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Abstract— This paper proposes a distributionally robust 

scheduling model for the integrated gas-electricity system (IGES) 

with electricity and gas load uncertainties, and further studies the 

impact of integrated gas-electricity demand response (DR) on 

energy market clearing as well as locational marginal electricity 

and gas prices (LMEPs and LMGPs). The proposed model 

maximizes the base-case system social welfare (i.e., revenue from 

price-sensitive DR loads minus energy production cost) minus the 

worst-case expected load shedding cost. Price-based gas-electricity 

DRs are formulated via price-sensitive demand bidding curves 

while considering DR participation levels and energy curtailment 

limits. By linearizing nonlinear Weymouth gas flow equations via 

Taylor series expansion and further approximating recourse 

decisions as affine functions of uncertainty parameters, the 

formulation is cast into a mixed-integer linear programming 

problem to enhance computational tractability. Case studies 

illustrate effectiveness of the proposed model for ensuring system 

security against uncertainties, avoiding potential transmission 

congestions, and increasing financial stability of DR providers. 

Index Terms— Integrated gas-electricity systems, co-optimization, 

demand response, distributionally robust optimization. 

NOMENCLATURE 

Major symbols and notations used throughout the paper are 

defined below, while others are defined following their first 

appearances as needed. 

Indices: 

c, g, j Index of gas compressors/gas loads/gas suppliers. 

d, i, t Index of electricity loads/units/hours. 

e, m Index of electricity grid buses/gas network nodes. 

l, p Index of power lines/gas pipelines. 

k, n Index of segments/breakpoints. 

Variables: 

f
pt

 +
, f

pt

  -
 Binary variables to indicate gas flow direction of 

pipeline p at time t. 

Git Gas consumption of gas-fired unit i at time t. 

Gpt, Gct Gas flow of pipeline p/ compressor c at time t. 

Iit Commitment status of unit i at time t. 

Pikt Power generation at segment k of unit i at time t. 

Pdkt, Ggkt Demand at segment k of electricity load d/ gas load g 

at time t. 

Pit, Gjt Production of unit i/ gas supplier j at time t. 

Plt, θet Power flow of line l/ phase angle of bus e at time t. 

Pdt, Ggt Scheduled electricity load d/ gas load g at time t. 

Pdt
dr, Ggt

dr Adjustable electricity load d/ gas load g at time t. 

SUit, SDit Startup/shutdown fuel consumption of unit i at time t. 
 

C. He and T. Liu are with the College of Electrical Engineering and Information 

Technology, Sichuan University, Chengdu, 610065, China (e-mail: he_chuan@ 

scu.edu.cn, tqliu@scu.edu.cn). X. Zhang is with California Independent System 

Operator, Folsom, CA, 95630, USA (e-mail: xzhan126@hawk.iit.edu). L. Wu is 

with the ECE Department, Stevens Institute of Technology, Hoboken, NJ, 

07030, USA (e-mail: lei.wu@stevens.edu). 

vdt, vgt Slack variables indicating load shedding of 

electricity load d/ natural gas load g at time t. 

Xit
on,Xit

off ON/OFF time counter of unit i at time t. 

Xdt
on,Xdt

off ON/OFF time counter of electricity load d at time t. 

Xgt
on,Xgt

off ON/OFF time counter of gas load g at time t. 

Ydt, Ygt Curtailment status of electricity load d/ gas load g, 

which is 1 if load is curtailed, being 0 otherwise. 

πmt Pressure of gas node m at time t. 

Constants: 

cik Incremental fuel consumption at segment k of unit i. 

Ci
fuel, Ni Fuel price/ no-load fuel consumption of unit i. 

Cdkt,Cgkt Bidding price at segment k of electricity load d/ gas 

load g at time t. 

Cj Production cost of gas supplier j. 

Cd
voll, Cg

voll Load shedding penalty cost of electricity load d/ 

natural gas load g. 

Kp Gas flow constant of pipeline p. 

M A large enough number. 

Pdt
load,Ggt

loadExpected electricity load d/ gas load g at time t. 

sui,sdi Startup/shutdown cost of unit i. 

Ti
on,Ti

off Minimum ON/OFF time of unit i. 

Td
on,Td

off Minimum ON/OFF time of electricity load d. 

Tg
on,Tg

off Minimum ON/OFF time of gas load g. 

URi,DRi Ramp up/down rate of unit i. 

xl Reactance of transmission line l. 

αdt, αgt DR participation level of electricity load d/ gas load g 

at time t. 

Γc Compression factor of compressor c. 

(∙)min/max Min/max value of a quantity. 

Sets and functions: 

GU Set of gas-fired units. 

N(e),N(m) Set of components at electricity bus e/ gas node m. 

s(•), r(•)  Sending/receiving ends of power lines or pipelines. 

ΩE,ΩI,ΩL Sets of power buses, units, and power lines. 

ΩM,ΩC,ΩP Sets of gas nodes, compressors, and pipelines. 

ΩD, ΩG Sets of electricity loads and gas loads. 

ΩJ, ΩK, ΩT Sets of gas suppliers, segments, and time periods. 

 

I. INTRODUCTION 

atural gas-fired units have become the top choice for new 

generation expansion of power systems due to the lower 

cost, higher efficiency, and faster response capabilities [1]. The 

growing large fleet of gas-fired generators has intensified the 

interconnections of electricity grid and natural gas network [2]. 

That is, gas-fired units rely on just-in-time gas supply from the 

natural gas network, which has raised significant challenges on 

the operational security and efficiency of both systems. In turn, 
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modeling and optimizing them as an integrated gas-electricity 

system (IGES) could achieve a more secure and economic 

operations of both systems. In addition, DR programs in power 

systems have been successfully developed to flatten the load 

profile by transferring flexible demands away from peaks to 

lightly-loaded hours for enhancing energy reliability and 

efficiency [3]-[4]. On the contrary, natural gas DR has been 

underexplored. In fact, Whitehouse and other groups have 

recently started seeking for natural gas DR programs to help 

reduce costs for energy consumers [5]-[6]. Advantages of gas 

DR in the IGES include: (i) reducing electricity and gas price 

spikes and improving reliability of IGES; (ii) providing 

environmental benefits by making more clean natural gas fuel 

available to gas-fired units; and (iii) driving value by deferring 

or avoiding costly investments. 

The day-ahead co-optimization scheduling of IGES has been 

discussed in [7]-[13] to ensure reliable and economic 

operations. A novel mixed-integer linear programing (MILP) 

model is proposed in [7] to study energy adequacy of IGES in 

short-term operations. Reference [8] applies new dynamic gas 

flow control techniques to examine day-ahead operations of 

generators and gas compressors in different coordination 

scenarios. A multi-area integrated electricity-natural gas model 

is presented in [9], which is solved in a decentralized manner to 

achieve decision autonomy of multiple participating areas. 

Moreover, as uncertainties within the IGES bring new 

challenges in the day-ahead scheduling, stochastic day-ahead 

scheduling considering volatile wind energy is proposed in [10]. 

Reference [11] presents two interval methods to study the 

impact of wind power uncertainty on the operation of electricity 

and natural gas systems. Robust optimization is also applied to 

the co-optimization scheduling of IGES considering power 

system uncertainties and natural gas system dynamics [12]. 

Reference [ 13 ] integrates transmission network N-1 

contingencies in the robust scheduling model to ensure the 

operation security of IGES with wind power. 

Demand-side participation could offer valuable options to set 

efficient energy prices, improve economic efficiency, and 

increase energy security. DR programs have been intensively 

studied in power systems. The impact of priced-based DR on 

market clearing and locational marginal prices (LMPs) is 

carried out in [3]. Reference [4] proposes a stochastic day-ahead 

scheduling model of power systems considering hourly DR. 

However, research regarding DR programs in IGES is rather 

limited. Interruptible-load based and coupon-based DR virtual 

power plants are considered in the coordinated operation of 

electricity grid and natural gas network in [14]. Electricity DRs 

with shifting capabilities are introduced in [15] to seek for 

economic day-ahead scheduling of the power system while 

considering gas transmission limits. Reference [16] models 

incentive electricity and gas DRs as linear functions of 

compensation prices to evaluate their effects on IGES operation. 

From existing literature we notice that: (i) Distributionally 

robust optimization has been used in power system operations 

for handling uncertainties [17-20]. However, most works focus 

on optimizing first-stage unit commitment cost and 

second-stage worst-case expected dispatch cost. In addition, 

prior works on distributionally robust day-ahead scheduling of 

integrated gas-electricity systems are rather limited; (ii) 

Interruptible based, coupon-based, and incentive-based gas DRs 

are considered in [14], [16], while priced-based gas DRs are not 

fully addressed; (iii) The impacts of integrated gas-electricity 

DRs on energy market clearing as well as LMEPs and LMGPs 

have not been investigated. 

This paper proposes a distributionally robust co-optimization 

scheduling model for the coordinated optimal operation of 

electricity and natural gas systems, while considering 

uncertainties of electricity and gas loads. In addition, hourly 

price-based integrated gas-electricity DR is modeled for the first 

time to reduce peak load periods, flatten hourly load profiles, 

and provide economic operations [4], [15]. Specifically, the 

proposed model explores opportunities of utilizing natural gas 

DR to secure gas supply to gas-fired units and relieve power 

shortage of the electricity system, especially in critical 

circumstances such as peak electricity loads in summer.  

The major contributions of this paper are twofold.  

1) The paper proposes a two-stage distributionally robust 

co-optimization model for the day-ahead scheduling of IGES 

while considering uncertainties of electricity and natural gas 

loads. Instead of optimizing the worst-case expected system 

social welfare, the base-case system social welfare minus the 

worst-case expected load shedding cost is optimized to derive 

useful economic dispatch solutions in the day-ahead market and 

simultaneously guaranteeing system security. 

2) Price-based integrated gas-electricity DR is considered as an 

economic option in the day-ahead scheduling of IGES for the 

first time, by shifting loads at peak hours to off-peaks. Similar to 

the concept of LMP in power systems, locational marginal 

electricity/gas prices (LMEPs and LMGPs) for IGES are 

proposed. Furthermore, benefits of price-based gas-electricity 

DRs on the operation of IGES and LMEPs/LMGPs are 

quantitatively analyzed via the proposed distributionally robust 

scheduling model. 

The remainder of the paper is as follows. Sections II and III 

discuss the deterministic co-optimization scheduling model and 

its distributionally robust counterpart. Sections IV gives 

solution methodology. Numerical case studies are presented in 

Section V, and conclusions are given in Section VI. 

II. DETERMINISTIC SCHEDULING MODEL 

A. Formulation of the Deterministic Scheduling Model 

In this paper, electricity system and natural gas system are 

considered as an integrated energy system with one system 

operator. A full co-ordination between electricity and natural 

gas system could increase the reliability and operation 

efficiency of both energy systems. On the other hand, a fully 

decentralized way to coordinate electricity and natural gas 

systems via alternating direction method of multipliers 

(ADMM) could be adopted to achieve decision independency 

and information privacy of the two energy systems [9], [12]. 

The deterministic scheduling model is to maximize the system 

social welfare of supplying hourly electricity and natural gas 

loads. The objective function (1) consists of revenue from DR 

loads minus load shedding penalty and production cost of IGES 

(revenue from inelastic loads is constant and thus neglected). 

The production cost of IGES includes gas production cost and 

production cost of non-gas thermal units. Note that production 

costs of gas-fired units are considered in terms of gas fuel cost 

and carried out by the gas production cost of gas suppliers. The 
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decision variables in the model include unit commitment 

statuses, gas flow directions, dispatches of the IGES, among 

others. Indeed, all variables presented in the nomenclature are 

decision variables of the deterministic scheduling model. 
Power system constraints include minimum ON/OFF time 

limits (2)-(3), startup and shutdown costs (4)-(5), system load 

balance (6), generation limits (7)-(9), ramp up and down limits 

(10)-(11), DC power flow equations (12)-(13) in which power 

flow of a transmission line is calculated by bus angles and the 

line impedance, and bus angle limits (14). As a key component 

that couples electric power system and natural gas system, gas 

consumption of a gas-fired unit is calculated in (15) where HHV 

represents higher heating value that equals 1.026MBtu/kcf. 

Constraints (16)-(23) describe power system DRs, adopting 

price-sensitive consumption curves to simulate price responsive 

loads. Here, price responsive loads could be curtailed or shifted 

to other operation hours in response to market prices. As energy 

consumption of a price responsive load would decrease 

monotonically with the increase in electricity price, in this 

paper, a stepwise DR bidding curve as shown in Fig. 1 is used to 

represent changes of price responsive load with respect to 

electricity price changes. The range of DR participation level αdt 

is [0, 1]. That is, the inelastic load level is (1-αdt)·Pdt
load . 

Minimum on/off constraints (16)-(17) of electricity load d 

define that certain load must be supplied/off for a number of 

consecutive hours after it is restored/curtailed [4], [15]. The 

relationship among scheduled load, adjustable load, and load 

segment variables is presented in (18)-(19). Constraint (20) 

defines limits of load segment variables. The range of adjustable 

load Pdt
dr is expressed in (21)-(22). Binary indicator Ydt describes 

the status of DR load d at time t. Specifically, if Ydt equals to 1, 

adjustable load Pdt
dr  is positive, indicating that load d is 

curtailed/shifted at time t; When Ydt is 0, negative adjustable 

load Pdt
dr means that load d is increased with demand from other 

hours shifted in at time t. The total curtailment of price 

responsive load d is limited by certain quantity (23). A positive 

setting of Ed
max indicates that a total amount of energy Ed

max at 

load d could be curtailed; If it is set as 0, it means that all 

reduced load at certain time periods will be fully shifted to other 

time periods. 

 
Fig. 1 A stepwise demand response curve. 

As the largest complex networked systems, electricity and 

natural gas systems share certain similarities. Operation 

constraints of natural gas system are presented in (24)-(42). Gas 

network nodal balance equation is described in (24). Equations 

(25)-(26) defines limits of gas supplier productions and nodal 

pressures, respectively. The nonlinear relationship between 

nodal pressures and pipeline gas flows is described via 

Weymouth equations (27). Constraints (28)-(30) determine gas 

flow directions of pipelines, where f
pt

 +
=1/f

pt

  -
=1 indicates that gas 

flows have positive/negative directions in pipeline p. Equation 

(31) calculates terminal gas pressures of compressor stations, 

where constraint (32) restricts gas flow directions in compressor 

stations. Similar to the modeling of electricity DRs in (16)-(23), 

price responsive natural gas DR load is analogously modeled 

via (33)-(40). Constraints (41)-(42) restrict values of electricity 

and gas load shedding variables. 

max∑ {∑ ∑ Cdkt·Pdktkdt +∑ ∑ Cgkt·Ggktkg -∑ Cj·Gjtj -∑ Cgt
voll·vgtg  

 -∑ Cdt
voll·vdtd -∑ Ci

fuel·[∑ cik·Piktk +Ni·Iit+SUit+SDit]i∉GU } (1) 

s.t.(Xi,t-1
on -Ti

on)·(Ii,t-1-Iit)≥0,                                i ∈ ΩI,t ∈ ΩT (2) 

 (Xi,t-1
off -Ti

off)·(Iit-Ii,t-1)≥0,                               i ∈ ΩI,t ∈ ΩT (3) 

 SUit≥sui·(Iit-Ii,t-1),SUit≥0,                            i ∈ ΩI,t ∈ ΩT (4) 

 SDit≥sdi·(Ii,t-1-Iit), SDit≥0,                            i ∈ ΩI,t ∈ ΩT (5) 

 ∑ Piti∈N(e) -∑ Plts(l)∈N(e) +∑ Pltr(l)∈N(e) =∑ (Pdt-vdt)d∈N(e) , 

                                 i ∈ ΩI,e ∈ ΩE,l ∈ ΩL,d ∈ ΩD,t ∈ ΩT (6) 

 Pit=Pi
min·Iit+∑ Piktk ,                        i ∈ ΩI,k ∈ ΩK,t ∈ ΩT (7) 

 0≤Pikt≤Pik
max·Iit,                                  i ∈ ΩI,k ∈ ΩK,t ∈ ΩT (8) 

 Pi
min·Iit≤Pit≤Pi

max·Iit,                                      i ∈ ΩI,t ∈ ΩT (9) 

 Pit-Pi,t-1≤URi·Ii,t-1+Pi
min·(Iit-Ii,t-1)+Pi

max·(1-Iit), 
                                                                           i ∈ ΩI,t ∈ ΩT (10) 

 Pi,t-1-Pit≤DRi·Iit+Pi
min·(Ii,t-1-Iit)+Pi

max·(1-Ii,t-1), 
                                                                           i ∈ ΩI,t ∈ ΩT (11) 

 Plt= (θs(l)t-θr(l)t) xl⁄ ,                                     l ∈ ΩL,t ∈ ΩT (12) 

 -Pl
max≤Plt≤Pl

max,                                             l ∈ ΩL,t ∈ ΩT (13) 

 θe
min

≤θet≤θe
max,                                               e ∈ ΩE,t ∈ ΩT (14) 

 Git= (∑ cik·Piktk +Ni·Iit+SUit+SDit) HHV⁄ , 

                                                              i∈GU,k ∈ ΩK,t ∈ ΩT (15) 

 (Xd,t-1
on -Td

on)·(Yd,t-1-Ydt)≥0,                         d ∈ ΩD,t ∈ ΩT (16) 

 (Xd,t-1
off -Td

off)·(Ydt-Id,t-1)≥0,                         d ∈ ΩD,t ∈ ΩT (17) 

 Pdt=(1-αdt)·Pdt
load+∑ Pdktk ,         d ∈ ΩD,k ∈ ΩK,t ∈ ΩT (18) 

 Pdt=Pdt
load-Pdt

dr,                                               d ∈ ΩD,t ∈ ΩT (19) 

 0≤Pdkt≤Pdk
max,                                  d ∈ ΩD,k ∈ ΩK,t ∈ ΩT (20) 

  -(1-Ydt)·M≤Pdt
dr≤αdt·Pdt

load+(1-Ydt)·M,   d ∈ ΩD,t ∈ ΩT (21) 

  -Ydt·M+Pdt
load-Pdt

load,max
≤Pdt

dr≤Ydt·M,        d ∈ ΩD,t ∈ ΩT (22) 

 0≤∑ Pdt
dr

t ≤Ed
max,                                           d ∈ ΩD,t ∈ ΩT (23) 

 ∑ Gjtj∈N(m) -∑ Gpts(p)∈N(m) +∑ Gptr(p)∈N(m) -∑ Gcts(c)∈N(m)  

               +∑ Gctr(c)∈N(m) -∑ Giti∈N(m) =∑ (Ggt-vgt)g∈N(m) , 

                j ∈ ΩJ,p ∈ ΩP,m ∈ ΩM,c ∈ ΩC,i ∈ ΩI,g ∈ ΩG (24) 

 Gj
min≤Gjt≤Gj

max,                                            j ∈ ΩJ,t ∈ ΩT (25) 

 πm
min≤πmt≤πm

max,                                           m ∈ ΩM,t ∈ ΩT (26) 

 Gpt= (fpt
 +

-f
pt
  -) ·Kp·(πs(p)t

2 -πr(p)t
2 ),               p ∈ ΩP,t ∈ ΩT (27) 

  - (1-f
pt

 +) ·M≤Gpt≤ (1-f
pt

  -) ·M,                   p ∈ ΩP,t ∈ ΩT (28) 

 f
pt

 +
+f

pt

  -
=1,                                                       p ∈ ΩP,t ∈ ΩT (29) 

  - (1-f
pt

 +) ·M≤πs(p)t-πr(p)t≤ (1-f
pt

  -) ·M,      p ∈ ΩP,t ∈ ΩT (30) 

 πr(c)t≤Γc·πs(c)t,                                             c ∈ ΩC,t ∈ ΩT (31) 

 0≤Gct,                                                            c ∈ ΩC,t ∈ ΩT (32) 

 (Xg,t-1
on -Tg

on)·(Yg,t-1-Ygt)≥0,                        g ∈ ΩG,t ∈ ΩT (33) 

 (Xg,t-1
off -Tg

off)·(Ygt-Ig,t-1)≥0,                        g ∈ ΩG,t ∈ ΩT (34) 

 Ggt=(1-αgt)·Ggt
load+∑ Ggktk ,      g ∈ ΩG,k ∈ ΩK,t ∈ ΩT (35) 

 Ggt=Ggt
load-Ggt

dr,                                             g ∈ ΩG,t ∈ ΩT (36) 

 0≤Ggkt≤Ggk
max,                                 g ∈ ΩG,k ∈ ΩK,t ∈ ΩT (37) 
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  -(1-Ygt)·M≤Ggt
dr≤αgt·Ggt

load+(1-Ygt)·M,  g ∈ ΩG,t ∈ ΩT (38) 

  -Ygt·M+Ggt
load-Ggt

load,max≤Ggt
dr≤Ygt·M,       g ∈ ΩG,t ∈ ΩT (39) 

 0≤∑ Ggt
dr

t ≤Eg
max,                                           g ∈ ΩG,t ∈ ΩT (40) 

 0≤vdt≤Pdt,                                                      d ∈ ΩD,t ∈ ΩT (41) 

 0≤vgt≤Ggt,                                                     g ∈ ΩG,t ∈ ΩT (42) 

B. Linearization of Natural Gas Network Constraints 

The Weymouth equations presented in (27) are nonlinear and 

thus could not be readily solved by commercial MILP solvers. 

Authors in [7], [15] proposed to convert Weymouth equations 

with known gas flow directions into a set of linear constraints 

via piecewise linear approximations. However, binary 

indicators would bring challenges for developing a tractable 

robust counterpart. Thus, convexification methods such as 

second order cone (SOC) relaxation [9], [21], [22] and Taylor 

series expansion [23] have been proposed. It is pointed out in 

[9], [22] that the SOC relaxation is generally inexact and may 

offer infeasible solutions. In turn, reference [22] presents a 

sequential SOCP algorithm to enhance solution feasibility. On 

the other hand, Taylor series expansion is applied to linearize 

Weymouth equation with positive flow direction in our previous 

work [23], while the solution quality and approximation 

accuracy are extensively studied. Since Taylor series expansion 

has high-quality approximation and its computation burden 

grows linearly with respect to the scale of the system, this paper 

adopts Taylor series expansion to linearize Weymouth 

equations. 

To enhance tractability of nonlinear Weymouth equations 

and facilitate computation of the proposed distributionally 

robust optimization model, nonlinear gas flow equation (27) is 

reformulated as MILP constraints via Taylor series expansion. 

Based on our previous work, Weymouth equation with respect 

to a positive/negative flow direction can be linearized as 

constraints (43)-(46)/(47)-(50) [23], where (π̂s(p)t,n
+

,π̂r(p)t,n
+ )  is 

the nth predefined breakpoint. In turn, constraint (27) can be 

linearly approximated via (43)-(50) together with a limited 

number of binary variables f
pt

 +
/f
pt

  -
 indicating gas flow directions. 

Gpt≤Kp·υ̂pt,n
+

·πs(p)t-Kp·ϕ̂pt,n
+

·πr(p)t+ (1-f
pt

 +) ·M (43) 

πr(p)t≤πs(p)t+ (1-f
pt

 +) ·M (44) 

υ̂pt,n
+

= π̂s(p)t,n
+ √(π̂s(p)t,n

+ )
2
-(π̂r(p)t,n

+ )
2

⁄  (45) 

ϕ̂
pt,n

+
= π̂r(p)t,n

+ √(π̂s(p)t,n
+ )

2
-(π̂r(p)t,n

+ )
2

⁄  (46) 

 -Gpt≤Kp·υ̂pt,n
-

·πr(p)t-Kp·ϕ̂pt,n
-

·πs(p)t+ (1-f
pt

 - ) ·M (47) 

πs(p)t<πr(p)t+ (1-f
pt

 - ) ·M (48) 

υ̂pt,n
-

= π̂r(p)t,n
- √(π̂r(p)t,n

- )
2
-(π̂s(p)t,n

- )
2

⁄  (49) 

ϕ̂
pt,n

-
= π̂s(p)t,n

- √(π̂r(p)t,n
- )

2
-(π̂s(p)t,n

- )
2

⁄  (50) 

C. Abstract Formulation 

The deterministic model could be written in a general abstract 

form as shown in (51)-(54). Binary vector x refers to startup/ 

shutdown actions, on/off indicators, and gas flow direction 

indicators. All continuous variables are denoted as vector y, 

representing dispatches of the IGES. Vector v represents 

electricity and natural gas load shedding. Equation (52) restricts 

x as binary variables. Constraints with only binary variables are 

represented as in (53). Operation conditions associated with 

both binary and continues variables are shown in (54). 

min
x,y,v

cb
Tx+cg

Ty+sTv (51) 

s.t. x ∈ {0,1} (52) 

 Ax≤cl (53) 

 Cx+Dy+Ev≤h (54) 

where A, C, D, E, cb, cg, cl, s, and h are abstract matrices and 

vectors, representing coefficients of costs and constraints.  

III. DISTRIBUTIONALLY ROBUST SCHEDULING MODEL 

A two-stage distributionally robust model is proposed to 

study day-ahead coordinated scheduling of the IGES under 

uncertainties. Specifically, the IGES is designed to operate 

under the base-case condition with respect to electricity and gas 

load forecasts in the day-ahead timeframe, while adaptively and 

securely redispatching generating units, gas suppliers, and gas 

compressors in response to uncertainties in real time.  

The following assumptions are adopted to facilitate modeling 

of the two-stage distributionally robust scheduling problem.  

1) Unit commitment statuses are first stage variables and 

they remain unchanged in real-time dispatches [12], [21]. This 

is recognized by the fact that physical characteristics of most 

generating units restrict them from quickly changing their unit 

commitment statuses under uncertainties. 

2) Similarly, gas flow directions are also regarded as first 

stage variables. Reversing gas flows would require complicated 

changes in operation statuses of overpressure protection devices, 

control valves, and compressor stations [22]. In turn, reversing 

gas flow directions is only allowed in the day-ahead framework 

with sufficient time and appropriate management. 

3) As constraints (16)-(17) and (33)-(34) suggest that DR 

loads have minimum on/off time limits [4], [15], statuses of DRs 

are treated as first-stage variables and will not be changed in real 

time. 

4) Fixed DR participation levels αdt and αgt are considered 

[4], [15]. Thus, in the proposed model, uncertainties of 

integrated gas-electricity DRs are reflected via the total amount 

of available DRs which varies with different realizations of total 

electricity and natural gas loads, while price uncertainties of 

individual segments in the demand response curves are not 

included. Alternatively, uncertain DR curves, such as those 

adopted in [23], could be integrated in the proposed model while 

the solution approach remains valid. Indeed, modeling uncertain 

DR curve in robust optimization is difficult and could 

complicate the solution algorithms. To this end, stochastic 

optimization approaches might have certain advantages by 

modeling uncertain demand response curve via multiple 

scenarios. 

A. The Proposed Distributionally Robust Scheduling Model 

In literature, stochastic programming and robust optimization 

have attracted much attention for their advantages in handling 

uncertainties. Stochastic programming seeks to optimize the 

expected value over a set of predefined scenarios, which 

requires the distribution probability of uncertain variables. By 
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contrast, robust optimization tends to optimize the value over 

the worst-case situation within the predefined uncertainty set, 

where distribution probability of uncertain variables is not 

necessary. By leveraging the advantages of stochastic 

programming and robust optimization, distributionally robust 

optimization protects systems against the worst-case probability 

distribution in the ambiguity set with partial distributional 

information. The merit of distributionally robust optimization is 

that partial distributional information in stochastic 

programming is utilized to mitigate over-conservativeness of 

traditional robust optimization approach. 

Recently, distributionally robust approaches have been 

applied in power systems to solve unit commitment problems 

with uncertain renewable generations and electrical loads. As an 

intermediate approach between stochastic programming and 

robust optimization, certain distribution information could be 

included to leverage advantages of the both methods [17]-[20]. 

In [17]-[18], a data-driven risk-averse stochastic unit 

commitment model is proposed where risk aversion stems from 

the worst-case probability distribution of renewable generation. 

The proposed model constructs a confidence set for 

distributions of uncertain parameters via historical data, and is 

solved via Benders decomposition. In addition, references 

[19]-[20] adopt ambiguity set with moment-based information 

to partially capture the distributional information while 

addressing the computational issue via affine decision rules. 

Moreover, the formulations in [17]-[20] optimize the first-stage 

unit commitment cost and second-stage worst-case expected 

dispatch cost. Differently, the basic idea of the proposed model 

is to find a base-case scheduling solution (including both unit 

commitment and dispatch) with respect to the optimal base-case 

system social welfare and worst-case expected load shedding 

cost over an ambiguity set. Compared with traditional 

distributionally robust models which optimize the worst-case 

expected system social welfare, the proposed model has two 

major advantages: (i) Less conservativeness. The proposed 

model is less conservative because it optimizes the base-case 

system social welfare while considering the worst-case expected 

load shedding cost; (ii) Practical applications. Instead of only 

providing unit commitment and gas flow direction solutions, the 

proposed model also derives base-case dispatch solutions that 

could be directly used by Independent System Operators (ISOs), 

Regional Transmission Organizations (RTOs), and Natural Gas 

System Operators for the day-ahead market clearing. 

The distributionally robust scheduling model is presented in 

(55), where load shedding is not allowed in the base case.
min
x,yb

cb
Tx+cg

Tyb+ sup
∈

{L(x,yb,ξ)}  

s.t. x ∈ {0,1} 
 Ax≤cl 

 Cx+Dyb≤h  (55) 

where {L(x,yb,ξ)} denotes the expected value with respect to 

the distribution  of uncertainty variables ξ;  is the ambiguity 

set; yb represents the first-stage base-case dispatch decisions 

corresponding to forecasted electricity and gas loads; the 

second-stage dispatch problem under uncertainties is expressed 

as in (56). 

 L(x,yb,ξ)= min
y,v

sTv  

s.t. Cx+Dy+Ev≤h(ξ); 
Fyb+Gy≤Δ (56) 

where y denotes the second-stage dispatch decisions in response 

to uncertainties; C, D, E, F, G, s, and Δ are abstract matrices and 

vectors; the second set of constraints describes that redispatches 

of generating units and gas suppliers are limited by their 

corrective ramping capabilities [12], [21]; the right-hand side 

vector h(ξ) of the first set of constraints is affinely affected by 

uncertainties, which can be commonly expressed as follows: 

 h(ξ)=h
0+∑ hw

ξ ξww  (57) 

where w is index of uncertainty parameters; h0 denotes constant 

term free from uncertainties; hw
ξ  represents coefficient of the 

affine dependence on the wth uncertainty parameter ξw. 

It is noted that equations (43)-(50) representing linearized 

Weymouth equation only include binary variables related to gas 

flow directions. Thus, after gas flow directions are determined 

in the first stage of the distributionally robust optimization 

problem, the second-stage problem of the proposed model does 

not contain any binary variables. Indeed, this is the advantage of 

applying Taylor series expansion to linearize Weymouth 

equation, which could facilitate the solution via distributionally 

robust optimization. 

B. Ambiguity Set 

The ambiguity set includes a family of probability 

distributions that have common statistical properties. A general 

formulation of the ambiguity set is given in (58) [20], []. 

={ ∈ 0(
W) |

{ξ ∈ Ξ}=1

{ξ}=μ

{zo(ξ)}≤γo,   o=1,2,…O

}  (58) 

where 0(
W) denotes the set of all probability distributions on 

W  and W is number of uncertainty parameters. The first 

constraint ensures that all outcomes of ξ are within the support 

set Ξ. The second line suggests that the expectation of ξ is μ. 

The third constraint describes moment information of 

uncertainties via function zo(•), restricting that the generalized 

moment cannot exceed a predefined threshold γ
o
.By introducing 

an O-dimension auxiliary vector φ, the ambiguity set  could be 

reformulated as the projection of an extended ambiguity set ̅ 

(59). 

̅={ ∈ 0(
W

×O) |

{(ξ,φ) ∈ Ξ̅}=1

{ξ}=μ

{φ}≤γ

} (59) 

where the uncertainty domain is also extended to a lifted support 

set as in (60). 

Ξ̅= {(ξ,φ) |
ξ ∈ Ξ

zo(ξ)≤φo≤max zo(ξ), o=1,2,…O
} (60) 

Similar to the uncertainty set of robust optimizations, the 

support set Ξ  adopts lower and upper bounds to limit each 

uncertainty parameter ξw (61). 

Ξ={ξ｜ξw
min

≤ξw≤ξw
max

,   w=1,2,…W} (61) 

As for the function zo(•), this paper adopts the following 

piecewise linear formulation (62), which allows us to derive a 

computationally tractable equivalent robust counterpart as an 

MILP problem [20], [24]-[ 25 ]. Although there are other 

nonlinear choices of functions zo(•) to characterize variances or 

higher-order moment information, the associated computational 
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burden for complicated operation problems on large-scale 

systems could be overwhelming. Instead, piecewise linear 

function (62) has some exclusive advantages: (i) The first-order 

deviation information is included, while correlations between 

uncertain variables are partially reflected, and (ii) More 

importantly, a computational tractable equivalent robust 

counterpart could be derived. 

zo(ξ)=max{g
o
Tξ-q

o
,0},   o=1,2,…O (62) 

where g
o
 is projection direction of the first-order deviation in ξ, 

and q
o

 is the cut-off constant. In other words, the second 

constraint of expression (60) would suggest that the positive 

part of g
o
Tξ-q

o
 should be no larger than φ

o
. Reference [25] 

presented a two-step data-based strategy to determine 

parameters of equation (62) in the proposed model. Principal 

component analysis (PCA) is applied to capture correlation 

information between uncertain variables, and all dominant 

statistical information could be reflected in the projection 

directions g
o
, truncation point q

o
, and parameter γ

o
. In addition, 

with a chosen function zo(ξ), max zo(ξ) in (60) represents a 

constant which could be calculated as the largest value of zo(ξ) 
over historical data. 

With the support set Ξ  and linear moment function 

respectively defined in (61) and (62), the lifted support set can 

be reformulated via a set of linear inequality constraints (63), 

which could be further written in a compact matrix form (64). 

Ξ̅=

{
 
 

 
 

(ξ,φ) |
|

ξ≤ξ
max

-ξ≤-ξ
min

0≤φ
o
, o=1,2,…O

g
o
Tξ-q

o
≤φ

o
≤max(g

o
Tξ-q

o
),o=1,2,…O}

 
 

 
 

 (63) 

Ξ̅={(ξ,φ)｜Hξ+Iφ≤cw} (64) 

IV. SOLUTION METHODOLOGY 

This section discusses an affine decision rule-based method 

to effectively solve the proposed two-stage distributionally 

robust model, followed by the calculation of LMEPs/LMGPs. 

A. Reformulation of the Worst-Case Expectation Problem 

The inner maximization problem sup
∈̅

{L(x,yb,ξ)} in (55) 

introduces significant computational burden due to the infinite 

dimensions of probability measure . Typically, the inner 

problem can be dualized to transform into a minimization 

problem to facilitate the computation. 

The explicit expression of the inner worst-case expectation 

problem is shown in (65). 

sup
∈̅

∫ p(ξ,φ)
Ξ̅

L(x,yb,ξ) dξ dφ  

s.t. ∫ p(ξ,φ)
Ξ̅

dξ dφ=1:(η)  

 ∫ p(ξ,φ)
Ξ̅

ξ dξ dφ=μ:(ρ)  

 ∫ p(ξ,φ)φ
Ξ̅

dξ dφ≤γ:(β) (65) 

where joint probability density function  p(ξ,φ) is the decision 

variable; symbols in the parenthesis at the end of constraints are 

dual variables of corresponding constraints. 

The equivalent dual problem of (65) is formulated as in (66) 

[20], [24]-[25]. It could be observed that the last constraint is a 

robust constraint against uncertainty set Ξ̅. 

min
η,ρ,β

η+μTρ+γTβ  

s.t. β≥0  

  η+ξ
T
ρ+φTβ≥L(x,yb,ξ),   ∀(ξ,φ) ∈ Ξ̅  (66) 

B. Reformulation of the Proposed Two-Stage Distributionally 

Robust Problem 

The proposed two-stage distributionally robust model is 

generally intractable and NP-hard, because calculating the 

worst-case expectation involves enumerating all realizations 

within the lifted support set Ξ̅. One practical approach is to 

employ the affine decision rule (ADR) [24]-[26], which restricts 

that the recourse decisions are affinely dependent on uncertainty 

parameters as in (67)-(68). 

y
a
(ξ,φ)=y

a
0+∑ y

aw
ξ ξww +∑ y

ao
φ φ

oo  (67) 

va(ξ,φ)=va
0+∑ vaw

ξ
ξww +∑ vao

φ
φ
oo  (68) 

where a is index of recourse variables; y
a
0  and va

0  denote 

constants; y
aw
ξ , y

ao
φ , vaw

ξ
, and vao

φ
 are coefficients associated with 

uncertainty parameters ξw and auxiliary variables φ
o
. 

Recently, ADR has been adopted to solve the multi-stage 

distributionally robust problems. By dualizing the inner 

maximization as discussed in Section IV.A, the proposed 

two-stage distributionally robust problem could be equivalently 

recast into an equivalent robust optimization problem in 

(69)-(76). 

mincb
Tx+cg

Tyb+η+μTρ+γTβ  (69) 

s.t. β≥0  (70) 

  x ∈ {0,1} (71) 

 Ax≤cl (72) 

 Cx+Dyb≤h  (73) 

  η+ξ
T
ρ+φTβ≥sTv(ξ,φ),               ∀(ξ,φ) ∈ Ξ̅:(λ)  (74) 

  Cx+Dy(ξ,φ)+Ev(ξ,φ)≤h(ξ),   ∀(ξ,φ) ∈ Ξ̅:(σ) (75) 

  Fyb+Gy(ξ,φ)≤Δ,                         ∀(ξ,φ) ∈ Ξ̅:(δ) (76) 

The last three constraints (73)-(75) are classical robust 

constraints on the polytopic uncertainty set Ξ̅. Methods from 

existing literatures could be adopted to convert these three 

infinite-dimensional constraints into their robust counterparts 

[20], [26], [27].  

We take the first uncertain linear constraint (74) as an 

example to show the details for deriving the MILP-based 

deterministic counterpart. Constraint (74) can be reformulated 

as the following worst-case form (77). 

min
(ξ,φ)∈Ξ̅

{η+ξ
T
ρ+φTβ-sTv(ξ,φ)}≥0 (77) 

The worst-case expression (77) could be further written in an 

explicit formulation (78). 

min
(ξ,φ)∈Ξ̅

{η+∑ ξwρww +∑ φ
o
β
oo -∑ sava

0
a -∑ ∑ savaw

ξ
ξwwa   

 -∑ ∑ savao
φ
φ
ooa }≥0 (78) 

Note that the lifted support set Ξ̅ is defined in (63). By taking 

the dual of the minimization formulation (78), equivalent 

MILP-based constraints of uncertain linear constraint (74) is 

derived as in (79)-(82). 

η-sTv0-λT
cw≥0 (79) 

λ≥0 (80) 

λ
T
Hw=∑ savaw

ξ
a -ρ

w
,                             w=1,2,…W  (81) 

λ
T
Io=∑ savao

φ
a -β

o
,                                 o=1,2,…O  (82) 

where Hw  is the wth column of matrix H  and Io  is the oth 
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column of matrix I. 

Finally, the proposed two-stage distributionally robust 

problem is reformulated as an MILP-based deterministic 

optimization problem (83). As pointed out and proved in [25], 

employing affine decision rule would provide a feasible yet 

conservative solution. Since affine decision rule is only applied 

to approximate worst-case expected load shedding cost, the 

base-case dispatch decisions obtained is of high-quality. 

mincb
Tx+cg

Tyb+η+μTρ+γTβ  

s.t. β≥0  

  x ∈ {0,1} 
 Ax≤cl 

 Cx+Dyb≤h 

 η-sTv0-λT
cw≥0 

 λ
T
Hw=∑ savaw

ξ
a -ρ

w
,                             w=1,2,…W  

 λ
T
Io=∑ savao

φ
a -β

o
,                                 o=1,2,…O  

 Cr
T
x+Dr

Ty0+Er
Tv0-h0+cw

Tσr≤0 

 σr
THw=∑ Drayaw

ξ
a +∑ Eravaw

ξ
a -hrw

ξ
,    w=1,2,…W  

 σr
TIo=∑ Drayaw

φ
a +∑ Eravaw

φ
a ,              o=1,2,…O  

 Fu
Tyb+Gu

T
y0-Δ+cw

Tδu≤0 

 δu
T
Hw=∑ Guayaw

ξ
a ,                                 w=1,2,…W  

 δu
T
Io=∑ Guayaw

φ
a ,                                   o=1,2,…O  

 λ≥0, θr≥0, δu≥0 (83) 

where r and u are indices of constraints; hrw
ξ

 is the rth element of 

vector hw
ξ ; Row vectors Cr

T, Dr
T, and Er

T denote the rth rows of 

matrices CT, DT, and ET respectively; Row vectors Fu
T and Gu

T 

denote the uth rows of matrices FT and GT. 

C. Calculation of Locational Marginal Electricity/Gas Prices 

When electricity/natural gas transmission network 

congestions occur, the electricity/natural gas market cannot be 

cleared at the system level. Instead, the market will be cleared at 

the bus/node level. Similar to the concept of LMP in electricity 

market, LMGP is defined as the cost of supplying the next kcf/h 

of gas load at a certain location, considering costs of gas 

production and transmission [3], [28]. A bilateral gas-electricity 

market is proposed in [29] where the two markets trade energy 

at locational marginal prices. 

The calculation of locational marginal electricity/gas prices 

involves two steps. (i) Solve problem (83) to obtain unit 

commitment (UC) statuses, gas flow directions, and dispatch 

results; (ii) The optimal base-case solutions of problem (83) is 

used to calculate LMEPs/LMGPs. Specifically, problem 

(51)-(54) is solved with determined UC results 𝐼it , gas flow 

directions f̂
pt

 +
/f̂

pt

  -
 , and optimal dispatch solutions P̂it/P̂dt/ 

Ĝjt/Ĝgt while considering constraints (84)-(87) to derive true 

marginal electricity/gas prices, where ΔPit
± , ΔPdt

± , ΔGjt
± , and 

ΔGgt
±  are small deviations to calculate LMEPs/LMGPs. Dual 

variables obtained from constraint (6) are LMEPs, and dual 

variables of constraint (24) are regarded as LMGPs. 

P̂it-ΔPit
- ≤Pit≤P̂it+ΔPit

+ (84) 

P̂dt-ΔPdt
- ≤Pdt≤P̂dt+ΔPdt

+  (85) 

Ĝjt-ΔGjt
- ≤Gjt≤Ĝjt+ΔGjt

+ (86) 

Ĝgt-ΔGgt
- ≤Ggt≤Ĝgt+ΔGgt

+  (87) 

V. CASE STUDIES 

A 6-bus power system/7-node natural gas system and the 

modified IEEE 118-bus power system/12-node natural gas 

system are used to demonstrate the proposed distributionally 

robust scheduling model, for analyzing the impact of an 

effective deployment of integrated gas-electricity DRs on 

market clearing and LMEPs/LMGPs. Electricity load shedding 

costs is set as 1000 $/MWh, and gas load shedding cost is 1207 

$/kcf (e.g. 4000$/MWh) suggesting a higher priority of natural 

gas residential loads. Detailed data of the test systems can be 

found in [30]. The small deviations in equations (84)-(87) need 

to be carefully chosen to derive true marginal electricity/gas 

prices. In the case studies of the paper, these small deviations 

are set in the range of [10-5, 10-2]. 

A. 6-Bus Power System/7-Node Natural Gas System 

The 6-bus power system/7-node natural gas system shown in 

Fig. 2 is studied for a two-hour period to illustrate effectiveness 

of the proposed distributionally robust scheduling model. 

Electricity/gas loads at all buses/nodes are assumed eligible to 

provide DR. Minimum on/off time limits of generators and 

integrated gas-electricity DRs are both set as 1, and ramping 

constraints are ignored for simplicity. Generators G1 and G2 are 

initially on.  

 
Fig. 2 6-bus power system/7-node natural gas system. 

The following five cases are studied to illustrate the impacts 

of distributionally robust scheduling and integrated 

gas-electricity DR. 

Case 1: Deterministic scheduling without integrated 

gas-electricity DR. 

Case 2: Integrated gas-electricity DR is applied after unit 

commitment decisions and gas flow directions have 

been settled in Case 1. 

Case 3: Case 1 with integrated gas-electricity DR.  

Case 4: Case 1 with distributionally robust scheduling. 

Case 5: Case 4 with integrated gas-electricity DR. 

Case 1: This is the base case. First, approximation accuracy 

of Taylor series expansion is studied. The method proposed in 

Section III.C of reference [23] is used to examine the errors of 

Weymouth equation approximation with different numbers of 

breakpoints in equations (43)-(50). The results are shown in Fig. 

3. As it is observed, gas network is not congested at hour 1, so 

the maximum relative errors are extremely small regardless the 

number of breakpoints, indicating that the obtained solution is 

feasible and optimal to the original Weymouth equation. At 

hour 2, gas network congestions occur with increased load, and 

the maximum relative errors of Weymouth equation 

approximation decrease with the increase in the number of 

breakpoints. When the number of breakpoints is larger than 150, 

the maximum relative error is smaller than 10-4, which suggests 

that the original Weymouth equation is approximated with high 
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quality. In addition, the impact of Taylor series expansion on 

LMEPs/LMGPs are tested. Fig. 4 shows LMGPs against 

different numbers of breakpoints at hour 2, since LMEPs are not 

influenced. It is observed that when no breakpoints are 

considered, LMGPs of all nodes are the same, indicating that no 

congestion occurs in the gas network. On the other hand, by 

gradually adding breakpoints, both gas network congestion and 

difference in LMGPs emerge. It could also be seen that when the 

number of breakpoints reaches 150, the changes in LMGPs 

become negligible. It is concluded that a proper number of 

breakpoints can reasonably enhance approximation accuracy of 

the Taylor series expansion, and 150 is an appropriate number 

of breakpoints for this test system.  

Table I summarizes results of Case 1. At off-peak hour 1, 

base units G1 and G2 are sufficient to cover electricity loads. 

However, at peak hour 2, four units are turned on to supply 

electricity loads. Due to congestion of line L3, higher LMEPs 

are encountered at buses 3 and 6. For natural gas system, 

network congestion has limited the production of gas supplier 1 

with cheaper cost, and G1 is not operated at full capacity. In 

turn, a much higher LMGP is found at node 3. The energy 

payment of DR loads is $86,199.29, calculated as the 

multiplication of energy consumptions and corresponding 

LMEPs/LMGPs at individual hours. 

 
Fig. 3 Maximum error of Weymouth equation via Taylor series expansion. 

 
Fig. 4 Sensitivity analysis of Taylor series expansion in calculating LMGPs. 

TABLE I RESULTS OF CASE 1-3 

 Case 1 Case 2 Case 3 

 Hour 1 Hour 2 Hour 1 Hour 2 Hour 1 Hour 2 

# of Committed units 2 4 2 4 2 3 

LMEP 

($/MWh) 

Bus 1 37.46  61.51  38.86  56.24  39.65  58.05  

Bus 2 37.46  58.88  38.86  56.24  39.65  58.05  

Bus 3 37.46  83.27  38.86  56.24  39.65  58.05  

Bus 4 37. 46  62.65  38.86  56.24  39.65  58.05  

Bus 5 37.46  66.47  38.86  56.24  39.65  58.05  

Bus 6 37.46  79.60  38.86 56.24  39.65  58.05  

LMGP 

($/kcf) 

Node 1 3.00  3.65  3.00  3.36  3.02  3.37  

Node 2 3.00  3.65  3.00  3.36  3.02  3.37  

Node 3 3.00  4.75  3.00  3.81  3.06  3.82  

Node 4 3.00  3.65  3.00  3.36  3.02  3.37  

Node 5 3.00  3.79  3.00  3.50  3.04  3.50  

Node 6 3.00  3.50  3.00  3.50  3.04  3.50  

Node 7 3.00  3.00  3.00  3.00  3.02  3.37  

Production cost ($) 68,588.04 66,104.62 65,228.35 

DR payment ($) 86,199.29 70,492.75 71,485.17 

Case 2: The minimum bidding prices of electricity and gas 

DR loads are set as 37 $/MWh and 3 $/kcf, while their 

maximum bidding prices are respectively set as 84 $/MWh and 

4.8 $/kcf. Ed
max and Eg

max are set as 0, indicating that the curtailed 

load at certain time periods is fully shifted to other time periods. 

DR participation levels αdt and αgt are set as 0.2, while the entire 

range of DR load level is evenly divided into five segments.  

Results of Case 2 are shown in Table I. In this case, a portion 

of electricity/gas loads is shifted from hour 2 to hour 1 to 

maximize system social welfare. Since four units are committed 

at hour 2, only 56MW of electricity DR is shifted from peak 

hour to off-peak and 1144.75 kcf/h of gas DR is shifted. Due to 

the reduction in gas load at hour 2, G1 receives sufficient gas 

supply to operate at its full capacity. In turn, much lower 

LMEPs/LMGPs are observed at peak hour. The energy 

production cost is decreased from $68,588.04 in Case 1 to 

$66,104.62. The DR load payment is reduced to $70,492.75. 

Case 3: Different from Case 2, this case introduces integrated 

gas-electricity DR into the scheduling model to seek more 

economical scheduling decisions. Table I compares results of 

Case 3 with those of Cases 1-2. In this case, 75 MW of 

electricity DR is shifted from peak hour to off-peak. 

Consequently, only three generating units are committed at hour 

2 for economic operations. As the output of generator G1 in this 

case is increased to 225 MW from 206 MW in Case 2, which 

consumes more natural gas at hour 1, only 864.6 kcf/h of gas 

DR is shifted from hour 2 to hour 1. As compared to Case 1, the 

savings of energy production cost in this case increases to 

4.90% from 3.62% in Case 2. Thus, integrating electricity/gas 

DR resources could derive more efficient scheduling decisions 

in terms of higher system social welfare. However, LMEPs/ 

LMGPs are slightly increased as compared to Case 2, which 

leads to the increase in DR loads’ payment. That is, when 

deploying DRs with the objective of maximizing system social 

welfare, LMEPs/LMGPs at certain buses/nodes may increase 

and consumers may encounter more payments. 

To further comprehensively test the effect of electricity/gas 

DR on the IGES and LMEPs/LMGPs, the following five 

additional cases are carried out. 

Case 3.1: Case 1 with only electricity DR. 

Case 3.2: Case 1 with only gas DR. 

Case 3.3: Case 1 with electricity load at bus 2 increased by 

300% and gas load at node 3 increased by 50%. 

Case 3.4: Case 3.3 with electricity DR. 

Case 3.5: Case 3.3 with gas DR. 

Results of Cases 3.1-3.2 at peak hour 2 are shown in Table II. 

As compared to Case 1, when electricity DR is considered in 

Case 3.1, both LMEPs and LMGPs at hour 2 are decreased. In 

this case, electricity transmission line L3 is not congested 

anymore, where LMEPs at all buses are the same. On the other 

hand, when natural gas DR is introduced in Case 3.2, output of 

G1 is increased from 242.9 MW in Case 1 to its maximum 

capacity 250MW which helps bring down LMEPs slightly. 

Cases 3.3-3.5 are used to simulate severe weather conditions 

with significantly high electricity and gas consumptions, and 

results of these cases are shown in Table III. Due to higher 

priority of residential gas loads, the IGES would reduce gas 

consumptions of gas-fired units to avoid residential gas load 

shedding. As pipeline PL4 reaches its transmission capacity in 
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Case 3.3, higher priority of residential gas load has limited the 

gas supply to gas-fired units, leading to 75.46MWh of 

electricity load shedding. When electricity DR is considered in 

Case 3.4, a portion of electricity loads is shifted from peak hour 

to off-peak hour to avoid electricity load shedding, and more 

natural gas is utilized by gas-fired units G1 and G5. In Case 3.5, 

introducing gas DR could also mitigate electricity load shedding 

and reduce the number of online units. 

From these cases, it could be concluded that, electricity DR 

could help reduce LMGPs by alleviating gas network 

congestions. Analogously, natural gas DR could also be applied 

to relieve electricity shortages in peak hours by securing the 

supply of natural gas to gas-fired units. 

TABLE II RESULTS OF CASES 3.1-3.2 AT HOUR 2 

 Case 3.1 Case 3.2  Case 3.1 Case 3.2 

LMEP 

($/MWh) 

Bus 1 57.26  61.02  

LMGP 

($/kcf) 

Node 1 3.56  3.36  

Bus 2 57.26  58.88  Node 2 3.56  3.36  

Bus 3 57.26  78.75  Node 3 4.42  3.81  

Bus 4 57.26  61.95  Node 4 3.56  3.36  

Bus 5 57.26  65.07  Node 5 3.68  3.50  

Bus 6 57.26  75.76  Node 6 3.50  3.50  

# of Committed units 3 4 Node 7 3.00 3.00 

TABLE III COMPARISON OF RESULTS IN CASES 3.3-3.5 

 
Electricity load 

shedding (MWh) 

Total gas consumption  

of G1 and G5 (kcf) 

# of Committed units 

Hour 1 Hour 2 

Case 3.3 75.46 5482.38 3 5 

Case 3.4 0 6746.08 3 5 

Case 3.5 0 6453.10 2 5 

Case 4: in this case, uncertainties of electricity and natural 

gas loads are considered via distributionally robust scheduling. 

Variations of electricity and gas loads are set as 10% of their 

forecast values while the expectations of variations μ are set as 

0. Projection directions g are set as 1, and values of q are set as 

0. Generalized moment thresholds γ are 40% of electricity and 

gas load deviations. With these settings, for the electricity 

network, the first-moment constraints in (58) restrict that the 

expectation of the positive part of electricity load deviations 

should be no larger than γ. Obtaining this statistical information 

from historical data is rather straightforward, by just calculating 

the expectation of the positive part of deviations from historical 

load data. 

The proposed distributionally robust scheduling model 

optimizes the base-case social welfare and worst-case expected 

load shedding cost, while adaptively adjusting generation 

dispatches in response to uncertainties in real time. The results 

are shown in Table IV, where penalty cost represents worst-case 

expected load shedding cost. As compared to Case 1, all five 

units are committed at hour 2 to ensure operational security of 

power system and avoid high load shedding cost. It is also 

observed that with more units committed, G4 can operate at a 

lower cost and LMEPs/LMGPs are slightly smaller than Case 1. 

Case 5: when DR is introduced in this case, the production 

cost and DR loads’ payment are considerably decreased as 

compared to Case 4. Compared with Case 3, distributionally 

robust model by scheduling enough reserves could avoid 

potential transmission line congestions and reduce LMEPs. 

Although the production cost is slightly increased by 

committing more units, the IGES could operate more securely 

against uncertainties and energy consumers may benefit from a 

lower payment. Furthermore, two additional cases, Cases 

5.1-5.2 with the load shedding costs decreased to 10% and 1% 

of their original values, are studied to explore the impact of load 

shedding cost. The results are shown in Table IV. When load 

shedding cost reduces, load shedding emerges under 

uncertainties to achieve higher social welfare. That is, the 

production cost is reduced to $65,228.35 by only committing 

three units at peak hour, at the expense of a small amount of 

worst-case expected load shedding penalty cost. 

TABLE IV RESULTS OF CASES 4-5 AT HOUR 2 

 Case 4 Case 5 Case 5.1 Case 5.2 

# of Committed units 5 4 3 3 

LMEP 

($/MWh) 

Bus 1 61.02 56.24  58.05  58.05  

Bus 2 58.88 56.24  58.05  58.05  

Bus 3 78.75 56.24  58.05  58.05  

Bus 4 61.95 56.24  58.05  58.05  

Bus 5 65.07 56.24  58.05  58.05  

Bus 6 75.76 56.24  58.05  58.05  

LMGP 

($/kcf) 

Node 1 3.64 3.36  3.37  3.37  

Node 2 3.64 3.36  3.37  3.37  

Node 3 4.71 3.81  3.82  3.82  

Node 4 3.64 3.36  3.37  3.37  

Node 5 3.78 3.50  3.50  3.50  

Node 6 3.50 3.50  3.50  3.50  

Node 7 3.00 3.00  3.00  3.00  

Production cost ($) 69,353.70 66,104.62 65,228.35 65,228.35 

Penalty cost ($) 0 0 281.35 28.14 

DR payment ($) 84,616.75 70,492.75 71,485.17 71,485.17 

In order to show how partial distributional information would 

affect the worst-case expected load shedding and decision 

making, sensitivity analysis with different values of predefined 

threshold γ in (59) is carried out. Load shedding costs are set as 

10% of their original values, and the results are shown in Table 

IV. Because γ represents the expectation of the positive part of 

load deviations, larger γ would suggest larger variations. 

Particularly, when γ equals 0, zero penalty cost is obtained as no 

uncertainty is indicated in the ambiguity set. As it is observed in 

Table IV, worst-case expected load shedding penalty cost 

increases as γ increases, indicating that more loads are cut off. It 

is also noted that choosing different values of γ does not affect 

the number of committed units and the base-case production 

cost in this specific case. 

TABLE IV WORST-CASE EXPECTED LOAD SHEDDING PENALTY COST AGAINST γ 

γ 0 10% 20% 40% 60% 

Penalty cost ($) 0 70.34 140.68 281.35 351.69 

B. IEEE 118-Bus Power System/12-Node Gas System 

A modified IEEE 118-bus power system together with a 

12-node natural gas system is applied to further demonstrate 

scalability of the proposed approach. Peak values of electricity 

and gas loads are 6000MW and 18000kcf/h. 

Fig. 5 shows the system scheduled electricity and gas load 

profiles with respect to different DR participation levels. 

Compared with the base case without DR, a large amount of 

electricity loads is shifted from peak hours 9-11 and 15-24 to 

off-peak hours 1-8, and a portion of gas loads is shifted from 

heavily loaded hours 9-20 to hours 1-8 and 21-24 to maximize 

system social welfare. With the increase in DR participation 

level, more loads are shifted to off-peak hours and the 

electricity/gas load profiles become much flatter. That is, the 

IGES makes fully utilization of all available DR capabilities, 

transmission network capabilities, and cheap energy production 

units/suppliers to maximize system social welfare. As a result, 
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the energy production cost is reduced from $7,000,933 to 

$6,912,039 with α=0.1 and $6,904,838 with α=0.2. 

When uncertainties are considered in the distributionally 

robust scheduling model, without integrated gas-electricity DR, 

68 more unit hours are committed to provide enough reserves, 

and gas supplier 2 is operated at low capacity to offer ramping 

capabilities against upward uncertainties of gas loads. In turn, 

the energy production cost is increased to $7,009,654. If 

integrated gas-electricity DR is further considered, lower 

production cost is achieved. In addition, production of cheaper 

gas supplier 2 is increased from 183,419 kcf to 203,832 kcf. 

 
Fig. 5 Load profiles with respect to different DR participation levels. 

VI. CONCLUSION 

Integrated gas-electricity DR is one of the most important 

applications in the future interdependent electricity and natural 

gas systems, which could improve energy efficiency and 

increase system security. This paper proposes a distributionally 

robust scheduling model for the IGES while considering 

integrated gas-electricity DR. The proposed model optimizes 

base-case system social welfare and worst-case expected load 

shedding cost. The impact of integrated gas-electricity DR on 

market clearing and LMEPs/LMGPs is also studied. 

Simulation results show that integrated gas-electricity DR 

could positively reduce energy production cost and LMEPs/ 

LMGPs. In addition, incorporating gas DR can relieve 

electricity shortage of power system, while introducing 

electricity DR can mitigate natural gas network congestions. 

The proposed distributionally robust scheduling model with 

integrated gas-electricity DR incurs slightly higher operation 

cost to maintain system security against uncertainties of 

electricity and natural gas loads. In addition, the proposed 

model could also avoid potential transmission network 

congestions and benefit consumers with less energy payment. 
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