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Abstract— Distribution system state estimation (DSSE) has 

recently been tested and experimentally deployed in some 

practical distribution networks. Distinct features of distribution 

systems, such as diverse and unsymmetrical configurations as 

well as limited real-time measurements, prohibit the direct 

application of mature state estimation methods for transmission 

systems. Targeting at three-phase four-conductor configured 

unsymmetrical medium-voltage distribution systems (MDS) with 

neutral conductors and ground resistances, this paper proposes a 

weighted least square (WLS) based DSSE approach, in which 

voltages are chosen as state variables and load pseudo 

measurements of low-voltage distribution systems (LDS) are 

considered to compensate insufficient real-time measurements in 

MDS. Both rectangular and polar coordinates are studies, and 

voltage variables of neutrals and zero-injection phases are 

eliminated to reduce the scale of the DSSE problem. Moreover, in 

order to enhance load pseudo measurement accuracy of LDSs, a 

clustering and partial least square (PLS) regression based load 

estimation model is proposed to leverage real-time 

communication ability of smart meters. Case studies on a 

modified IEEE 123-bus distribution system with actual smart 

meter data illustrate effectiveness of the proposed approaches. 

Index Terms—Distribution system state estimation, load estima-

tion, partial least square regression, three-phase four-conductor. 

I. INTRODUCTION 

ISTRIBUTION system state estimation (DSSE) 

processes raw measurements from the supervisory 

control and data acquisition (SCADA) system and 

supplementary pseudo measurements of loads to provide real-

time monitoring. DSSE is considered as the foundation of a 

variety of key applications, such as voltage control, system 

reconfiguration, and demand side management [1], that are 

under development and testing to manage emerging 

distribution systems with an increasing penetration of 

distributed energy resources and flexible demand assets. 

Moreover, DSSE could also facilitate the development of new 

applications, aiming at the next-generation distribution 

systems [2]. For instance, utilizing DSSE results, recent works 

[3]-[4] determined electricity price signals that could be 

potentially used in a deregulation paradigm of future 

distribution systems. 

Compared with transmission system state estimation 

(TSSE) that has been developed and deployed for over half a 

century, DSSE is relatively young since it was first studied in 

the mid-1990s [5]. Indeed, most DSSE implementations are 

originated from TSSE models with moderate modifications. 

One notable implementation is the bus voltage based DSSE 

models, which use bus voltages in polar or rectangular 

coordinates as state variables [6]-[7]. In addition, in 
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recognizing that majority of distribution systems are operated 

in a radial topology, branch current based models are also 

customized for DSSE studies by taking the advantage of their 

computational benefits [8]-[9]. However, DSSE of medium-

voltage distribution systems (MDS), as studied in this paper, is 

more challenging than TSSE because of the following two 

facts: (i) unsymmetrical and heterogeneous system 

configurations and (ii) limited real-time measurements. 

Indeed, MDSs are essentially unsymmetrical because of 

single-/two-phase laterals, untransposed lines, and unbalanced 

loads. Consequently, a three-phase DSSE model is a must to 

accurately simulate their unsymmetrical characteristics. 

Reference [10] considered multi-phase distribution systems 

with industry-grade models of various electrical components. 

That is, a large number of additional state variables and 

associated equations are involved to model details of electrical 

components, and those equations are used as equality 

constraints in the DSSE model. A hybrid particle swarm 

optimization (PSO) based three-phase state estimation method 

was proposed in [11], while solution quality and consistency 

are of major concerns. An improved three-phase admittance 

matrix based DSSE model for MDSs was proposed in [12], by 

leveraging certain measurements so that the Jacobian matrix 

can be reasonably treated as constant. Reference [13] used 

discrete variables to indicate transformer tap positions in the 

DSSE model, which was solved via the ordinary optimization 

technique. Reference [14] proposed a two-step procedure for 

multi-area DSSE, in which the second step uses information 

from adjacent areas to refine local results from the first step. 

However, case study showed that solution accuracies among 

different areas were inconsistent and benefits over the 

integrated DSSE were not noticeable. 

Moreover, heterogeneous configurations of MDSs, in terms 

of numbers, connection styles, and grounding modes of 

conductors, further limit the universal applicability of a 

specified DSSE model. Indeed, models developed in [10]-[14] 

are customized for three-phase four-conductor MDSs with 

solidly multi-grounded configuration, i.e., neutral voltages are 

equal to zero and can be naturally excluded. In turn, an 

original 4×4 line admittance matrix can be reduced to a 3×3 

phase frame one. However, rather than solidly grounded, in 

practice neutral conductors are usually grounded via 

resistances, which render non-zero potentials for neutrals [15]. 

Actually, ground resistances have been widely studied in 

power flow problems of three-phase four-conductor 

distribution systems, and salient studies [16]-[17] have shown 

that ground resistances of reasonably large values could 

significantly impact branch flows and bus voltages. Thus, they 

should be adequately considered in practical three-phase four-

conductor distribution system studies. However, to our best 

knowledge, ground resistances have not been considered in 

existing DSSE studies. Indeed, when neutrals are considered, 
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two issues need to be properly addressed. One is the increased 

number of state variables and the increased size of Jacobian 

matrix, which introduce significant computational burden. The 

other is the difficulty in setting initial values of neutral 

voltages. As phase angles of neutral voltages at different buses 

could vary considerably, improper initial values will 

deteriorate DSSE convergence performance. These two issues 

will be properly mitigated by the proposed approach. 

In addition, in an MDS, except the substation bus, very few 

buses are equipped with real-time measurement devices to 

record bus voltages and/or line currents. Indeed, existing real-

time measurements in an MDS are far from enough to 

guarantee observability. Thus, load pseudo measurements of 

connected low-voltage distribution systems (LDS) are usually 

used to assist DSSE. In old-fashioned distribution systems 

without advanced metering technology, load pseudo 

measurements are estimated based on monthly electricity bills 

of customers connected in LDSs [18], which are far from 

accurate [19]. On the other hand, zero-injection buses are 

considered as highly trusted virtual measurements in DSSE. 

Therefore, in a weighted least square (WLS) based DSSE 

model, large weights are assigned to virtual measurements for 

enhancing solution accuracy, which however may cause 

numerical issues. Alternatively, early work [20] formulated 

zero injections as constraints in DSSE models and adopted 

Hachtel’s augmented matrix method to seek for solutions. 

Moreover, treating virtual measurements as fully trustworthy 

sources, [21] eliminated voltages of zero-injection buses via 

linear functions of voltages of non-zero injection buses. 

Recently, proliferated smart meters [22] offer new 

opportunities to improve DSSE accuracy via accurate load 

pseudo measurements. Indeed, as smart meters can 

automatically upload their measurements to control centers on 

a daily or weekly basis [23], replacing monthly data with 

higher-fidelity and more accurate records is expected to 

achieve load pseudo measurements of higher accuracy for 

LDSs [24]-[26]. An artificial neural network approach was 

proposed in [27] to generate load pseudo measurements by 

utilizing load profiles as training data, and the associated load 

estimation error variances were obtained via a Gaussian 

mixture model. A closed-loop state estimation framework was 

proposed in [28], in which nonlinear auto-regressive 

exogenous load estimation models were developed to provide 

pseudo measurements, and their corresponding error variances 

were iteratively adjusted base on the most recent performance. 

Reference [29] proposed a Bayesian theory based DSSE 

model to deal with pseudo measurements with non-Gaussian 

estimation errors. The impact of integrating higher-fidelity 

smart meter data to DSSE was discussed in [30] with well-

designed case studies. Reference [31] proposed a home energy 

management system (HEMS) to optimize energy costs and 

comfort levels in residential houses, and a sensitive analysis 

framework was further developed to study the impact of 

HEMS on DSSE. 

Indeed, smart meters can upload measurements to the 

control center in real time as long as communication is not an 

issue [32]. Ideally, in an LDS with a full smart meter 

coverage, if all smart meters can simultaneously upload their 

measurements in real time, together with a reasonable 

estimation on the network losses, the total load of the entire 

LDS can be directly calculated. In reality, however, 

simultaneously uploading massive measurement data from 

multiple smart meters to a control center could potentially 

compromise the communication network, while approaches to 

alleviate communication network congestion such as the 

random back-off method could induce significant delays [33]. 

Indeed, it is reported in [33] that the average communication 

delay increases linearly in the number of smart meters. 

Therefore, considering that an MDS connects dozens of LDSs 

and each LDS contains dozens to hundreds of customers, 

transmitting measurements from all smart meters to the 

control center in real time will foreseeably cause unacceptable 

delays. In order to effectively utilize accurate measurements of 

smart meters in a timely manner to facilitate DSSE, a load 

aggregation based idea is proposed in this paper. That is, by 

leveraging actual communication capability, real-time 

measurements from a limit number of selective smart meters 

will be uploaded to the control center to estimate loads of the 

entire LDS timely and accurately. 

This paper targets at DSSE of three-phase four-conductor 

configured MDSs with grounded wye-connected loads. The 

proposed work targets on addressing certain industry’s 

practical interests and needs, such as the “Data Analytics 

Cases” described in the EPRI’s Data Mining Initiative on 

Distribution Systems [34]. Specifically, one of the case 

focuses on developing electrical load models via SCADA and 

AMI data, which can be used to conduct accurate power flow 

analysis and allow engineers to monitor, manage, and plan 

operations of the distribution network [35]. The contributions 

of this paper are summarized as follows: 

 An accurate multi-phase DSSE model: A WLS based DSSE 

model for three-phase four-conductor configured MDSs is 

proposed, while neutral conductors and ground resistances are 

explicitly considered. Voltages in rectangular or polar 

coordinates are formulated as state variables. 

 An effective state variable reduction approach to improve 

DSSE computational performance: The number of state 

variables and consequently the scale of the DSSE model are 

reduced via two strategies: (i) by applying the KCL theorem at 

neutrals, voltages of neutrals can be linearly represented by 

those of non-neutral phases, and (ii) zero-injection phases are 

defined by extending the concept of zero-injection bus, and 

their voltages can be linearly represented by voltages of non-

neutral and non-zero injection phases. Finally, only voltages 

of non-neutral and non-zero injection phases are state 

variables, which significantly reduces the scale of the DSSE. 

 An effective approach to leverage smart meter 

measurements in a timely manner to improve DSSE accuracy: 

A load estimation model is proposed to calculate load pseudo 

measurements of LDSs, which is built by a regression oriented 

agglomerative hierarchical clustering algorithm together with 

real-time measurements from selective smart meters. 

The rest of this paper is organized as follows. The DSSE 

model is discussed in Section II. Section III presents the load 
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estimation model for LDSs. Case studies are discussed in 

Section IV, and conclusions are drawn in Section V. 

II. THE PROPOSED DSSE MODEL 

A. Three-Phase Four-Conductor Distribution System Model 

In this paper, matrices are shown as bold, vectors and sets 

are shown as italic and bold, and scalars are shown as non-

bold italic style. For a distribution system with 𝑁 buses, 𝑖 and 

𝑗 are used to index buses, and distribution lines are indexed as 

𝑖 − 𝑗. 𝜳 = {𝑎, 𝑏, 𝑐, 𝑛} and  𝜳𝑎𝑏𝑐 = {𝑎, 𝑏, 𝑐} are sets of phases 

including and excluding the neutral. 𝜙 and 𝜑 are used to index 

phases. Phase-to-ground and phase-to-neutral voltages of 

phase 𝜙 at bus 𝑖 are respectively denoted as complex variables 

𝑉𝑖
𝜙

 and 𝑈𝑖
𝜙

. Current injection at phase 𝜙 of bus 𝑖 is denoted as 

complex variable 𝐼𝑖
𝜙

. Current on phase 𝜙  of line 𝑖 − 𝑗  is 

denoted as complex variable 𝐼𝑖−𝑗
𝜙

. 

For an equivalent 𝜋 model of line 𝑖 − 𝑗 with a 4×4 series 

admittance matrix 𝐲𝑖−𝑗, its carrying current can be calculated 

by two terminal voltages as in (1). With the assumption of 

solidly multi-grounded neutral, i.e., voltages of the two 

terminals for the neutral line are zeros, namely 𝑉𝑖
𝑛 = 𝑉𝑗

𝑛 = 0, 

equation (1) can be simplified as (2), where 𝐲𝑖−𝑗
𝑎𝑏𝑐 is a 3×3 line 

series admittance matrix by removing the row and column 

corresponding to neutral from 𝐲𝑖−𝑗. The 4×4 shunt admittance 

matrix 𝐲𝑖−𝑗
𝑠  of line 𝑖 − 𝑗 can be similarly reduced to 3×3.  

[𝐼𝑖−𝑗
𝑎  𝐼𝑖−𝑗

𝑏  𝐼𝑖−𝑗
𝑐  𝐼𝑖−𝑗

𝑛 ]
𝑇

=  

                   𝐲𝑖−𝑗 · ([𝑉𝑖
𝑎 𝑉𝑖

𝑏 𝑉𝑖
𝑐  𝑉𝑖

𝑛]
𝑇

− [𝑉𝑗
𝑎 𝑉𝑗

𝑏 𝑉𝑗
𝑐  𝑉𝑗

𝑛]
𝑇

) (1) 

[𝐼𝑖−𝑗
𝑎  𝐼𝑖−𝑗

𝑏  𝐼𝑖−𝑗
𝑐 ]

𝑇
= 𝐲𝑖−𝑗

𝑎𝑏𝑐 · ([𝑉𝑖
𝑎 𝑉𝑖

𝑏 𝑉𝑖
𝑐]

𝑇
− [𝑉𝑗

𝑎 𝑉𝑗
𝑏 𝑉𝑗

𝑐]
𝑇

) (2) 

However, instead of solidly grounded, neutral conductors 

are commonly grounded via resistances at buses, and the 

assumption 𝑉𝑖
𝑛 = 𝑉𝑗

𝑛 = 0 will not hold. Thus, line admittance 

matrix remains 4×4 to explicitly simulate neutral conductors. 

Consequently, for a three-phase four-conductor distribution 

system with neutral conductors and ground resistances, system 

nodal admittance matrix 𝐘 shown in (3) can be built via (4)-

(5), where 𝜴𝑖 is the set of buses adjacent to bus 𝑖. Equation (4) 

calculates self-admittance 𝐘𝑖,𝑖  of bus  𝑖 , and equation (5) 

calculates mutual-admittance 𝐘𝑖,𝑗  between buses 𝑖  and 𝑗 , 

where [𝟎] represents a zero matrix of proper dimensions and 𝟎 

represents a zero column vector of proper size. In the last term 

of (4), 𝑦𝑖
𝑔

 represents ground conductance, i.e., reciprocal of 

ground resistance, at bus 𝑖. System current injection equations 

can be written in a compact form as in (6), where 𝑰 =
[𝐼1

𝑎   𝐼1
𝑏   𝐼1

𝑐   𝐼1
𝑛 … 𝐼𝑁

𝑎   𝐼𝑁
𝑏   𝐼𝑁

𝑐   𝐼𝑁
𝑛]𝑇  and 𝑽 = [𝑉1

𝑎   𝑉1
𝑏  𝑉1

𝑐  𝑉1
𝑛 … 

𝑉𝑁
𝑎  𝑉𝑁

𝑏  𝑉𝑁
𝑐   𝑉𝑁

𝑛]𝑇 are respectively vectors of current injections 

and phase-to-ground voltages.  

𝐘 = [

𝐘1,1 ⋯ 𝐘1,𝑁

⋮ ⋱ ⋮
𝐘𝑁,1 ⋯ 𝐘𝑁,𝑁

] (3) 

𝐘𝑖,𝑖 = ∑ 𝐲𝑖−𝑗𝑗∈𝜴𝑖
+ ∑ 𝐲𝑖−𝑗

𝑠
𝑗∈𝜴𝑖

+ [
[𝟎] 𝟎

𝟎𝑇 𝑦𝑖
𝑔] (4) 

𝐘𝑖,𝑗 = 𝐘𝑗,𝑖 = −𝐲𝑖−𝑗 (5) 

𝑰 = 𝐘 · 𝑽 (6) 

B. Model the Effect of Neutral Phases 

Vectors 𝑰 and 𝑽 can be reordered as 𝑰𝑎𝑏𝑐𝑛 = [𝑰𝑎𝑇  𝑰𝑏𝑇
   𝑰𝑐𝑇

 

𝑰𝑛𝑇]
𝑇

 and 𝑽𝑎𝑏𝑐𝑛 = [𝑽𝑎𝑇  𝑽𝑏𝑇
  𝑽𝑐𝑇   𝑽𝑛𝑇]𝑇  via a row 

permutation matrix 𝐀̂ , where 𝑰𝜙 = [𝐼1
𝜙

… 𝐼𝑁
𝜙

]
𝑇

  and 𝑽𝜙 =

[𝑉1
𝜙

… 𝑉𝑁
𝜙

]
𝑇

. Thus, the system current injection equation (6) 

can be reformulated as in (7), where 𝐘𝑎𝑏𝑐𝑛  is defined in a 

block form as (8). 

𝑰𝑎𝑏𝑐𝑛 = 𝐘𝑎𝑏𝑐𝑛 · 𝑽𝑎𝑏𝑐𝑛  (7) 

𝐘𝑎𝑏𝑐𝑛 = 𝐀̂ · 𝐘 · 𝐀̂−1 = [

𝐘𝑎,𝑎 𝐘𝑎,𝑏

𝐘𝑏,𝑎 𝐘𝑏,𝑏
𝐘𝑎,𝑐 𝐘𝑎,𝑛

𝐘𝑏,𝑐 𝐘𝑏,𝑛

𝐘𝑐,𝑎 𝐘𝑐,𝑏

𝐘𝑛,𝑎 𝐘𝑛,𝑏
𝐘𝑐,𝑐 𝐘𝑐,𝑛

𝐘𝑛,𝑐 𝐘𝑛,𝑛

] (8) 

Equation (9) describes that the summation of current 

injections at a neutral is zero. Thus, by substituting current 

injections in (9) with voltages, equation (10) is derived. 

𝑰𝑛 + 𝑰𝑎 + 𝑰𝑏 + 𝑰𝑐 = 𝟎 (9) 

∑ (∑ 𝐘𝜙,𝜑
𝜙∈𝜳 ) · 𝑽𝜑

𝜑∈𝜳𝑎𝑏𝑐 + (∑ 𝐘𝜙,𝑛
𝜙∈𝜳 ) · 𝑽𝑛 = 𝟎  (10) 

Because of the presence of ground resistances, ∑ 𝐘𝜙,𝑛
𝜙∈𝜳  is 

nonsingular. 𝑽𝑛  can be represented via 𝑽𝑎𝑏𝑐 =
[𝑽𝑎𝑇 𝑽𝑏𝑇

𝑽𝑐𝑇]𝑇  as in (11), where 𝐓𝑁𝑁  is a representation 

matrix from 𝑽𝑎𝑏𝑐  to 𝑽𝑛 . By further defining 𝑰𝑎𝑏𝑐 =
[𝑰𝑎𝑇 𝑰𝑏𝑇

𝑰𝑐 𝑇]𝑇  and 𝐘𝑎𝑏𝑐  as in (12), we have equation 𝑰𝑎𝑏𝑐 =

𝐘𝑎𝑏𝑐 · 𝑽𝑎𝑏𝑐 . Furthermore, equation 𝑽 = 𝐀̂−1 · 𝐓𝑁 · 𝑽𝑎𝑏𝑐  is 

obtained, where 𝐓𝑁 is extended from 𝐓𝑁𝑁 as in (13) and 𝐄 is 

an identity matrix of proper dimensions. 

𝑽𝑛 = −(∑ 𝐘𝜙,𝑛
𝜙∈𝜳 )

−1
· [∑ 𝐘𝜙,𝑎

𝜙∈𝜳   ∑ 𝐘𝜙,𝑏
𝜙∈𝜳   ∑ 𝐘𝜙,𝑐

𝜙∈𝜳  ]  

                                       · 𝑽𝑎𝑏𝑐 = 𝐓𝑁𝑁 · 𝑽𝑎𝑏𝑐  (11) 

𝐘𝑎𝑏𝑐 = [
𝐘𝑎,𝑎 𝒀𝑎,𝑏 𝐘𝑎,𝑐

𝐘𝑏,𝑎 𝐘𝑏,𝑏 𝐘𝑏,𝑐

𝐘𝑐,𝑎 𝐘𝑐,𝑏 𝐘𝑐,𝑐

] + [
𝐘𝑎,𝑛

𝐘𝑏,𝑛

𝐘𝑐,𝑛

] · 𝐓𝑁𝑁 (12) 

𝐓𝑁 = [
𝐄

𝐓𝑁𝑁
] (13) 

Equations (11)-(13) can also properly handle the solidly-

grounded situation by adopting the following strategy: if bus 𝑖 

is solidly grounded, 𝑦𝑖
𝑔

= ∞ and 𝑉𝑖
𝑛 = 0; 𝐼𝑖

𝜙
 in 𝑰𝑎𝑏𝑐𝑛  for 𝜙 ∈

𝜳 and 𝑉𝑖
𝑛 in 𝑽𝑎𝑏𝑐𝑛 are removed; rows of 𝐘𝑎𝑏𝑐𝑛  corresponding 

to 𝐼𝑖
𝜙

 and columns of 𝐘𝑎𝑏𝑐𝑛  corresponding to 𝑉𝑖
𝑛 are removed.  

C. Model the Effect of Zero-Injection Phases 

A zero-injection phase refers to a physical phase of a non-

substation bus that is not connected with generators and loads. 

In this paper, KCL is applied on each zero-injection phase to 

derive the relationship of voltages for this phase and its 

adjacent non-zero injection phases. That is, the voltage 

variable of a zero-injection phase can be represented as a 

linear function of those of adjacent non-zero injection phases, 

and in turn be eliminated. 

First, we define a row permutation matrix 𝐁̂ to reorder 𝑰𝑎𝑏𝑐 

and 𝑽𝑎𝑏𝑐 as in (14), with which 𝑰𝑎𝑏𝑐 = 𝐘𝑎𝑏𝑐 · 𝑽𝑎𝑏𝑐  can be 

represented in a block matrix form (15). In (14)-(15), 𝑰𝑁𝑍
𝑎𝑏𝑐 is 

the vector of current injections corresponding to non-zero 

injection phases, the zero vector 𝟎  corresponds to zero-

injection phases, and 𝑽𝑍
𝑎𝑏𝑐  and 𝑽𝑁𝑍

𝑎𝑏𝑐  are two reordered sub-
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vectors of 𝑽𝑎𝑏𝑐 corresponding to zero and non-zero injection 

phases. According to the first set of equations in (15), 𝑽𝑍
𝑎𝑏𝑐 

can be represented via 𝑽𝑁𝑍
𝑎𝑏𝑐  as in (16), with which equation 

(17) can be derived. We define 𝐓𝑍 as the representation matrix 

from 𝑽𝑁𝑍
𝑎𝑏𝑐 to [

𝑽𝑍
𝑎𝑏𝑐

𝑽𝑁𝑍
𝑎𝑏𝑐]. Furthermore, equation 𝑽𝑎𝑏𝑐 = 𝐁̂−1 · 𝐓𝑍 ·

𝑽𝑁𝑍
𝑎𝑏𝑐 can be obtained. 

[
𝟎

𝑰𝑁𝑍
𝑎𝑏𝑐] = 𝐁̂ · 𝑰𝑎𝑏𝑐 ;     [

𝑽𝑍
𝑎𝑏𝑐

𝑽𝑁𝑍
𝑎𝑏𝑐] =  𝐁̂ · 𝑽𝑎𝑏𝑐; 

[
𝐘𝑍,𝑍

𝑎𝑏𝑐 𝐘𝑍,𝑁𝑍
𝑎𝑏𝑐

𝐘𝑁𝑍,𝑍
𝑎𝑏𝑐 𝐘𝑁𝑍,𝑁𝑍

𝑎𝑏𝑐 ] = 𝐁̂ · 𝐘𝑎𝑏𝑐 · 𝐁̂−1 (14) 

[
𝟎

𝑰𝑁𝑍
𝑎𝑏𝑐] = [

𝐘𝑍,𝑍
𝑎𝑏𝑐 𝐘𝑍,𝑁𝑍

𝑎𝑏𝑐

𝐘𝑁𝑍,𝑍
𝑎𝑏𝑐 𝐘𝑁𝑍,𝑁𝑍

𝑎𝑏𝑐 ] · [
𝑽𝑍

𝑎𝑏𝑐

𝑽𝑁𝑍
𝑎𝑏𝑐] (15) 

𝑽𝑍
𝑎𝑏𝑐 = −𝐘𝑍,𝑍

𝑎𝑏𝑐 −1
· 𝐘𝑍,𝑁𝑍

𝑎𝑏𝑐 · 𝑽𝑁𝑍
𝑎𝑏𝑐 (16) 

[
𝑽𝑍

𝑎𝑏𝑐

𝑽𝑁𝑍
𝑎𝑏𝑐] = [−𝐘𝑍,𝑍

𝑎𝑏𝑐−1
· 𝐘𝑍,𝑁𝑍

𝑎𝑏𝑐

𝐄
] · 𝑽𝑁𝑍

𝑎𝑏𝑐 = 𝐓𝑍 · 𝑽𝑁𝑍
𝑎𝑏𝑐  (17) 

By combining equations 𝑽 = 𝐀̂−1 · 𝐓𝑁 · 𝑽𝑎𝑏𝑐  and 𝑽𝑎𝑏𝑐 =

𝐁̂−1 · 𝐓𝑍 · 𝑽𝑁𝑍
𝑎𝑏𝑐 , phase-to-ground voltage vector 𝑽  can be 

represented as in (18) and further rewritten under rectangular 

coordinates as in (19), where 𝑽𝑒 = 𝑅𝑒(𝑽), 𝑽𝑓 = 𝐼𝑚(𝑽), 𝐓𝑒 =

𝑅𝑒(𝐓) , 𝐓𝑓 = 𝐼𝑚(𝐓) , 𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐 = 𝑅𝑒(𝑽𝑁𝑍

𝑎𝑏𝑐) , and 𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 =

𝐼𝑚(𝑽𝑁𝑍
𝑎𝑏𝑐). 𝑅𝑒(∙) and  𝐼𝑚(∙) respectively extract the real and 

imaginary parts of a complex matrix/vector. 𝐓  and 𝐓𝐸  are 

respectively representation matrices from 𝑽𝑁𝑍
𝑎𝑏𝑐  to 𝑽  in 

complex and real domains. 

𝑽 = (𝐀−1 · 𝐓𝑁 · 𝐁−1) · 𝐓𝑍 · 𝑽𝑁𝑍
𝑎𝑏𝑐 = 𝐓 · 𝑽𝑁𝑍

𝑎𝑏𝑐 (18) 

[
𝑽𝑒

𝑽𝑓
] = [

𝐓𝑒 −𝐓𝑓

𝐓𝑓 𝐓𝑒
] · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] = 𝐓𝐸 · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] (19) 

D. Model Various Measurements 

Various types of measurements are considered in this paper, 

including actual measurements on voltage and current 

magnitudes from SCADA, voltage phasor measurements from 

µPMUs, and pseudo measurements on active and reactive 

demands from the proposed load estimation models. 

Specifically, both phase-to-ground and phase-to-neutral 

voltage magnitude measurements are included, while current 

and voltage measurements of both neutrals and non-neutral 

phases are also considered [36]-[37]. Squared current and 

voltage magnitude measurements as well as active and 

reactive load pseudo measurements are represented as 

functions of state variable vectors as follows [38]. 

 Measurements of Voltage Magnitudes 

By defining 𝚽𝑖
𝑉,𝜙

 as in (20a), a squared phase-to-ground 

voltage magnitude measurement is represented in a compact 

matrix form as in (20b). In (20a), 𝒆𝑖
𝜙

 is a standard basis vector 

with element corresponding to 𝑉𝑖
𝜙

 being 1. In (20b), 𝑉𝑖

𝜙
 

represents the magnitude of 𝑉𝑖
𝜙

. With known variance of the 

phase-to-ground voltage magnitude measurement error 𝜎𝑉
2, the 

measurement error variance of (𝑉𝑖

𝜙
)

2

 is 𝜎𝑉,𝑠𝑞
2 = 4 · (𝑉𝑖

𝜙
)

2

·

𝜎𝑉
2 through error propagation.  

Similarly, with 𝚽𝑖
𝑈,𝜙

 defined as in (21a), a squared phase-

to-neutral voltage magnitude measurement is represented as in 

(21b), where 𝑈𝑖

𝜙
 represents the magnitude of 𝑈𝑖

𝜙
. The 

measurement error variance of (𝑈𝑖

𝜙
)

2

 is 𝜎𝑈,𝑠𝑞
2 = 4 · (𝑈𝑖

𝜙
)

2

·

𝜎𝑈
2, where 𝜎𝑈

2 is the measurement error variance of the phase-

to-neutral voltage magnitude.  

𝚽𝑖
𝑉,𝜙

= [
𝒆𝑖

𝜙
· (𝒆𝑖

𝜙
)

𝑇
[𝟎]

[𝟎] 𝒆𝑖
𝜙

· (𝒆𝑖
𝜙

)
𝑇]  (20a) 

(𝑉𝑖

𝜙
)

2

= [
𝑽𝑒

𝑽𝑓
]

𝑇

· 𝚽𝑖
𝑉,𝜙

· [
𝑽𝑒

𝑽𝑓
]  

           = [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· 𝐓𝐸
𝑇 · 𝚽𝑖

𝑉,𝜙
· 𝐓𝐸 · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]  (20b) 

𝚽𝑖
𝑈,𝜙

= [
𝒆𝑖

𝜙−𝑛
· (𝒆𝑖

𝜙−𝑛
)

𝑇
[𝟎]

[𝟎] 𝒆𝑖
𝜙−𝑛

· (𝒆𝑖
𝜙−𝑛

)
𝑇] ;  𝒆𝑖

𝜙−𝑛
= 𝒆𝑖

𝜙
− 𝒆𝑖

𝑛

 (21a) 

(𝑈𝑖

𝜙
)

2

= [
𝑽𝑒

𝑽𝑓
]

𝑇

· 𝚽𝑖
𝑈,𝜙

· [
𝑽𝑒

𝑽𝑓
]  

            = [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· 𝐓𝐸
𝑇 · 𝚽𝑖

𝑈,𝜙
· 𝐓𝐸 · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]  (21b) 

 Measurements of Current Magnitudes  

With 𝐒𝑖−𝑗
𝜙

 and 𝚽𝑖−𝑗
𝐼,𝜙

 defined in (22a)-(22b), a squared line 

current magnitude measurement is represented as in (22c), 

where 𝐼𝑖−𝑗

𝜙
 represents the magnitude of 𝐼𝑖−𝑗

𝜙
. In (22a), 𝒆𝑎 =

[1 0 0 0], 𝒆𝑏 = [0 1 0 0], 𝒆𝑐 = [0 0 1 0], and 𝒆𝑛 = [0 0 0 1], 

corresponding to superscript 𝜙 being 𝑎, 𝑏, 𝑐, and 𝑛; Subscript 

of a zero vector explicitly indicates its size. The measurement 

error variance of (𝐼𝑖−𝑗

𝜙
)

2

 is 𝜎𝐼,𝑠𝑞
2 = 4 · (𝐼𝑖−𝑗

𝜙
)

2

· 𝜎𝐼
2 , where 𝜎𝐼

2 

is the measurement error variance of the line current 

magnitude. 

𝐒𝑖−𝑗
𝜙

= [𝟎𝑖−1
𝑇   − 𝐘𝑖,𝑗

𝜙
   𝟎𝑗−𝑖−1

𝑇    𝐘𝑖,𝑗
𝜙

  𝟎𝑁−1
𝑇  ];  𝐘𝑖,𝑗

𝜙
= 𝒆𝜙 · 𝐘𝑖,𝑗  

 (22a) 

𝚽𝑖−𝑗
𝐼,𝜙

= [
𝑅𝑒 ((𝐒𝑖−𝑗

𝜙
)

𝐻
· 𝐒𝑖−𝑗

𝜙
) −𝐼𝑚 ((𝐒𝑖−𝑗

𝜙
)

𝐻
· 𝐒𝑖−𝑗

𝜙
)

𝐼𝑚 ((𝐒𝑖−𝑗
𝜙

)
𝐻

· 𝐒𝑖−𝑗
𝜙

) 𝑅𝑒 ((𝐒𝑖−𝑗
𝜙

)
𝐻

· 𝐒𝑖−𝑗
𝜙

)
]   (22b) 

(𝐼𝑖−𝑗

𝜙
)

2

= [
𝑽𝑒

𝑽𝑓
]

𝑇

· 𝚽𝑖−𝑗
𝐼,𝜙

· [
𝑽𝑒

𝑽𝑓
]  

             = [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· 𝐓𝐸
𝑇 · 𝚽𝑖−𝑗

𝐼,𝜙
· 𝐓𝐸 · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] (22c) 

 Pseudo Measurements of Active and Reactive Loads 

By defining 𝐘𝑖
𝜙

, 𝚽𝑖
𝑃,𝜙

, and 𝚽𝑖
𝑄,𝜙

 as in (23a)-(23c), pseudo 

measurements of active and reactive loads can be represented 

as in (23d) and (23e). 

𝐘𝑖
𝜙

= 𝒆𝑖
𝜙

· (𝒆𝑖
𝜙

)
𝑇

· 𝐘;         (23a) 

𝚽𝑖
𝑃,𝜙

=
1

2
· [

𝑅𝑒 (𝐘𝑖
𝜙

+ (𝐘𝑖
𝜙

)
𝑇

) 𝐼𝑚 ((𝐘𝑖
𝜙

)
𝑇

− 𝐘𝑖
𝜙

)

𝐼𝑚 (𝐘𝑖
𝜙

− (𝐘𝑖
𝜙

)
𝑇

) 𝑅𝑒 (𝐘𝑖
𝜙

+ (𝐘𝑖
𝜙

)
𝑇

)
] (23b) 
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𝚽𝑖
𝑄,𝜙

=
−1

2
· [

𝐼𝑚 (𝐘𝑖
𝜙

+ (𝐘𝑖
𝜙

)
𝑇

) 𝑅𝑒 (𝐘𝑖
𝜙

− (𝐘𝑖
𝜙

)
𝑇

)

𝑅𝑒 ((𝐘𝑖
𝜙

)
𝑇

− 𝐘𝑖
𝜙

) 𝐼𝑚 (𝐘𝑖
𝜙

+ (𝐘𝑖
𝜙

)
𝑇

)
] (23c) 

𝑃𝑖
𝜙

= [
𝑽𝑒

𝑽𝑓
]

𝑇

· 𝚽𝑖
𝑃,𝜙

· [
𝑽𝑒

𝑽𝑓
]  

      = [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· 𝐓𝐸
𝑇 · 𝚽𝑖

𝑃,𝜙
· 𝐓𝐸 · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] (23d) 

𝑄𝑖
𝜙

= [
𝑽𝑒

𝑽𝑓
]

𝑇

· 𝚽𝑖
𝑄,𝜙

· [
𝑽𝑒

𝑽𝑓
]  

      = [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· 𝐓𝐸
𝑇 · 𝚽𝑖

𝑄,𝜙
· 𝐓𝐸 · [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] (23e) 

 Measurements of Voltage Phasors 

Measurements on voltage real and imaginary parts of phase 

𝜙  at bus 𝑖  can be respectively represented as in (24a) and 

(24b). As measurement error variances for magnitude and 

phase angle are usually given, measurement variances of 

voltage real and imaginary parts can be calculated as in (25) 

[39], where 𝜎𝑉
2  and 𝜎𝛿

2  are respectively measurement error 

variances of voltage magnitude and angle. 

𝑅𝑒(𝑉𝑖
𝜙

) = [(𝒆𝑖
𝜙

)
𝑇

    𝟎𝑇] · 𝐓𝐸 · [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]  (24a) 

𝐼𝑚(𝑉𝑖
𝜙

) = [𝟎𝑇    (𝒆𝑖
𝜙

)
𝑇

] · 𝐓𝐸 · [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]  (24b) 

𝛝𝑖
𝜙

= [
𝑐𝑜𝑠(𝛿𝑖

𝜙
)      −𝑉𝑖

𝜙
· 𝑠𝑖𝑛(𝛿𝑖

𝜙
)

𝑠𝑖𝑛(𝛿𝑖
𝜙

) 𝑉𝑖

𝜙
· 𝑐𝑜𝑠(𝛿𝑖

𝜙
)

] · [
𝜎𝑉

2 0

0 𝜎𝛿
2

]  

                              [
𝑐𝑜𝑠(𝛿𝑖

𝜙
) −𝑉𝑖

𝜙
· 𝑠𝑖𝑛(𝛿𝑖

𝜙
)

𝑠𝑖𝑛(𝛿𝑖
𝜙

) 𝑉𝑖

𝜙
· 𝑐𝑜𝑠(𝛿𝑖

𝜙
)

]

𝑇

 (25) 

In summary, equations (20)-(24) describe that all 

measurements can be represented via state variables 𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐  and 

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐  in the form of [

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· 𝚽 · [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] , whose partial 

derivative over [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

 is [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ]

𝑇

· (𝚽 + 𝚽𝑇) . It is also 

noteworthy that (20) and (22) are also applicable for 

measurements on neutrals. Moreover, if maximum 

measurement errors instead of error variances are known, with 

a reasonable assumption that measurement errors follow the 

normal distribution, by setting the triple standard deviation of 

the normal distribution equal to the maximum measurement 

error, the measurement error variance can be calculated [40]. 

E. Extension to Polar Coordinates 

The DSSE model under polar coordinates is further 

discussed in this subsection, in which the aforementioned 

measurements are represented via 𝑽𝑁𝑍
𝑎𝑏𝑐  in polar coordinates. 

𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐  and 𝑽𝑓,𝑁𝑍

𝑎𝑏𝑐  can be represented by voltage magnitudes and 

phase angles as new state variables. That is, 𝑅𝑒(𝑉𝑖
𝜙

) = 𝑉𝑖

𝜙
·

𝑐𝑜𝑠(𝛿𝑖
𝜙

)  and 𝐼𝑚(𝑉𝑖
𝜙

) = 𝑉𝑖

𝜙
· 𝑠𝑖𝑛(𝛿𝑖

𝜙
) , where 𝛿𝑖

𝜙
 represents 

voltage phase angels. Thus, [
𝑽𝑒,𝑁𝑍

𝑎𝑏𝑐

𝑽𝑓,𝑁𝑍
𝑎𝑏𝑐 ] can be represented via the 

function vector 𝒇 (𝑽𝑁𝑍

𝑎𝑏𝑐
, 𝜹𝑁𝑍

𝑎𝑏𝑐) , where 𝑽𝑁𝑍

𝑎𝑏𝑐
 and 𝜹𝑁𝑍

𝑎𝑏𝑐  are 

vectors of voltage magnitudes and phase angles of 𝑽𝑁𝑍
𝑎𝑏𝑐.  

By substituting 𝑽𝑒,𝑁𝑍
𝑎𝑏𝑐  and 𝑽𝑓,𝑁𝑍

𝑎𝑏𝑐  with 𝒇 (𝑽𝑁𝑍

𝑎𝑏𝑐
, 𝜹𝑁𝑍

𝑎𝑏𝑐) , 

equations (20)-(23) can be written in the form of 

[𝒇 (𝑽𝑁𝑍

𝑎𝑏𝑐
, 𝜹𝑁𝑍

𝑎𝑏𝑐)]
𝑇

· 𝚽 · 𝒇 (𝑽𝑁𝑍

𝑎𝑏𝑐
, 𝜹𝑁𝑍

𝑎𝑏𝑐) , whose partial 

derivative over [(𝑽𝑁𝑍

𝑎𝑏𝑐
)

𝑇

(𝜹𝑁𝑍
𝑎𝑏𝑐)𝑇] can be calculated via (26). 

It is noteworthy that (26) represents partial derivatives of real-

valued functions with respect to real-valued variables. In 

addition, in (24)-(25) under rectangular coordinates, actual 

measurements on voltage magnitudes and angles from µPMU 

are converted to real and imaginary parts. However, under 

polar coordinates, they are directly represented via 𝑽𝑁𝑍

𝑎𝑏𝑐
 and 

𝜹𝑁𝑍
𝑎𝑏𝑐 . Thus, the corresponding measurement error variances 

can be directly obtained without conversion. 

𝜕[[𝒇(𝑽𝑁𝑍
𝑎𝑏𝑐

,𝜹𝑁𝑍
𝑎𝑏𝑐)]

𝑇

·𝚽·𝒇(𝑽𝑁𝑍
𝑎𝑏𝑐

,𝜹𝑁𝑍
𝑎𝑏𝑐)]

𝜕[(𝑽𝑁𝑍
𝑎𝑏𝑐

)
𝑇

(𝜹𝑁𝑍
𝑎𝑏𝑐)

𝑇
]

= 

            [𝒇 (𝑽𝑁𝑍

𝑎𝑏𝑐
, 𝜹𝑁𝑍

𝑎𝑏𝑐)]
𝑇

· (𝚽 + 𝚽𝑇) ·
𝜕𝒇(𝑽𝑁𝑍

𝑎𝑏𝑐
,𝜹𝑁𝑍

𝑎𝑏𝑐)

𝜕[(𝑽𝑁𝑍
𝑎𝑏𝑐

)
𝑇

(𝜹𝑁𝑍
𝑎𝑏𝑐)

𝑇
]

     (26) 

F. WLS Based State Estimation 

Using vectors 𝒁 and 𝑿 to represent measurement values and 

state variables, 𝒁 can be represented as 𝒉(𝑿), where 𝒉(·) is 

the vector of measurement functions. State variable vector 𝑿 

can be estimated via WLS as in (27), where 𝐖 is a diagonal 

block weight matrix. In the matrix 𝐖 , diagonal blocks 

corresponding to measurements of phase-to-ground voltage 

magnitudes, phase-to-neutral voltage magnitudes, line current 

magnitudes, active loads, and reactive loads are respectively 

set as reciprocals of 𝜎𝑉,𝑠𝑞
2 , 𝜎𝑈,𝑠𝑞

2 , 𝜎𝐼,𝑠𝑞
2 , 𝜎𝑃

2 , and 𝜎𝑄
2 , while 

diagonal blocks corresponding to measurements of voltage 

phasors are set as inverse of 𝛝𝑖
𝜙

. Estimation on 𝑿 is obtained 

by iteratively calculating ∆𝑿𝑘 and updating 𝑿 via (28a)-(28b), 

until a certain threshold on ∆𝑿𝑘 is met. 𝐇(𝑿) is the Jacobian 

matrix of 𝒉(𝑿) over 𝑿. 

𝑚𝑖𝑛𝑿  𝐽(𝑿) =
1

2
· [𝒁 − 𝒉(𝑿)]𝑇 · 𝐖 · [𝒁 − 𝒉(𝑿)]  (27) 

∆𝑿𝑘 = [(𝐇(𝑿𝑘))
𝑇

· 𝐖 · 𝐇(𝑿𝑘)]
−1

· (𝐇(𝑿𝑘))
𝑇

· 𝐖 · [𝒁 − 𝒉(𝑿𝑘)] 

 (28a) 

𝑿𝑘+1 = 𝑿𝑘 + ∆𝑿𝑘 (28b) 

III. LOAD ESTIMATION MODEL TO CALCULATE LOAD PSEUDO 

MEASUREMENTS OF LDSS 

Individual customers in an LDS may present distinct load 

patterns. In order to accurately characterize load profiles of the 

entire LDS, we propose to divide customers into multiple 

clusters, identify representative customers of each cluster to 

build a load estimation model for the cluster, and finally 

calculate the total load of the entire LDS by aggregating 
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estimated loads of individual clusters. In addition, only active 

load models are built, and reactive loads are calculated via the 

estimated active loads and pre-set power factors according to 

historical data.  

A. Establish Clusters and Their Load Estimation Models 

Clusters of an LDS and their load estimation models are 

established via a regression oriented agglomerative 

hierarchical clustering algorithm. That is, given an initial 

cluster scheme with a set of clusters, the algorithm merges two 

clusters at a time according to a certain criterion to generate a 

new cluster scheme, until only one cluster remains. Finally, 

the cluster scheme with the best performance, together with its 

load estimation models, is chosen as the final cluster scheme. 

In this paper, quality of regression 𝑄𝑅 defined in (29) is used 

as a metric to evaluate performance of each cluster scheme 𝓒, 

where 𝑐  is index of clusters; 𝑑  is index of customers; 𝓓 

denotes the set of customers in an LDS on a certain phase; 𝓓𝑐 

is the set of customers in cluster 𝑐  of scheme 𝓒 ; 𝑆𝑐
𝑝𝑠

 is 

predicted residual error sum of squares (PRESS); 𝑆𝑐
𝑠𝑠  is 

residual sum of squares for cluster 𝑐  [41]; 𝑐𝑎𝑟𝑑(·)  is 

cardinality of a set. 

𝑄𝑅 = ∑ (𝑐𝑎𝑟𝑑(𝓓𝑐) · 𝑆𝑐
𝑝𝑠

𝑆𝑐
𝑠𝑠⁄ )𝑐∈𝓒 𝑐𝑎𝑟𝑑(𝓓)⁄  (29) 

The proposed algorithm is described as follows: 

Step 1: Set 𝑘 = 1 and create an initial cluster scheme 𝓒1. As 

communication bottleneck will restrict the number of smart 

meters that can simultaneously upload measurements to the 

control center in real time, ℳ  is used as the real-time 

communication smart meter quota. A bisection K-means based 

hierarchical division algorithm [42] is adopted to create the 

initial cluster scheme 𝓒1  with no more than ℳ  clusters, by 

measuring the Euler distance of historical load profiles of 

individual customers. Build PLS models for individual 

clusters in 𝓒1 and calculate 𝑄𝑅1.  

Step 2: Any two clusters in 𝓒𝑘  could potentially merge, 

which presents a total of 𝑐𝑎𝑟𝑑(𝓒𝑘) ∙ [𝑐𝑎𝑟𝑑(𝓒𝑘) − 1] 2⁄  

options. Build a PLS regression model and calculate 𝑄𝑅 for 

each option, and record the one with the smallest 𝑄𝑅 as 𝓒𝑘+1, 

together with the corresponding PLS models and 𝑄𝑅𝑘+1. 

Step 3: If 𝑐𝑎𝑟𝑑(𝓒𝑘+1) = 1, go to Step 4; Otherwise, set 𝑘 =
𝑘 + 1 and go to Step 2. 

Step 4: Among all 𝓒𝑘  for 𝑘 = 1, 2, 3, … , 𝑐𝑎𝑟𝑑(𝓒1) , choose 

the one with the smallest 𝑄𝑅 as the final cluster scheme. This 

identified cluster scheme and its corresponding PLS models, 

together with real-time smart meter measurements of selective 

customers, are used to calculate load pseudo measurements 𝑃𝑖
𝜙

 

and 𝑄𝑖
𝜙

 of an LDS at phase 𝜙 of bus 𝑖 in real time. 

B. PLS Regression Based Load Estimation Model 

This subsection describes a procedure to build regression 

models of individual clusters in a given cluster scheme 𝓒 and 

to calculate the corresponding 𝑄𝑅, as discussed in above Step 

2. PLS regression [41] is used, given its advantages of 

effectively combining ordinary least square regression and 

principle analysis to handle issues of data collinearity and 

observation insufficiency. 

Specifically, the PLS regression based load estimation 

model (30) is built for each cluster 𝑐  in cluster scheme 𝓒 , 

describing the relationship between independent variables 𝐿𝑐 

and dependent variable 𝐿𝑑  for 𝑑 ∈ 𝓓𝑐
𝑠 . 𝐿𝑐  represents the 

normalized total active load of all customers in cluster 𝑐, and 

𝐿𝑑  represents the normalized active load of customer 𝑑 . 𝓓𝑐
𝑠 

denotes the set of selective customers in cluster 𝑐. Regression 

coefficients 𝛼𝑑  are calculated via the normalized matrix of 

historical loads of selective customers 𝐇𝑐
𝑠 and the normalized 

vector of historical loads 𝒁𝑐 . For a weekday/weekend, only 

history weekday/weekend data are used. 

𝐿𝑐 = ∑ 𝛼𝑑 ∙ 𝐿𝑑𝑑∈𝓓𝑐
𝑠  (30) 

The detailed procedure for building PLS models and 

calculating 𝑄𝑅 values is described as follows: 

(i) Calculate VIP of Individual Customers: The variable 

importance projection (VIP) of an independent variable is 

used as a metric to evaluate its importance in representing 

dependent variables through (30) [43]. That is, the bigger the 

VIP, the more representative an independent variable. VIP of 

each customer in a cluster is calculated via (31), where values 

of parameters 𝑱𝑚 and 𝛽𝑚,𝑑 are calculated via Algorithm 1 with 

inputs 𝐀0 = 𝐇𝑐 , 𝑭0 = 𝒁𝑐 , and 𝓢 = 𝓓𝑐 . 𝑐𝑜𝑟(·,·)  denotes 

correlation coefficient, and 𝐇𝑐  is the normalized matrix of 

historical loads of all customers in cluster 𝑐 . 𝑀  is a pre-

specified parameter representing the number of principle 

components, which can be determined by the cross validation 

method [41]. Parameter 𝒆𝑑 in Algorithm 1 is a standard basis 

vector with the element corresponding to customer 𝑑 being 1. 

𝑉𝐼𝑃𝑑 = √
𝑐𝑎𝑟𝑑(𝓓𝑐)·∑ (𝑐𝑜𝑟(𝑭0,𝑱𝑚)2·𝛽𝑚,𝑑)𝑀

𝑚=1

∑ 𝑐𝑜𝑟(𝑭0,𝑱𝑚)2𝑀
𝑚=1

;           𝑑 ∈ 𝓓𝑐  (31) 

Algorithm 1: Regression Algorithm 

Input: 𝐀0, 𝑭0, and 𝓢 

For 𝑚 = 1 to 𝑀, calculate 

     𝑩𝑚 =
𝐀𝑚−1

𝑇·𝑭𝑚−1

‖𝐀𝑚−1
𝑇·𝑭𝑚−1‖

;   𝑷𝑚 =
𝐀𝑚−1

𝑇·𝑱𝑚

‖𝑱𝑚‖𝟐 ;   𝑅𝑚 =
𝑭𝑚−1

𝑇·𝑱𝑚

‖𝑱𝑚‖𝟐 ; 

     𝐀𝑚 = 𝐀𝑚−1 − 𝑱𝑚 · 𝑷𝑚
𝑇;     𝑱𝑚 = 𝐀𝑚−1 · 𝑩𝑚; 

     𝑭𝑚 = 𝑭𝑚−1 − 𝑱𝑚 · 𝑅𝑚  

     For each 𝑑 ∈ 𝓢, calculate 

            𝛽𝑚,𝑑 = {
𝒆𝑑

𝑇 · ∏ (𝐄 − 𝑩ℎ · 𝑷ℎ
𝑇)𝑚−1

ℎ=1 · 𝑩𝑚; 𝑖𝑓  𝑚 > 1

𝒆𝑑
𝑇 · 𝑩𝑚; 𝑖𝑓  𝑚 = 1

  

      end 

end 

Output: 𝑱𝑚, 𝑅𝑚, and 𝛽𝑚,𝑑 for 𝑚 = 1, ⋯ 𝑀 

(ii) Determine Selective Customers: Based on VIP values 

calculated above, a selective customer identification problem 

(32) is solved to determine 𝓓𝑐
𝑠 . The objective (32a) is to 

maximize the total VIP value of selective customers, i.e., 

choosing the most representative customers in clusters in 

terms of regression. 𝐼𝑑  is a binary variable with 1 indicating 

customer 𝑑 is selected; otherwise 0. Constraint (32b) limits the 

number of selected customers to be no larger than the smart 

meter quota ℳ . Constraint (32c) forces that each cluster 

includes at least one selective customer.  

𝑚𝑎𝑥𝐼𝑑∈{0,1} ∑ 𝑉𝐼𝑃𝑑 ∙ 𝐼𝑑𝑑∈𝓓  (32a) 
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∑ 𝐼𝑑𝑑∈𝓓 ≤ ℳ;                                            𝑑 ∈ 𝓓 (32b) 

1 ≤ ∑ 𝐼𝑑 ;𝑑∈𝓓𝑐
                                            𝑐 ∈ 𝓒 (32c) 

Problem (32) can be effectively solved via the following 

three-step process: (a) In each cluster, select the customer with 

the largest VIP value; (b) Sort remaining customers from all 

clusters in a descending order of VIP; (c) Combine the top 

(ℳ − 𝑐𝑎𝑟𝑑(𝓒)) customers with those identified in (a) to 

constitute the final 𝓓𝑐
𝑠 . Considering that ∑ 𝑉𝐼𝑃𝑑𝑑∈𝓓𝑐

=

𝑐𝑎𝑟𝑑(𝓓𝑐) [43] and VIP values of top customers in a large 

cluster are much higher than those in small clusters, VIP 

values of non-top customers in large clusters are smaller than 

top ones in small clusters. Thus, over-concentration or over-

dispersion in selecting 𝓓𝑐
𝑠 among clusters can be avoided. 

(iii) Build PLS Regression Models of Individual Clusters: 

With 𝓓𝑐
𝑠  determined from (32), equation (33) is used to 

compute regression coefficient 𝛼𝑑 , where 𝑅𝑚  and 𝛽𝑚,𝑑  are 

calculated via Algorithm 1 with inputs 𝐀0 = 𝐇𝑐
𝑠, 𝑭0 = 𝒁𝑐, and 

𝓢 = 𝓓𝑐
𝑠 . Finally, 𝑆𝑐

𝑠𝑠  and 𝑆𝑐
𝑝𝑠

 can be calculated with 𝓓𝑐
𝑠  and 

(30) [41], and 𝑄𝑅 can be obtained via (29). 

𝛼𝑑 = ∑ 𝑅𝑚 · 𝛽𝑚,𝑑
𝑀
𝑚=1   (33) 

C. Variances of Load Estimates 

When using load estimations as load pseudo measurements 

of LDSs in DSSE, variances of estimation errors are needed to 

determine their weights in 𝐖 of (20). In this paper, we use the 

ordinary least square type expression [44] to approximate 

estimation error variances. With a reasonable assumption that 

loads of different clusters are independent, approximate 

variances of active load estimation errors can be calculated via 

(34), where 𝜎𝑃,𝑐
2  represents approximate variance of active 

load estimation error for cluster  𝑐 . It is noteworthy that as 

reactive power of an LDS is calculated through a pre-set 

power factor, active power and reactive power are fully 

correlated and their covariance matrix is singular. Thus, in 

order to derive effective weights, we opt to use equation (35) 

to calculate approximate variances of reactive load estimation 

errors by neglecting off-diagonal elements in the covariance 

matrix, where 𝑝𝑓 is a pre-determined power factor of an LDS. 

𝜎𝑃
2 = ∑ 𝜎𝑃,𝑐

2
𝑐∈𝓒   (34) 

𝜎𝑄
2 = [(1 − 𝑝𝑓2) 𝑝𝑓2⁄ ] · 𝜎𝑃

2  (35) 

IV. CASE STUDIES 

Numerical case studies are conducted to evaluate the 

proposed load estimation model and relevant factors that could 

affect its performance, and to assess the DSSE model with a 

quantitative analysis on computational performance and 

solution accuracy. Load estimation models are implemented 

via C# in Visual Studio, and state estimation models are 

implemented in MATLAB. All case studies are conducted on 

a personal computer with i7 2.90GHz CPU and 16GB RAM.  

A. Load Estimation Model 

Smart meter data in CER [45] are used, which contain half-

hour granularity electricity load measurements for over 4000 

residential customers from 08/14/09 to 12/31/10. The first 301 

customers with complete data, which are contained in a same 

phase, are chosen to form an LDS. 48 half-hour load 

estimation models of this LDS, indexed as 1 to 48, are 

established to perform load estimation studies on 11/09/09. 

Different parameter settings are applied in this study. 

Specifically, the size of history data varies from 10 to 40 with 

a step size of 5, and the smart meter quota ranges from 20 to 

70 (i.e., 6.64% to 23.26% of total smart meters) with a step 

size of 10. Load estimation error is defined as the relative 

residual between the actual and estimated values for each 

measurement time point, and daily average load estimation 

error is the average of load estimation errors throughout a day.  

Daily average load estimation errors against different 

parameter settings are shown in Table I. A general trend is that 

load estimation is more accurate with a larger value of ℳ. On 

the other hand, better performance is observed with historical 

data sizes of 20, 25, and 35, indicating that unlike the smart 

meter quota, a larger historical data set may not necessarily 

improve estimation accuracy. This can be understood as that 

an unnecessarily larger historical data set which covers a 

longer time period may contain exceptional load pattern 

variations triggered by unforeseeable events.  

TABLE I AVERAGE LOAD ESTIMATION ERRORS WITH DIFFERENT SETTINGS 

 Size of history data 

Smart meter quota 
10 15 20 25 30 35 40 

20 (6.64%) 8.06% 5.29% 5.05% 4.57% 4.91% 5.57% 6.19% 

30 (9.96%) 7.95% 4.68% 4.20% 4.02% 5.75% 4.28% 5.86% 

40 (13.29%) 7.56% 5.12% 4.20% 4.47% 4.61% 4.80% 5.38% 

50 (16.61%) 6.04% 5.15% 4.49% 3.51% 4.23% 4.03% 4.59% 

60 (19.93%) 5.85% 4.45% 3.92% 3.75% 4.91% 3.70% 4.53% 

70 (23.26%) 5.44% 4.42% 3.60% 3.89% 3.64% 3.78% 4.45% 

     ≥6%,      [5%, 6%),      [4%, 5%),      [3%, 4%)  

Next, load estimation results of this LDS for the week of 

11/09/09 (Mon.) to 11/15/09 (Sun.) are studied. In this study, 

ℳ is set as 60 (i.e., 19.93% of total smart meters), and the size 

of historical data for weekdays/weekends is set as 35/25. The 

proposed load estimation model is compared with several 

prevailing forecasting models, including the persistence 

method, the autoregressive moving average (ARMA) method, 

and the support vector machine (SVM) method. The 

persistence method simply uses actual load values of the 

previous day as estimated load values [46]. ARMA is widely 

applied for time series analysis. One ARMA load forecasting 

model is built for each measurement time point based on 

historical load data series of an LDS [47], in which the Akaike 

information criterion (AIC) is adopted to identify the best 

orders of the ARMA model. The reason for adopting ARMA, 

instead of other time series methods in the same family, is 

because historical load data series of individual measurement 

time points are stationary while their autocorrelations and 

partial autocorrelations tail off to zero, which better fits the 

properties of ARMA. SVM is a supervised learning based 

method that has been widely used in data regression analysis. 

Two types of SVM based load forecasting models, SVM-I and 

SVM-II, are respectively built with and without real-time 

smart meter measurements [46]. Specifically, in SVM-I, when 

limited real-time measurements are available, similar to the 

proposed load estimation model, loads of an LDS are 

considered as dependent variables while loads of selective 
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customers are considered as independent variables. Selective 

customers are identified by measuring the similarity via Euler 

distance between historical load profiles of the LDS and each 

customer. In comparison, SVM-II is built based only on 

historical load series of the LDS while neglecting real-time 

measurements. In the following studies, suitable lengths of 

training data sets for ARMA and SVM models are tuned via 

experiments. The number of selective real-time measurements 

used in SVM-I is equal to 60. 

ARMA and SVM models are developed in MATLAB. 

LIBSVM [48] package is used to implement SVM models. 

Daily average load estimation errors of all models for the 

entire week are compared in Table II. It is observed that the 

proposed model presents the smallest weekly average load 

estimation error among all five models, as well as the smallest 

daily average load estimation errors for six days of the week 

except Sunday. The two SVM models show close performance 

and are generally better than the ARMA and the persistence 

models, but present the highest estimation errors in Saturday. 

In summary, the proposed load estimation model is 

consistently more accurate than the other models. 

TABLE II AVERAGE ESTIMATION ERRORS OF THE WHOLE WEEK 

 
11/09 

Mon. 

11/10 

Tue. 

11/11 

Wen. 

11/12 

Thu. 

11/13 

Fri. 

11/14 

Sat. 

11/15 

Sun. 

Weekly 

Average 

Proposed model 3.70% 3.79% 4.54% 3.57% 3.7% 4.86% 4.75% 4.13% 

Persistence model 5.07% 6.60% 6.69% 4.50% 5.40% 6.65% 5.82% 5.82% 

ARMA model 6.14% 7.61% 6.71% 6.40% 6.11% 6.93% 6.48% 6.63% 

SVM-I 4.89% 5.36% 5.19% 4.64% 5.34% 7.10% 3.96% 5.21% 

SVM-II 4.57% 5.62% 5.20% 4.06% 5.35% 7.50% 4.24% 5.22% 

As the cluster scheme and the set of selective customers in 

each cluster could impact load estimation accuracy, they 

should be updated periodically to avoid degradation in 

estimation accuracy. Updates could be conducted monthly, 

weekly, or even daily as needed, triggered when the load 

estimation error is larger than a threshold. It is noteworthy that 

since load estimation models of individual LDSs are 

independent, they can be separately updated in parallel. In our 

case studies, it takes about 50 seconds to build a load 

estimation model for the LDS with 301 customers, which 

indicates that the computational burden is tolerable. 

B. Computational Performance of The Proposed DSSE 

A modified IEEE 123-bus system is used in this section to 

evaluate computational performance of the proposed DSSE 

model. Detailed system data can be found in [49]. A 1Ohm 

ground resistance is added at each bus of the original system, 

and per unit line impedances are recalculated according to the 

given line type codes and spacing IDs. In the original 123-bus 

system, 119 buses remain after removing isolated, switch, and 

secondary buses. In addition, considering single-/two-phase 

laterals, there is a total of 244 non-neutral phases (including 

98 non-zero injection phases) and 119 neutrals. Thus, initially, 

there are 363×2 (i.e., (244+119)×2) variables, in which 363 is 

the total number of phases and 2 represents two variables for 

each phase voltage (i.e., real and imaginary terms under 

rectangular coordinates, or magnitude and angle under polar 

coordinates). On the other hand, if neutrals and zero-injection 

phases are eliminated, only 98 non-neutral and non-zero 

injection phases remain, corresponding to 98×2 variables. That 

is, by applying the conversion via (19), the number of state 

variables is reduced by 73%. Locations of measurement 

devices are shown in Fig. 1. µPMUs are only installed at the 

substation bus with the maximum measurement error of 1% 

for magnitudes and 10-2
 rad for angles [39]. The maximum 

measurement error of all load pseudo measurements is set as 

50%. Measurement settings of SCADA are summarized in 

Table III.  

DSSE models with and without the proposed variable 

elimination approach as well as under rectangular and polar 

coordinates are compared. Comparisons are conducted under 

both Setting 1 and Setting 2 shown in Table III. The DSSE 

model with variable elimination is referred to as “reduced 

DSSE model”, while the one without variable elimination is 

called “unreduced DSSE model”. 

For each model and under each measurement setting, 5000 

independent DSSE runs with randomly generated 

measurement errors are executed. Initial voltage values of 

phases a, b, and c are set as 1∠0˚p.u., 1∠-120˚p.u, and 1∠

120˚p.u.. In addition, in unreduced DSSE models, initial 

voltage values of neutrals are all set as 0∠0˚p.u.. The DSSE 

converges when the maximum value of |∆𝑿𝑘| is no larger than 

10-10. MATLAB function “sparse” is used to handle sparse 

matrices, and backslash operator “\” is used to solve the linear 

equation (28a). 

 
Fig. 1 A modified IEEE 123-bus test system and its measurement deployment 

TABLE III SETTINGS ON MAXIMUM MEASUREMENT ERRORS 

Measurement 
Phase-to-ground voltage Phase-to-neutral 

voltage 

Current 

neutral non-neutral neutral non-neutral 

Setting 1 - 1% - - 3% 

Setting 2 1% 1% - 3% 3% 

Setting 3 - - 1% - 3% 

The four model combinations under both Setting 1 and 

Setting 2 are compared in Table IV. As calculating Jacobian 

matrix 𝐇 and solving equation (28a) are two major tasks of the 

DSSE computation, besides the entire DSSE calculation time, 

average computational performance for calculating 𝐇  and 

solving (28a) per iteration is also recorded. It is noted that in 

unreduced DSSE models, the dimension of (𝐇(𝑿𝑘))
𝑇

· 𝐖 ·

𝐇(𝑿𝑘) is 726×726 with 29,202 non-zeros, while it becomes 
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196×196 with 38,416 non-zeros in the reduced DSSE models. 

Comparison between the reduced and unreduced DSSE 

models under rectangular coordinates in Setting 1 shows that, 

average DSSE time is significantly reduced when the 

proposed variable elimination approach is adopted. Similar 

levels of computational benefits can also be observed when 

applying the proposed variable elimination approach under 

Setting 2. In addition, comparison on reduced DSSE models 

under polar and rectangular coordinates shows that, 

computational times for solving (28a) are close while those for 

calculating 𝐇 are significantly different, which is caused by 

heavier computational burden in calculating 𝐇  through (26) 

under polar coordinates. Moreover, the unreduced DSSE 

model under polar coordinates fails to converge in most runs. 

The reason is that in this model, initial setting of neutral 

voltages has to be provided, while the flat initial setting (i.e., 0

∠0˚p.u.) could be far from their actual values, especially the 

neutral voltage angles. Indeed, it is difficult to determine 

proper initial values due to their strong variabilities caused by 

volatile loads on individual buses. On the other hand, the 

proposed variable elimination approach can effectively avoid 

this issue, because neutrals are eliminated and their initial 

settings are no longer needed. This clearly shows the 

advantage of eliminating variables related to neutrals for 

enhancing DSSE computational performance. In addition, 

comparison of the same model under Setting 1 and Setting 2 

further shows that including neutral measurements in Setting 2 

would need more iterations and longer computational time.  

TABLE IV COMPUTATIONAL PERFORMANCE 

Setting DSSE model 
Ave. DSSE 

time  

Ave. # of 

iterations 

Ave. time to 

calculate 𝐇 

per iteration 

Ave. time to 

solve (28a) per 

iteration  

1 

Reduced/Rect. 13.1 ms 6 1.4 ms 0.7 ms 

Unreduced/Rect. 93.2 ms 7 8.7 ms 4.1 ms 

Reduced/Polar 298.5 ms 6 47.7 ms 0.8 ms 

Unreduced/Polar - - - - 

2 

Reduced/Rect. 78.3 ms 30 1.6 ms 0.8 ms 

Unreduced/Rect. 461.3 ms 34 8.8 ms 4.3 ms 

Reduced/Polar 1215.4 ms 23 53.0 ms 0.8 ms 

Unreduced/Polar - - - - 

C. Solution Accuracy of the Proposed DSSE Models 

In this section, solution accuracies of DSSE models as well 

as impacts of load estimation models are studied. Reduced 

DSSE models are used in this section. 11/09/09 (Mon.) is 

chosen for the study. 3 types of LDSs with different numbers 

of customers and smart meter quotas, as summarized in Table 

V, are used to replace 39 (out of 95) loads in the original test 

system. Load estimation models of the 39 LDSs are built via 

historical data with the length of 35.  

TABLE V INFORMATION OF THE 39 REPLACED LDSS 

 LDS Type 1 LDS Type 2 LDS Type 3 

Number of LDSs in the test system 18 11 10 

Number of included customers  50 80 100 

Smart meter quota 10 (20%) 16 (20%) 20 (20%) 

Pseudo measurements of the 39 LDSs are estimated via the 

proposed load estimation models, which, together with 

approximated load estimation error variances, are used as 

inputs to the DSSE model. Maximum load pseudo 

measurement errors of the remaining 56 LDSs are set as 50%. 

Thus, assuming estimation errors of these 56 loads follow 

normal distributions, their average relative errors are about 

13.33%.  

5000 DSSE runs are executed for each measurement time 

point. Measurement values for each DSSE run are generated 

via actual power flow solutions plus random measurement 

errors sampled from the error distributions. Measurement 

errors are considered to follow normal distributions, whose 

means are zero and variances are calculated via the approach 

discussed in Section II.D using the maximum measurement 

errors. Relative root-mean-square errors (RRMSE) of voltage 

magnitudes and absolute errors of voltage phase angles are 

used as metrics to quantify DSSE solution accuracy. Three 

settings shown in Table III are studied to illustrate solution 

accuracy of the proposed DSSE model. 

The DSSE models under rectangular and polar coordinates 

with Setting 1 are compared first. Maximum RRMSEs over all 

non-neutral phase voltage magnitudes for each measurement 

time point are compared in Fig. 2. The three curves interlace 

closely, indicating their similarities in solution accuracy. We 

further include the result of DSSE under rectangular 

coordinates with Setting 3 in Fig. 2 for comparison, which 

replaces phase-to-ground voltage magnitude measurements 

with phase-to-neutral magnitude measurements. It show that 

using phase-to-ground and phase-to-neutral voltage 

measurements would deliver DSSE solutions of similar 

accuracy. Maximum and minimum RRMSEs of non-neutral 

phase voltage magnitudes and angles over all measurement 

time points are shown in Table VI, which further illustrates 

that using rectangular and polar coordinates as well as phase-

to-ground and phase-to-neutral voltage magnitude 

measurements would derive DSSE results of similar accuracy. 

 
Fig. 2 Maximum RRMSE of non-neutral phase voltage magnitudes using 

rectangular and polar coordinates and under Settings 1&3 

TABLE VI DSSE RESULTS OF THE TWO MODELS WITH TWO SETTINGS  

 DSSE model & Setting 
Minimum 

RRMSE 

Maximum 

RRMSE 

Voltage  

magnitude 

Rect. coordinates (Setting 1) 0.153% 0.212% 

Polar coordinates (Setting 1) 0.150% 0.210% 

Rect. coordinates (Setting 3) 0.153% 0.209% 

 DSSE model & Setting 
Minimum 

absolute error 

Maximum 

absolute error 

Voltage  

angle 

Rect. coordinates (Setting 1) 0.332 crad 0.359 crad 

Polar coordinates (Setting 1) 0.336 crad 0.360 crad 

Rect. coordinates (Setting 3) 0.333 crad 0.360 crad 

Maximum RRMSEs over all non-neutral phase voltage 

magnitudes with Setting 1 and Setting 2 under rectangular 

coordinates are further compared in Fig. 3. It shows that extra 
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measurements on neutrals in Setting 2, although do not reduce 

the maximum RRMSE at every measurement time point, do 

help eliminate several extreme high RRMSE situations, such 

as time points 34-36. Indeed, with neutral measurements, 

RRMSEs of non-neutral phase voltage magnitudes and 

absolute errors of non-neutral phase voltage angles are 

respectively in the ranges of [0.152%, 0.194%] and [0.332 

crad, 0.357 crad], which are better than those without neutral 

measurements as shown in the first row of Table VI. 

Fig. 4 further shows average RRMSEs over all neutral 

voltage magnitudes, which are much larger than those of non-

neutral phases in Fig. 3. This is because neutral voltages are 

close to zero and small deviations could cause large RRMSEs. 

Fig. 4 also indicates that improvements in DSSE accuracy are 

of significance when measurements on neutrals are included. 

We further execute DSSE runs using various load forecasts 

from SVM-I and SVM-II to evaluate their impacts. SVM-I 

and SVM-II are chosen because of their better performance as 

shown in Section IV.A. However, as load estimation error 

variances of SVM-I and SVM-II are not readily available, 

maximum relative regression errors of history load series are 

used as maximum load estimation errors to determine weights 

of load pseudo measurements. 

DSSE results with load pseudo measurements from 

different models are compared in Fig. 5. It shows that at most 

measurement time points (i.e., 1-15, 17-24, 26-31, and 40-47), 

DSSE results derived from the proposed load estimation 

model as well as SVM-I and SVM-II are close. Although 

DSSE result using the proposed load estimation model does 

not necessarily outperform those using SVM-I and SVM-II at 

every measurement time point, it shows better performance at 

measurement time points with more intense load volatilities, 

such as time points 31-40. Specifically, the maximum RRMSE 

of voltage magnitudes is effectively reduced when the 

proposed load estimation model is used.  

 
Fig. 3 Maximum RRMSE of non-neutral phase voltages with and without 

neutral measurements 

 
Fig. 4 Average RRMSE of neutral voltage magnitudes with and without 

neutral measurements 

 
Fig. 5 Maximum RRMSE of non-neutral phase voltage magnitudes with 

different load pseudo measurement models 

V. CONCLUSION 

This paper discusses a WLS based DSSE model which 

accurately considers non-zero potential neutral conductors and 

effectively leverages voltages of non-neutral and non-zero 

injection phases in both rectangular and polar coordinates as 

state variables. Voltage variables of neutrals and zero-

injection phases are linearly represented by state variables and 

eliminated from the DSSE model. With real-time load 

measurements from selective smart meters, load estimation 

models generate pseudo measurements of LDS loads to 

compensate real-time measurement insufficiency in MDS.  

Comparisons with other load forecasting models show that 

the proposed load estimation model can effectively provide 

load pseudo measurements of LDSs to DSSE with consistently 

higher accuracy. Numerical studies on the modified IEEE 123-

bus system further illustrate advantages of the proposed DSSE 

model in terms of computational performance and solution 

accuracy. Specifically, the proposed neutral and zero-injection 

phase elimination approach can reduce the number of 

iterations and total computational time. Including neutral 

measurements could improve DSSE solution accuracy, 

especially at neutrals, at the cost of increased computational 

time. In addition, it is observed that measuring phase-to-

ground voltages is just as important as measuring phase-to-

neutral voltages, while the DSSE model under rectangular 

coordinates presents similar accuracy as, but shorter 

computational time than, the one under polar coordinates. 
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