customers in a large
cluster are much higher than those in small clusters, VIP
values of non-top customers in large clusters are smaller than
top ones in small clusters. Thus, over-concentration or over-
dispersion in selecting D7 among clusters can be avoided.
(iii) Build PLS Regression Models of Individual Clusters:
With D¢ determined from (32), equation (33) is used to
compute regression coefficient ay, where R,, and f,, 4 are
calculated via Algorithm 1 with inputs A = HZ, Fy = Z, and
S = D3. Finally, S5 and S?° can be calculated with D3 and
(30) [41], and QR can be obtained via (29).
aq = Ym=1Rim - Bm.a

C. Variances of Load Estimates

(33)

When using load estimations as load pseudo measurements
of LDSs in DSSE, variances of estimation errors are needed to
determine their weights in W of (20). In this paper, we use the
ordinary least square type expression [44] to approximate
estimation error variances. With a reasonable assumption that
loads of different clusters are independent, approximate
variances of active load estimation errors can be calculated via
(34), where gf. represents approximate variance of active
load estimation error for cluster c. It is noteworthy that as
reactive power of an LDS is calculated through a pre-set
power factor, active power and reactive power are fully
correlated and their covariance matrix is singular. Thus, in
order to derive effective weights, we opt to use equation (35)
to calculate approximate variances of reactive load estimation
errors by neglecting off-diagonal elements in the covariance
matrix, where pf is a pre-determined power factor of an LDS.
08 = Ycee O-Ig,c (34)
o5 = A —pf/pf?]-op (35)

IV. CASE STUDIES

Numerical case studies are conducted to evaluate the
proposed load estimation model and relevant factors that could
affect its performance, and to assess the DSSE model with a
quantitative analysis on computational performance and
solution accuracy. Load estimation models are implemented
via C# in Visual Studio, and state estimation models are
implemented in MATLAB. All case studies are conducted on
a personal computer with 17 2.90GHz CPU and 16GB RAM.

A. Load Estimation Model

Smart meter data in CER [45] are used, which contain half-
hour granularity electricity load measurements for over 4000
residential customers from 08/14/09 to 12/31/10. The first 301
customers with complete data, which are contained in a same

phase, are chosen to form an LDS. 48 half-hour load
estimation models of this LDS, indexed as 1 to 48, are
established to perform load estimation studies on 11/09/09.

Different parameter settings are applied in this study.
Specifically, the size of history data varies from 10 to 40 with
a step size of 5, and the smart meter quota ranges from 20 to
70 (i.e., 6.64% to 23.26% of total smart meters) with a step
size of 10. Load estimation error is defined as the relative
residual between the actual and estimated values for each
measurement time point, and daily average load estimation
error is the average of load estimation errors throughout a day.

Daily average load estimation errors against different
parameter settings are shown in Table I. A general trend is that
load estimation is more accurate with a larger value of M. On
the other hand, better performance is observed with historical
data sizes of 20, 25, and 35, indicating that unlike the smart
meter quota, a larger historical data set may not necessarily
improve estimation accuracy. This can be understood as that
an unnecessarily larger historical data set which covers a
longer time period may contain exceptional load pattern
variations triggered by unforeseeable events.

TABLE I AVERAGE LOAD ESTIMATION ERRORS WITH DIFFERENT SETTINGS

ize of history data 5 50 55 30 35 40
Smart meter quota

20 (6.64%) 4.57%4.91%

30 (9.96%) 4.68% 4.20% 4.02%

40 (13.29%) 4.20% 4.47%4.61%4.80%
50 (16.61%) 4.49% 3.51%4.23%4.03%
60 (19.93%) 4.45% 3.92% 3.75%4.91%3.70%

70 (23.26%) 4.42% 3.60% 3.89% 3.64%3.78%

[5%, 6%, | [4%, 5%),  [3%, 4%)

Next, load estimation results of this LDS for the week of
11/09/09 (Mon.) to 11/15/09 (Sun.) are studied. In this study,
M is set as 60 (i.e., 19.93% of total smart meters), and the size
of historical data for weekdays/weekends is set as 35/25. The
proposed load estimation model is compared with several
prevailing forecasting models, including the persistence
method, the autoregressive moving average (ARMA) method,
and the support vector machine (SVM) method. The
persistence method simply uses actual load values of the
previous day as estimated load values [46]. ARMA is widely
applied for time series analysis. One ARMA load forecasting
model is built for each measurement time point based on
historical load data series of an LDS [47], in which the Akaike
information criterion (AIC) is adopted to identify the best
orders of the ARMA model. The reason for adopting ARMA,
instead of other time series methods in the same family, is
because historical load data series of individual measurement
time points are stationary while their autocorrelations and
partial autocorrelations tail off to zero, which better fits the
properties of ARMA. SVM is a supervised learning based
method that has been widely used in data regression analysis.
Two types of SVM based load forecasting models, SVM-I and
SVM-II, are respectively built with and without real-time
smart meter measurements [46]. Specifically, in SVM-I, when
limited real-time measurements are available, similar to the
proposed load estimation model, loads of an LDS are
considered as dependent variables while loads of selective



customers are considered as independent variables. Selective
customers are identified by measuring the similarity via Euler
distance between historical load profiles of the LDS and each
customer. In comparison, SVM-II is built based only on
historical load series of the LDS while neglecting real-time
measurements. In the following studies, suitable lengths of
training data sets for ARMA and SVM models are tuned via
experiments. The number of selective real-time measurements
used in SVM-I is equal to 60.

ARMA and SVM models are developed in MATLAB.
LIBSVM [48] package is used to implement SVM models.
Daily average load estimation errors of all models for the
entire week are compared in Table II. It is observed that the
proposed model presents the smallest weekly average load
estimation error among all five models, as well as the smallest
daily average load estimation errors for six days of the week
except Sunday. The two SVM models show close performance
and are generally better than the ARMA and the persistence
models, but present the highest estimation errors in Saturday.
In summary, the proposed load estimation model is
consistently more accurate than the other models.

TABLE Il AVERAGE ESTIMATION ERRORS OF THE WHOLE WEEK
11/09 11/10 11/11 11/12 11/13 11/14 11/15 Weekly
Mon. Tue. Wen. Thu. Fri. Sat. Sun. Average
Proposed model 3.70% 3.79%4.54%3.57% 3.7% 4.86% 4.75% 4.13%
Persistence model 5.07% 6.60% 6.69% 4.50% 5.40% 6.65% 5.82% 5.82%

ARMA model  6.14% 7.61% 6.71% 6.40% 6.11% 6.93% 6.48% 6.63%
SVM-I 4.89% 5.36% 5.19% 4.64% 5.34% 7.10% 3.96% 5.21%
SVM-II 4.57% 5.62% 5.20% 4.06% 5.35% 7.50% 4.24% 5.22%

As the cluster scheme and the set of selective customers in
each cluster could impact load estimation accuracy, they
should be updated periodically to avoid degradation in
estimation accuracy. Updates could be conducted monthly,
weekly, or even daily as needed, triggered when the load
estimation error is larger than a threshold. It is noteworthy that
since load estimation models of individual LDSs are
independent, they can be separately updated in parallel. In our
case studies, it takes about 50 seconds to build a load
estimation model for the LDS with 301 customers, which
indicates that the computational burden is tolerable.

B.  Computational Performance of The Proposed DSSE

A modified IEEE 123-bus system is used in this section to
evaluate computational performance of the proposed DSSE
model. Detailed system data can be found in [49]. A 10hm
ground resistance is added at each bus of the original system,
and per unit line impedances are recalculated according to the
given line type codes and spacing IDs. In the original 123-bus
system, 119 buses remain after removing isolated, switch, and
secondary buses. In addition, considering single-/two-phase
laterals, there is a total of 244 non-neutral phases (including
98 non-zero injection phases) and 119 neutrals. Thus, initially,
there are 363%2 (i.e., (244+119)x2) variables, in which 363 is
the total number of phases and 2 represents two variables for
each phase voltage (i.e., real and imaginary terms under
rectangular coordinates, or magnitude and angle under polar
coordinates). On the other hand, if neutrals and zero-injection

phases are eliminated, only 98 non-neutral and non-zero
injection phases remain, corresponding to 98x2 variables. That
is, by applying the conversion via (19), the number of state
variables is reduced by 73%. Locations of measurement
devices are shown in Fig. 1. uPMUs are only installed at the
substation bus with the maximum measurement error of 1%
for magnitudes and 10 rad for angles [39]. The maximum
measurement error of all load pseudo measurements is set as
50%. Measurement settings of SCADA are summarized in
Table II1.

DSSE models with and without the proposed variable
elimination approach as well as under rectangular and polar
coordinates are compared. Comparisons are conducted under
both Setting 1 and Setting 2 shown in Table III. The DSSE
model with variable elimination is referred to as “reduced
DSSE model”, while the one without variable elimination is
called “unreduced DSSE model”.

For each model and under each measurement setting, 5000
independent DSSE runs with randomly generated
measurement errors are executed. Initial voltage values of
phases a, b, and ¢ are set as 1. £0°p.u., 1 £-120°p.u, and 1 £
120°p.u.. In addition, in unreduced DSSE models, initial
voltage values of neutrals are all set as 0. £0°p.u.. The DSSE
converges when the maximum value of |AX¥| is no larger than
101%. MATLAB function “sparse” is used to handle sparse
matrices, and backslash operator “\” is used to solve the linear
equation (28a).
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Fig. I A modified IEEE 123-bus test system and its measurement deployment

TABLE IIT SETTINGS ON MAXIMUM MEASUREMENT ERRORS

Phase-to-ground voltage Phase-to-neutral Current
Measurement: —_———
neutral  non-neutral voltage neutral non-neutral
Setting 1 - 1% - - 3%
Setting 2 1% 1% - 3% 3%
Setting 3 - - 1% - 3%

The four model combinations under both Setting 1 and
Setting 2 are compared in Table IV. As calculating Jacobian
matrix H and solving equation (28a) are two major tasks of the
DSSE computation, besides the entire DSSE calculation time,
average computational performance for calculating H and
solving (28a) per iteration is also recorded. It is noted that in

unreduced DSSE models, the dimension of (H(Xk))T W -
H(X*) is 726x726 with 29,202 non-zeros, while it becomes



196x196 with 38,416 non-zeros in the reduced DSSE models.
Comparison between the reduced and unreduced DSSE
models under rectangular coordinates in Setting 1 shows that,
average DSSE time is significantly reduced when the
proposed variable elimination approach is adopted. Similar
levels of computational benefits can also be observed when
applying the proposed variable elimination approach under
Setting 2. In addition, comparison on reduced DSSE models
under polar and rectangular coordinates shows that,
computational times for solving (28a) are close while those for
calculating H are significantly different, which is caused by
heavier computational burden in calculating H through (26)
under polar coordinates. Moreover, the unreduced DSSE
model under polar coordinates fails to converge in most runs.
The reason is that in this model, initial setting of neutral
voltages has to be provided, while the flat initial setting (i.e., 0
Z0°p.u.) could be far from their actual values, especially the
neutral voltage angles. Indeed, it is difficult to determine
proper initial values due to their strong variabilities caused by
volatile loads on individual buses. On the other hand, the
proposed variable elimination approach can effectively avoid
this issue, because neutrals are eliminated and their initial
settings are no longer needed. This clearly shows the
advantage of eliminating variables related to neutrals for
enhancing DSSE computational performance. In addition,
comparison of the same model under Setting 1 and Setting 2
further shows that including neutral measurements in Setting 2
would need more iterations and longer computational time.

TABLE IV COMPUTATIONAL PERFORMANCE

Ave. timeto  Ave. time to
Setting DSSE model Ave.. DSSE Ave, # of calculate H solve (28a) per
time iterations . . . .
per iteration iteration
Reduced/Rect.  13.1 ms 6 1.4 ms 0.7 ms
1 Unreduced/Rect.  93.2 ms 7 8.7 ms 4.1 ms
Reduced/Polar  298.5 ms 6 47.7 ms 0.8 ms
Unreduced/Polar - - - -
Reduced/Rect.  78.3 ms 30 1.6 ms 0.8 ms
) Unreduced/Rect. 461.3 ms 34 8.8 ms 4.3 ms
Reduced/Polar 1215.4 ms 23 53.0 ms 0.8 ms
Unreduced/Polar - - - -

C. Solution Accuracy of the Proposed DSSE Models

In this section, solution accuracies of DSSE models as well
as impacts of load estimation models are studied. Reduced
DSSE models are used in this section. 11/09/09 (Mon.) is
chosen for the study. 3 types of LDSs with different numbers
of customers and smart meter quotas, as summarized in Table
V, are used to replace 39 (out of 95) loads in the original test
system. Load estimation models of the 39 LDSs are built via
historical data with the length of 35.

TABLE V INFORMATION OF THE 39 REPLACED LDSS

LDS Type 1 LDS Type2 LDS Type 3
Number of LDSs in the test system 18 11 10
Number of included customers 50 80 100
Smart meter quota 10 (20%) 16 (20%) 20 (20%)

Pseudo measurements of the 39 LDSs are estimated via the
proposed load estimation models, which, together with
approximated load estimation error variances, are used as
inputs to the DSSE model. Maximum load pseudo

measurement errors of the remaining 56 LDSs are set as 50%.
Thus, assuming estimation errors of these 56 loads follow
normal distributions, their average relative errors are about
13.33%.

5000 DSSE runs are executed for each measurement time
point. Measurement values for each DSSE run are generated
via actual power flow solutions plus random measurement
errors sampled from the error distributions. Measurement
errors are considered to follow normal distributions, whose
means are zero and variances are calculated via the approach
discussed in Section II.D using the maximum measurement
errors. Relative root-mean-square errors (RRMSE) of voltage
magnitudes and absolute errors of voltage phase angles are
used as metrics to quantify DSSE solution accuracy. Three
settings shown in Table III are studied to illustrate solution
accuracy of the proposed DSSE model.

The DSSE models under rectangular and polar coordinates
with Setting 1 are compared first. Maximum RRMSEs over all
non-neutral phase voltage magnitudes for each measurement
time point are compared in Fig. 2. The three curves interlace
closely, indicating their similarities in solution accuracy. We
further include the result of DSSE wunder rectangular
coordinates with Setting 3 in Fig. 2 for comparison, which
replaces phase-to-ground voltage magnitude measurements
with phase-to-neutral magnitude measurements. It show that
using phase-to-ground and phase-to-neutral  voltage
measurements would deliver DSSE solutions of similar
accuracy. Maximum and minimum RRMSEs of non-neutral
phase voltage magnitudes and angles over all measurement
time points are shown in Table VI, which further illustrates
that using rectangular and polar coordinates as well as phase-
to-ground and  phase-to-neutral  voltage  magnitude
measurements would derive DSSE results of similar accuracy.

0.22%) Maximum RRMSE of voltage magnitude

~+-Rect. coordinate (Setting 1)
0.2%)| . o
-a-Polar coordinate (Setting 1)

0.18%| —* Rect. coordinate (Setting 3)

0.16%)gq .

Measurement time point
0.14%

1 357 911131517192123252729313335373941434547
Fig. 2 Maximum RRMSE of non-neutral phase voltage magnitudes using
rectangular and polar coordinates and under Settings 1&3

TABLE VI DSSE RESULTS OF THE TWO MODELS WITH TWO SETTINGS

DSSE model & Setting l\ggll\r/ln;rgn ]\f{msu;
Voltage Rect. coordinates (Setting 1) 0.153% 0.212%
ma nitﬁde Polar coordinates (Setting 1) 0.150% 0.210%
g Rect. coordinates (Setting 3) 0.153% 0.209%

. Minimum Maximum

DSSE model & Setting absolute error absolute error

Voltage Rect. coordinates (Setting 1) 0.332 crad 0.359 crad

an 1§ Polar coordinates (Setting 1) 0.336 crad 0.360 crad

& Rect. coordinates (Setting 3) 0.333 crad 0.360 crad

Maximum RRMSEs over all non-neutral phase voltage
magnitudes with Setting 1 and Setting 2 under rectangular
coordinates are further compared in Fig. 3. It shows that extra



measurements on neutrals in Setting 2, although do not reduce
the maximum RRMSE at every measurement time point, do
help eliminate several extreme high RRMSE situations, such
as time points 34-36. Indeed, with neutral measurements,
RRMSEs of non-neutral phase voltage magnitudes and
absolute errors of non-neutral phase voltage angles are
respectively in the ranges of [0.152%, 0.194%] and [0.332
crad, 0.357 crad], which are better than those without neutral
measurements as shown in the first row of Table VI.

Fig. 4 further shows average RRMSEs over all neutral
voltage magnitudes, which are much larger than those of non-
neutral phases in Fig. 3. This is because neutral voltages are
close to zero and small deviations could cause large RRMSEs.
Fig. 4 also indicates that improvements in DSSE accuracy are
of significance when measurements on neutrals are included.

We further execute DSSE runs using various load forecasts
from SVM-I and SVM-II to evaluate their impacts. SVM-I
and SVM-II are chosen because of their better performance as
shown in Section IV.A. However, as load estimation error
variances of SVM-I and SVM-II are not readily available,
maximum relative regression errors of history load series are
used as maximum load estimation errors to determine weights
of load pseudo measurements.

DSSE results with load pseudo measurements from
different models are compared in Fig. 5. It shows that at most
measurement time points (i.e., 1-15, 17-24, 26-31, and 40-47),
DSSE results derived from the proposed load estimation
model as well as SVM-I and SVM-II are close. Although
DSSE result using the proposed load estimation model does
not necessarily outperform those using SVM-I and SVM-II at
every measurement time point, it shows better performance at
measurement time points with more intense load volatilities,
such as time points 31-40. Specifically, the maximum RRMSE
of voltage magnitudes is effectively reduced when the
proposed load estimation model is used.
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Fig. 3 Maximum RRMSE of non-neutral phase voltages with and without
neutral measurements
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Fig. 4 Average RRMSE of neutral voltage magnitudes with and without
neutral measurements
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Fig. 5 Maximum RRMSE of non-neutral phase voltage magnitudes with
different load pseudo measurement models

V. CONCLUSION

This paper discusses a WLS based DSSE model which
accurately considers non-zero potential neutral conductors and
effectively leverages voltages of non-neutral and non-zero
injection phases in both rectangular and polar coordinates as
state variables. Voltage variables of neutrals and zero-
injection phases are linearly represented by state variables and
eliminated from the DSSE model. With real-time load
measurements from selective smart meters, load estimation
models generate pseudo measurements of LDS loads to
compensate real-time measurement insufficiency in MDS.

Comparisons with other load forecasting models show that
the proposed load estimation model can effectively provide
load pseudo measurements of LDSs to DSSE with consistently
higher accuracy. Numerical studies on the modified IEEE 123-
bus system further illustrate advantages of the proposed DSSE
model in terms of computational performance and solution
accuracy. Specifically, the proposed neutral and zero-injection
phase elimination approach can reduce the number of
iterations and total computational time. Including neutral
measurements could improve DSSE solution accuracy,
especially at neutrals, at the cost of increased computational
time. In addition, it is observed that measuring phase-to-
ground voltages is just as important as measuring phase-to-
neutral voltages, while the DSSE model under rectangular
coordinates presents similar accuracy as, but shorter
computational time than, the one under polar coordinates.
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