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Abstract—We study the quantum critical behavior in a mul-
ticonnected Jaynes-Cummings lattice using the density-matrix
renormalization group method, where cavity polaritons exhibit
a Mott-insulator-to-superfluid phase transition. We calculate the
phase boundaries and the quantum critical points.

Index Terms—multiconnected Jaynes-Cummings lattice, quan-
tum phase transition, quantum critical points

I. INTRODUCTION

Enormous progress has been achieved in the study of scal-
able solid-state quantum systems, such as superconducting de-
vices and semiconductor photonic devices [1], [2]. At the same
time, these devices have also been exploited to emulate many-
body phenomena that are difficult to solve classically [3].
Among these efforts, one particularly interesting endeavor is
the study of strongly-interacting photons and polaritons [4],
[5]. By coupling a cavity to a nonlinear medium, such as
a qubit, an effective nonlinear interaction between polariton
excitations can be created, which can be related to the onsite
Hubbard interaction in the Bose-Hubbard model [6]. In the
coupled cavity array (CCA) models [7]–[10], photons can hop
between adjacent cavities, and the competition between the
hopping and the effective nonlinear interaction results in quan-
tum phase transitions between the Mott-insulating (MI) phase
with localized polariton excitations and the superfluid (SF)
phase with long-range spatial correlation. Photon blockade and
dynamical quantum phase transition have been investigated in
the CCA [11]–[13].

In recent works [14]–[17], a multiconnected Jaynes-
Cummings (MCJC) lattice has been studied, where qubits and
cavities are connected alternately. In contrast to the CCA,
no direct hopping exists between neighboring cavities in the
MCJC. A MCJC lattice can be realized with superconduct-
ing resonator cavities coupled to superconducting qubits or
with optical nanocavities coupled to quantum dots [1], [2].
In particular, the MCJC can be constructed by connecting
Xmon qubits to superconducting resonators, given the rich
connectivity of the superconducting circuits [18], [19]. Using
exact diagonalization [14], [15], it was shown that the MI-to-
SF phase transition can occur due to the competition between
the qubit-cavity couplings when the cavity polaritons are at
integer fillings.

Fig. 1. (a) The schematic of a 1D MCJC. The circles (σ) represent the qubits
and the blocks (a) represent the cavities with qubit-cavity couplings gr and
gl. (b) The DMRG algorithm in our calculation.

Here we study the quantum critical behavior of a one-
dimensional (1D) MCJC lattice at both integer and half fill-
ings using the density-matrix renormalization group (DMRG)
method [20], [21]. This method has previously been used to
study the Bose-Hubbard and the CCA models [22]–[24]. We
obtain the phase boundary and the critical point of the phase
transitions [25].

II. MULTICONNECTED JAYNES-CUMMINGS LATTICE

We consider a one-dimensional (1D) MCJC lattice com-
posed of alternately connected qubits and cavities [14], as
shown in Fig. 1(a). Each qubit in this model is coupled to
two adjacent cavities. The total Hamiltonian of this model
can be written as (~ = 1) Ht =

∑
iH0i + Hli + Hri with

the uncoupled Hamiltonian H0i = (ωz/2)σz2i−1 + ωca
†
2ia2i,

the coupling Hamiltonian Hli = gl(σ
+
2i−1a2i−2 +a†2i−2σ

−
2i−1)

between the qubit at site 2i− 1 and the cavity at site 2i− 2 ,
and the coupling Hamiltonian Hri = gr(σ

+
2i−1a2i+a†2iσ

−
2i−1)

between the qubit at site 2i − 1 and the cavity at site 2i.
Here ωz is the energy splitting of the qubits, ωc is the
frequency of the cavity modes, σz,+,−i are the Pauli matrices,
ai is the annihilation operator of cavity modes, gl (gr) is the
coupling constant between a qubit and a cavity to its left
(right) hand side. We assume periodic boundary condition
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in our calculation. In this model, in contrast to the CCA
model, the cavities are not directly coupled to each other. The
unique geometry of this model renders a symmetry between
the coupling constants gl and gr, i.e., the energy spectrum is
unchanged when we swap these two coupling constants.

When gl = 0 (gr = 0), the MCJC lattice becomes isolated
unit cells with one qubit and one cavity governed by the well-
known Jaynes-Cummings (JC) model [26]. The JC model is
exactly solvable with the polariton eigenstates |n, α〉, where
n > 0 is the number of excitations in the coupled system and
α = + (−) refers to the upper (lower) polariton state. We use
|0,−〉 to denote the lowest state of the JC model.

Below we analyze the behavior of the MCJC lattice at finite
gl with the polariton mapping technique [9]. We define a
polariton operator pinα ≡ |0,−〉i〈n, α|, which annihilates the
|n, α〉 polariton state at the ith unit cell. The total Hamiltonian,
Ht, can be represented in terms of the polariton operators. For
example, at zero detuning ωz = ωc,

Ht =
∑
iαn

[
(n− 1/2)ωc + α

√
ngr
]
pi†nαp

i
nα

+gl
∑
inm

∑
αα′ββ′

knαα′tmββ′V
αα′ββ′

imn (1)

with the hopping term

V αα
′ββ′

imn = pi†nαp
(i−1)†
(m−1)β′p

i−1
mβ p

i
(n−1)α′ + h.c.. (2)

The first term in (1) describes the local polariton spectrum with
a nonlinear term resembling an onsite interaction, which can
result in a MI phase with localized polariton excitations. The
second term in Eq. (1) describes the hopping of a polariton
from site (i−1) to site i, which can result in a superfluid phase
with long-range spatial correlation. The competition between
these two terms can lead to a transition between the MI and
SF phases at integer filling. At gl = 0 (gr = 0), the system
is dominated by the onsite interaction and is in the MI phase.
When increasing gl, especially when gl becomes comparable
to gr, the hopping term can lower the energy due to double
occupancy and drive the system into the SF phase.

III. NUMERICAL RESULTS

To confirm our analysis in the above section, we use a finite-
lattice DMRG algorithm to study the quantum critical behavior
of the MCJC lattice [20], [21]. The algorithm is illustrated in
Fig. 1(b). At first step, we have two basic blocks labelled as
S and E, respectively, with known eignestates. In the middle
(end), there is a single cell that we call M (N). We can solve
the eigenstates of the coupled blocks S and M (E and N)
and truncate these eigenstates to form a new basis. With this
procedure, we effectively merge S and M (E and N) into a
new S (E). Conmtinuing this procedure, we can calculation
the ground state of 1D systems with high accuracy. In our
calculation, we use both infinite and finite DMRG algorithms
to achieve high accuracy.
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Fig. 2. The chemical potentials µp and µh versus ln(gl/gr) for the MCJC
lattice with (gr+gl)/2π = 300 MHz. The main plot (inset) is at the integer
filling N/L = 1 (half integer filling N/L = 1/2).

A. Phase boundaries

The phase boundaries between the MI and the SF phases
can be determined from the chemical potentials

µp(N,L) = EL(N + 1)− EL(N), (3)
µh(N,L) = EL(N)− EL(N − 1), (4)

where EL(N) is the ground state energy of a MCJC with
L unit cells and N polariton excitations, and µp (µh) is the
chemical potential for adding (removing) one polariton [23]. In
Fig. 2, we plot the extrapolated chemical potentials, µp and µh
as functions of the logarithmic ratio ln(gl/gr). At the integer
filling N/L = 1, our result shows that µp = µh in the regime
gl ∼ gr (small | ln(gl/gr)|). As the ratio | ln(gl/gr)| increases,
a finite difference appears between µp and µh, corresponding
to a finite energy gap for adding or removing a polariton [23].
This indicates the transition from the SF phase in the small
| ln(gl/gr)| regime to the MI phase in the large | ln(gl/gr)|
regime. Between µp and µh, the polariton density remains
a constant (N/L = 1) with zero compressibility. Our result
also shows that there are two quantum critical points due to
the symmetry between the couplings gl and gr. These two
critical points correspond to gl/gr = β0 and gl/gr = 1/β0,
respectively.

The inset of Fig. 2 shows µp and µh versus ln(gl/gr) at
the half integer filling N/L = 1

2 . We find that µp = µh
within numerical error in all parameter regimes, and hence
there won’t be a phase transition at half filling.

B. Quantum critical points

To accurately determine the position of the quantum critical
points, we calculate the single-particle density matrices

Γq(i− j) = 〈σ+
2i−1σ

−
2j−1〉, (5)

Γr(i− j) = 〈a†2ia2j〉. (6)

For the 1D MCJC lattice, the low-energy excitations are
Luttinger liquids and the single-particle density matrices in the
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Fig. 3. The Luttinger parameters K0
q and K0

r versus ln(gl/gr) with (gr +
gl)/2π = 300 MHz. The dashed line corresponds to K0

α = 1/2. The main
plot (inset) is at the integer filling N/L = 1 (half integer filling N/L = 1/2).

superfluid phase obey the relation Γα(i − j) ∝ |i − j|−Kα/2

for α = q, r and |i − j| → ∞ [27], where Kq (Kr)
is the Luttinger parameters for the qubits (cavities). Our
numerical calculation of the single-particle density matrices
confirms this power-law dependence. We also know that in the
thermodynamic limit with L → ∞, the Luttinger parameters
K0
q = K0

r = 1/2 at the quantum critical point for the integer
filling N/L = 1 [22]. To obtain the Luttinger parameters in
the thermodynamic limit, we conduct an extrapolation of the
finite lattice results to the L → ∞ limit. The result of K0

q

and K0
r is shown in Fig. 3 as functions of ln(gl/gr). From

the result of K0
q and K0

r , we accurately determine the values
of the quantum critical points to be β0 = gl/gr ≈ 0.579 and
1/β0 = gl/gr ≈ 1.727. Meanwhile, the Luttinger parameters
at the half filling N/L = 1/2 satisfy 1/2 < K0

α < 2, as
shown in the inset of Fig. 3, indicating no phase transition in
the whole parameter regime.

IV. CONCLUSIONS

To conclude, we study the quantum critical behaviors of the
1D MCJC lattice with the DMRG method. Using the polariton
representation, we show that the MCJC lattice can exhibit
a MI-to-SF quantum phase transition. We use the DMRG
method to calculate the phase boundaries and the quantum
critical points. Our result indicates that the qubit-cavity system
can be a powerful platform to study strongly-correlated effects
in cavity polaritons.
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