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Abstract— This paper proposes a distributionally robust
scheduling model for the integrated gas-electricity system (IGES)
with electricity and gas load uncertainties, and further studies the
impact of integrated gas-electricity demand response (DR) on
energy market clearing as well as locational marginal electricity
and gas prices (LMEPs and LMGPs). The proposed model
maximizes the base-case system social welfare (i.e., revenue from
price-sensitive DR loads minus energy production cost) minus the
worst-case expected load shedding cost. Price-based gas-electricity
DRs are formulated via price-sensitive demand bidding curves
while considering DR participation levels and energy curtailment
limits. By linearizing nonlinear Weymouth gas flow equations via
Taylor series expansion and further approximating recourse
decisions as affine functions of uncertainty parameters, the
formulation is cast into a mixed-integer linear programming
problem to enhance computational tractability. Case studies
illustrate effectiveness of the proposed model for ensuring system
security against uncertainties, avoiding potential transmission
congestions, and increasing financial stability of DR providers.

Index Terms— Integrated gas-electricity systems, co-optimization,
demand response, distributionally robust optimization.

NOMENCLATURE
Major symbols and notations used throughout the paper are
defined below, while others are defined following their first
appearances as needed.

Indices:

¢ gjJ Index of gas compressors/gas loads/gas suppliers.

d it Index of electricity loads/units/hours.

e m Index of electricity grid buses/gas network nodes.

Lp Index of power lines/gas pipelines.

kn Index of segments/breakpoints.

Variables:

j;;, j; } Binary variables to indicate gas flow direction of
pipeline p at time ¢.

G Gas consumption of gas-fired unit i at time .

G,, G, Gas flow of pipeline p/ compressor c at time .

[; Commitment status of unit 7 at time ¢.

Py, Power generation at segment & of unit i at time .

Pi» Ggre Demand at segment & of electricity load d/ gas load g
at time ¢.

Py, G,  Production of unit i/ gas supplier j at time 7.
P, 6,  Power flow of line // phase angle of bus e at time .
Py, Gg  Scheduled electricity load d/ gas load g at time ¢.

s Gg Adjustable electricity load d/ gas load g at time ¢.
SU,, SD;, Startup/shutdown fuel consumption of unit i at time ¢.
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Vap Vg Slack variables indicating load shedding of
electricity load d/ natural gas load g at time .

X" X9 ON/OFF time counter of unit 7 at time .

°on X3 ON/OFF time counter of electricity load d at time ¢.

Xg}“,Xg,ff ONJ/OFF time counter of gas load g at time ¢.

Yy Yo Curtailment status of electricity load d/ gas load g,
which is 1 if load is curtailed, being 0 otherwise.

Tt Pressure of gas node m at time ¢.

Constants:

Cik Incremental fuel consumption at segment & of unit 7.

c N, Fuel price/ no-load fuel consumption of unit i.

CaisCaie  Bidding price at segment £ of electricity load d/ gas
load g at time ¢.

G Production cost of gas supplier ;.

et C;’H Load shedding penalty cost of electricity load d/

natural gas load g.

K, Gas flow constant of pipeline p.

M A large enough number.
Pload,G};;adExpected electricity load d/ gas load g at time ¢.
su;,sd; Startup/shutdown cost of unit 7.

7, 79T Minimum ON/OFF time of unit .

79, 75" Minimum ON/OFF time of electricity load d.

g, T;iff Minimum ON/OFF time of gas load g.

UR;,DR; Ramp up/down rate of unit i.

X; Reactance of transmission line /.

%4, 0 DR participation level of electricity load d/ gas load g
at time 7.

I, Compression factor of compressor c.

(-)min/max Min/max value of a quantity.

Sets and functions:

GU Set of gas-fired units.

N(e),N(m) Set of components at electricity bus e/ gas node m.
s(*), "(*)  Sending/receiving ends of power lines or pipelines.
Qr,Q.,Q;  Sets of power buses, units, and power lines.
QuQ0,Qp Sets of gas nodes, compressors, and pipelines.

Qp, Qg Sets of electricity loads and gas loads.

Q;, Qr, Qr Sets of gas suppliers, segments, and time periods.

I. INTRODUCTION

Natural gas-fired units have become the top choice for new
generation expansion of power systems due to the lower
cost, higher efficiency, and faster response capabilities [1]. The
growing large fleet of gas-fired generators has intensified the
interconnections of electricity grid and natural gas network [2].
That is, gas-fired units rely on just-in-time gas supply from the
natural gas network, which has raised significant challenges on
the operational security and efficiency of both systems. In turn,



modeling and optimizing them as an integrated gas-electricity
system (IGES) could achieve a more secure and economic
operations of both systems. In addition, DR programs in power
systems have been successfully developed to flatten the load
profile by transferring flexible demands away from peaks to
lightly-loaded hours for enhancing energy reliability and
efficiency [3]-[4]. On the contrary, natural gas DR has been
underexplored. In fact, Whitehouse and other groups have
recently started seeking for natural gas DR programs to help
reduce costs for energy consumers [5]-[6]. Advantages of gas
DR in the IGES include: (i) reducing electricity and gas price
spikes and improving reliability of IGES; (ii) providing
environmental benefits by making more clean natural gas fuel
available to gas-fired units; and (iii) driving value by deferring
or avoiding costly investments.

The day-ahead co-optimization scheduling of IGES has been
discussed in [7]-[13] to ensure reliable and economic
operations. A novel mixed-integer linear programing (MILP)
model is proposed in [7] to study energy adequacy of IGES in
short-term operations. Reference [8] applies new dynamic gas
flow control techniques to examine day-ahead operations of
generators and gas compressors in different coordination
scenarios. A multi-area integrated electricity-natural gas model
is presented in [9], which is solved in a decentralized manner to
achieve decision autonomy of multiple participating areas.
Moreover, as uncertainties within the IGES bring new
challenges in the day-ahead scheduling, stochastic day-ahead
scheduling considering volatile wind energy is proposed in [10].
Reference [11] presents two interval methods to study the
impact of wind power uncertainty on the operation of electricity
and natural gas systems. Robust optimization is also applied to
the co-optimization scheduling of IGES considering power
system uncertainties and natural gas system dynamics [12].
Reference [ 13 ] integrates transmission network N-1
contingencies in the robust scheduling model to ensure the
operation security of IGES with wind power.

Demand-side participation could offer valuable options to set
efficient energy prices, improve economic efficiency, and
increase energy security. DR programs have been intensively
studied in power systems. The impact of priced-based DR on
market clearing and locational marginal prices (LMPs) is
carried out in [3]. Reference [4] proposes a stochastic day-ahead
scheduling model of power systems considering hourly DR.
However, research regarding DR programs in IGES is rather
limited. Interruptible-load based and coupon-based DR virtual
power plants are considered in the coordinated operation of
electricity grid and natural gas network in [14]. Electricity DRs
with shifting capabilities are introduced in [15] to seek for
economic day-ahead scheduling of the power system while
considering gas transmission limits. Reference [16] models
incentive electricity and gas DRs as linear functions of
compensation prices to evaluate their effects on IGES operation.

From existing literature we notice that: (i) Distributionally
robust optimization has been used in power system operations
for handling uncertainties [17-20]. However, most works focus
on optimizing first-stage unit commitment cost and
second-stage worst-case expected dispatch cost. In addition,
prior works on distributionally robust day-ahead scheduling of
integrated gas-electricity systems are rather limited; (ii)
Interruptible based, coupon-based, and incentive-based gas DRs

are considered in [14], [16], while priced-based gas DRs are not
fully addressed; (iii) The impacts of integrated gas-electricity
DRs on energy market clearing as well as LMEPs and LMGPs
have not been investigated.

This paper proposes a distributionally robust co-optimization
scheduling model for the coordinated optimal operation of
electricity and natural gas systems, while considering
uncertainties of electricity and gas loads. In addition, hourly
price-based integrated gas-electricity DR is modeled for the first
time to reduce peak load periods, flatten hourly load profiles,
and provide economic operations [4], [15]. Specifically, the
proposed model explores opportunities of utilizing natural gas
DR to secure gas supply to gas-fired units and relieve power
shortage of the electricity system, especially in critical
circumstances such as peak electricity loads in summer.

The major contributions of this paper are twofold.

1) The paper proposes a two-stage distributionally robust
co-optimization model for the day-ahead scheduling of IGES
while considering uncertainties of electricity and natural gas
loads. Instead of optimizing the worst-case expected system
social welfare, the base-case system social welfare minus the
worst-case expected load shedding cost is optimized to derive
useful economic dispatch solutions in the day-ahead market and
simultaneously guaranteeing system security.

2) Price-based integrated gas-electricity DR is considered as an
economic option in the day-ahead scheduling of IGES for the
first time, by shifting loads at peak hours to off-peaks. Similar to
the concept of LMP in power systems, locational marginal
electricity/gas prices (LMEPs and LMGPs) for IGES are
proposed. Furthermore, benefits of price-based gas-electricity
DRs on the operation of IGES and LMEPs/LMGPs are
quantitatively analyzed via the proposed distributionally robust
scheduling model.

The remainder of the paper is as follows. Sections II and III
discuss the deterministic co-optimization scheduling model and
its distributionally robust counterpart. Sections IV gives
solution methodology. Numerical case studies are presented in
Section V, and conclusions are given in Section VI.

II. DETERMINISTIC SCHEDULING MODEL

A. Formulation of the Deterministic Scheduling Model

In this paper, electricity system and natural gas system are
considered as an integrated energy system with one system
operator. A full co-ordination between electricity and natural
gas system could increase the reliability and operation
efficiency of both energy systems. On the other hand, a fully
decentralized way to coordinate electricity and natural gas
systems via alternating direction method of multipliers
(ADMM) could be adopted to achieve decision independency
and information privacy of the two energy systems [9], [12].

The deterministic scheduling model is to maximize the system
social welfare of supplying hourly electricity and natural gas
loads. The objective function (1) consists of revenue from DR
loads minus load shedding penalty and production cost of IGES
(revenue from inelastic loads is constant and thus neglected).
The production cost of IGES includes gas production cost and
production cost of non-gas thermal units. Note that production
costs of gas-fired units are considered in terms of gas fuel cost
and carried out by the gas production cost of gas suppliers. The



decision variables in the model include unit commitment
statuses, gas flow directions, dispatches of the IGES, among
others. Indeed, all variables presented in the nomenclature are
decision variables of the deterministic scheduling model.

Power system constraints include minimum ON/OFF time
limits (2)-(3), startup and shutdown costs (4)-(5), system load
balance (6), generation limits (7)-(9), ramp up and down limits
(10)-(11), DC power flow equations (12)-(13) in which power
flow of a transmission line is calculated by bus angles and the
line impedance, and bus angle limits (14). As a key component
that couples electric power system and natural gas system, gas
consumption of a gas-fired unit is calculated in (15) where HHV
represents higher heating value that equals 1.026MBtu/kcf.

Constraints (16)-(23) describe power system DRs, adopting
price-sensitive consumption curves to simulate price responsive
loads. Here, price responsive loads could be curtailed or shifted
to other operation hours in response to market prices. As energy
consumption of a price responsive load would decrease
monotonically with the increase in electricity price, in this
paper, a stepwise DR bidding curve as shown in Fig. | is used to
represent changes of price responsive load with respect to
electricity price changes. The range of DR participation level oy,
is [0, 1]. That is, the inelastic load level is (1-ay)-P'52.
Minimum on/off constraints (16)-(17) of electricity load d
define that certain load must be supplied/off for a number of
consecutive hours after it is restored/curtailed [4], [15]. The
relationship among scheduled load, adjustable load, and load
segment variables is presented in (18)-(19). Constraint (20)
defines limits of load segment variables. The range of adjustable
load P% is expressed in (21)-(22). Binary indicator Y, describes
the status of DR load d at time ¢. Specifically, if ¥ equals to 1,
adjustable load PY is positive, indicating that load d is
curtailed/shifted at time #; When Y, is 0, negative adjustable
load Pﬁg means that load d is increased with demand from other
hours shifted in at time ¢. The total curtailment of price
responsive load d is limited by certain quantity (23). A positive
setting of EJ™ indicates that a total amount of energy E;™ at
load d could be curtailed; If it is set as 0, it means that all
reduced load at certain time periods will be fully shifted to other
time periods.
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Fig. 1 A stepwise demand response curve.

As the largest complex networked systems, electricity and
natural gas systems share certain similarities. Operation
constraints of natural gas system are presented in (24)-(42). Gas
network nodal balance equation is described in (24). Equations
(25)-(26) defines limits of gas supplier productions and nodal
pressures, respectively. The nonlinear relationship between
nodal pressures and pipeline gas flows is described via
Weymouth equations (27). Constraints (28)-(30) determine gas

flow directions of pipelines, where /;:l/fp =1 indicates that gas

flows have positive/negative directions in pipeline p. Equation
(31) calculates terminal gas pressures of compressor stations,
where constraint (32) restricts gas flow directions in compressor
stations. Similar to the modeling of electricity DRs in (16)-(23),
price responsive natural gas DR load is analogously modeled
via (33)-(40). Constraints (41)-(42) restrict values of electricity
and gas load shedding variables.
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B. Linearization of Natural Gas Network Constraints

The Weymouth equations presented in (27) are nonlinear and
thus could not be readily solved by commercial MILP solvers.
Authors in [7], [15] proposed to convert Weymouth equations
with known gas flow directions into a set of linear constraints
via piecewise linear approximations. However, binary
indicators would bring challenges for developing a tractable
robust counterpart. Thus, convexification methods such as
second order cone (SOC) relaxation [9], [21], [22] and Taylor
series expansion [23] have been proposed. It is pointed out in
[9], [22] that the SOC relaxation is generally inexact and may
offer infeasible solutions. In turn, reference [22] presents a
sequential SOCP algorithm to enhance solution feasibility. On
the other hand, Taylor series expansion is applied to linearize
Weymouth equation with positive flow direction in our previous
work [23], while the solution quality and approximation
accuracy are extensively studied. Since Taylor series expansion
has high-quality approximation and its computation burden
grows linearly with respect to the scale of the system, this paper
adopts Taylor series expansion to linearize Weymouth
equations.

To enhance tractability of nonlinear Weymouth equations
and facilitate computation of the proposed distributionally
robust optimization model, nonlinear gas flow equation (27) is
reformulated as MILP constraints via Taylor series expansion.
Based on our previous work, Weymouth equation with respect
to a positive/negative flow direction can be linearized as
constraints (43)-(46)/(47)-(50) [23], where (ﬁ:(p),,nﬁ:(p),,”) is
the nth predefined breakpoint. In turn, constraint (27) can be
linearly approximated via (43)-(50) together with a limited
number of binary variables f;/fp . indicating gas flow directions.
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C. Abstract Formulation

The deterministic model could be written in a general abstract
form as shown in (51)-(54). Binary vector x refers to startup/
shutdown actions, on/off indicators, and gas flow direction
indicators. All continuous variables are denoted as vector y,
representing dispatches of the IGES. Vector v represents

electricity and natural gas load shedding. Equation (52) restricts
x as binary variables. Constraints with only binary variables are
represented as in (53). Operation conditions associated with
both binary and continues variables are shown in (54).

mln cix+e y +sTy (&2))]
s.t. x €{0,1} (52)
Ax<¢, (53)
Cx+Dy+Ev<h (54)

where 4, C, D, E, ¢y, ¢,, ¢}, s, and h are abstract matrices and
vectors, representing coefficients of costs and constraints.

III. DISTRIBUTIONALLY ROBUST SCHEDULING MODEL

A two-stage distributionally robust model is proposed to
study day-ahead coordinated scheduling of the IGES under
uncertainties. Specifically, the IGES is designed to operate
under the base-case condition with respect to electricity and gas
load forecasts in the day-ahead timeframe, while adaptively and
securely redispatching generating units, gas suppliers, and gas
compressors in response to uncertainties in real time.

The following assumptions are adopted to facilitate modeling
of the two-stage distributionally robust scheduling problem.

1) Unit commitment statuses are first stage variables and
they remain unchanged in real-time dispatches [12], [21]. This
is recognized by the fact that physical characteristics of most
generating units restrict them from quickly changing their unit
commitment statuses under uncertainties.

2) Similarly, gas flow directions are also regarded as first
stage variables. Reversing gas flows would require complicated
changes in operation statuses of overpressure protection devices,
control valves, and compressor stations [22]. In turn, reversing
gas flow directions is only allowed in the day-ahead framework
with sufficient time and appropriate management.

3) As constraints (16)-(17) and (33)-(34) suggest that DR
loads have minimum on/off time limits [4], [15], statuses of DRs
are treated as first-stage variables and will not be changed in real
time.

4) Fixed DR participation levels o, and a,, are considered
[4], [15]. Thus, in the proposed model, uncertainties of
integrated gas-electricity DRs are reflected via the total amount
of available DRs which varies with different realizations of total
electricity and natural gas loads, while price uncertainties of
individual segments in the demand response curves are not
included. Alternatively, uncertain DR curves, such as those
adopted in [23], could be integrated in the proposed model while
the solution approach remains valid. Indeed, modeling uncertain
DR curve in robust optimization is difficult and could
complicate the solution algorithms. To this end, stochastic
optimization approaches might have certain advantages by
modeling uncertain demand response curve via multiple
scenarios.

A. The Proposed Distributionally Robust Scheduling Model

In literature, stochastic programming and robust optimization
have attracted much attention for their advantages in handling
uncertainties. Stochastic programming seeks to optimize the
expected value over a set of predefined scenarios, which
requires the distribution probability of uncertain variables. By



contrast, robust optimization tends to optimize the value over
the worst-case situation within the predefined uncertainty set,
where distribution probability of uncertain variables is not
necessary. By leveraging the advantages of stochastic
programming and robust optimization, distributionally robust
optimization protects systems against the worst-case probability
distribution in the ambiguity set with partial distributional
information. The merit of distributionally robust optimization is
that partial distributional information in stochastic
programming is utilized to mitigate over-conservativeness of
traditional robust optimization approach.

Recently, distributionally robust approaches have been
applied in power systems to solve unit commitment problems
with uncertain renewable generations and electrical loads. As an
intermediate approach between stochastic programming and
robust optimization, certain distribution information could be
included to leverage advantages of the both methods [17]-[20].
In [17]-[18], a data-driven risk-averse stochastic unit
commitment model is proposed where risk aversion stems from
the worst-case probability distribution of renewable generation.
The proposed model constructs a confidence set for
distributions of uncertain parameters via historical data, and is
solved via Benders decomposition. In addition, references
[19]-[20] adopt ambiguity set with moment-based information
to partially capture the distributional information while
addressing the computational issue via affine decision rules.
Moreover, the formulations in [17]-[20] optimize the first-stage
unit commitment cost and second-stage worst-case expected
dispatch cost. Differently, the basic idea of the proposed model
is to find a base-case scheduling solution (including both unit
commitment and dispatch) with respect to the optimal base-case
system social welfare and worst-case expected load shedding
cost over an ambiguity set. Compared with traditional
distributionally robust models which optimize the worst-case
expected system social welfare, the proposed model has two
major advantages: (i) Less conservativeness. The proposed
model is less conservative because it optimizes the base-case
system social welfare while considering the worst-case expected
load shedding cost; (ii) Practical applications. Instead of only
providing unit commitment and gas flow direction solutions, the
proposed model also derives base-case dispatch solutions that
could be directly used by Independent System Operators (ISOs),
Regional Transmission Organizations (RTOs), and Natural Gas
System Operators for the day-ahead market clearing.

The distributionally robust scheduling model is presented in
(55), where load shedding is not allowed in the base case.

min cpxtegy+ sup Ep{L(x,y°,&)}
xy PeD
s.t.x € {0,1}
AxSC ]
Cx+Dy°<h (55)
where Ep{L(x,y°,&)} denotes the expected value with respect to

the distribution P of uncertainty variables & D is the ambiguity

set; y° represents the first-stage base-case dispatch decisions
corresponding to forecasted electricity and gas loads; the
second-stage dispatch problem under uncertainties is expressed
as in (56).

L(xy°,&)= nynvn sTy

s.t. Cx+Dy+Ev<h(&);

Fy*+Gy<A (56)
where y denotes the second-stage dispatch decisions in response
to uncertainties; C, D, E, F, G, s, and A are abstract matrices and
vectors; the second set of constraints describes that redispatches
of generating units and gas suppliers are limited by their
corrective ramping capabilities [12], [21]; the right-hand side
vector h(&) of the first set of constraints is affinely affected by
uncertainties, which can be commonly expressed as follows:
h(O=1"+ L, B8, (57)
where w is index of uncertainty parameters; A° denotes constant
term free from uncertainties; hi, represents coefficient of the
affine dependence on the wth uncertainty parameter ¢, .

It is noted that equations (43)-(50) representing linearized
Weymouth equation only include binary variables related to gas
flow directions. Thus, after gas flow directions are determined
in the first stage of the distributionally robust optimization
problem, the second-stage problem of the proposed model does
not contain any binary variables. Indeed, this is the advantage of
applying Taylor series expansion to linearize Weymouth
equation, which could facilitate the solution via distributionally
robust optimization.

B. Ambiguity Set

The ambiguity set includes a family of probability
distributions that have common statistical properties. A general
formulation of the ambiguity set is given in (58) [20], [].

P{¢ € E}=1
Ep{&}=n
Eelz, (9}, 0=1.2....0
where P, (R W) denotes the set of all probability distributions on

R" and W is number of uncertainty parameters. The first
constraint ensures that all outcomes of ¢ are within the support
set E. The second line suggests that the expectation of & is u.
The third constraint describes moment information of
uncertainties via function z,(*), restricting that the generalized
moment cannot exceed a predefined threshold y .By introducing

D={P € P,(R") (58)

an O-dimension auxiliary vector ¢, the ambiguity set D could be

reformulated as the projection of an extended ambiguity set D
(59). B
P{(&p) € E}=1
Eo{é}=u
Eole}<y
where the uncertainty domain is also extended to a lifted support
set as in (60).
e }

‘={(5’<") 2, (&)=, <max z,(&), 0=1,2,...0

Similar to the uncertainty set of robust optimizations, the
support set = adopts lower and upper bounds to limit each
uncertainty parameter &, (61).

E={¢ | &< <IN w=1.2,...W} (61)

As for the function z,(*), this paper adopts the following
piecewise linear formulation (62), which allows us to derive a
computationally tractable equivalent robust counterpart as an
MILP problem [20], [24]-[25]. Although there are other
nonlinear choices of functions z,(*) to characterize variances or
higher-order moment information, the associated computational

D={Q € Py(R"xR?) (59)

(60)



burden for complicated operation problems on large-scale
systems could be overwhelming. Instead, piecewise linear
function (62) has some exclusive advantages: (i) The first-order
deviation information is included, while correlations between
uncertain variables are partially reflected, and (ii) More
importantly, a computational tractable equivalent robust
counterpart could be derived.

z,(&=max{g'&q 0}, 0=1.2,...0 (62)
where g is projection direction of the first-order deviation in ¢,
and g, is the cut-off constant. In other words, the second
constraint of expression (60) would suggest that the positive
part of ggé‘-qo should be no larger than ¢ . Reference [25]
presented a two-step data-based strategy to determine
parameters of equation (62) in the proposed model. Principal
component analysis (PCA) is applied to capture correlation
information between uncertain variables, and all dominant
statistical information could be reflected in the projection
directions g , truncation point g , and parameter y . In addition,
with a chosen function z,(£), max z,(&) in (60) represents a
constant which could be calculated as the largest value of z, (&)
over historical data.

With the support set = and linear moment function
respectively defined in (61) and (62), the lifted support set can
be reformulated via a set of linear inequality constraints (63),
which could be further written in a compact matrix form (64).

(] g™ )
_ _55_61‘““1
E=1 (S0 0<p,,0=1,2,...0 (63)
gléq <p <max(g'éq ),0=12,...0
E={(&9p) | HévIp=c,} (64)

IV. SOLUTION METHODOLOGY

This section discusses an affine decision rule-based method
to effectively solve the proposed two-stage distributionally
robust model, followed by the calculation of LMEPs/LMGPs.

A. Reformulation of the Worst-Case Expectation Problem
The inner maximization problem sup EQ{L(x, yb,é‘)} in (55)
QeD

introduces significant computational burden due to the infinite
dimensions of probability measure Q. Typically, the inner

problem can be dualized to transform into a minimization
problem to facilitate the computation.

The explicit expression of the inner worst-case expectation
problem is shown in (65).

sup Je p(&9) Lxy*.8) dédp

st Jz p(&p) déde=1:(n)
)z p(& o) Edé dp=p:(p)

Jz P(&0)g dédp<y:() (65)
where joint probability density function p(& @) is the decision
variable; symbols in the parenthesis at the end of constraints are
dual variables of corresponding constraints.

The equivalent dual problem of (65) is formulated as in (66)
[20], [24]-[25]. It could be observed that the last constraint is a
robust constraint against uncertainty set Z.

min p+u'p+y'f
n.p.B
s.t. />0

n+&p+oBzL(xy"&), V(&) €E (66)

B. Reformulation of the Proposed Two-Stage Distributionally
Robust Problem

The proposed two-stage distributionally robust model is
generally intractable and NP-hard, because calculating the
worst-case expectation involves enumerating all realizations
within the lifted support set E. One practical approach is to
employ the affine decision rule (ADR) [24]-[26], which restricts
that the recourse decisions are affinely dependent on uncertainty
parameters as in (67)-(68).

Y, &=+ 3,05 8, + X000 0, (67)
V&M=V T Ve, + o Vo, (68)
where a is index of recourse variables; yg and V) denote

&

constants; yiw, yZ()’ Vs

uncertainty parameters ¢, and auxiliary variables ¢ .

Recently, ADR has been adopted to solve the multi-stage
distributionally robust problems. By dualizing the inner
maximization as discussed in Section IV.A, the proposed
two-stage distributionally robust problem could be equivalently
recast into an equivalent robust optimization problem in
(69)-(76).

and V", are coefficients associated with

mincyx+cgy°+n+u'pty'p (69)
s.t. >0 (70)
x€{0,1} (71)
AxScl (72)
Cx+Dy°<h (73)
n+& pto’ ps"v(Ep), V(&p) € E:(2) (74)
Cx+Dy(Ep) TEv(So)<h($), V(<o) € E:(0) (75)
Fy*+Gy(&p)=<A, V() € E:(9) (76)

The last three constraints (73)-(75) are classical robust
constraints on the polytopic uncertainty set E. Methods from
existing literatures could be adopted to convert these three
infinite-dimensional constraints into their robust counterparts
[20], [26], [27].

We take the first uncertain linear constraint (74) as an
example to show the details for deriving the MILP-based
deterministic counterpart. Constraint (74) can be reformulated
as the following worst-case form (77).

min_{n+¢'pro psTv(E )} 20 (77)
"p)ER

The worst-case expression (77) could be further written in an
explicit formulation (78).

min_{n+ 2,0, + 2008, - TuSaV) - T D SaVinl,

(Sp)EE
'ZazosaVZowu}zo (78)
Note that the lifted support set E is defined in (63). By taking
the dual of the minimization formulation (78), equivalent
MILP-based constraints of uncertain linear constraint (74) is
derived as in (79)-(82).

n-s"-2"¢,>0 (79)
220 (80)
ITH=3 55,1, w=1,2,...W (81)
AM=Yas05 B, 0=12,...0 (82)

where H,, is the wth column of matrix H and I, is the oth



column of matrix 1.

Finally, the proposed two-stage distributionally robust
problem is reformulated as an MILP-based deterministic
optimization problem (83). As pointed out and proved in [25],
employing affine decision rule would provide a feasible yet
conservative solution. Since affine decision rule is only applied
to approximate worst-case expected load shedding cost, the
base-case dispatch decisions obtained is of high-quality.
minc;x+cgy°+ ntu’p+y’p
s.t. >0

x €{0,1}

AxZc,

Cx+Dy"<h

n—sTvo-chsz

TH=F,505, 5, w=12,..W
IL=3,5V0,B,, 0=12,...0

Clx+D] Y +EN-h’+cl6,<0

o;H,=%,D," +3, E V5 -h,, w=12,.. W
ol 1,=Y, D,y + ¥4 E V0, 0=1,2,...0
Fy*+G,y*-A+c;,0,<0

0,H,=Y%,G.5, . w=12,..W
0,1,=%,G.", . 0=12,...0

>0, 6,20, 6,>0 (83)
where 7 and u are indices of constraints; h,‘bw is the rth element of
vector hi; Row vectors C!, DT, and E! denote the rth rows of
matrices C', D', and E" respectively; Row vectors F, and G,
denote the uth rows of matrices F' and G".

C. Calculation of Locational Marginal Electricity/Gas Prices

When electricity/natural gas transmission network
congestions occur, the electricity/natural gas market cannot be
cleared at the system level. Instead, the market will be cleared at
the bus/node level. Similar to the concept of LMP in electricity
market, LMGP is defined as the cost of supplying the next kcf/h
of gas load at a certain location, considering costs of gas
production and transmission [3], [28]. A bilateral gas-clectricity
market is proposed in [29] where the two markets trade energy
at locational marginal prices.

The calculation of locational marginal electricity/gas prices
involves two steps. (i) Solve problem (83) to obtain unit
commitment (UC) statuses, gas flow directions, and dispatch
results; (i) The optimal base-case solutions of problem (83) is
used to calculate LMEPS/LMGPs. Specifically, problem
(51)-(54) is solved with determined UC results [, gas flow
directions j‘;/jp; ,

Gjt/ th while considering constraints (84)-(87) to derive true

and optimal dispatch solutions P,/P,/

marginal electricity/gas prices, where AP}, APy, AGjit, and
AG;, are small deviations to calculate LMEPs/LMGPs. Dual

variables obtained from constraint (6) are LMEPs, and dual
variables of constraint (24) are regarded as LMGPs.

P,-AP;<P,<P,+AP;, (84)
Py-APy<P4<P,+APy, (85)
S;jt-AG;tSGjtSGqu; (86)
Gy AGy<G <Gy tAGy, 87

V. CASE STUDIES

A 6-bus power system/7-node natural gas system and the
modified IEEE 118-bus power system/12-node natural gas
system are used to demonstrate the proposed distributionally
robust scheduling model, for analyzing the impact of an
effective deployment of integrated gas-electricity DRs on
market clearing and LMEPs/LMGPs. Electricity load shedding
costs is set as 1000 $/MWh, and gas load shedding cost is 1207
$/kef (e.g. 40008/ MWh) suggesting a higher priority of natural
gas residential loads. Detailed data of the test systems can be
found in [30]. The small deviations in equations (84)-(87) need
to be carefully chosen to derive true marginal electricity/gas
prices. In the case studies of the paper, these small deviations
are set in the range of [1075, 1072].

A. 6-Bus Power System/7-Node Natural Gas System

The 6-bus power system/7-node natural gas system shown in
Fig. 2 is studied for a two-hour period to illustrate effectiveness
of the proposed distributionally robust scheduling model.
Electricity/gas loads at all buses/nodes are assumed eligible to
provide DR. Minimum on/off time limits of generators and
integrated gas-electricity DRs are both set as 1, and ramping
constraints are ignored for simplicity. Generators G1 and G2 are
initially on.
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Fig. 2 6-bus power system/7-node natural gas system.

The following five cases are studied to illustrate the impacts

of distributionally robust scheduling and integrated
gas-electricity DR.
Case 1: Deterministic  scheduling  without  integrated

gas-electricity DR.

Integrated gas-electricity DR is applied after unit
commitment decisions and gas flow directions have
been settled in Case 1.

Case 1 with integrated gas-electricity DR.

Case 1 with distributionally robust scheduling.

Case 4 with integrated gas-electricity DR.

Case 2:

Case 3:
Case 4:
Case 5:

Case 1: This is the base case. First, approximation accuracy
of Taylor series expansion is studied. The method proposed in
Section III.C of reference [23] is used to examine the errors of
Weymouth equation approximation with different numbers of
breakpoints in equations (43)-(50). The results are shown in Fig.
3. As it is observed, gas network is not congested at hour 1, so
the maximum relative errors are extremely small regardless the
number of breakpoints, indicating that the obtained solution is
feasible and optimal to the original Weymouth equation. At
hour 2, gas network congestions occur with increased load, and
the maximum relative errors of Weymouth equation
approximation decrease with the increase in the number of
breakpoints. When the number of breakpoints is larger than 150,
the maximum relative error is smaller than 104, which suggests
that the original Weymouth equation is approximated with high



quality. In addition, the impact of Taylor series expansion on
LMEPs/LMGPs are tested. Fig. 4 shows LMGPs against
different numbers of breakpoints at hour 2, since LMEPs are not
influenced. It is observed that when no breakpoints are
considered, LMGPs of all nodes are the same, indicating that no
congestion occurs in the gas network. On the other hand, by
gradually adding breakpoints, both gas network congestion and
difference in LMGPs emerge. It could also be seen that when the
number of breakpoints reaches 150, the changes in LMGPs
become negligible. It is concluded that a proper number of
breakpoints can reasonably enhance approximation accuracy of
the Taylor series expansion, and 150 is an appropriate number
of breakpoints for this test system.

Table I summarizes results of Case 1. At off-peak hour 1,
base units G1 and G2 are sufficient to cover electricity loads.
However, at peak hour 2, four units are turned on to supply
electricity loads. Due to congestion of line L3, higher LMEPs
are encountered at buses 3 and 6. For natural gas system,
network congestion has limited the production of gas supplier 1
with cheaper cost, and G1 is not operated at full capacity. In
turn, a much higher LMGP is found at node 3. The energy
payment of DR loads is $86,199.29, calculated as the
multiplication of energy consumptions and corresponding
LMEPs/LMGPs at individual hours.
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Fig. 3 Maximum error of Weymouth equation via Taylor series expansion.
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Fig. 4 Sensitivity analysis of Taylor series expansion in calculating LMGPs.

TABLE I RESULTS OF CASE 1-3

Case 1 Case 2 Case 3
Hour 1 Hour2 Hourl Hour2 Hourl Hour?2
# of Committed units 2 4 2 4 2 3
Bus1 3746 61.51 38.86 56.24  39.65 58.05
Bus2 3746 58.88 38.86 56.24  39.65 58.05
LMEP Bus3 3746 83.27 38.86 56.24  39.65 58.05
($/MWh) Bus4 37.46 62.65 38.86 56.24  39.65 58.05
Bus5 3746 6647 38.86 56.24  39.65 58.05
Bus6 37.46 79.60 38.86 56.24  39.65 58.05
Node 1 3.00 3.65 3.00 3.36 3.02 3.37
Node2 3.00 3.65 3.00 3.36 3.02 3.37
LMGP Node3 3.00 4.75 3.00 3.81 3.06 3.82
($/kef) Node4 3.00 3.65 3.00 3.36 3.02 3.37
Node 5 3.00 3.79 3.00 3.50 3.04 3.50
Node 6 3.00 3.50 3.00 3.50 3.04 3.50
Node7 3.00 3.00 3.00 3.00 3.02 3.37
Production cost ($) 68,588.04 66,104.62 65,228.35
DR payment ($) 86,199.29 70,492.75 71,485.17

Case 2: The minimum bidding prices of electricity and gas
DR loads are set as 37 $/MWh and 3 $/kcf, while their
maximum bidding prices are respectively set as 84 $/MWh and
4.8 $/kcf. E7* and E;™ are set as 0, indicating that the curtailed
load at certain time periods is fully shifted to other time periods.
DR participation levels a,, and ay, are set as 0.2, while the entire
range of DR load level is evenly divided into five segments.

Results of Case 2 are shown in Table I. In this case, a portion
of electricity/gas loads is shifted from hour 2 to hour 1 to
maximize system social welfare. Since four units are committed
at hour 2, only S6MW of electricity DR is shifted from peak
hour to off-peak and 1144.75 kct/h of gas DR is shifted. Due to
the reduction in gas load at hour 2, G1 receives sufficient gas
supply to operate at its full capacity. In turn, much lower
LMEPs/LMGPs are observed at peak hour. The energy
production cost is decreased from $68,588.04 in Case 1 to
$66,104.62. The DR load payment is reduced to $70,492.75.

Case 3: Different from Case 2, this case introduces integrated
gas-electricity DR into the scheduling model to seek more
economical scheduling decisions. Table I compares results of
Case 3 with those of Cases 1-2. In this case, 75 MW of
electricity DR is shifted from peak hour to off-peak.
Consequently, only three generating units are committed at hour
2 for economic operations. As the output of generator G1 in this
case is increased to 225 MW from 206 MW in Case 2, which
consumes more natural gas at hour 1, only 864.6 kct/h of gas
DR is shifted from hour 2 to hour 1. As compared to Case 1, the
savings of energy production cost in this case increases to
4.90% from 3.62% in Case 2. Thus, integrating electricity/gas
DR resources could derive more efficient scheduling decisions
in terms of higher system social welfare. However, LMEPs/
LMGPs are slightly increased as compared to Case 2, which
leads to the increase in DR loads’ payment. That is, when
deploying DRs with the objective of maximizing system social
welfare, LMEPs/LMGPs at certain buses/nodes may increase
and consumers may encounter more payments.

To further comprehensively test the effect of electricity/gas
DR on the IGES and LMEPs/LMGPs, the following five
additional cases are carried out.

Case 3.1: Case 1 with only electricity DR.

Case 3.2: Case 1 with only gas DR.

Case 3.3: Case 1 with electricity load at bus 2 increased by
300% and gas load at node 3 increased by 50%.
Case 3.3 with electricity DR.

Case 3.3 with gas DR.

Case 3.4:
Case 3.5:

Results of Cases 3.1-3.2 at peak hour 2 are shown in Table II.
As compared to Case 1, when electricity DR is considered in
Case 3.1, both LMEPs and LMGPs at hour 2 are decreased. In
this case, electricity transmission line L3 is not congested
anymore, where LMEPs at all buses are the same. On the other
hand, when natural gas DR is introduced in Case 3.2, output of
G1 is increased from 242.9 MW in Case 1 to its maximum
capacity 250MW which helps bring down LMEPs slightly.
Cases 3.3-3.5 are used to simulate severe weather conditions
with significantly high electricity and gas consumptions, and
results of these cases are shown in Table III. Due to higher
priority of residential gas loads, the IGES would reduce gas
consumptions of gas-fired units to avoid residential gas load
shedding. As pipeline PL4 reaches its transmission capacity in



Case 3.3, higher priority of residential gas load has limited the
gas supply to gas-fired units, leading to 75.46MWh of
electricity load shedding. When electricity DR is considered in
Case 3.4, a portion of electricity loads is shifted from peak hour
to off-peak hour to avoid electricity load shedding, and more
natural gas is utilized by gas-fired units G1 and GS5. In Case 3.5,
introducing gas DR could also mitigate electricity load shedding
and reduce the number of online units.

From these cases, it could be concluded that, electricity DR
could help reduce LMGPs by alleviating gas network
congestions. Analogously, natural gas DR could also be applied
to relieve electricity shortages in peak hours by securing the
supply of natural gas to gas-fired units.

TABLE Il RESULTS OF CASES 3.1-3.2 AT HOUR 2
Case 3.1 Case 3.2 Case 3.1 Case 3.2

Busl 5726 61.02 Nodel 3.56 3.36
Bus2 5726  58.88 Node2 3.56 3.36
LMEP Bus3 5726 78.75 LMGP Node3 4.42 3.81
($MWh) Bus4 5726 61.95 ($/kef) Node4 3.56 3.36
Bus5 5726 @ 65.07 Node5  3.68 3.50
Bus6 5726 75.76 Node 6  3.50 3.50
# of Committed units 3 4 Node 7 3.00 3.00
TABLE III COMPARISON OF RESULTS IN CASES 3.3-3.5
Electricity load  Total gas consumption # of Committed units
shedding (MWh)  of G1 and G5 (kcf) Hour1 Hour?2
Case 3.3 75.46 5482.38 3 5
Case 3.4 0 6746.08 3 5
Case 3.5 0 6453.10 2 5

Case 4: in this case, uncertainties of electricity and natural
gas loads are considered via distributionally robust scheduling.
Variations of electricity and gas loads are set as 10% of their
forecast values while the expectations of variations u are set as
0. Projection directions g are set as 1, and values of g are set as
0. Generalized moment thresholds y are 40% of electricity and
gas load deviations. With these settings, for the electricity
network, the first-moment constraints in (58) restrict that the
expectation of the positive part of electricity load deviations
should be no larger than p. Obtaining this statistical information
from historical data is rather straightforward, by just calculating
the expectation of the positive part of deviations from historical
load data.

The proposed distributionally robust scheduling model
optimizes the base-case social welfare and worst-case expected
load shedding cost, while adaptively adjusting generation
dispatches in response to uncertainties in real time. The results
are shown in Table IV, where penalty cost represents worst-case
expected load shedding cost. As compared to Case 1, all five
units are committed at hour 2 to ensure operational security of
power system and avoid high load shedding cost. It is also
observed that with more units committed, G4 can operate at a
lower cost and LMEPs/LMGPs are slightly smaller than Case 1.

Case 5: when DR is introduced in this case, the production
cost and DR loads’ payment are considerably decreased as
compared to Case 4. Compared with Case 3, distributionally
robust model by scheduling enough reserves could avoid
potential transmission line congestions and reduce LMEPs.
Although the production cost is slightly increased by
committing more units, the IGES could operate more securely
against uncertainties and energy consumers may benefit from a
lower payment. Furthermore, two additional cases, Cases

5.1-5.2 with the load shedding costs decreased to 10% and 1%
of their original values, are studied to explore the impact of load
shedding cost. The results are shown in Table IV. When load
shedding cost reduces, load shedding emerges under
uncertainties to achieve higher social welfare. That is, the
production cost is reduced to $65,228.35 by only committing
three units at peak hour, at the expense of a small amount of
worst-case expected load shedding penalty cost.

TABLE IV RESULTS OF CASES 4-5 AT HOUR 2

Case 4 Case 5 Case 5.1 Case 5.2
# of Committed units 5 4 3 3
Bus 1 61.02 56.24 58.05 58.05
Bus 2 58.88 56.24 58.05 58.05
LMEP Bus 3 78.75 56.24 58.05 58.05
($MWh)  Bus4 61.95 56.24 58.05 58.05
Bus 5 65.07 56.24 58.05 58.05
Bus 6 75.76 56.24 58.05 58.05
Node 1 3.64 3.36 3.37 3.37
Node 2 3.64 3.36 3.37 3.37
Node 3 4.71 3.81 3.82 3.82
(Lﬁ;%(fg Noded4  3.64 3.36 3.37 3.37
Node 5 3.78 3.50 3.50 3.50
Node 6 3.50 3.50 3.50 3.50
Node 7 3.00 3.00 3.00 3.00
Production cost ($) 69,353.70  66,104.62  65,228.35  65,228.35
Penalty cost ($) 0 0 281.35 28.14
DR payment ($) 84,616.75 70,492.75 71,485.17 71,485.17

In order to show how partial distributional information would
affect the worst-case expected load shedding and decision
making, sensitivity analysis with different values of predefined
threshold y in (59) is carried out. Load shedding costs are set as
10% of their original values, and the results are shown in Table
IV. Because y represents the expectation of the positive part of
load deviations, larger y would suggest larger variations.
Particularly, when y equals 0, zero penalty cost is obtained as no
uncertainty is indicated in the ambiguity set. As it is observed in
Table IV, worst-case expected load shedding penalty cost
increases as y increases, indicating that more loads are cut off. It
is also noted that choosing different values of y does not affect
the number of committed units and the base-case production
cost in this specific case.

TABLE IV WORST-CASE EXPECTED LOAD SHEDDING PENALTY COST AGAINST y
y 0 10% 20% 40% 60%
Penalty cost ($) 0 70.34 140.68 281.35 351.69

B. IEEE 118-Bus Power System/12-Node Gas System

A modified IEEE 118-bus power system together with a
12-node natural gas system is applied to further demonstrate
scalability of the proposed approach. Peak values of electricity
and gas loads are 6000MW and 18000kcf/h.

Fig. 5 shows the system scheduled electricity and gas load
profiles with respect to different DR participation levels.
Compared with the base case without DR, a large amount of
electricity loads is shifted from peak hours 9-11 and 15-24 to
off-peak hours 1-8, and a portion of gas loads is shifted from
heavily loaded hours 9-20 to hours 1-8 and 21-24 to maximize
system social welfare. With the increase in DR participation
level, more loads are shifted to off-peak hours and the
electricity/gas load profiles become much flatter. That is, the
IGES makes fully utilization of all available DR capabilities,
transmission network capabilities, and cheap energy production
units/suppliers to maximize system social welfare. As a result,



the energy production cost is reduced from $7,000,933 to
$6,912,039 with a=0.1 and $6,904,838 with a=0.2.

When uncertainties are considered in the distributionally
robust scheduling model, without integrated gas-electricity DR,
68 more unit hours are committed to provide enough reserves,
and gas supplier 2 is operated at low capacity to offer ramping
capabilities against upward uncertainties of gas loads. In turn,
the energy production cost is increased to $7,009,654. If
integrated gas-electricity DR is further considered, lower
production cost is achieved. In addition, production of cheaper
gas supplier 2 is increased from 183,419 kecf to 203,832 kef.
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Fig. 5 Load profiles with respect to different DR participation levels.

VI. CONCLUSION

Integrated gas-electricity DR is one of the most important
applications in the future interdependent electricity and natural
gas systems, which could improve energy efficiency and
increase system security. This paper proposes a distributionally
robust scheduling model for the IGES while considering
integrated gas-electricity DR. The proposed model optimizes
base-case system social welfare and worst-case expected load
shedding cost. The impact of integrated gas-electricity DR on
market clearing and LMEPs/LMGPs is also studied.

Simulation results show that integrated gas-electricity DR
could positively reduce energy production cost and LMEPs/
LMGPs. In addition, incorporating gas DR can relieve
electricity shortage of power system, while introducing
electricity DR can mitigate natural gas network congestions.
The proposed distributionally robust scheduling model with
integrated gas-electricity DR incurs slightly higher operation
cost to maintain system security against uncertainties of
electricity and natural gas loads. In addition, the proposed
model could also avoid potential transmission network
congestions and benefit consumers with less energy payment.
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