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Abstract—Machine learning and Artificial Intelligence (AI)
techniques can play a key role in resource allocation and
scheduler design in wireless networks that target applications
with stringent QoS requirements such as near real-time control
of Community Resilience Microgrids (CRMs). Specifically, for
integrated control and communication of multiple CRMs, a large
number of microgrid devices need to coexist with traditional mo-
bile User Equipments (UEs), which are usually served with self-
organized and densified wireless networks with many small cell
base stations (SBSs). In such cases, rapid propagation of messages
becomes challenging. This calls for a design of efficient resource
allocation and user scheduling for delay minimization. In this
work, we introduce a resource allocation algorithm, namely,
Delay Minimization Q-learning (DMQ) scheme, which learns the
efficient resource allocation for both the macro cell base stations
(eNB) and the SBSs using reinforcement learning at each Time-
To-Transmit Interval (TTI). Comparison with the traditional
Proportional Fairness (PF) algorithm and an optimization-based
algorithm, namely Distributed Iterative Resource Allocation
(DIRA) reveals that our scheme can achieve 66% and 33% less
latency, respectively. Moreover, DMQ outperforms DIRA and PF
in terms of throughput while achieving the highest fairness.

Index Terms—Community resilience microgrid, Low-latency
communications, Reinforcement learning, Resource allocation,
Small cells, Smart grid.

I. INTRODUCTION

Community Resilience Microgrids (CRMs) allow sharing

distributed energy resources among multiple owners. The dy-

namic nature of CRMs calls for a reconfigurable control which

inherently relies on low-latency and reliable communication

networks [1]. In CRMs, all Micro Grid Devices (MGDs)

including distributed energy resources, loads, controllers, and

distribution equipment generate data. In addition, control in-

formation needs to propagate fast for islanding from the grid

or allowing energy transactions among multiple consumers

within the CRM [2]. Wireless mobile networks provide ubiq-

uity while the heterogeneous network environment with dense

deployment of small cells provides flexibility [3], and enables

effective communication among heterogeneous assets within a

CRM. However wireless mobile networks, such as LTE-based

fourth generation (4G) networks or the future 5G networks, are

not dedicated, and as a result, a large number of MGDs need

to coexist with traditional mobile User Equipments (UEs).

Therefore, resource allocation and scheduler design play a

key role for communications and efficient control of CRMs, in

particular, when MGDs are aimed to be scheduled with a min-

imum delay. The dynamic nature of CRMs and the possibility

of dynamically configuring small cells in accordance with the

CRMs call for intelligent techniques. Reinforcement learning,

more specifically Q-learning, is a machine learning technique

that has potential to improve the performance of dense small

cell networks via efficient self-organization.

In literature, various resource allocation schemes have been

proposed such as traditional maximum rate and Proportional

Fairness (PF) or more recent reinforcement learning algo-

rithms. In [4], the authors propose a multi-agent Q-learning

based resource allocation algorithm to improve network ca-

pacity. Their results show that throughput is improved when

using centralized Q-learning over distributed Q-learning. In

[5], the authors propose a joint resource allocation and power

allocation scheme using cooperative Q-learning on femtocell

networks with an objective of capacity maximization. In [6],

the authors use Q-learning to enhance performance of Device-

to-Device networks, again with the objective of maximizing

throughput. In our previous work in [7], we proposed a

throughput maximization Q-learning algorithm that aims at

learning an efficient resource block allocation to improve the

throughput of data intensive devices. Many other variants

of the Q-learning algorithm have been proposed [8]–[14] in

general for throughput maximization. Minimizing delay has

been studied in a few works. In [15], the authors performed

resource allocation for packet delay minimization in multi-

layer unmanned aerial vehicles using gradient descent with

bisection method which does not involve machine learnign.

Most recently, in [16], we further utilized deep reinforcement

learning to perform resource allocation for latency minimiza-
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tion in small-cell LTE networks.

In this paper, we propose a Q-learning-based resource

allocation scheme by aiming at lower latency and improved

fairness. A salient feature of our Delay Minimization Q-

learning (DMQ) scheme is its ability to capture CRM net-

work dynamics without a priori information. In addition,

the proposed algorithm is fully distributed which promotes

independent learning, and lowers signaling overhead on the

network. Moreover, the design of the reward function achieves

both low-latency and high fairness among MGDs and UEs.

Finally, the integrated design of Q-learning and two-tier small

cell network allows for great flexibility in deployment and fast

network adaptability. Performance results show 33% and 66%
latency reduction for MGDs when compared to previously

proposed Distributed Iterative Resource Allocation (DIRA)

which is an optimization based solution and the traditional Pro-

portional Fairness (PF) algorithms, respectively. Meanwhile,

a significant improvement in throughput and fairness is also

achieved by the proposed scheme which makes DQM tailored

for the connected microgrids of the future smart grid. It is

worth mentioning that our approach can be adopted to other

latency critical applications.

The paper is organized as follows: Section II presents the

CRM communication and control model, covering state of art

in microgrid communications and motivation of the paper.

Section III presents the small cell network architecture and

problem formulation. The proposed Q-learning-based algo-

rithm along with the baseline algorithms are presented in

section IV. Next, we present the performance of our proposed

scheme and compare with traditional and optimization-based

schemes in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Community Resilience Microgrid (CRM)

An increasing frequency of catastrophic weather events has

been observed recently in the United States and globally,

which has brought serious social and economic impacts. A

critical issue associated with such catastrophic events is the

availability of electricity for recovery efforts [17]. The smart

grid is expected to heal itself under extreme circumstances

[18]. In response to this, CRMs have been sought for enhanc-

ing resilient electricity supply to critical loads in a community

during such disruption events. A CRM is a microgrid that

is expected to supply electricity uninterruptedly during the

damage phase and initial recovery period of a resiliency event.

As shown in Fig. 1, a CRM includes multiple distributed en-

ergy resources and critical loads that are owned/controlled by

different entities within a clearly defined electrical boundary,

which are connected via primary distribution lines owned by

a local regulated power company [2], [19], [20].

However, CRMs, as complex networked systems, exhibit

unique structure and bring new challenges for the operation

and control. The methods used for control of standalone

microgrids, such as droop control [21], need to be tailored to

CRMs. Specifically, as CRMs present a variety of dynamical

behaviors ranging from minutes and hours to milliseconds,

such as real-time uncertain loads and renewable generation

�

�

Fig. 1. Conceptual design of a CRM with critical and non-critical loads.

outputs, maintaining reliable operation of CRMs in terms of

voltage and frequency stability calls for real-time response

and control. Consequently, a three-level hierarchical control

architecture, including hour-to-minute-level tertiary control,

second-level secondary control, and millisecond-level primary

control, is usually deployed to realize secure and cost-effective

operation and coordinate multiple partners in CRMs.

1) A Minute-Level Unbalanced AC Optimal Power Flow
(ACOPF) Based Tertiary Control: is used to determine the

most economic set points of DERs, loads, and voltage/reactive

power regulation devices. The unbalanced ACOPF model

in general is non-convex, nonlinear, and non-deterministic

polynomial-time hard (NP-hard), because of the quadratic

relationship among voltages and real/reactive power injections

of three phases at individual buses as shown in [22]. Early

works solve ACOPF via different mathematical models includ-

ing linear programming, quadratically-constrained quadratic

programming, and nonlinear programming, as well as various

solution algorithms including Lagrange relaxation, interior

point, heuristic, and convex relaxation approaches. However,

many of these approaches rely on strong assumptions (e.g.,

single-phase radial or weak mesh networks ), which are

invalid for practical distribution networks of community mi-

crogrids. Recently, in [23], ACOPF has been formulated as

a moment relaxation based semidefinite programming (SDP)

model, which demonstrated that considering sparsity of the

distribution network can drastically improve computational

capacity by 10-100 times while guaranteeing solution quality

of the same level. Certainly, low-latency communications will

be needed for messaging between controllers as well as other

entities.

2) A Second-Level Secondary Control: is used to re-

store frequency and voltage levels and enable islanding and

resynchronization. The secondary control compensates for

deviations induced by the primary control at the level of

seconds, while also performing the synchronization control

to seamlessly island and resynchronize with the main grid.

Specifically, with a sudden change in demands followed by

adjustment of DERs to achieve balance, if frequency and/or

voltage deviates from the rated value (i.e., [0.95, 1.05] pu and

[59.3, 60.5] Hz per ANSI 84.1-2016 standards), the secondary

control generates a compensation signal to restore the rated

frequency/voltage. At this level of controllers, communication
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latency becomes even more of a concern as the latency

requirements becomes more stringent.

3) Millisecond-Level Primary Control: is used to stabilize

voltage/frequency in real-time and provide plug-and-play ca-

pabilities. The primary control realizes active and reactive load

sharing among parallel-connected DERs with plug-and-play

capabilities, and stabilizes community microgrid frequency

and voltage in real-time. This is especially important subse-

quent to islanding events, when community microgrid loses

its voltage/frequency stability due to power mismatches. In

recognizing that most DERs are interfaced via power elec-

tronic converters, droop control is widely used to determine

adjustments of real/reactive power in response to frequency

/voltage deviations. Primary control is the most delay-sensitive

domain and benefits the most from low-latency communication

techniques.

The key of the hierarchical control strategy is to effectively

integrate the three control levels at different timescales. Indeed,

frequency of interactions between different control levels can

be optimized to achieve the trade-off between optimal power

output tracking and economic operation. To facilitate the

coordination, tertiary and second controls will receive minute-

to-second level system information to support demand-supply

balance calculations and determine optimal set points of local

device controllers. On the other hand, certain time-critical

control tasks, such as fault coordination and clearing as well

as adjustments on presets of protective relays, are primarily

performed at the individual controller level due to the speed

of response required. In summary, different control levels

would have distinct communication delay tolerance, and an

efficient resource allocation and user scheduling approach

is needed to optimally customize communication traffics,

resource allocation, and delays of different needs. In this

paper, we focus on the primary control as it poses the most

stringent latency requirements. For example, in [24], latency

requirements of substation automation is stated to be less than

100 ms. Our simulation results verify the suitability of the

proposed algorithm by achieving latency values less than 50

ms for the worst-case scenario.

B. State-of-art in Microgrid Communications

The literature on microgrid communications has several

notable works that address many metrics such as delay,

reliability, security, etc. The research in [25] provides an

overview of applying game-theoretic techniques for smart grid

applications. In [26], the authors propose a security network

architecture for data confidentiality and authentication, while

taking the microgrid real-time communication into consider-

ation. Authors in [27] consider an energy-aware optimization

for aggregation of smart grid data packets. The optimization

is formulated as a mixed integer non-linear problem that

aims at finding the optimal data aggregator, optimal transmit

power, and optimal number of concatenated packets. In [28],

the authors address the microgrid demand-response manage-

ment maximization alongside with communication spectrum

management. A joint optimization problem is formulated to

balance demand-response management performance and the

Fig. 2. A minimalist illustration of CRM communications over small cell
wireless networks. A two-tier wireless network of an eNB underlaid with
SBS covering users and the evolved packet core.

cost of imperfect communications. On the other hand, cellular

networks are becoming an attractive solution for carrying mi-

crogrid traffic due to its significant performance. The authors

in [29] conduct a survey on the evolution of cellular networks

utilized for microgrid applications. The paper highlights the

challenges and gains of LTE networks, with a focus on LTE

Device-to-Device discussion.

III. SYSTEM MODEL

A. Small Cell Network

Our network model considers a two-tier network of an eNB

underlaid with J Small-cell Base Stations (SBSs) covering

NJ user devices. In general, users can be classified as either

MicroGrid Devices (MGDs) such as smart meters, micro-

phasor measurement units, etc, or conventional LTE User

Equipments (UEs) such as smart phones, tablets, etc. All nodes

follow the downlink and uplink communication according to

LTE release 12 standard. The LTE frame structure consists of

10 subframes of 1 ms duration, whereas each subframe has two

time slots of 0.5 ms each. According to Orthogonal Frequency

Division Multiple Access (OFDMA), the LTE resource block

grid is divided in time and frequency into a number of resource

blocks (RBs) denoted by NRBs. Each RB has NSC subcarriers

and spans Nsym OFDM symbols. The resource allocation and

communication is performed in each subframe, namely Time-

To-Transmit (TTI). We assume that all nodes transmit with

the same amount of transmit power which means the problem

translates into resource block allocation where spectrum and

time allocation is tackled.

In Fig. 2, all nodes conform to Frequency Division Duplex

with single antenna transmission. To remove cross-tier inter-

ference, we decompose the uplink (downlink) transmissions

of both tiers. This is explained as follows. Uplink (downlink)

of the links (users-SBS) and (SBS-eNB) use interleaving

subframes to transmit their data. For example, users’ uplink

uses subframes (1, 3, 5, .. 2i+1, .., 2n+1), while SBS’ uplink
uses subframes (0, 2, 4, ...i.,...2n). Although this succeeds

to remove the cross-tier interference, co-tier interference still

remains due to the dense deployment of SBSs, which causes

users attached to one SBS and lying in the range of other SBS

to cause interference in the adjacent cells.

Resource allocation process is performed by identifying the

best resource block (RB) in time and frequency domains for

active users in the network. Both the eNB and individual
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SBSs perform resource allocation to allocate RBs to their

attached users in each TTI. In each TTI, the users report their

scheduling request to their attached base station (i.e., users

report to SBSs, and SBSs report to eNB). The base station

performs the resource allocation algorithm and informs the

users with the allocated RBs to use in the next TTI. Performing

the resource allocation on the two-tier network (i.e., eNB, and

SBSs) reduces the burden on the eNB, as well as facilitates

small cells for capacity and coverage improvement.

B. Channel Model
The wireless channel between nodes can be prone to multi-

ple fading sources. We use the 3GPP pathloss model following

[30]–[32]. PL3GPP = 128.1+37.6∗log10(d), where PL3GPP

is pathloss in dB, and d is distance between the base station

and the user in km [33]. The shadowing effect is modeled as

a log-normal distribution with zero-mean and 10 dB variance.

C. Traffic Model
Following the traffic model proposed by 3GPP TR 37.868

for machine-type communication (MTC) [34], we apply a

Beta/M/1 queue on each node. Therefore, the corresponding

average queue delay (waiting time) for user i attached to base

station j can be formulated as in [35]:

Dq
i,j =

Bi,j

μi,j (1−Bi,j)
(1)

Bi,j = MA(μi,j Bi,j − μi,j) (2)

where μi,j = Ri,j/Li,j is the service rate on link (i, j), Ri,j

is the instantaneous rate, Li,j is the packet size, MA(μi,j) =∫∞
−∞ f(x)euxdx is the moment generating function of the

arrival process with PDF f(x), inter-arrival time A, and mean

1/λ, and Bi, j is the Markovian transition probability solution

as shown in [36] for the G/M/1 queue. In 3GPP [34], PDF of

the inter-arrivals of MTC devices follows a Beta distribution

with shape parameters a = 3 and b = 4, and the moment

generating function of Beta/M/1 can be derived as in [35]:

MA(u) = 15
d2

du2

[ 4!
u4

(eu − 1− u− u2

2
− u3

6
)
]

(3)

D. Problem Formulation
Delay on the link between user i and base station j (i.e.,

link (i, j)) can be formulated as in Eq. 4:

Di,j = Dtr
i,j +Dq

i,j (4)

where Dtr
i,j is transmission delay on link (i, j), and Dq

i,j

is queuing delay on link (i, j). Equation 5 formulates the

transmission delay on link (i, j), where Li,j is packet size

and Ri,j is transmission rate. Delay and transmission rate can

be formulated as follows:
Dtr

i,j =
Li,j

Ri,j
(5)

Ri,j =
K∑

k=1

xi,j,k ri,j,k (6)

and
ri,j,k = Wk log2

(
1+

xi,j,k pi,j,k hi,j,k

Wk N0 +
∑
m �=i

m∈NJ

xm,j,k pm,j,k hm,j,k

)

(7)

where ri,j,k is rate on RB k, xi,j,k indicates if RB k is

allocated to user i, Wk is bandwidth of RB k, N0 is Additive

White Gaussian Noise (AWGN) single-sided power spectral

density, pi,j,k is transmit power of ith node on kth RB, hi,j,k

is channel coefficient of kth RB, and pm,j,k is transmit power

of interfering node m on the kth RB of the jth node.

IV. PROPOSED DELAY-MINIMIZING RESOURCE

ALLOCATION

In this section, we provide a detailed description of our pro-

posed algorithm, namely delay minimization using Q-learning

(DMQ) for RB allocation. Furthermore, we provide the details

of the baseline algorithms that are used in comparisons.

A. Delay minimization using Q-learning (DMQ)
DMQ is a decentralized algorithm where multiple agents

(i.e., SBSs/eNB) aim at learning a sub-optimal decision policy

by taking actions and computing feedback from the envi-

ronment. The algorithm is represented by the tuple {agents,
states and actions} and reward function (i.e., the Q-value).
The convergence point is reached when each agent learns a

state-action pair that maximizes its reward over infinite time

horizon. This can be realized by having a Q-value representing

the agents’ reward over iterations. Hence, the optimal decision

would be actions corresponding to the maximum reward (i.e.,

max Q-value). We define the DMQ tuple as follows:
1) Agents: The macro-cell / small-cell base stations (i.e.,

eNB / SBSs) form the set of agents in the DMQ tuple.
2) States: The Q-learning agents perform a search to find

the best resource allocation vector for its attached users. To

this end, the number of states is limited to one.
3) Action space: Each base station (eNB/SBS) performs

RB-to-user mapping for its attached users on uplink. Hence,

we denote aj,t as the decision of base station j at TTI

t regarding the set of RBs allocated to its attached users.

Consequently, dimension of the action space is m = NK ,

where K is total number of RBs in a subframe and N is

number of users. In order to avoid high dimensionality, it is

viable to allocate users in a group of contiguous RBs, namely

Resource Block Group (RBG). This reduces the action space

and helps the algorithm converge fast. Lastly, ε-greedy is used

to account for action space exploration.
4) Reward/Cost function: We define the reward function

as follows:

RCj(Sj,t, aj,t) = β τj,c + (1− β) τj,n (8)

where, β is a scalar weight to control priorities of individual

loads (i.e., traffic from MGD and UE), τj,c and τj,n are defined

as follows:

τj,c =
(−2

π

)
arctan(Dj,c) (9)

τj,n =
(−2

π

)
arctan(Dj,n) (10)

where, Dj,c and Dj,n are the average delays of critical

and non-critical loads, respectively. This function rewards the

critical load delay with a positive reward as long as the

achieved average delay is low. At the same time, it aims at

minimizing delay of non-critical loads in order to maintain

fairness among users.
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5) Q-Value: The Q-Value is calculated using the Temporal

Difference equation as in [37]:

(11)
Q(Sj,t, aj,t) = (1−α)Q(Sj,t, aj,t) +α[RCj(Sj,t, aj,t)

+ γmax
aj,t

Q(Sj,t+1, aj,t)]

6) Policy: The policy of base station j at TTI t is denoted
by πj,t and aims to maximize the Q-value:

πj,t = argmax
aj,t

Q(Sj,t, aj,t) (12)

The algorithm works in a two-tier scheduling fashion on both

the eNB and SBSs. That is, the eNB represents the first tier

agent, and its attached SBSs are considered as its environment.
Each SBS constitutes the second tier agent, with its attached

users as the environment. SBS/users report their channel state

information to eNB/SBS, respectively, on the uplink trans-

mission. The channel state information enables the eNB/SBS

to estimate the link quality of the allocated RBs thanks to

the Channel Quality Indicator (CQI), Signal to Interference

plus Noise Ratio (SINR), and total delay of the previous

packet included in the channel state information. Algorithm

1 presents the Q-learning steps performed by each jth agent.

Algorithm 1 is repeated for the entire simulation time (T),

during which the algorithm either performs exploration (i.e.,

random action selection) or exploitation (i.e., select actions

with max Q-value). The same algorithm runs on both the eNB

and SBSs, where the eNB is responsible of scheduling SBSs

on the uplink.

Algorithm 1 Delay minimization using Q-learning (DMQ)

Initialization: Q-Table ← 0, ε, and T (Simulation time).

while i < T do
Generate a uniform random variable, M .

if M ≥ ε then
aj,t ← arg rand {aj,t}.

else if M < ε then
// Exploit using Q-learning policy

aj,t ← argmax{Q(Sj,t, aj,t)}.
end if
Calculate the Reward using Equation (8).

Update Q(Sj,t, aj,t) using Equation (11).

Increment i.
end while

B. Baseline algorithms

To evaluate the effectiveness of our proposed solution,

DMQ, we compare its performance to two baseline algorithms,

which are briefly introduced in this subsection.

1) Proportional Fairness (PF): PF is a well-known algo-

rithm that aims to give priority to the user having the maximum

relative channel condition. The utility function is formulated

as:

u∗
i = arg max

i=1,...,Nj

(Ri,k(t))

(Ti,k(t))
, (13)

where Ri,k(t) is the instantaneous rate of user i at RB k on TTI

t, Ti,k(t) is the moving average rate of user i [38], [39], and u∗
i

is the user achieving the highest relative channel conditions.

The moving average rate can be computed as in [40]:

Ti,k(t+ 1) =

{
(1− 1

tw
) Ti,k(t) +

1
tw

Ri,k(t), i
∗ = i

(1− 1
tw
) Ti,k(t), i

∗ �= i
(14)

where tw is the history window length.

2) Distributed Iterative Resource Allocation (DIRA): We

compare our proposed scheme with an optimization-based

solution that targets delay-sensitive users similar to our work

[41]. To make DIRA comparable to our scheme, we slightly

modify the original algorithm to consider only RB alloca-

tion and omit power allocation. Furthermore, to have a fair

comparison, we run DIRA on both network tiers (i.e., at the

eNB and SBSs). To the best of our knowledge, the literature

lacks an algorithm that both considers two-tier architecture and

targets low-latency while tackling the resource block allocation

problem. Therefore, DIRA is chosen to compare our results to

a baseline solution that aims to provide low latency. Resource

block allocation with DIRA can be formulated as:

max
xi,j,k

J∑
j=1

Nj∑
i=1

K∑
k=1

xi,j,k ri,j,k (15)

Subject to:

K∑
k=1

xi,j,k pi,j,k ≤ Pmax, ∀j, i (15a)

pi,j,k ≥ 0, ∀i, k (15b)

K∑
k=1

xi,j,k ri,j,k ≥ Ru, ∀i ∈ MGDs, ∀j (15c)

Nj∑
i=1

xi,j,k ≤ 1, ∀j, i (15d)

xi,j,k ∈ 0, 1, ∀j, i, k (15e)

where Ru is the aggregate capacity threshold of MGDs in

each base station, Pmax is the maximum transmission power

of each user i. (15) aims to maximize the aggregate network

rate through RB allocation. (15a) limits the power allocation

of each user i to Pmax on all of its RBs. (15c) guarantees a

minimum achievable spectral efficiency, Ru, to each user i.
(15d) and (15e) guarantee that each RB can only be assigned

to one user within each cell. Following the same derivation

methodology presented in [41], the following formula can be

obtained:

Hi,j,k = (1 + ν̂i,j)ri,j,k − θi,j pi,j,k−
(1 + ν̂i,j)

1

ln(2)

( pi,j,k hi,j,k

pi,j,k hi,j,k + Ii,j,k

)
(16)

where Ii,j,k = pm,j,k hm,j,k + σ2 is the interference on link

(i, j) on RB k.

ν̂i,j =

{
νi,j , ∀i, j ∈ MGDs

0, Otherwise
(17)

where νi,j , and θi,j are Lagrangian multipliers obtained using

the subgradient method. Hence, RB k is assigned to the user

with the largest Hi,j,k as follows:

x̂i∗,j,k = 1|i∗=max
i

Hi,j,k
, ∀j, k (18)
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where x̂i∗,j,k is the RB allocation decision to selected user i∗.

V. PERFORMANCE EVALUATION

We use the LTE system toolbox in Matlab to design a

discrete-level simulator for our network setup. Table I summa-

rizes simulation settings used in the evaluation of the proposed

and baseline algorithms. The simulation considers one eNB

covering 20 SBSs, where eNB and SBS radii are 800m and

50m [42], [43], respectively. The pathloss model is 3GPP

model, penetration loss is 20 dB, and receivers noise figure is

9 dB [44]. The DMQ uses a learning rate α of 0.5, a discount
factor γ of 0.9, and ε of 0.8 [45]. All results are averaged

over 5 testing runs, where each run is 500 subframes (i.e.,

500 msec). A 95% confidence interval is provided in all our

simulation results.

Fig. 3 presents the average packet delay versus the number

of MGDs with 10 SBSs and 5 UEs per SBS. DMQ achieves

the lowest transmission latency for both MGDs and UEs.

Although the delay increases with the increase in the number

of MGDs, as expected, DMQ still achieves the lowest delay

compared to the other algorithms. Fig. 4 presents the average

queuing delay for MGDs and UEs. This accounts for time that

the packets have to wait until the resource block allocated to

them becomes available. DMQ achieves the lowest queuing

delay, with some degradation when increasing the number of

MGDs. However, it still has the lowest delay trend. It is also

observed that most of the end-to-end delay is due to queuing

delay.

Fig. 5 presents the average throughput versus number of

MGDs. The results show that DMQ outperforms DIRA and

PF. However, increasing the number of MGDs/SBS degrades

the DMQ’s throughput. The main reason behind this is that

DMQ’s main aim is to decrease the end-to-end latency of

MGDs while maintaining fairness among MGDs and UEs.

Therefore, as can be seen in Fig. 3, both MGDs and UEs

delays are decreased, whereas this comes on the price of

higher throughput degradation, especially in dense scenarios.

In Fig. 6, we show the top-10 users’ throughput, which again

shows a better performance of DMQ. Yet, throughput of

DMQ is impacted by the number of MGDs more than the

other algorithms. Once again, for denser networks, throughput

results converge since the available resources are limited.

To study the fairness of DMQ, Jain’s fairness index is

plotted in Fig. 7. Since the reward function of DMQ aims to

minimize UEs delay as well, it provides fairness among users.

Our results show fairness values that exceed PF fairness by

about 2%.

Fig. 8 presents the impact of a longer learning phase on

both the delay and throughput results under the proposed

DMQ scheme. It can be seen that performing more action-

space exploration allows the algorithm to learn better resource

allocation actions, hence the delay decreases and throughput

increases at the same time. However, this also leads to the re-

quirement of longer training time for improving performance.

In summary, DMQ performs better than DIRA and PF,

in terms of delay, throughput and fairness. However, its

throughput degrades in a faster trend than DIRA and PF. As

TABLE I
SIMULATION SETTINGS

General parameters
Time-to-Transmit Interval (TTI) 1 msec
Resource allocation algorithms DMQ, PF and DIRA.

eNB radius 800 m
SBS radius 50 m

Min distance between SBSs 30 m
Number of eNBs 1

Number of SBSs per eNB 10
Number of MGDs per SBS 4:2:12
Number of UEs per SBS 5

Speed of users Fixed positions
MGDs Traffic model Beta (α = 3, β = 4) [34]
UEs Traffic model Poisson

Packet mean Inter-arrival time 5 milli-seconds.
Packet size Exponential (mean = 25 Bytes)

Transmission bandwidth 10 MHz
Number of RBs 50 (12 subcarriers / RB)
Number of RBGs 5 (10 RBs/RBG)
eNB Tx power 40 dBm [46]
SBS Tx power 20 dBm [46]
Pathloss model 3GPP

PLdB = 128.1 + 37.6 ∗ log10(d)
Penetration loss 20 dB
Noise Figure 9 dB
Shadowing ∼ LOGN(0, 10(dB))

Proportional Fairness (PF)
φ 1 (PF)
ζ 1 (PF)

tc (window) 2
DMQ

Learning rate (α) 0.5
Discount factor (γ) 0.9

Exploration probability (ε) 0.8
Priority weight of MGDs (β) 0.9

DIRA
Ru 9 bps/Hz [41]

TABLE II
COMPARISON AMONG THE THREE ALGORITHMS

Criteria PF DIRA DMQ

Resource allocated Spectrum Spectrum Spectrum
(Power removed)

Rate Rate
Objective and Fairness and delay Delay

constraint

Network Model two-tier
Adapted to

two-tier
two-tier

Complexity
O(Nj) O(Nj) O(Nj)(per TTI per BS)

a trade-off DMQ favors delay and fairness over throughput,

which can be observed from the reward design in eq. (8).

Note that, the average latency and throughput performance

of MGDs and UEs is close for DMQ, as well PF, since both

algorithms have fairness in their objective. Yet, DMQ results in

lower latency and higher throughput for both types of devices

than the compared algorithms.

Lastly, a comparison among the three algorithms is pre-

sented in Table II, where Nj is the number of users per base

station. The table presents the modeling assumptions as well as

the complexity and drawbacks. DIRA was adopted to work on

both tiers, furthermore, we revised the optimization to account

for spectrum allocation only - removing the power allocation.

The complexity is presented in Big-O notation, evaluated per

base station per TTI.
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Fig. 3. Average packet delay [ms] for (top) MGDs and (bottom) UEs
vs number of MGDs; number of SBS is 10 and number of UEs is 50.
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Fig. 4. Average queuing delay [ms] for (top) MGDs and (bottom) UEs
vs number of MGDs; number of SBS is 10, and number of UEs is 50.
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Fig. 5. Average throughput [Mbps] for (top) MGDs and (bottom) UEs
vs number of MGDs; number of SBS is 10, and number of UEs is 50.
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Fig. 6. Top-10 throughput [Mbps] for (top) MGDs and (bottom) UEs
vs number of MGDs; number of SBS is 10, and number of UEs is 50.
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Fig. 7. Jain’s Fairness Index (JFI) vs MGDs; number of SBS is 10,
and number of UEs is 50.
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(a) MGDs delay and throughput convergence
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Fig. 8. Average delay and throughput convergence for (a) MGDs, and
(b) UEs vs number of exploration iterations (in TTIs); 10 SBSs, 8 MGDs
and 5 UEs per SBSs.
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VI. CONCLUSION

In this paper, we have proposed a resource allocation

algorithm with the purpose of providing low-latency com-

munications for primary control of Community Resilience

Microgrids (CRMs) that use small cell networks. Our proposed

resource allocation algorithm, namely the Delay minimization

using Q-learning (DMQ) aims at low delay for microgrid

devices (MGD) while concurrently achieving low delay for

UEs through an effective reward function. Furthermore, DMQ

runs in a decentralized fashion on both the SBSs and eNB

for two-tier scheduling, which facilitates the network agility

and self-organization. We have compared DMQ with the

well-known proportional fairness (PF) algorithm as well as

an algorithm with delay-sensitive users, namely Distributed

Iterative Resource Allocation (DIRA). The results show delay

reduction of 66% and 33% is obtained for MGDs when

compared to PF and DIRA, respectively. In addition, higher

throughput is achieved. Meanwhile, DMQ has the highest

fairness values among the other schemes where it exceeds the

fairness index of PF by 2%. As a future work, we plan to

integrate an online learning approach in order to further reduce

latency and enhance the performance of training.
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