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Abstract. Recent results from social science have indicated that neigh-
borhood effects have an important role in an evacuation decision by
a family. Neighbors evacuating can motivate a family to evacuate. On
the other hand, if a lot of neighbors evacuate, then the likelihood of
an individual or family deciding to evacuate decreases, for fear of loot-
ing. Such behavior cannot be captured using standard models of conta-
gion spread on networks, e.g., threshold models. Here, we propose a new
graph dynamical system model, 2mode-threshold, which captures such
behaviors. We study the dynamical properties of 2mode-threshold
in different networks, and find significant differences from a standard
threshold model. We demonstrate the utility of our model through agent
based simulations on small world networks of Virginia Beach, VA. We
use it to understand evacuation rates in this region, and to evaluate
the effects of the model and of different initial conditions on evacuation
decision dynamics.

1 Introduction

Background. Extreme weather events displaced 7 million people from their
homes just in the first six months of 2019 [23]. With the rise in global warming,
the frequency of these events is increasing and they are also becoming more
damaging. Just in 2017–2018, there were 24 major events. In 2017, there was a
total of 16 weather events that together costed over $306 billion, according to
NOAA. In 2018, there were eight hurricanes, out of which two were category 3
or higher and caused more than $50 billion in damages.

Motivation. Timely evacuation is the only action that can reduce risk in many
of these events. Although more people are exposed to these weather events,
technological improvements in weather prediction, early warning systems, emer-
gency management, and information sharing through social media, have helped
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keep the number of fatalities fairly low. During Hurricane Fani [17], a record
3.4 million people were evacuated in India and Bangladesh and fewer than 100
fatalities were recorded [23]. However, in many disaster events, e.g. Hurricane
Sandy, the fraction of people who evacuated has been much lower than what
local governments would like.

The decision to evacuate or not is a very complex one and depends on a large
number of social, demographic, familial, and psychological factors, including
forecasts, warnings, and risk perceptions [13,14,19,25,26]. Two specific factors
have been shown to have an important effect on evacuation decisions. First, peer
effects, i.e., whether neighbors and others in the community have evacuated,
are important. Up to a point, this has a positive impact on the evacuation
probability of a household, i.e., as more neighbors evacuate, a household becomes
more likely to evacuate. Second, concerns about property, e.g., due to looting,
if a lot of people have already left, counteracts the first effect. Therefore, this
has a negative impact on the evacuation probability. An important public policy
goal in disaster planning and response is to increase the evacuation rates in an
affected region, and understanding how this happens is crucial.

Summary of Results. There is a lot of work on modeling peer effects, e.g.,
the spread of diseases, information, fads and other contagions [1,5,7]. A number
of models have been proposed, such as independent cascade [15], and different
types of threshold models (e.g., [6,24]). These are defined on a network, with
each node in state 0 or 1 (0 indicating non-evacuating, 1 indicating a node has
been influenced, e.g., is evacuating), and a rule for a node to change state from
0 to 1. For instance, in a τ -threshold model, a node switches from state 0 to
state 1 if τ -fraction of its neighbors are in state 1. All prior models only capture
the first effect above, i.e., as the number of effected neighbors increases, a node
is more likely to switch to state 1. Here, we propose a new threshold model,
referred to as 2mode-threshold, which inhibits a transition from state 0 to
1 if a sufficiently large fraction of a family’s neighborhood is in state 1, and
demonstrate its use in a large scale study. Our results are summarized below.

1. Dynamics of the 2mode-threshold model (results in Sects. 2 and 3). We
introduce and formalize evacuation decision making as a graph dynamical system
(GDS) [21] using 2mode-threshold functions at nodes. We study theoretically
the dynamics of 2mode-threshold in different networks, and show significant
differences from the standard threshold model that has no drop off. Specifically,
we find that starting at a small set of nodes in state 1, the diffusion process
does not go beyond a constant fraction of the network. System configurations in
which more nodes are 1’s (e.g., the all 1’s vector of node states) are also fixed
points, but our results imply that one cannot reach such fixed points with lots
of 1’s from most initial configurations that have a small number of 1’s.

2. Agent based simulation and application (results in Sect. 4). We develop an
agent-based modeling and simulation (ABMS) of the 2mode-threshold model
on a realistic small world network in the region of Virginia Beach, VA. This
region has a population of over 450,000, and households are geographically situ-
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ated based on land-use data, with a real geo-location which invokes the concept
of neighbors and long range connections [4]. We add edges between households
based on the Kleinberg small world (KSW) model [16]. Our ABM enables us
to capture heterogeneities in the modeling of the evacuation decision-making
process. This includes not only heterogeneities in families, but also differences
in (local) neighborhoods of families as represented in social networks. We use
it to understand the evacuation rates in this region, and evaluate the effects of
different initial conditions (e.g., number of seeds) [seeds are families who are
highly risk averse] on evacuation decision dynamics. For example, including the
effects of looting can reduce evacuation rates by 50%.

Novelty and Implications. Models of type 2mode-threshold have not been
studied before. Our ABM approach can help (i) understand how planners and
managers can more effectively convince families that are in harms way to evac-
uate; (ii) understand the effects of families’ social networks on evacuation deci-
sions [10,25,26]; and (iii) establish down-stream conditions after the evacuation
decision has been made, to support additional types of analyses. For example,
results from these studies can be used to forecast traffic congestion (spatially
and temporally) during the exodus [19], and to determine places where shelters
and triage centers should be established.

2 Evacuation Decision-Making Model

2.1 Motivation from Social Science

Our model is motivated by the analysis of a survey in the counties affected by
Hurricane Sandy in the northeastern United States by [13], which is briefly sum-
marized here. The goal of this survey was to assess factors driving evacuation
decisions [20]. The survey was at a pretty large scale, with over 1200 individ-
uals, and a response rate of 61.93%. A Binomial Logit model was applied to
the survey data and tested for the factors associated with households’ evacua-
tion behaviors [13]. The results indicate that a respondent’s employment status,
consideration of neighbors’ evacuation behavior, concerns about neighborhood
criminal activities or looting, access to the internet in the household, age, and
having flood insurance, each plays a significant role in a respondent’s decision
to evacuate during Hurricane Sandy. Noteworthy was the influence of neighbors’
evacuation behaviors, and concerns about looting and criminal behavior. Neigh-
bors’ evacuations had a statistically significant and positive effect on evacuation
probability but concerns about criminal and looting behavior had a significant
negative effect—implying that if too many neighbors leave, then the remaining
households are less likely to evacuate.

2.2 A Graph Dynamical Systems Framework

A graph dynamical system (GDS) is a powerful mathematical abstraction of
agent based models, and we use it here to develop a model of evacuation behav-
ior, motivated by the survey analysis described above. A GDS S describes the
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evolution of the states of a set of agents. Let xt ∈ {0, 1}n denote the vector
of agent states at time t, with xt

v = 1 indicating that agent v has evacuated.
xt

v = 0 means that agent v has not evacuated at time t. A GDS S consists of
two components: (1) an interaction network G = (V,E), where V represents the
set of agents (in our case, the households which are deciding whether or not to
evacuate), and E represents a set of edges, with e = {u, v} ∈ E if agents u and
v can influence each other; and (2) a set F = {fv : v ∈ V } of local functions
fv : {0, 1}deg(v) → {0, 1} for each node v ∈ V , which determines the state of
node v in terms of the states of N(v), the set of neighbors of v. Given a vector
xt describing the states of all agents at time t, the vector xt+1 at the next time
is obtained by updating xt+1

v using its local function fv(·). We say that a state
vector xt is a fixed point of S if the node states do not change, i.e., xt+1 = xt.

The 2mode-Threshold Local Functions: Modeling Evacuation Behav-
ior. The 2mode-threshold function fv(·) will be probabilistic, and will depend
on the probability of evacuation, in order to capture the qualitative aspects of the
results of [13]. This is shown in Fig. 1a and specifies the probability of evacuation
pe for agent vi as a function of the fraction η1 of neighbors of vi in state 1. We
have pe = pe,max for η1 ∈ (ηmin, ηc], and pe = 0 for η1 ∈ [0, ηmin] and η1 > ηc.
In this paper, we primarily focus on ηmin = 0. Specifically, this captures the
following effects: (i) peer (neighbor) influence can cause families to evacuate and
(ii) if too many of a family’s neighbors evacuate, there are not enough neighbors
remaining behind to dissuade potential looters, so a family reduces its probabil-
ity of evacuation. The first effect makes pe = pe,max for η1 > 0, and the second
effect results in pe dropping to zero at η1 = ηc. Note that the special case where
pe = pe,max for η1 > ηmin = 0 is a probabilistic variant of the ηmin-threshold
function (e.g., [6]); we will sometimes refer to this as the “regular probabilistic
threshold” model, and denote them by rp-threshold. This model is shown in
Fig. 1b. These are models that can be assigned to any agent; in GDS, an agent
is a node that resides in a networked population.

Network Models. We describe the models for the contact network G = (V,E),
which is the other component of a GDS S. A node vi ∈ V represents a family,
or a household. Edges represent interaction channels, for communication and
observations. Edges are directed : a directed edge (vj , vi) ∈ E, with vi, vj ∈
V , means that family vj influences family vi. We use the population model
developed in [4] for representing the set V of households.

Edges are specified using the Kleinberg small world (KSW) network app-
roach [16], and there are two types of edges: short range and long range. Short
range edges (vj , vi) represent either (i) a family vi speaks with (is influenced
by) another family vj about evacuation decisions, or (ii) a family vi observes
vj ’s home and infers whether or not a family vj has evacuated. A long-range
edge represents a member of one family vi interacting with a member of family
vj at work. Each edge has a label of distance between homes, using (lon, lat)
coordinates of each home. Thus, the KSW model has the following parameters:
the node set V and their attributes, the short-range distance dsr over which
short-range edges are placed between nodes, and the number q of long range
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(a) (b)

Fig. 1. Dynamics models—probability of evacuation curve—for probability pe of evac-
uation for a family versus the fraction η1 of its neighbors in state 1 (i.e., evacuating). (a)
The 2mode-threshold model: the evacuation probability is pe = 0 for η1 = ηmin = 0
and for η1 > ηc. The maximum probability is pe = pe,max in the interval (ηmin, ηc].
(b) The rp-threshold model: this curve is similar to the previous curve, except that
pe = pe,max for η1 > ηmin. This is a special case of 2mode-threshold, but is a vari-
ation of the regular probabilistic threshold model [6,21,24]. As an illustration, if an
agent has 50% of its neighbors in state 1, then the model in (a) shows that pe = 0,
while (b) shows that pe = pe,max > 0. An example with values for these parameters is
given in the text.

edges incident on each node vi. For each node vi, (i) short range edges (vj , vi)
are constructed, where d(vj , vi) ≤ dsr; and (ii) q long range edges (vk, vi) are
placed at random, with probability proportional to 1/d(vk, vi)α, for a parameter
α. Note that for each short range edge (vj , vi), there is a corresponding edge
(vi, vj). See [16] for details.

Example. Figure 1a shows an example of the 2mode-threshold model with
the parameters pe,max = 0.2, and ηc = 0.4. Figure 1b shows a rp-threshold
model. The purpose of this example is to illustrate the dynamics of these models
on a network of five agents. In Fig. 2, x1 is the initial configuration with node 1
evacuated (in state 1), and nodes 2, 3, 4, and 5 not evacuated (in state 0). Nodes
2 and 3 have η1 = 1/3 < ηc = 0.4, and so for both of them, the evacuation
probability is pe = 0.2. Nodes 4 and 5 have η1 = 0, so pe = 0 for them. Therefore,
the probability that the state vector is x2 at the next time step (see Fig. 2) is
pe,max(1−pe,max) = 0.2·0.8 = 0.16, since only node 2 switches to 1. With respect
to the configuration x2, nodes 3, 4, and 5 have η1 = 2

3 , 1 and 0, respectively.
Therefore, pe = 0 for all these nodes, and x2 is a fixed point of the S with the
2mode-threshold functions. However, for the regular probabilistic threshold
model, with ηmin < 0.3, x2 is not a fixed point, since nodes 3 and 4 both have
pe = pe,max (since they have η1 > ηmin). Therefore, in the regular probabilistic
threshold model, the x2 → x3 transition occurs with probability p2e,max = 0.04.

Problems of Interest. We will refer to a GDS system S2m = (G,F) in which
the local functions are 2mode-threshold functions as a 2mode-threshold-
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Fig. 2. An example showing the transitions in a S on a graph with five nodes, and
2mode-threshold local functions, with parameters pe,max = 0.2 and ηc = 0.4. The
figure shows a transition of the dynamics model from configuration x1 to x2, with
shaded nodes indicating evacuation. The x1 → x2 transition occurs with probability
pe,max(1 − pe,max) = 0.16. For the above parameters, x2 is a fixed point, and the node
states do not change. However, if we had ηc = 1 (i.e., this is a regular probabilistic
threshold), x2 is not a fixed point, and there can be a transition to configuration x3

with probability p2
e,max = 0.04 (indicated as a dashed arrow).

GDS. Our objective in this paper is to study the following problems on a S2m

system:

(1) How do the dynamical properties of 2mode-threshold GDS systems differ
from those of S with rp-threshold model functions? Do they have fixed
points, and what are their characteristics?

(2) How do the number of 1’s in the fixed point depend on the initial condi-
tions, and the model parameters, namely pe,max and ηc? How can this be
maximized?
We provide solutions to these problems next.

3 Analyzing Dynamical Properties in Different Network
Models

It can be shown that any S2m converges to a fixed point in at most n/pe,max

steps. S2m systems have significantly lesser levels of diffusion (i.e., number of
nodes ending up in state 1), compared to the rp-threshold model, as we
discuss below. Many details are omitted for space reasons.

Lemma 1. Consider a S2m with G = Kn being a complete graph on n nodes.
Starting at a configuration x0 with a single node in state 1, S2m converges to
a fixed point with at most (pe,max + ηc)n nodes in state 1, in expectation. In
contrast, in a regular probabilistic threshold system on Kn with ηmin = 0, the
system converges to the all 1’s vector as a fixed point.

Proof. Consider a state vector xt with k nodes in state 1. Consider any node
v with xt

v = 0. If k ≤ ηcn, then, Pr[node v switches to 1] = pe,max. Therefore,
the expected number of nodes which switch to 1 is pe,max(n − k) ≤ npe,max. If
k > ηcn, for every node in state 0, the probability of switching to 1 is pe = 0.
Therefore, the expected number of 1’s in a fixed point is at most npe,max + nηc.
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On the other hand, in a regular probabilistic threshold model, the system does
not converge till each node in state 0 switches to 1 (since pe = pe,max for all
η1 > 0).

We observe below that starting at an initial configuration with a single 1,
S2m converges to a fixed point with at most a constant fraction of nodes in state
1. Note, however, that configurations with more than that many 1’s, e.g., the all
1’s vector, are also fixed points. The result below implies that those fixed points
will not be reached from an initial configuration with a few 1’s.

Lemma 2. Consider a S2m on a G(n, p) graph with pηc ≥ 6
ε2

log n
n , for any

ε ∈ (0, 1). Starting at a configuration x0 with a single node in state 1, S2m

converges to a fixed point with at most (1+2ε)(ηc +pe,max)n nodes in state 1, in
expectation. In contrast, in a regular probabilistic threshold system on Kn with
ηmin = 0, the system converges to the all 1’s vector as a fixed point.

Proof. (Sketch) Let deg(v) denote the degree of v. For a subset S, let degS(v)
denote the degree of v with respect to S, i.e., the number of neighbors of v
in S. For any node v, we have E[deg(v)] = np. By the Chernoff bound [9], it
follows that Pr[deg(v) > (1 + ε)np] ≤ e−ε2np/3 ≤ 1/n2. Consider a set S of
size 1+ε

1−εηcn. For v �∈ S, E[degS(v)] = |S|p, and so Pr[degS(v) < (1 − ε)|S|p] ≤
e−ε2|S|p/2 ≤ 1/n2. For |S| ≥ 1+ε

1−εηcn, we have (1 − ε)|S|p ≥ (1 + ε)ηcnp. Putting
these together, with probability at least 1−2/n, we have deg(v) ≤ (1+ ε)np and
degS(v) ≥ (1 + ε)ηcnp ≥ ηcdeg(v), for all nodes v. Therefore, if S2m reaches a
configuration with nodes in set S of size 1+ε

1−εηcn < (1 + 2ε)ηcn, with probability
1 − 2/n, S is a fixed point. With probability ≤ 2/n, S is not a fixed point, and
the process converges to a fixed point with at most n 1’s, so that the expected
number of 1’s in the fixed point is at most |S| + 2 ≤ (1 + 2ε)ηcn. On the other
hand, consider the last configuration S′ which has size |S′| < (1 + 2ε)ηcn. Then,
in expectation, at most pe,maxn additional nodes switch to state 1, after which
point, the configuration has more than (1 + ε)ηcn 1’s. Therefore, the expected
number of 1’s in the fixed point is at most (1 + 2ε)(ηc + pe,max)n.

4 Agent-Based Simulations and Results

Simulation Process. Inputs to the simulation are a social network (described
below), a set of local functions that quantifies the evacuation decision making
process of each node vi ∈ V (see Sect. 2), and a set of seed nodes whose state
is 1 (i.e., these nodes are set to “evacuate” at the start of a simulation instance,
at time t = 0). All other nodes at time t = 0 are in state 0 (the non-evacuating
state). We vary a number of simulation input parameters, as discussed imme-
diately below, across simulations. Each simulation instance or run consists of
a particular set of seed nodes, and time is incremented in discrete timesteps,
from t = 0 to tmax. Here, tmax = 10 days, to model the ten days leading up to
hurricane arrival. At each timestep, nodes that are in state 0 may change to
state 1, per the models in Sect. 2. At each 1 ≤ t ≤ tmax, the state of the system
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at time t − 1 is used to compute the next state of each vi ∈ V (corresponding
to time t) synchronously ; that is, all vi update their states in parallel at each t.
A simulation consists of 100 runs, where each run has a different seed set; the
network and dynamics models are fixed in a simulation across runs. We present
results below based on averaging the results of the 100 runs.

Social Networks. Table 1 provides the social networks (and selected properties)
that are used in simulations of evacuation decision making. The network model
of Sect. 2.2 was used to generate KSW networks for Virginia Beach, VA. Inputs
for the model were n = 113967 families forming the node set V , with (lat, long)
coordinates, dsr = 40 m, α = 2.5 (see [16]), and q = 0 to 16.

Simulation Parameters Studied. The input parameters varied across simu-
lations are provided in Table 2.

Table 1. Kleinberg small world (KSW) networks [16] used in our experiments and their
properties. The number n of nodes is 113967 for all graphs. The short range distance
dsr = 40 m and the exponent α = 2.5 is for computing the probabilities of selecting
particular long-range nodes with which to form long-range edges with each node vi ∈ V .
Column “No. LR Edges” (= q) means number of long-range edges incoming to each
node vi. There are five graph instances for every row. Average degree is dave and
maximum degree is dmax, for in-degree and out-degree.

Network Class No. LR Edges Avg. In-Deg. Max. In-Deg. Avg. Out-Deg. Max. Out-Deg.

KSW0 0 10.11 380 10.11 380

KSW2 2 11.71 382 11.71 381

KSW4 4 13.70 384 13.70 381

KSW8 8 17.70 388 17.70 382

KSW16 16 25.70 396 25.70 383

Table 2. Summary of the parameters and their values used in the simulations.

Parameter Description

Networks Networks in Table 1. We vary q per the table, from 0 to 16

Num. random

seeds, ns.

Number of seed nodes specified per run (chosen uniformly

at random). Values are 50, 100, 200, 300, 400, and 500

Threshold model The 2mode-threshold model of Fig. 1a and the rp-threshold

(i.e., classic) threshold model of Fig. 1b, in Sect. 2

Threshold

range, ηc.

The range in relative degree over which nodes can change to

state 1. Discrete values are 0.2 and 1.0. Note that ηc = 1

corresponds to the classic stochastic threshold model

(Fig. 1b), whereas smaller values of η1 correspond to the

2mode-threshold model (Fig. 1a)

Maximum probability,

pe,max

The maximum probability of evacuation pe,max of Fig. 1.

Discrete values are 0.05, 0.10, and 0.15

Basic Results and the Effects of Seeding. Figure 3b provides average frac-
tion of population deciding to evacuate (Frac. DE) as a function of time for one
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instance of the KSW2 category of networks. We use the 2mode-threshold
model with pe,max = 0.15 and ηc = 0.2 (see Fig. 1a). A simulation uses a fixed
value of number ns of random seed nodes per run, but the set of nodes differs in
each run (see legend). Other simulation parameters are in the figure. Error bars
indicate the variance in results across 100 runs (i.e., simulation instances). The
variance is very small (the bars cannot be seen in the plots, and are barely visible
even under magnified conditions). Hence we say no more about the variance in
output. As number ns of random seeds increases from 50 to 500, the fraction
deciding to evacuate fde increases from about 0.02 to 0.1.

(a) (b) (c)

Fig. 3. Simulation results of fraction of population deciding to evacuate (Frac. DE)
versus simulation time. All results use the 2mode-threshold model of Fig. 1a,
pe,max = 0.15, ηc = 0.2, and ns (numbers of random seeds) varies from 50 to 500
(see legend). Error bars denote variance. (The variance is very small.) (a) Results for
one graph instance of network class KSW0 (i.e., q = 0 long range edges per node). (b)
Results for one graph instance of network class KSW2 (i.e., q = 2 long range edges per
node). (c) Results for one graph instance of network class KSW16 (i.e., q = 16 long
range edges per node).

Effect of Graph Structure: Long Range Edges. The effect of number q
of long range edges is shown across the three plots in Fig. 3 for the 2mode-
threshold model. For q = 0 (i.e., no long-range edges), the fraction of the
population evacuating (Frac. DE) = fde ≈ 0. As q increases to 2 and then 16
long-range edges per node, fde increases markedly. In particular, Fig. 3c shows
how the spread of evacuation decisions has an upper bound in the 2mode-
threshold model: too many families have evacuated, so the remaining families
do not evacuate over concerns of looting and crime. This effect of greater conta-
gion spreading as q increases is the “weak link” phonemena [12], where long-range
edges can cause remote nodes to change their state to 1 (i.e., evacuating), thus
moving a “contagion” into a different region of the graph. Note that the speed
with which the maximum of fde = 0.32 is attained increases with ns.

Effect of Dynamics Model: Maximum Evacuation Probability pe,max.
Figure 4 shows the effect of number pe,max of the 2mode-threshold model. As
pe,max increases from 0.05 (Fig. 4a) to 0.10 (Fig. 4b) to 0.15 (Fig. 4c), the fraction
of population evacuating increases at smaller pe,max, almost plateaus for all ns
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when pe,max = 0.1, and increases its speed to plateau for the largeset pe,max.
The values of pe,max were selected based the survey results [13] mentioned in
Sect. 2.1.

(a) (b) (c)

Fig. 4. Simulation results of fraction of population deciding to evacuate (Frac. DE)
versus simulation time. All results use the 2mode-threshold model of Fig. 1a with
ηc = 0.2, and ns (numbers of random seeds) varies from 50 to 500, for one instance
of the KSW16 graph class, i.e., q = 16 long range edges per node (similar results for
other graph instances). (a) Results for pe,max = 0.05. (b) Results for pe,max = 0.10.
(c) Results for pe,max = 0.15, is the same as Fig. 3c, reproduced for completeness.

(a) (b) (c)

Fig. 5. Simulation results of fraction of population deciding to evacuate (Frac. DE)
versus simulation time. All results use the rp-threshold model of Fig. 1b where loot-
ing and crime are not concerns, and ns (numbers of random seeds) varies from 50 to
500, for one instance of the KSW16 graph class, i.e., q = 16 long range edges per node
(similar results for other graph instances). (a) Results for pe,max = 0.05. (b) Results
for pe,max = 0.10. (c) Results for pe,max = 0.15. These results can be compared with
corresponding plots from Fig. 4 for the 2mode-threshold model.

Effect of Dynamics Model: Range of Relative Threshold for Transi-
tion to State 1. We compare results from the 2mode-threshold (Fig. 4), with
various values for pe,max and ηc = 0.2, against the rp-threshold model, with
the same pe,max values, where ηc = 1.0 (Fig. 5). The corresponding plots, left
to right in each figure, can be compared. As pe,max increases, the discrepancy
between the two models increases: concern over looting dampens evacuation in
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the 2mode-threshold model. For pe,max = 0.15, the rp-threshold model
results in Fig. 5c reach fde > 0.6, while the corresponding results for 2mode-
threshold model in Fig. 4c are only roughly one-half the values of fde in Fig. 5c.
Hence, the 2mode-threshold model can produce a large difference (dampen-
ing) in the fraction of families evacuating. Therefore, ignoring the influence of
looting and crime can cause a large overprediction of family evacuations.

5 Related Work

Many studies have identified factors that affect evacuation decision making.
These include social networks and peer influence [18,22], risk perceptions, evac-
uation notices, storm characteristics [2,3,8] and household demographics such as
nationality, proximity to hurricane path, pets, disabled family members, mobile
home, access to a vehicle etc. [11,25].

Other studies use social networks and relative threshold models to model
evacuation behavior. A relative threshold [6,24] θi for agent vi is the minimum
fraction of distance-1 neighbors in G(V,E) that must be in state 1 in order for
vi to change from state 0 and to state 1. Several studies [14,25,26] assign thresh-
olds to agents in agent-based models (ABMs) of hurricane evacuation modeling.
Stylized networks of 2000 nodes are used in [14] to study analytical and ABM
solutions to evacuation. In [25], 12,892 families are included in a model of a 1995
hurricane for which 75% of households evacuated. They include three demo-
graphic factors in their evacuation model, in addition to the the peer influence
that is captured by a threshold model. Small world and random regular styl-
ized networks are used for social networks. Simulations of hurricane evacuation
decision-making in the Florida Keys are presented in [26]. The simulations cover
24 hours, where the actual evacuation rate was about 53% of families. The social
network is also a small-world network, with geospatial home locations, which is
similar to our network construction method. In all of these studies, as the number
of neighbors of a family vi evacuates, the more likely it is that vi will evacuate.
Our threshold model differs: in our model, if too many neighbors evacuate, then
vi will not evacuate because of concerns over crime and looting.

6 Summary and Conclusions

We study evacuation decision-making as a graph dynamical system using
2mode-threshold functions for nodes. This work is motivated by the results
of a survey collected during Hurricane Sandy which shows that concerns about
crime motivates families to stay in their homes. We study the dynamics of
2mode-threshold in different networks, and show significant differences from
the standard threshold model. Results obtained from this work can help deter-
mine the size and characteristics of non-evacuees which city planners can use for
contingency planning.
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