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Abstract—In this letter, we present a comprehensive analysis
of the use of machine and deep learning (DL) solutions for
IDS systems in wireless sensor networks (WSNs). To accom-
plish this, we introduce restricted Boltzmann machine-based
clustered IDS (RBC-IDS), a potential DL-based IDS method-
ology for monitoring critical infrastructures by WSNs. We study
the performance of RBC-IDS, and compare it to the previously
proposed adaptive machine learning-based IDS: the adaptively
supervised and clustered hybrid IDS (ASCH-IDS). Numerical
results show that RBC-IDS and ASCH-IDS achieve the same
detection and accuracy rates, though the detection time of
RBC-IDS is approximately twice that of ASCH-IDS.

Index Terms—Wireless sensor network, cybersecurity,
restricted Boltzmann machine, deep learning, machine learning,
intrusion detection.

I. INTRODUCTION

THE INTEGRATION of WSNs in critical applications has
introduced security threats, such as jamming. Security

susceptibilities can occur in either cyber or physical domains,
including intrusions to communication links and sensor nodes.
Intrusion Detection (ID) was introduced as an essential solu-
tion for network security, to deal with intrusive activities in
communication networks and detect various intrusion attempts
automatically [1].

Here, we present a detailed feasibility study of deep learn-
ing (DL)-based intrusion detection in the monitoring of critical
infrastructures through sensor networks. Thus, our aim is to
investigate the potential of deep learning as an alternative
to robust machine learning (ML)-based intrusion detection
systems. We consider our previously proposed Adaptively
Supervised and Clustered Hybrid (ASCH-IDS) methodol-
ogy [2] as a benchmark to assess the feasibility of a deep
learning-based intrusion detection system. For a deep learning
solution, we present a Restricted Boltzmann-based Clustered
IDS (RBC-IDS) model for intrusion detection in WSN-based
critical applications networks. We compare ASCH-IDS (i.e.,
ML-based) and RBC-IDS (i.e., DL-based) via simulations, and
show that the accuracy of both approaches is above 99%,
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with the DL-based RBC-IDS detection rate slightly over 99%.
However, training and estimating times of ASCH-IDS are
≈54% and 50% that of the RBC-IDS. Based on our findings,
we propose that an ML-based IDS system is preferable to a
DL-based IDS system under the circumstances for an exem-
plary case of WSN-based critical infrastructure monitoring.

II. BACKGROUND AND MOTIVATION

The essential design of any deep learning network requires
using a Restricted Boltzmann Machine (RBM) as an unsuper-
vised learning method [3]. Examples of this include the work
done in [4] and [5]. Alom et al. [6] explored the capabili-
ties of Deep Belief Networks (DBN) for detecting intruders
through a series of experiments. DBN and SVMs have been
introduced for intrusion detection classification purposes on
the KDDCup99 dataset. With DBN as a feature selector and
SVM as a classifier, the results showed a 92.84% accuracy
rate [7]. Partial supervised learning approaches are presented
in [8], Fiore et al. used real world data to evaluate their
approach. A hybrid approach based on DBN and auto-encoder
is shown in [9]. The auto-encoder method is used to decrease
data dimensionality and extract the main features. After feature
reduction, the DBN is applied to detect anomalous behaviour.
The work in [10] employed the Restricted Boltzmann Machine
(RBM) to remove KDDcup99 noises and introduce a new
data set. Gouveia and Correia [11] used RBM for network
IDS to test its capability to learn the complex data. They also
proposed a systematic way of dataset learning.

To the best of our knowledge, a comprehensive compar-
ison/evaluation of IDS for WSN-based critical monitoring
infrastructures that works for both known and unknown
attacks using adaptive machine learning and RBM-based deep
learning remains an open issue.

III. A DEEP LEARNING MODEL FOR WSN IDS

A. Restricted Boltzmann Machine (RBM) Procedure

The RBM is a neural, energetic network with two layers:
visible (V) and hidden (H). The learning procedure is managed
by an unsupervised fashion [10]. The RBM permits connec-
tions between neurons of the same layer, making it restricted.
In RBM, W represents the weights between visible and hidden
layers and Wxy represents the weight of both visible Vx and
hidden Hy units. The energy function of the RBM is shown
in Equation (1) below.

E (V ,H |Θ) = −
X∑

x=1

axVx −
Y∑

y=1

byHy −
X∑

x=1

Y∑

y=1

VxHyWxy

(1)
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Θ refers to Wxy , ax , by (RBM parameters), ax and by are
the visible and hidden biases, and X and Y are the number of
visible and hidden nodes.

The probability of (V, H) formation is calculated as in
equation (2) [10].

P(V ,H ) = e−E(V ,H )/
∑

X ,Y

e−E(V ,H ) (2)

where
∑

X ,Y e−E(V ,H ) refers to the normalization factor that
represents all possible configurations, including the visible and
hidden elements. With the energy function, the network allo-
cates a probability score to each case in the hidden and visible
elements. The probability allocated to a visible element V is
presented in eq. (3) [10].

P(V ) =
∑

Y

P(V ,H ) =
∑

Y e−E(V ,H )

∑
X

∑
Y e−E(V ,H )

(3)

Likewise, the probability allocated to any hidden element
H is presented in eq. (4) below [10].

P(H ) =
∑

X

P(V ,H ) =
∑

X e−E(V ,H )

∑
X

∑
Y e−E(V ,H )

. (4)

B. Deep Learning-Based IDS: RBC-IDS

The RBC-IDS consists of the N clusters with C sensor nodes
in each cluster. In each cluster, the Cluster Head (CH) is in
charge of sending the sensor directed data to the IDS, which is
installed in a central server. The aggregated data then under-
goes deep learning-based Restricted Boltzmann Machine IDS,
namely the RBC-IDS.

Using the RBC-IDS, as with the ASCH-IDS [2], the CH
selection method is accomplished by using the weighted clus-
ter head election technique, which calculates the weight of
each sensor node and compares it with the weights of other
nodes’ [12]. With this method, each sensor is given a weight
Wn that is a function of the node (received signal strength
(RSS), mobility, and degree). After computing the weight, the
node shares it with its ID number, then compares it with the
weights of adjacent nodes, such as the sensor node. The CH
will be the node that achieves the lowest Wn [13]. The election
procedure goes through the steps shown in Algorithm 1.

In the RBC-IDS, each CH totals the sensed data from the
other sensors in its consistent cluster, and sends this to the
server by adopting the data aggregation procedure in [14].
The procedure computes the aggregator trust score based on
other sensor trust scores and the trust evaluation between the
sensors and the aggregator [14].

In eq. (5), TCH is the trust score of the CH (aggregator), Tn

refers to the node n trust score and Tn
CH is the trust evaluation

of the CH and the sensor node n.

TCH = (
n−1∑

n=0

(Tn + 1) · Tn
CH )/

n−1∑

n=0

(Tn + 1) (5)

In RBC-IDS, the RBM method consists of input layers that
contain x visible nodes, such as (V1, V2, . . . ,Vx ), hidden
layers and the outputs.

Algorithm 1 Weighted CH Selection Pseudo-Code
1: procedure CH SELECTION TECHNIQUE

2: Inputs: dn , δ, SRSSn , Mn , τn .
3: Outputs: Wn .
4: for each node n do
5: dn ← neighboring sensors’ number of n
6: δ ← Capacity of a CH (number of nodes)
7: Δn ← Degree difference for n
8: Δn = |dn − δ|
9: SRSSn ←

Sum of n’s received signal strength
10: |1/SRSSn | ←

normalized sum of RSS for n
11: Mn ← Mobility factor for node n
12: τn ← Cumulative time n
13: Wn ← Combined weight for node n
14: Wn = f1Δn + f2

|1/SRSSn | + f3Mn + f4τn
15: end for
16: Return Wn

17: Select the node with a minimum Wn as CH
18: Eliminate the elected CH from the nodes set
19: Repeat steps for all remaining nodes
20: End
21: end procedure

TABLE I
KDD’99 DATASET ATTACK RECORDS

TABLE II
ATTACKS EXAMPLES IN KDD 99 DATASET

IV. PERFORMANCE EVALUATION

We evaluated the performance of the deep learning-based
IDS (RBC-IDS) and compared it with the previously presented
adaptive machine learning-based IDS (ASCH-IDS) [2] with
regards to Accuracy Rate (AR%), False Negative Rate
(FNR%) and Detection Rate (DR%). In our simulation, we
used the Network Simulator-3 (NS-3).

In the RBM, we train a single layer then go through
the entire deep network. In our simulation we partition the
KDD dataset for training and use the attack records for test-
ing as shown in Table I. Under the simulation settings in
Section IV-A, we evaluate the two mechanisms by using
KDD’99 as a real attack dataset. Tables I and II present the
dataset profile in terms of the number of attack records and
attack examples.

We present the performance results in terms of AR%, DR%,
FNR, ROC curve and F1 score characteristics in Section IV-B.
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TABLE III
TESTING SETTINGS

Fig. 1. ARs% comparison of RBC-IDS and ASCH-IDS.

A. Simulation Inputs

We simulated a network of twenty sensors that deployed
in a WSN and communicated using the Dynamic Source
Routing protocol used for Hierarchical representation networks
(H-DSR). The tested sensors are deployed in four clusters in
an area of 100m x 100m. The figures reflect the median of
10 executions for each scenario, with 95% confidence scale.
Table III is a detailed list of the simulation inputs. The RBM
model integrated with the simulations consists of one input
layer (V1) with 41 features, 3 hidden layers (H1,H2 and H3)
and the output which is classified as normal or malicious.

B. Simulation Results

The presented ASCH-IDS and RBC-IDS are evaluated
based on the following criteria: i. True Positive (TP) denotes
anomalous cases that were correctly classified anomalous,
ii. False Positive (FP) stands for normal cases that were incor-
rectly classified anomalous, iii. True Negative (TN) denotes
normal cases that were classified correctly, and iv. False
Negative (FN) stands for anomalous cases that were incor-
rectly classified normal.

1) Accuracy Rate (AR%): The AR% is the ratio of clas-
sified incidences that return to True Positive (TP) and True
Negative (TN) incidences [15].

AR is presented for different scenarios to trace RBC-IDS
performance with different numbers of hidden layers (H) and
compare them with ASCH-IDS AR%, as shown in Fig. 1. As
the figure shows, the proposed RBC-IDS with H = 3 results
had the highest AR of 99.91%, followed by ASCH-IDS with
99.83%. RBC-IDS with H = 1 achieved the least AR.

Fig. 2. DRs% comparison of RBC-IDS and ASCH-IDS.

Fig. 3. FN% comparison of RBC-IDS and ASCH-IDS.

2) Detection Rate (DR%): The DR% represents the
behaviours that are accurately recognized as intrusive, and sig-
nifies the (TP) ratio as displayed in Eq. (6), where TP and FP
denotes the True Positive and False Positive respectively [15].
The DR% for RBC-IDS with different hidden layer numbers
(H = 3, H = 2 and H = 1) is compared to ASCH-IDS as
shown in Fig. (2).

DR% = TP/(TP + FP) (6)

Fig. 2 illustrates the DRs for the proposed RBC-IDS with
different numbers of hidden layers (H), and compares them
with ASCH-IDS DR%. The proposed RBC-IDS with H=3
achieves the highest DR, followed by ASCH-IDS as shown
in Fig. 2.

3) False Negative Rate (FNR%): FNR% returns to the ratio
of undesirable sensor behaviours that have been inaccurately
classified as non-intrusive [13]. FN represents network failure
to detect intrusive behaviors, such as the negative activities
originated by sensors that are not detected. The FNR% of
RBC-IDS and ASCH-IDS are shown in Fig. 3.

In deep learning-based RBC-IDS with H = 3, the over-
all FNR% is mitigated when compared to the case under
the ASCH-IDS. RBC-IDS with H = 1 achieves the highest
FNR%, which represents the lowest performance.

4) Receiver Operating Characteristic Curve: The ROC
curve displays the ratio between sensitivity (TP) and the FP
(1−Specificity). Sensitivity-specificity is represented by the
area under the curve, with the larger area reflecting the best
performance. ROC curves were plotted for RBC-IDS with dif-
ferent numbers of hidden layers such as (H = 1, H = 2 and
H = 3), compared to ASCH-IDS as shown in Fig. 4.
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Fig. 4. ROC comparison of RBC-IDS and ASCH-IDS.

Fig. 5. F1 Score comparison of RBC-IDS and ASCH-IDS.

TABLE IV
TRAINING TIME AND TESTING TIME COMPARISON

With ROC curves, the overall RBC-IDS performance can
be enhanced when H = 3.

5) F1 Score Curve: The F1 score measures test accu-
racy [16], studying the precision-recall of the test in order
to calculate its F score. The precision is the number of true
positive incidences divided by all positive incidences, which
is formulated as TP/(TP+FP). The recall is formulated as
TP/(TP+FN), which represents the number of true positive
incidences divided by all actually positive instances. The F1

score is the harmonic average of precision and recall [16].
Table IV shows the detection time (training and testing)

times of RBC-IDS and ASCH-IDS procedures. It is clear
that the detection time (training and testing) for the RBC-IDS
procedure is higher than that of the ASCH-IDS procedure.

V. CONCLUSION

In this letter, we presented a feasibility analysis of a
deep learning-based IDS known as the Clustered Restricted
Boltzmann Machine-Intrusion Detection System (RBC-IDS),
and compared to an adaptive machine learning-based IDS
approach [2]. We also compared the RBC-IDS performance

with different numbers of hidden layers against the ASCH-IDS
through simulations, and verified that the proposed RBC-IDS
has a ≈ 99.12% detection rate and ≈ 99.91% accuracy rate
with three hidden layers (H = 3), with intrusive behaviours
present in the tested WSN. We have shown that the adaptive
machine learning-based solution performs at the same rate as
the deep learning-based solution, whereas adopting a machine
learning-based IDS framework leads to approximately half the
detection time of the deep learning-based RBC-IDS frame-
work. Our future agenda includes, extending the presented IDS
to larger networks with more sensors.
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