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ABSTRACT This paper proposes a multi-agent Q-learning-based resource allocation algorithm that allows
long-term evolution (LTE)-enabled device-to-device (D2D) communication agents to generate the orthogo-
nal transmission schedules outside the network coverage. This algorithm reduces packet drop rates (PDR)
in distributed D2D communication networks to meet the quality-of-service requirements of the microgrid
communications. The data traffic characteristics of three archetypal smart grid applications, namely demand
response, solar, and generation forecasting, and synchrophasor communications, were simulated under seven
different traffic congestion scenarios, where the total aggregate throughput of users ranged from 50% to
140% channel utilization. The PDR and latency performance of the proposed algorithm were compared with
the existing random self-allocation mechanism introduced under the Third-Generation Partnership Project’s
LTE Release 12 standard for such scenarios. Our algorithm outperformed the LTE algorithm for all tested
scenarios, demonstrating 20%–40% absolute reductions in PDR and 10–20-ms reductions in latency for all
microgrid applications. The use of our algorithm in a simulated D2D-enabled demand response application
resulted in a hundredfold reduction in power oscillations about the desired power flows.

INDEX TERMS Device-to-device communications, Q-learning, reliability, resource allocation, smart grid.

I. INTRODUCTION
To make smart grid solutions economically feasible, there
is interest in implementing mobile wireless communication
technology, i.e. Fourth Generation Long Term Evolution
(4G LTE) and in the coming years Fifth Generation New
Radio (5G NR) to establish a network of communication
links over a distribution system with minimal investment in
physical infrastructure [1]–[3]. Nevertheless, the data transfer
delay (latency) in existing mobile communication technology
is not guaranteed to be satisfactory for latency-critical smart
grid services (e.g. synchrophasor applications), and address-
ing this problem is an ongoing area of research [3]–[5].
Device-to-Device (D2D) communication is a promising

means to improve communication performance at a neigh-
borhood area network scale by allowing direct data exchange
between users, which in certain transmission modes can be
controlled directly by such users [6], [7]. Moreover, such
transmissionmodes also have the benefit of being usable even
when devices are not within the coverage of a cell tower.

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

Among the transmission modes that allow users to self-
allocate resources are Transmission Mode 2 (TM-2) intro-
duced in LTE Release 12, and TM-4 introduced in LTE
Release 14. TM-2 was originally designed for public safety
applications and prioritized prolonging battery life [8], but
requires that D2D agents self-allocate cellular resources in
a random manner and thus is not currently suitable for high
reliability and low latency communications. On the other
hand, TM-4 was designed for high reliability and low latency
communication in addition to being able to manage fast-
moving devices to facilitate vehicle-to-vehicle (V2V) com-
munications, but disregards battery life considerations [8].
As such, neither transmission mode has been designed as
an optimal smart grid communications solution. It can be
argued that based on the communication requirements of
smart grid applications, some combination of elements from
both transmission modes would be best. We propose that
the resource allocation mechanism of TM-2 be upgraded to
meet the quality of service (QoS) requirements of smart grid
applications in order to have a less complex and more power-
efficient solution to D2D-enabled smart grid communications
than TM-4.

74412
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019



K. Shimotakahara et al.: High-Reliability Multi-Agent Q-Learning-Based Scheduling for D2D Microgrid Communications

A critical issue with TM-2 that impedes its communica-
tion performance is how it randomly self-allocates cellular
resources, which leads to high packet drop rates (PDR),
making it inadequate for certain smart grid applications sen-
sitive to information losses. For example, a typical frequency
stability synchrophasor application is sensitive to message
failure rates exceeding 0.33% based off data loss sensitiv-
ity metrics published by the North American Synchropha-
sor Institute [9]. To overcome this problem, we propose a
multi-agent high-reliability Q-learning (HRQ) resource allo-
cation scheme to replace the random allocation mechanism.
Naturally, HRQ is powered by Q-learning, which is a
decision-making algorithm that considers the situation it is in,
and chooses the best action to take based on past experience.
Formally, that which takes the action is referred to as the
‘‘agent’’, and this agent interacts with its ‘‘environment’’
by taking ‘‘actions’’. The agent’s situation is considered the
‘‘state’’ of the environment, and there are a finite set of actions
that can be taken in any given state. The best action for a
given state is the one with the largest expected ‘‘reward’’
associated with it, which is based on an action’s influence on
the environment [10]. HRQ divides the LTE resource grid into
orthogonal partitions of resources from which a scheduling
agent can select, and the agent is rewarded or penalized
depending on whether or not it takes the same scheduling
action as one or more other agent(s).
Concerning existing works on distributed resource allo-

cation algorithms, few integrate the specifications of the
LTE D2D TM-2 standard into their solution. Seemingly only
Shih et al. [11] does so, offering a resource allocation algo-
rithm to reduce packet drop rates. Our algorithm alternatively
does not require randomly altering the operation of the D2D
transmitter at the physical layer to sense control channel
messages of other transmitting nodes in order to function.
Other works either do not take into account the need to be
implementable under LTE protocol architecture [12], have
a centralized allocation scheme that is not applicable in out
of coverage scenarios [13], [14], or focus instead on using
D2D communications for frequency reuse in order to boost
channel throughput instead of minimizing PDR for the D2D
nodes [15]–[21].
The rest of the paper is organized as follows. Section II

presents the system and traffic models, as well as the prob-
lem formulation. In Section III, the HRQ scheme is pre-
sented. Section IV contains the simulation results that show
how the HRQ-enabled agents can achieve orthogonal self-
organization of resources, causing lower latency and zero
packet drop rate for low to moderate network traffic. Finally,
Section V concludes the paper.

II. SYSTEM MODEL
A. MICROGRID COMMUNICATION NETWORK MODEL
Fig. 1a visualizes the communication network topology mod-
eled in this study. We consider a set ℵ of D2D nodes where
each D2D node is i ∈ ℵ. A subset of D2D nodes � ⊂ ℵ

FIGURE 1. Network model of 3GPP LTE-compliant Release-12 D2D
TM-2 communication. Concerning the acronyms in this figure, MAC is
medium access control, PHY is physical, SDU is service data unit, PDU is
protocol data unit, CQI is channel quality indicator, RBGs is resource
block groups, MCS is modulation and coding scheme, tx is transmission,
and rx is reception.

represent microgrid devices that have certain quality of ser-
vice requirements. In addition, a set � of auxiliary D2D
nodes, where � ⊂ ℵ are considered in order to overload
the network with traffic and assess the performance of our
algorithm. This auxiliary traffic is stochastic with message
generation rates following a Poisson process, and message
payloads are generated with exponential random variables.
We refrain from modeling cellular nodes in our model,
and instead consider an out of network coverage scenario.
However, interference among D2D nodes remains due to the
distributed and uncooperative resource allocation process.
Fig. 1b-d depicts the data plane architecture of the LTE

TM-2 standard used in this study. As can be seen in fig. 1b
and fig. 1d, we model the lowest 3 layers of the LTE protocol
stack. The radio link control (RLC) entities of the D2D
devices have been modeled to operate in unacknowledged
mode as per TM-2 specifications [22]. At the physical layer,
TM-2 D2D communication channels, i.e. sidelink channels,
are organized into repeating segments of the LTE resource
grid known as scheduling assignment periods (fig. 1c). The
scheduling assignment period architecture is further parti-
tioned into a sidelink control channel, and a sidelink data
channel. The sidelink control channel precedes the sidelink
data channel in time, and D2D nodes make scheduling deci-
sions once per scheduling assignment period, encoding a
control message that the receiver can use to determine which
resources to listen to in the upcoming sidelink data channel.

B. TRAFFIC MODEL OF THE MICROGRID APPLICATIONS
As presented in Table 1, we have modeled the traffic char-
acteristics of three different microgrid applications, namely
demand response, solar generation forecasting, and pha-
sor management unit (PMU) communications. This table
also includes some typical QoS requirements that could be

VOLUME 7, 2019 74413



K. Shimotakahara et al.: High-Reliability Multi-Agent Q-Learning-Based Scheduling for D2D Microgrid Communications

expected for the aforementioned application archetypes. For
the solar panel and demand response traffic, all parame-
ters except their tolerable PDRs were derived based on the
communication requirements specified by the US Depart-
ment of Energy [4], [23]. For DR applications, we assume
1-9% PDR can be manageable based on Kong’s analysis
of dynamic pricing applications [24]. For distributed energy
resource generation forecasting communication, it has been
assumed that PDR should be close to 0 [25]. Concerning the
PMU traffic model, Table 1 was populated using the PMU
applications requirements published by the North American
SynchroPhasor Institute (NAPSI) [9] in addition to the IEEE
C37.118.2 standard for PMU-generated synchrophasor data
transmission [26], [27].

TABLE 1. D2D Traffic settings and QoS requirements [4], [9], [23]–[25].

C. PROBLEM FORMULATION
The proposed solution aims to reduce the PDR of the D2D
smart grid devices by performing efficient resource alloca-
tion in time and frequency. To improve reliability, signal-to-
interference plus noise ratio (SINR) is used, where improving
SINR improves the probability of successfully decoding the
transmitted packets. SINR is formulated as follows:

γu,k = bu,kpu,khu,k
ωkN0 + ∑

m∈I bm,kpm,khm,k
, (1)

where γu,k is SINR of uth D2D pair, and I is the set of inter-
fering D2D pairs, i.e. the D2D pairs that use same resource
blocks as transmitting uth D2D pair. For the remaining terms,
bu,k is allocation indicator of uth D2D pair; pu,k is the transmit
power of the uth D2D pair on the kth resource block; hu,k is
the channel coefficient of kth resource block;ωk is bandwidth
of kth resource block; N0 is additive white Gaussian noise
(AWGN) single-sided power spectral density; bm,k is alloca-
tion indicator of mth D2D interfering pair; pm,k is transmit
power of interfering mth pair; and hm,k is the channel coeffi-
cient of mth interfering pair. Here, our optimization problem
aims at maximizing the aggregate SINR of smart grid D2D
pairs as follows:

max
bu,k

N∑
i=1

K∑
k=1

γu,k2 (2)

where N is the number of D2D pairs within the network, and
K is the total number of resource blocks available. It should
be noted that our objective function is solved subject to fixed
power transmission. Moreover, the effects of device mobility

are assumed negligible due to the assumption that the D2D
nodes are stationary smart grid devices.

D. DEMAND RESPONSE ENABLED POWER
SYSTEM MODEL
Smart grids are a combination of two sophisticated systems,
namely a traditional power system and a communications
network. To test the HRQ algorithm’s impact on the perfor-
mance of the communication network in relation to the LTE
standard, it is only necessary to model the data traffic of the
smart grid applications considered in this study. However,
the demand response (DR) application was modeled on the
power systems side as well in order to witness the impacts
of communication system performance on the power system
dynamics of a DR-enabled microgrid. The power system
environment within which this application is being simulated
can be visualized in fig. 2 [28]. The details of the simulation
environment is provided in Section IV. In our model, if the
power flow through a transformer crosses a certain threshold
level Plimit , a ‘‘demand response event’’ is initiated. If such
an event happens, the smart meter continuously recalculates
the minimum demand reductions required to keep the power
consumption from exceeding Plimit , and sends messages to
the households containing new power reduction requests.
Also, households were set to reduce their power consumption
to a constant ‘‘base comfort’’ level as long as the price of
electricity surpasses a particular value Cmax . It is assumed
that households have instantaneous control over their power
consumption.

III. HIGH-RELIABILITY Q-LEARNING (HRQ) SCHEME
HRQ is a multi-agent distributed Q-Learning algorithm
performed by each D2D transmitter to efficiently allocate
resource blocks every scheduling assignment period for reli-
ability maximization. HRQ models reliability in terms of
SINR of D2D devices as per equation (1), as low SINR is
a root cause of PDR. In particular, efficient resource block
allocation allows devices to select disjoint actions, i.e. distinct
resource blocks, which lessens interference and increases
SINR. As such, improving SINR increases the probability
of successfully decoded packets which achieves higher reli-
ability. Besides reliability, interference mitigation enables
devices to transmit on channels of higher quality that lead to
allocation of higher transport block size (TBS). As such, large
packets are less prone to segmentation at the radio link control
layer, leading to reduced latency. It should be noted that
this algorithm manages the allocation of resource blocks, i.e.
physical spectrum, and is not designed to manage transmitter
power settings.
In HRQ, we address the reliability by formulating the

Q-Learning tuple as follows:
• Agents: D2D transmitting nodes.
• States: Channel quality is used to represent HRQ states,
where we define CQIideal as the best channel quality
that drives devices to allocate disjoint resources, hence
achieving highest reliability. In simulations, we define
stringent channel quality requirements as CQIideal .
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FIGURE 2. Diagram of power system modeled in the integrated simulator.

• Actions: HRQ performs actions that manifest as the
selection of cellular resources in time and frequency
every scheduling assignment period. To minimize
the action space, contiguous sets of subframes and
resource blocks are aggregated to form larger (but still
orthogonal) sets of resources that agents can select
as their scheduling decision. In frequency, every four
contiguous resource blocks are combined to form a
‘‘resource block group’’, whereas in time, the pool is
partitioned into two 16 subframe intervals. The network
model was set to a 5MHz bandwidth and 40ms schedul-
ing assignment period, which consists of 25 resource
blocks and 32 subframes for data transmission.
Under such conditions, 12 actions populate the action
space.

• Reward function: The reward is defined as follows:

τu =
{
ll−1 CQIu < CQIideal,
1 otherwise ,

(3)

where τu is the reward of uth D2D pair, CQIu is the
channel quality of uth D2D pair, and CQIideal is the
ideal channel quality. The rationale behind the reward
function is to reward the agent when achieving the ideal
QoS, i.e. ideal channel quality, whereas it penalizes the
agent otherwise.

• Q-value update: The Q-values are updated according to
the temporal difference (TD) equation [10]:

QV (Su, au) = (1 − α)QV (Su, au)

+ α[τu + γ max
Au

QV
(
S ′
u,Au

)
] (4)

where α is a learning rate, γ is a discount factor, Au is
the action-space of uth D2D pair, andQV (S ′

u,Au) are the
Q-values at next state S ′

u and all actions Au. The new

action a′
u is selected based on a modified version of

ε-greedy approach:

a′
u =

⎧⎨
⎩
random ε,

random(argmax
Au

QV (S ′
u,Au)) 1 − ε,

(5)

where ε is the exploration probability. The modified
ε-greedy accounts for situations where multiple state-
action pairs are tried for having the largest Q-value dur-
ing exploitation iterations. Thus, during the exploitation
phase, the scheduler chooses among the set of actions
with the highest Q-value at random instead of the con-
ventional approach of selecting the first Q value in the
list returned by a max function.

Algorithm 1 HRQ
1: Initialization: Q-table ← 0, α, γ , and ε.
2: for scheduling assignment period t = 1 to T do
3: Step 1: Update channel quality value based on the last

transmission.
4: Step 2: Compute the reward τu and observe the new

state S
′
u due to last action execution.

5: Step 3: Update the Q-value as in (4).
6: Step 4: Transit to next state S ′

u.
7: Step 5: Select the next action a′

u based on modified
ε-greedy policy as in (5).

8: If Exploitation and tie then
9: Select action Randomly
10: End If
11: end for

Algorithm 1 presents the steps of HRQ. TM-2 currently
has no means to feed back channel quality metrics to the
transmitters, but a new sidelink control information message
that can be sent by the receiver back to the sender would be
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a simple solution to this. The algorithm terminates after T
scheduling assignment periods.
This study compares the performance of the proposed

HRQ scheduling algorithm to that of the allocation scheme
prescribed by the LTE standard for D2D communication
operating in TM-2 [29]. The step-by-step process of our
implementation of the TM-2 random self-allocation algo-
rithm have been included in the Appendix.

IV. RESULTS
This section is divided into three subsections.
Subsection IV-A presents our results on the latency and
PDR performance of both scheduling algorithms, where
20-40% reductions in PDR and>10 ms drops in latency were
observed for all smart grid applications. Subsection IV-B
shows the convergence of the HRQ algorithm; HRQ was
able to converge as long as the number of agents did not
exceed the size of the action space. Subsection IV-C presents
the results collected on the observed changes in power sys-
tem dynamics of the simulated DR-enabled microgrid as a
function of resource allocation mechanism selection. The
power fluctuations observed were reduced by two orders
of magnitude when HRQ was used in lieu of random
self-allocation.
For our simulations, we implemented the D2D commu-

nication protocol stack on top of MATLAB’s LTE Toolbox
which was then combined with a microgrid simulator
implemented using Simscape Power Systems and SimEvents
software packages available in the Matlab/Simulink environ-
ment. The performance and convergence of the HRQ algo-
rithm was tested using the mobile communications portion of
the developed simulator, whereas all power and communica-
tion elements were leveraged in simulating the DR-enabled
microgrid. The simulation parameters are given in Table 2 in
the Appendix.

A. COMPARING THE PERFORMANCE OF HRQ AND LTE
TM-2 SCHEDULING STRATEGIES UNDER
VARYING TRAFFIC INTENSITIES
Under the same network and traffic conditions, the HRQ
and LTE schedulers were tested for various levels of net-
work traffic. The network traffic was adjusted by how many
‘‘auxiliary’’ D2D devices were injected into the commu-
nication network. At each level of network traffic tested
(i.e. for 0, 4, 5, 6, 7, 9, and 11 auxiliary devices present in
the network), the communication network was simulated for
15 s, over which time 375 scheduling assignment periods (and
thus scheduling decisions) elapsed. Moreover, for every 15 s
simulation at every level of network traffic, the simulation
was repeated 12 times, and the average message latency and
PDR values were plotted with 95% confidence intervals for
both scheduling strategies.
Over these tests, the exploration time of theHRQ algorithm

was set to 10 s, during which time an epsilon greedy explo-
ration strategy was implemented by the scheduler. After 10 s,
the HRQ algorithm switched to a purely greedy strategy, only

executing its policy without exploration. This test compared
the performance of HRQ with respect to LTE scheduling
strategies after HRQ has completed its exploration phase.
Thus, the performance metrics obtained are calculated based
only on the final 5 s of the network simulation.

FIGURE 3. Average message latency for smart grid applications under
varying traffic intensity.

FIGURE 4. Average PDR for smart grid applications under varying traffic
intensity.

The results of latency and PDR performance for both
schedulers have been presented in fig.s 3 and 4 respec-
tively. Fig. 3 demonstrates the potential for D2D communica-
tion to provide strong latency performance; both scheduling
options succeed in meeting the QoS requirements of the
smart grid applications, which is due to the inherent nature
of D2D communication. However, HRQ provides additional
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improvements in latency, as it proactively allocates communi-
cation resources every scheduling assignment period instead
of scheduling resources for what has been buffered since the
last scheduling assignment period.
Concerning PDR performance, it can be seen in fig. 4

that for varying traffic intensities, the LTE scheduler fails to
meet the QoS requirements for the smart grid applications.
However, the PDR can be kept down to essentially 0 for
low to moderate levels of network traffic when using the
HRQ scheduler. The PDR starts to rise as the number of
scheduling agents in the network approaches the number of
orthogonal scheduling decisions available in the action space.
The number of agents in the network reaches the number
of orthogonal scheduling decisions when 6 auxiliary devices
are injected in the network. This results from the inability of
the HRQ algorithm to consistently self-organize the agent’s
scheduling decisions in the 10 s exploration time provided in
this experiment, which is further discussed in Section IV-B.
Naturally, the average PDR and uncertainty around the aver-
age PDR continues to increase as the number of agents in
the network begin to exceed the number of actions available
for the agents to take, as it becomes impossible to guarantee
QoS with HRQ under such conditions. For example, if there
are 12 D2D pairs each taking a unique action among the
12 available, if another D2D pair is introduced to the network,
any action it chooses will be the same as what is already being
taken.

B. CONVERGENCE OF HRQ ALGORITHM
To demonstrate the ability for HRQ to reach an optimal
policy, which corresponds to all agents making unique (and
orthogonal) scheduling decisions, cumulative regret of all
smart grid agents were aggregated and plotted with respect to
time in fig. 5. Regret is the difference between the reward of
an action taken and the reward associated with the action that
an optimal policy would have taken. Cumulative regret is the
time integral of regret. Because the HRQ scheduler reward
function has only two possible outputs, namely 1 and −1,
every time an agent takes an action that results in a−1 (which
happens when an agent makes the same scheduling decision
as another agent), the regret is 2. Otherwise, the regret is 0.
Thus, the point in the simulation where the smart grid agents
are capable of self organizing their scheduling decisions so
that they do not interfere with one another corresponds to the
point in time where the cumulative regret of all agents stops
increasing.
It can be observed in that the HRQ algorithm is capable of

converging to an optimal policy when the number of agents
does not exceed the number of available orthogonal schedul-
ing decisions in the algorithm’s action space. When 6 aux-
iliary devices are introduced to the network, the number of
agents in the network matches the number of actions defined
in the HRQ action space. In this case, the HRQ algorithm
takes over 15 s to converge (recall that one subframe is 1 ms).
This is why the average PDR was larger than 0% in fig. 4
even in cases where there were a sufficient number of actions

FIGURE 5. Total cumulative regret for HRQ scheduling algorithm for
various numbers of auxiliary devices.

for each agent to assign themselves a unique action. When
9 auxiliary devices are introduced to the network, fig. 5 results
suggest that a plateau in cumulative regret is about to be
formed at the very end of the time axis. This is possible
because the aggregate cumulative regret of the smart grid
agents plotted does not include the cumulative regrets of the
auxiliary agents. To elaborate, there is the possibility that the
set of smart grid agents could all terminally select disjoint
actions while the auxiliary agent’s HRQ policies converge to
taking actions (that are not all disjoint) among the remainder
of the action space.

C. IMPACT OF SCHEDULING TECHNIQUE ON THE
PERFORMANCE OF MICROGRID APPLICATIONS
Fig. 6 demonstrates the functionality of the application per-
forming demand response activity due to both price sig-
nals and transformer overloading scenarios as described in
Section II-D. Fig. 6a plots the aggregate power curves of
the households, and fig. 6b plots the transformer’s power
curves for multiple cases. The first case is where the demand
response application is disabled (noDR), providing a baseline
power curve that can be altered by the application. The next
three cases correspond to the dynamics of the power system
when demand response is active and facilitated by D2D
LTE communications utilizing the LTE scheduling mech-
anism, HRQ, and an ideal scheduler (ideal data transfer).
The ideal scheduler allows the smart grid devices to com-
municate under perfect channel conditions that ignore the
effects of interference and noise. The power curve for the
photovoltaic (PV) module and the real time price of elec-
tricity are plotted in fig. 6c and fig. 6d respectively. The
transformer power flow curve is the difference of household
aggregate demand less PV power generation. In cases where
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FIGURE 6. Demand response application performance for 3GPP, HRQ,
and ideal mobile communication models: Plots of a) Aggregate
household demand; b) transformer power flow; c) microgrid PV
generation; and d) price of electricity as a function of time.

transformer power flow is positive, the distribution system
is providing power to the microgrid; when it is negative,
the power generated by the PV exceeds the aggregate house-
hold demand, and the surplus flows into the distribution
system.
Concerning the price signaling dynamics of the three

homes in our model (fig. 2), one home is programmed to
have a Cmax of 300 price units, whereas the other two homes
are given Cmax values of 400 price units. Based on this, one
should expect power consumption to drop when the price
curve increases, and fall back down again when the price
decreases. Also, the transformer power flow exceeds Plimit =
5000W shortly before the 6 smark of the simulation, meaning
the demand should decrease to keep the power flow through
the transformer at or below 5000W . As can be observed,
the ideal data transfer and HRQ power curves do manage
to behave in this manner, and are almost identical to one
another. However, the power curve in the scenario where
the application is being implemented with the LTE resource
scheduling algorithm proves to deviate from the ideal case.
For example, it can be seen at the 2 and 2.5 second marks,
there are delays in the responsiveness of the households on
the order of 100 ms when they are reacting to price changes.
Such delays are not present in the other curves. This can only
be a consequence of the higher PDR present when utilizing
the LTE scheduler. These plots are intriguing in the sense that

they display the ability of the integrated simulation platform
to investigate how the performance of the communication
network influences that of the power system.

V. CONCLUSION
This paper proposed a multi-agent Q-Learning based
resource allocation strategy targeted at reducing packet drop
rates in LTETM-2D2D communication to increase its usabil-
ity for smart grid applications. The QoS requirements and
data traffic characteristics for various smart grid applica-
tion archetypes were studied and modeled in an integrated
Matlab/Simulink simulation environment to both test the
performance of the scheduling mechanism and demonstrate
the simulator’s ability to design smart power systems and
observe how the power and communications systems interact
with one another. The performance of the HRQ scheduling
algorithm was compared to that of the existing means of
resource scheduling in TM-2 prescribed by the LTE standard.
Our results show that HRQ outperformed the benchmark
algorithm in both latency and PDR QoS metrics. Finally,
a basic demand response application developed in the simula-
tor was presented to demonstrate the impact the two different
scheduling strategies have on its ability to properly manage
transformer loading and price signaling activities. As a future
work, we plan to enhance the performance of HRQ with
advanced exploration strategies and implement more sophis-
ticated smart grid use cases.

APPENDIX A
RESOURCE ALLOCATION ALGORITHM AND
SIMULATION IMPLEMENTATION DETAILS
A. LTE RANDOM ALLOCATION ALGORITHM
TS 36.321 Release 12 Section 5.14.1.1 specifies to randomly
select the time and frequency resources for sidelink shared
channel (SL-SCH) and sidelink control information of a
sidelink grant from the resource pool configured by upper
layers with equal probability [29]. This specification is imple-
mented as Algorithm 2 in our simulator.

Conceptually, the scheduling algorithm calculates how
much data is queued in the device’s transmission buffer,
and then determines all feasible combinations of Itrp (time
resource pattern index) and RIV (Resource Indication Value)
sidelink control information scheduling parameters that cor-
respond to the smallest amount of bandwidth capable of
sending all the existing data queued over the course of the
next scheduling assignment period. Finally, the scheduler
randomly selects among all feasible scheduling options that
were found this way with equal probability.
The variables of Algorithm 2 have been defined as

follows:

• TBSdesired : The TBS that would result in the scheduler
being able to clear the data buffer of the agent over
the course of the next scheduling assignment period.
It should be noted that any data that arrives after the
scheduling decision must wait until the next scheduling
decision in order to be allocated resources.
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Algorithm 2 Implementation of 3GPPRelease 12D2DTM-2
Random Allocation Scheduling
1: Initialization: nprbMax, ITBS .
2: for scheduling assignment period t = 1 to T do
3: k = 1
4: for nTBs = Each possible number of transport blocks

to transmit next scheduling assignment period do
5: Step 1: Compute TBSdesired .
6: Step 2: Iterate through TS 36.213 Release

V12.5.0 Section 7.1.7.2 Table 7.1.7.2.1-1 until
it is discovered how many PRBs are required
to generate a transport block with a TBS equal
to or greater than TBSdesired :

7: for i = 1 to nprbMax do
8: Read the TBS value corresponding to ITBS and i

PRBs.
9: If TBS value read >= TBSdesired

10: nPRBs ← i.
11: success ← true
12: Break from innermost loop
13: end If
14: end for
15: If success
16: nTBnPRBcombos(k) ← [nTBs, nPRBs]
17: k ← k + 1
18: end If
19: end for
20: Step 3: For every set [nTBs, nPRBs] in

nTBnPRBcombos(k), determine all [RIV , ITRP]
pairs possible, and out of ALL pairs across ALL
[nTBs, nPRBs] sets, choose one at random as the final
scheduling decision for the scheduling assignment
period.

21: end for

• nprbMax: The largest number of PRBs a scheduler
can self-allocate given the bandwidth of the scheduling
assignment period. In this study, a 5MHz scheduling
assignment period was used, so nprbMax was set to
25 PRBs.

• ITBS : An index that maps a particular MCS (Mod-
ulation and Coding Scheme) to a row in an
LTE lookup table (for example TS 36.213 Release
V12.5.0 Section 7.1.7.2 Table 7.1.7.2.1-1) that ulti-
mately yields TBS values for given combinations of
MCS settings and the number of PRBs being used to
map the TB to the resource grid.

• nTBs: A feasible number of transport blocks that can
be sent by an agent over the course of a scheduling
assignment period. For the given network configuration
in this study, nTBs can equal 1, 2, 4, or 8.

• nPRBs: The number of PRBs required to be allocated in
order to have access to TBswith a size equal to or greater
than TBSdesired given a particular nTBs value.

TABLE 2. Network settings.

• nTBnPRBcombos: A list of all feasible [nTBs, nPRBs]
combinations that yield enough bandwidth to clear the
agent’s data buffer.

• RIV : A ‘‘Resource Indication Value’’ parameter speci-
fied by the LTE standard for D2D communications that
specifies both the number of PRBs to be scheduled in the
next scheduling assignment period in addition to which
set of contiguous PRBs to use.

• ITRP: A Time Resource Pattern Index specified by the
LTE standard for D2D communications that specifies
the number of subframes and their indices in the next
scheduling assignment period. This ultimately controls
howmany TBs can be sent in a single scheduling assign-
ment period by an agent and when.

B. COMPLEXITY ANALYSIS
For the sake of curiosity, we investigate the complexity
of the LTE random allocation compared to the proposed
Q-learning algorithm, HRQ. For a specific bandwidth con-
figuration, the number of resource block groups is defined
as nRBGs = 	 nPRBssRBG 
, where sRBG is the size of a resource
block group in resource blocks. As shown in Algorithm 2,
random allocation performs a search in Table 7.1.7.2.1-1 to
find the required number of resource blocks to allocate. This
search is performed four times for each possible value of
nTBs. Assuming linear search, each possible nTBs requires
nRBGs operations, hence a total number of (4 nRBGs) opera-
tions are needed. Therefore, the Big-O complexity of random
allocation is O(N ), where N = (4nRBGs).

Under same assumption of linear search, complexity of
HRQ relies mainly on the maximum search performed in
eq. (4) and (5). Therefore, complexity of HRQ can be iden-
tified using number of actions at a desired state, i.e. a row
in the Q-table. Number of actions is determined by con-
sidering the possible allocation units in time and frequency
direction which are nTBs and nRBGs respectively, hence
total number of actions becomes (nTBsnRBGs). As such, the
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Big-O complexity of HRQ is also O(N ), but in this case
N = (nTBsnRBGs).

C. NETWORK SIMULATION SETTINGS
See Table 2.

ACKNOWLEDGMENT
The authors thank Dr. Javad Fattahi for his feedback on the
initial draft of this paper.

REFERENCES
[1] X. Fang, S. Misra, G. Xue, and D. Yang, ‘‘Smart grid—The new and

improved power grid: A survey,’’ IEEE Commun. Surveys Tuts., vol. 14,
no. 4, pp. 944–980, 4th Quart., 2012.

[2] M. Erol-Kantarci and H. T. Mouftah, ‘‘Energy-efficient information and
communication infrastructures in the smart grid: A survey on interac-
tions and open issues,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 179–197, 1st Quart., 2015.

[3] I. Al-Anbagi, M. Erol-Kantarci, and H. T. Mouftah, ‘‘Delay critical smart
grid applications and adaptive QoS provisioning,’’ IEEE Access, vol. 3,
pp. 1367–1378, 2015.

[4] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,
and G. P. Hancke, ‘‘A survey on smart grid potential applications and
communication requirements,’’ IEEE Trans. Ind. Informat., vol. 9, no. 1,
pp. 28–42, Feb. 2013.

[5] F. A. Asuhaimi, J. P. B. Nadas, and M. A. Imran, ‘‘Delay-optimal mode
selection in device-to-device communications for smart grid,’’ in Proc.
IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), Oct. 2017,
pp. 26–31.

[6] C. Kalalas, L. Thrybom, and J. Alonso-Zarate, ‘‘Cellular communications
for smart grid neighborhood area networks: A survey,’’ IEEEAccess, vol. 4,
pp. 1469–1493, 2016.

[7] K. Shamganth and M. J. N. Sibley, ‘‘A survey on relay selection in coop-
erative device-to-device (D2D) communication for 5G cellular networks,’’
in Proc. Int. Conf. Energy, Commun., Data Anal. Soft Comput. (ICECDS),
Aug. 2017, pp. 42–46.

[8] R. Molina-Masegosa and J. Gozalvez, ‘‘LTE-V for sidelink 5G V2X
vehicular communications: A new 5G technology for short-range vehicle-
to-everything communications,’’ IEEE Veh. Technol. Mag., vol. 12, no. 4,
pp. 30–39, Dec. 2017.

[9] NASPI, ‘‘PMU data quality: A framework for the attributes of PMU
data quality and a methodology for examining data quality impacts to
synchrophasor applications, version 1.0,’’ North American SynchroPhasor
Initiative, Kauai, HI, USA, White Paper NASPI-2017-TR-002 PNNL-
26313, Mar. 2017.

[10] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2014.

[11] M.-J. Shih, H.-H. Liu, W.-D. Shen, and H.-Y. Wei, ‘‘UE autonomous
resource selection for D2D communications: Explicit vs. implicit
approaches,’’ in Proc. IEEE Conf. Standards Commun. Netw. (CSCN),
Oct./Nov. 2016, pp. 1–6.

[12] Y. Cao, T. Jiang, M. He, and J. Zhang, ‘‘Device-to-device communications
for energy management: A smart grid case,’’ IEEE J. Sel. Areas Commun.,
vol. 34, no. 1, pp. 190–201, Jan. 2016.

[13] S. Wen, X. Zhu, X. Zhang, and D. Yang, ‘‘QoS-aware mode selection and
resource allocation scheme for device-to-device (D2D) communication in
cellular networks,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC),
Jun. 2013, pp. 101–105.

[14] S. Alwan, I. Fajjari, and N. Aitsaadi, ‘‘Joint routing and wireless resource
allocation in multihop LTE-D2D communications,’’ in Proc. IEEE 43rd
Conf. Local Comput. Netw. (LCN), Oct. 2018, pp. 167–174.

[15] S. Maghsudi and S. Stańczak, ‘‘Joint channel allocation and power control
for underlay D2D transmission,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2015, pp. 2091–2096.

[16] H. Ye and G. Y. Li, ‘‘Deep reinforcement learning for resource allocation
in V2V communications,’’ CoRR, Nov. 2017, pp. 1–6. [Online]. Available:
http://arxiv.org/abs/1711.00968

[17] A. Asheralieva and Y. Miyanaga, ‘‘An autonomous learning-based algo-
rithm for joint channel and power level selection by D2D pairs in het-
erogeneous cellular networks,’’ IEEE Trans. Commun., vol. 64, no. 9,
pp. 3996–4012, Sep. 2016.

[18] S. Nie, Z. Fan, M. Zhao, X. Gu, and L. Zhang, ‘‘Q-learning based power
control algorithm for D2D communication,’’ in Proc. IEEE 27th Annu. Int.
Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2016, pp. 1–6.

[19] F. A. Asuhaimi, S. Bu, and M. A. Imran, ‘‘Joint resource allocation and
power control in heterogeneous cellular networks for smart grids,’’ in Proc.
IEEE GLOBECOM, Dec. 2018, pp. 1–6.

[20] A. Laya, K. Wang, A. A. Widaa, J. Alonso-Zarate, J. Markendahl, and
L. Alonso, ‘‘Device-to-device communications and small cells: Enabling
spectrum reuse for dense networks,’’ IEEE Wireless Commun., vol. 21,
no. 4, pp. 98–105, Aug. 2014.

[21] L. Melki, S. Najeh, and H. Besbes, ‘‘Radio resource allocation scheme
for intra-inter-cell D2D communications in LTE-A,’’ in Proc. IEEE
26th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC),
Aug./Sep. 2015, pp. 1515–1519.

[22] Rohde and Shwarz, ‘‘1MA264: Device to device communication in LTE,
version 0e,’’ Rohde & Shwarz, Munich, Germany, White Paper 1MA264,
Sep. 2015.

[23] Communications Requirements of Smart Grid Technologies,
U.S. Dept. Energy, Washington, DC, USA, Jan. 2012.

[24] P.-Y. Kong, ‘‘Effects of communication network performance on dynamic
pricing in smart power grid,’’ IEEE Syst. J., vol. 8, no. 2, pp. 533–541,
Jun. 2014.

[25] R. A. Cacheda, D. C. García, A. Cuevas, F. J. G. Castaño, J. H. Sánchez,
G. Koltsidas, V. Mancuso, J. I. M. Novella, S. Oh, and A. Pantò, ‘‘QoS
requirements for multimedia services,’’ in Resource Management in Satel-
lite Networks. New York, NY, USA: Springer, Jan. 2007, pp. 67–94.

[26] IEEE Standard for Synchrophasor Data Transfer for Power Systems,
Standard C37.118.2-2011, Dec. 2011.

[27] S. R. Firouzi, L. Vanfretti, A. Ruiz-Alvarez, F. Mahmood, H. Hooshyar,
and I. Cairo, ‘‘An IEC 61850-90-5 gateway for IEEE C37.118.2 syn-
chrophasor data transfer,’’ in Proc. IEEE Power Energy Soc. General
Meeting (PESGM), Jul. 2016, pp. 1–5.

[28] Simplified Model of a Small Scale Micro-Grid—MATLAB & Simulink.
Accessed: Feb. 7, 2019. [Online]. Available: https://www.mathworks.
com/help/physmod/sps/examples/simplified-model-of-a-small-scale-
micro-grid.html

[29] Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) Protocol Specification, Version 12.5.0, document 136.321,
3rd Generation Partnership Project (3GPP), Technical Specification (TS)
3GPP, Apr. 2015.

[30] C. C. Coskun and E. Ayanoglu, ‘‘Energy- and spectral-efficient resource
allocation algorithm for heterogeneous networks,’’ IEEE Trans. Veh. Tech-
nol., vol. 67, no. 1, pp. 590–603, Jan. 2018.

KEVIN SHIMOTAKAHARA received the B.Eng.
degree from Carleton University, in 2018. He is
currently pursuing the M.A.Sc. degree with the
University of Ottawa. His research interests
include smart grids, renewable energy, and artifi-
cial intelligence.

MEDHAT ELSAYED received the B.Sc. and M.Sc.
degrees from Cairo University, Egypt, in 2009 and
2013, respectively. He is currently pursuing the
Ph.D. degree with the University of Ottawa. His
research interests include AI-enabled wireless net-
works, 5G and beyond, and smart grids.

74420 VOLUME 7, 2019



K. Shimotakahara et al.: High-Reliability Multi-Agent Q-Learning-Based Scheduling for D2D Microgrid Communications

KARIN HINZER received the B.Sc., M.Sc., and
Ph.D. degrees in physics from the University of
Ottawa, Ottawa, ON, Canada, in 1996, 1998, and
2002, respectively.

She was with the National Research Council
Canada, Nortel Networks, and Bookham (now
Oclaro), where she gained extensive experience in
the design and fabrication of the group III–V semi-
conductor devices. Cost reduction strategies and
liaison with remote fabrication facilities strongly

feature in her industry experience. In 2007, she joined the University of
Ottawa, where she founded the SUNLAB, the premier Canadian model-
ing and characterization laboratory for next-generation multi-junction solar
devices and concentrator systems. Her research involves developing new
ways to harness the solar energy. From 2007 to 2017, she was the Tier II
Canada Research Chair in Photonic Nanostructures and Integrated Devices.
Her laboratory has spun off three Canadian companies in the energy sector.
She has published over 160 refereed papers and trained over 110 highly
qualified personnels. Her research interests include new materials, high-
efficiency light sources and light detectors, solar cells, solar modules, new
electrical grid architectures/controls, and voltage converters. She is currently
a Professor with the School of Electrical Engineering and Computer Sci-
ence with a cross-appointment at the Department of Physics, University of
Ottawa.

Dr. Hinzer is also a member of the College of New Scholars, Artists, and
Scientists of the Royal Society of Canada. In 2010, she was a recipient of
the Inaugural Canadian Energy Award with industry partner Morgan Solar
for the development of more efficient solar panels. In 2015, she received
the Ontario Ministry of Research and Innovation Early Researcher Award
for her contributions to the fields of photonic devices and photovoltaic
systems. In 2016, she was a recipient of the University of Ottawa Young
Researcher Award. She is also the Principal Investigator of the Natural Sci-
ences and Engineering Research Council of Canada Collaborative Research
and Training Experience Program titled Training in Optoelectronics for
Power: From Science and Engineering to Technology (NSERC CREATE
TOP-SET), a multi-disciplinary training program involving three universities
and training over 100 students in six years. She is also an Editor of the IEEE
JOURNAL OF PHOTOVOLTAICS.

MELIKE EROL-KANTARCI received the M.Sc.
and Ph.D. degrees in computer engineering from
Istanbul Technical University, in 2004 and 2009,
respectively. During her Ph.D. studies, she was
a Fulbright Visiting Researcher with the Com-
puter Science Department, University of Califor-
nia at Los Angeles (UCLA). She is currently an
Associate Professor with the School of Electrical
Engineering and Computer Science, University of
Ottawa. She is also the Founding Director of the

Networked Systems and Communications Research (NETCORE) Labora-
tory. She is also a courtesy FacultyMember with the Department of Electrical
and Computer Engineering, Clarkson University, Potsdam, NY, USA, where
she was a tenure-track Assistant Professor prior to joining the University of
Ottawa. She has over 100 peer-reviewed publications that have been cited
over 3900 times. She has an h-index of 30. She is the Co-Editor of two
books: Smart Grid: Networking, Data Management, and Business Models
(CRC Press) and Transportation and Power Grid in Smart Cities: Commu-
nication Networks and Services (Wiley). Her main research interests include
AI-enabled networks, 5G and beyond wireless networks, smart grid, electric
vehicles, and the Internet of Things. She received the IEEE Communication
Society Best Tutorial Paper Award and the Best Editor Award of the IEEE
Multimedia Communications Technical Committee, in 2017. She has acted
as the General Chair or the Technical Program Chair for many international
conferences and workshops. She was also the past Vice-Chair for Women
in Engineering (WIE) at the IEEE Ottawa Section. She is also the Chair
of Green Smart Grid Communications special interest group of the IEEE
Technical Committee on Green Communications and Computing. She is also
an Editor of the IEEE COMMUNICATIONS LETTERS and IEEE ACCESS.

VOLUME 7, 2019 74421


