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Obesity in the western world has reached epidemic proportions, and yet the long-term effects on brain
health are not well understood. To address this, we performed transcriptional profiling of brain regions
from a mouse model of western diet (WD)-induced obesity. Both the cortex and hippocampus from
C57BL/6] (B6) mice fed either a WD or a control diet from 2 months of age to 12 months of age
(equivalent to midlife in a human population) were profiled. Gene set enrichment analyses predicted that
genes involved in myelin generation, inflammation, and cerebrovascular health were differentially

ﬁ‘g&ords" expressed in brains from WD-fed compared to control diet-fed mice. White matter damage and cere-
Brain Health brovascular decline were evident in brains from WD-fed mice using immunofluorescence and electron
Obesity microscopy. At the cellular level, the WD caused an increase in the numbers of oligodendrocytes and

myeloid cells suggesting that a WD is perturbing myelin turnover. Encouragingly, cerebrovascular
damage and white matter damage were prevented by exercising WD-fed mice despite mice still gaining a
significant amount of weight. Collectively, these data show that chronic consumption of a WD in B6 mice
causes obesity, neuroinflammation, and cerebrovascular and white matter damage, but these potentially

damaging effects can be prevented by modifiable risk factors such as exercise.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Obesity is a major health concern throughout the western world
because of its strong association with diseases such as cardiovas-
cular disease, diabetes, and dementias. A western diet (WD) com-
bined with a sedentary lifestyle is the most common cause of
weight gain leading to obesity (Campbell, 2004; Cecchini et al.,
2010; Cordain et al, 2005), generally characterized by an
increased body mass index (BMI) (Calabro et al., 2013; Martin-
Rodriguez et al., 2015). Diseases that are influenced by diet and
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obesity are the greatest cause of morbidity and mortality in the
western world, including the United States (World Health
Organization, 2009). Health care costs associated with obesity are
over $200 billion annually in the United States alone and are ever
increasing with 35% of the population classed as obese (Smith and
Smith, 2016; Spieker and Pyzocha, 2016).

Cognitive aging is a normal process where structural and func-
tional changes lead to a decline in cognitive ability (Glisky, 2007;
Nguyen et al., 2014). However, studies show that obesity and high-
fat diets cause cognitive dysfunction in both humans and mice
even when controlling for cognitive aging (Elias et al., 2005; Kanoski
and Davidson, 2011; Naderali et al., 2009; Pistell et al., 2010). In 1
study that used the word-list learning test (evaluating verbal
learning and memory) and the digit symbol substitution test
(assessing attention, response speed, and visuomotor coordination),
middle aged workers showed a linear association between BMI and
cognitive function (Cournot et al., 2006). In a second study, young to
aged obese individuals presented poorer executive function than
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their normal weight counterparts (Gunstad et al., 2007). Obesity and
dietary factors also increase risk for dementia—including Alz-
heimer’s disease. One-third of Alzheimer’s disease cases, the leading
form of dementia globally, is attributed to modifiable risk factors
including midlife obesity, physical inactivity, midlife hypertension,
and type II diabetes (Norton et al., 2014). These risk factors have also
been strongly associated with non-Alzheimer’s dementias, including
vascular dementia (Nguyen et al., 2014). However, the mechanisms
by which high BMI and obesity contribute to cognitive decline and
dementias are not understood although inflammation and vascular
changes are expected to play an important role (Nguyen et al., 2014).

A WD, midlife obesity, and levels of physical activity (such as
aerobic exercise) have direct effects on the structure and function of
the brain (Gray et al., 2006; Medic et al., 2016; Tucsek et al., 2014;
Veit et al., 2014). Previous studies have shown that diet-induced
chronic neuroinflammation and cerebrovascular decline can dam-
age brain structures and reduce cognition (Graham et al., 2016;
Montagne et al., 2015; Pistell et al., 2010; Soto et al., 2015, 2016;
Valladolid-Acebes et al., 2011). Vascular dysfunction and cerebral
small vessel disease are known to increase neuroinflammatory re-
sponses, including activation of peripheral and resident myeloid
cells (Del Zoppo, 2009; Fornage et al., 2008; Nimmerjahn et al.,
2005; Rouhl et al.,, 2012; Soto et al., 2015; Yang and Rosenberg,
2011). In addition, diet-induced obesity causes systemic inflam-
mation that damages the microvasculature of the brain in aging and
dementia (Grammas et al., 2006; Grammas and Ovase, 2001). Some
studies have correlated high BMI and cerebrovascular damage with
lower gray matter volume and changes to white matter density in
humans (Kalaria, 2010; Medic et al, 2016; Veit et al, 2014).
Together, systemic inflammation and cerebrovascular changes,
induced by diet and/or obesity, are likely key drivers of cognitive
decline and a predisposition for dementia. However, the precise
relationships between diet-induced obesity, neuroinflammation,
and brain structure/function are not known.

Increased risk of age-related cognitive decline and dementia due to
poor diet and obesity is often coupled with physical inactivity. Exercise
can ameliorate disease onset and progression in some individuals,
independent of diet and obesity (Duncan et al., 2003; Gaesser et al.,
2014; Lee et al., 2005). For instance, studies have shown a reduced
rate of cognitive decline and a decreased incidence of Alzheimer’s
disease in active older adults (Kalaria, 2010; Lautenschlager et al.,
2008; Mattson, 2012; Rovio et al., 2010). Exercise can reduce age-
related brain tissue loss and stimulate neurogenesis in the hippo-
campus (HP) (Colcombe et al., 2003; Nokia et al., 2016; Van Praag et al.,
2005), but a detailed analysis of the positive effects of exercise on the
brain in chronic obesity has not been performed.

In this study, we set out to identify the effects of chronic obesity
from young to midlife on brain health. Unbiased transcriptional
profiling of the HP, cortex, and corpus callosum from WD-fed mice
compared to chow-fed mice identified expression changes in genes
and pathways involved in neuroinflammation, vasculature, and
myelination. Histologically, the greatest alterations were observed
to white matter regions where cerebrovascular dysfunction pre-
ceded myelin phagocytosis by myeloid cells and age-dependent
cognitive decline. Importantly, exercise prevented obesity-
induced white matter damage by suppressing neuroinflammation
and vascular dysfunction despite significant weight gain.

2. Materials and methods
2.1. Animals
All methods are in accordance with The Jackson Laboratory

Institutional Animal Care and Use Committee (IACUC)—approved
protocols. C57BL/6] (B6) (JAX stock # 000664) male mice were used

exclusively in this study to avoid effects of the estrus cycle in female
mice. Data show the estrus cycle greatly impacts the effects of high-
fat diet. In 1 study, postwean high-fat diet feeding caused irregular
estrus cycles and increases in leptin in 30% of female mice (Lie et al.,
2013). In a second study, a high-fat diet caused complete acyclicity
including elongation of phases, skipping of phases, or a combina-
tion of both (Chakraborty et al., 2016). Changes in the estrus cycle
are known to affect cognitive ability (Broestl et al., 2018;
Markowska, 1999). These estrus-dependent variables would
confound the results of this initial study to understand the effects of
a WD on brain health. Follow-up studies will be required to
determine the similarities or differences between male and female
mice.

All male mice were maintained on a 12/12 hours light/dark cy-
cle. For running experiments, mice were given free access to
running saucer wheels (Innovive Inc). Sedentary mice had no access
to running wheels. Cohorts were maintained from wean on stan-
dard LabDiet 5K52 (referred to as control or normal chow diet). Half
of the mice in the sedentary and running cohorts were switched to
TestDiet 5W80 (WD) adapted from TestDiet 5TLN with added high-
fructose corn syrup, lower fiber, and increased milk protein and fat
(Graham et al., 2016) at 2 months of age to avoid changes to brain
development (Fig. S1A). Data collected for food intake were
assessed everyday for 15 days when mice were 10 months of age
(mos). Daily monitoring of mice via routine health care checks was
carried out to determine their general well-being. Approximately
10% of mice fed the WD developed dermatitis and were eliminated
from this study using an IACUC-approved CO; euthanasia protocol.
A timeline describing the timing of WD, behavioral assays, har-
vesting, and running wheels for each experiment is provided
(Fig. S1B).

2.2. Assessment of running distance

Animals were tested for running capacity by placing individual
mice in a cage with a wireless saucer wheel (ENV-044 Med Asso-
ciates Inc) for 15 days. Data were collected nightly (16 hours) and
analyzed, and average distance ran per night/mouse was calculated.

2.3. Behavioral battery

The Jackson Laboratory’s Mouse NeuroBehavioral Facility per-
formed the behavioral tasks, with the exception of nest construc-
tion and burrowing that were assessed in the Howell laboratory as
reported previously (Deacon, 2012). All Mouse NeuroBehavioral
Facility tasks were previously validated using control mice.
Importantly, all technicians were blind to treatment and age during
testing and until after the data analysis was complete. The test or-
der of subjects was randomized and counterbalanced across mul-
tiples of sessions and equipment.

For grip strength, subjects were weighed and acclimated for at
least 1 hour before the test. Grip strength was assessed using the
Bioseb grip strength meter (Model# BIO-GS3 Bioseb, Inc, Vitrolles,
France) equipped with a grid suited for mice (100 x 80 mm, angled
20°). For forepaw and 4-paw grip strength testing, mice were
lowered toward the grid by their tails to allow for visual placing and
for the mouse to grip the grid with their paws. Subjects were firmly
pulled horizontally away from the grid (parallel to the floor) for 6
consecutive trials with a brief (<30 seconds) rest period on the
bench between trials. Trials 1-3 tested only the forepaw grip,
whereas trials 4—6 included all 4 paws. The average of the 3 fore-
paw trials and the average of the 3 four-paw trials were analyzed
with and without normalization for body weight.

For assessment of open field activity, Open Field Arenas
(40 cm x 40 cm x 40 cm; Omnitech Electronics, Columbus, OH)
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were used. A light fixture mounted ~50 cm above the center of
each arena provided a consistent illumination of ~400—500 lux in
the center of the field. Before the test, mice were acclimated to an
anteroom outside the testing room for a minimum of 1 hour. Sub-
sequently, the tested mice were placed individually into the center
of the arena where the infrared beams recorded distance traveled
(cm), vertical activity, and perimeter/center time.

The spontaneous alternation task was conducted as previously
described (Sukoff Rizzo et al., 2018). Briefly, a clear polycarbonate
arena in the shape of a Y (fabricated in-house at The Jackson Lab-
oratory) with identical arm dimensions (33.65 c¢cm length, 6 cm
width, 15 cm height) with a removable aerated lid and no intended
visual cues were used under adjusted, ambient lighting (~50 lux).
Subject mice were acclimated to the testing room for 1 hour before
testing. Subjects were then placed midway of the start arm (A),
facing the center of the Y for an 8-minute test period, and the
sequence of entries into each arm was recorded via a ceiling
mounted camera integrated with behavioral tracking software
(Noldus EthoVision). The percentage of spontaneous alternation
was calculated as the number of triads (entries into each of the 3
different arms of the maze in a sequence of 3 without returning to a
previously visited arm) relative to the number of alteration op-
portunities. Re-entries were allowed and so chance was considered
22%.

For novel spatial recognition, a y-shaped arena, similar to the
arena described for the spontaneous alternation task, was used. For
this task, distinct visual cues were placed at the distal end of each
arm (see Sukoff Rizzo et al., 2018 for detailed methods and visual
cue information). During trial 1, only 2 of 3 arms were accessible for
a 10-minute period, whereas during trial 2, which occurred after a
30-minute delay period in which subjects were returned to their
home cages, all arms were accessible and subjects were allotted a 5-
minute exploration period. Intact memory in this assay was indi-
cated by a preference for spending time in the novel arm (>33%).

2.4. Mouse perfusion and tissue preparation

Tissues were collected at 3.5 and 12 months. Mice were anes-
thetized with a lethal dose of ketamine/xylazine, transcardially
perfused with 1X phosphate buffered saline (PBS), and brains
carefully dissected and hemisected in the midsagittal plane. One
half was snap-frozen, and the other half was immersion-fixed in 4%
paraformaldehyde for 2 nights at 4 °C. After fixation, brains were
rinsed in 1X PBS, immersed on 30% sucrose/PBS overnight at 4 °C,
frozen in OCT, and cryosectioned at 25 pm.

2.5. RNA and protein extraction with TRIzol, library construction,
sequencing, and analysis

For RNA-seq, brains were dissected as described previously and
the superior region of the cortex containing the frontal parietal
cortex/corpus callosum (FPC/CC) and the HP were extracted and
snap-frozen at the time of collection and stored at —80 °C. RNA
extraction was performed according to the TRIzol (Invitrogen, cat #:
15596026) manufacturer’s instructions and as described in previ-
ous publications from our laboratory (Soto et al., 2015). Total RNA
was purified from the aqueous layer using the QIAGEN miRNeasy
mini extraction kit (QIAGEN) according to the manufacturer’s in-
structions. RNA quality was assessed with the Bioanalyzer 2100
(Agilent Technologies). Poly(A) selected RNA-seq sequencing li-
braries were generated using the TruSeq RNA Sample preparation
kit v2 (Illumina) and quantified using qPCR (Kapa Biosystems).
Using Truseq V4 SBS chemistry, all libraries were processed for 125
base pair (bp) paired-end sequencing on the Illumina HiSeq 2500
platform according to the manufacturer’s instructions. Each sample

was subjected to quality control step using NGSQCToolkit v2.3 for
the removal of adapters and trimming low-quality bases (Phred
<30) (Patel and Jain, 2012). Next, we used RSEM v1.2.12 to quantify
gene expression using the trimmed reads as input (Li and Dewey,
2011). RSEM internally uses Bowtie2 as its aligner (Langmead
et al., 2009). Following alignment and expression quantification,
differential gene expression analysis was performed per brain re-
gion, using edgeR v2.6.10 (Robinson et al., 2010). We applied a
filtering step to remove genes with low expression by removing any
gene that did not have at least 1 read per million for at least 2
samples. After filtering, trimmed mean of M values normalization
was applied to remove any potential library size biases. Specifically,
for the comparisons of diets, we assessed differences in gene
expression between chow and WD, whereas for the comparison of
age, we performed all pairwise comparisons of ages 3.5 months and
10 months as well as chow and WD. In all comparisons, genes were
defined as significantly differential expression at FDR <0.05.
Differentially expressed (DE) genes for specific comparisons are
provided (Tables S1—4) and raw RNA-sequencing data will be made
available on GEOarchive (Gene Expression Omnibus Archive).

2.6. RNA in situ hybridization

For in situ hybridization, an RNA probe for mouse Plp (GE
Dharmacon Clone ID: 5364736) was synthesized, labeled with
digoxigenin (Dig), and hydrolized. Frozen sections were postfixed
(4% paraformaldehyde for 5 minutes), rinsed twice with 1X PBS, and
acetylated with 0.25% acetic anhydride for 10 min in 0.1 M trie-
thanolamine. Sections were then washed in PBS and incubated
overnight at 65 °C in hybridization solution [50% formamide, 1X
Hybe solution (Sigma-Aldrich), 1 mg/mL yeast RNA] containing 1 g/
mL Dig-labeled riboprobe. After hybridization, sections were
washed by immersion in 0.2X saline-sodium citrate buffer at 72 °C
for 1 hour. Dig-labeled probes were detected with an AP-
conjugated anti-Dig antibody (Roche) followed by NBT/BCIP
(nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate) re-
action (Roche). After in situ hybridization, sections were incubated
with DAPI for nuclei staining and mounted in Aqua-Poly/Mount
(Polysciences) as described previously (Howell et al., 2011). Im-
ages taken of Plp in situ hybridization were obtained using a Nikon
Eclipse E200 microscope using SPOT Basic 5.2 imaging software.

2.7. Immunofluorescence

For immunostaining with antibodies against vascular associated
proteins, sections were pretreated with pepsin as previously
described (Franciosi et al., 2007) with minor modifications. Sections
were hydrated with H,O for 3 minutes (min) at 37 °C followed by
treatment of the tissue with 0.5 mg/mL of Pepsin (Sigma) for
18 minutes at 37 °C. Sections were then rinsed twice with 1X PBS at
room temperature for 10 minutes. After pepsin pretreatment, sec-
tions were rinsed once in 1X PBT (1% PBS +1% Triton 100X) and
incubated in primary antibodies: goat anti-PDGFRp (1:40, R&D),
goat anti-CD31 (1:40, R&D), rabbit anti-LAM (1:200, Sigma-Aldrich)
diluted in 1X PBT +10% normal goat or normal donkey serum for 2
nights at 4 °C. Secondary antibody protocols identical to that used
for nonvascular associated protein immunofluorescence were fol-
lowed (see the following).

Sections used for nonvascular associated protein visualization
were dried for 15 min at 37 °C followed by one 10-minute wash in
1X PBT (1% PBS +1% Triton 100X) at room temperature and incu-
bated in primary antibodies: chicken anti-GFAP (1: 200, Acris),
rabbit anti-GFAP (1:200, Dako), rabbit anti—myelin basic protein
(MBP; 1:200, Abcam), rat anti-MBP (1:200, Abcam), goat anti-IBA1
(1:100, Abcam), rabbit anti-IBA1 (1:100, Wako), rat anti-CD68
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(1:100, Bio-Rad), goat anti-OLIG2 (1:100, R&D Systems), and mouse
anti-APC (CC-1, 1:50, Millipore) diluted in 1X PBT + 10% normal
goat or normal donkey serum for 2 nights at 4 °C. After incubation
with primary antibodies, all sections were rinsed 3 times with 1X
PBT for 10 minutes and incubated for 2 hours in the corresponding
secondary antibodies (1:1000, Invitrogen). Tissue was then washed
3 times with 1X PBT for 10—15 minutes, incubated with DAPI for
5 min, and mounted in Aqua-Poly/Mount (Polysciences).

2.8. Imaging and quantification

2.8.1. Imaging

For each mouse, 4 images per brain region (parietal cortex,
corpus callosum, and CA1 region of the HP) were generated. For
quantifying cell number or area, images were captured on a Zeiss
Axiolmager microscope. For quantification in IMARIS 8.1 (Bitplane),
images were captured on the Leica SP5 confocal microscope. Z
stacks were compiled with 0.20 pm steps in the z direction with
1024 x 1024 pixel resolution. For each antibody, all images were
captured using identical parameters for accurate quantification.
Where possible, fluorescent intensity was standardized to samples
from chow-fed mice. However, given the striking difference in in-
tensity between chow-fed and WD-fed mice for MPB, images were
standardized to WD-fed mice.

2.8.2. Quantification in FIJI

Images for GFAP-+, IBA1+, MBP+, CD68+, Olig2+, CC-1+ cells
were manually counted using the cell counter plugin for FIJI v1.0.
For quantification of PDGFR, Laminin, and CD31, fluorescent area
was calculated using a previously validated in-house Vascular
Network Toolkit plugin for FIJI v1.0 (Soto et al., 2015) (see Statistical
Analyses section). Investigators were blinded for all quantifications
including cell counts and cell/protein area.

2.8.3. Quantification and visualization in IMARIS

Images were rendered using identical parameters, and the co-
localization tool was used to determine both the surface areas of
MBP, IBA1, and CD68 and the interactions between surfaces.

2.9. Western blot analysis

Protein samples were separated by SDS-PAGE gel electropho-
resis and transferred to nitrocellulose membrane. Before incubation
with primary antibodies, membranes were blocked in 5% non—fat-
dried milk diluted in 0.1% PBS-Tween, and after primary antibody
incubation, the appropriate peroxidase-conjugated antibody (Mil-
lipore) was used as a secondary antibody. For detection, mem-
branes were treated with the Amersham ECL western blotting
analysis system (GE Healthcare) and exposed to the High perfor-
mance chemiluminescence film (GE Healthcare). The primary an-
tibodies used for immunoblotting are as follows: rat anti-Myelin
Basic Protein (predicted band sizes: 19 and 26 kDa, MBP, 1:1,000,
Abcam) and rabbit anti-f Actin (1:1,000, Abcam).

2.10. Transmission electron microscopy

Mouse perfusion and brain sectioning were performed as pre-
viously reported (Soto et al., 2015). Grids were viewed on a JEOL
JEM1230 transmission electron microscope, and images were
collected with an AMT high-resolution digital camera. Ten to 20
images per brain/mouse were taken with n = 5 per group (young
chow, and 12 months WD and chow). G-ratio was calculated by
determining the ratio of the inner axonal radius and the outer
axonal radius (Chomiak and Hu, 2009; Rushton, 1951). At least 200

myelinated axons were measured in the corpus callosum of 3.5-
month chow, 12-month chow, and 12-month WD mice (n = 3 mice).

2.11. Human imaging studies

Participants from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) were used in this study to evaluate whether white
matter changes associated with obesity were seen in older adults
with and without cognitive impairment. ADNI was launched in
2003 by the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies, and non-profit
organizations as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial magnetic
resonance imaging, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease. Determination of sensitive and
specific markers of very early Alzheimer’s disease progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

The principal investigator of this initiative is Michael W. Weiner,
MD, the VA Medical Center, as well as the University of California-
San Francisco. ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private corpora-
tions, and subjects have been recruited from over 50 sites across the
United States and Canada. The initial goal of ADNI was to recruit 800
subjects but ADNI has been followed by ADNI-GO and ADNI-2. To
date, these 3 protocols have recruited over 1500 adults, ages 55 to
90, to participate in the research, consisting of cognitively normal
older individuals, people with early or late MCI, and people with
early Alzheimer’s disease. The follow-up duration of each group is
specified in the protocols for ADNI-1, ADNI-GO, and ADNI-2. Sub-
jects originally recruited for ADNI-1 and ADNI-GO had the option to
be followed in ADNI-2. Further information can be found at http://
www.adni-info.org/ and in previous reports (Jack et al., 2010; Jagust
et al., 2010; Petersen et al., 2010; Saykin et al., 2010; Trojanowski
et al., 2010; Weiner et al., 2010). Informed consent was obtained
according to the Declaration of Helsinki.

Participants in this study were included if they had diffusion
tensor imaging (DTI) at baseline, as well as concurrent weight and
height measurements to calculate BMI, demographics, and medical
history data (n = 256). Participants included 88 cognitively normal
(CN) older adults, 120 patients with MCI, and 48 participants with
mild Alzheimer’s disease. BMI was calculated using the standard
formula and participants were divided into obese (BMI > 30) and
nonobese (BMI < 30). Medical history pertaining to cardiovascular
disorders was extracted from the medical history database through
manual inspection and participants were classified as yes or no for
having a history of atrial fibrillation, cardiac arrhythmia, cardiac
bypass surgery, cardiac surgery other than a cardiac bypass surgery,
chronic obstructive pulmonary disease, diabetes, hypertension,
hyperlipidemia, sleep apnea, smoking, or transient ischemic attack
or stroke.

Preprocessed DTI scans were downloaded from the ADNI data
repository (http://adni.loni.usc.edu/). Scans were preprocessed us-
ing standard techniques as previously described, including Eddy-
current correction, masking, spatial normalization, fitting of diffu-
sion tensor models, and coregistration to standard space in FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Specifically, corrected frac-
tional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD),
and axial diffusivity (AD) scans were downloaded. For reference, FA
is a general measure of white matter integrity, while measures of
diffusivity provide more specific information about the white


http://www.adni-info.org/
http://www.adni-info.org/
http://adni.loni.usc.edu/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

158 L.C. Graham et al. / Neurobiology of Aging 80 (2019) 154—172

matter tracts (Alexander et al., 2007). In particular, RD with rela-
tively unchanged AD has been shown to be a marker of dysmyeli-
nation (Song et al., 2002). In addition, region of interest data from
the LONI site, processed by ADNI investigators using the Enhancing
Neuro Imaging Genetics through Meta-Analysis (ENIGMA) protocol
(http://enigma.loni.usc.edu/wp-content/uploads/2012/06/ENIGMA_
TBSS_protocol.pdf), were downloaded. Regional measures for all
DTI scalars (FA, MD, RD, AD) in the corpus callosum were then
assessed for differences between nonobese and obese individuals.
Diabetes history was the only medical history variable from the list
mentioned previously that was significantly associated with corpus
callosum scalar measures, and only in the full sample. Thus, in the
final models, the residual scalar measures adjusted for age, sex,
diabetes history, and diagnosis (CN, MCI, AD) for the full sample
(n = 256) and residuals adjusted for age and sex for the CN par-
ticipants only (n = 88) were evaluated for differences between
groups using a two-sample t-test in SPSS version 24.0.

Finally, corrected FA, MD, RD, and AD scans were analyzed using
tract-based spatial statistics (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
TBSS; Smith et al.,, 2006), part of FSL. First, FA images were
created by fitting a tensor model to the raw diffusion data using FDT
and then brain-extracted using BET (Smith, 2002). All subjects’ FA
data were then aligned into a common space using the nonlinear
registration tool FNIRT, which uses a b-spline representation of the
registration warp field. Next, the mean FA image was created and
thinned to create a mean FA skeleton, which represents the center
of all tracts common to the group. Each subject’s aligned FA data
were then projected onto this skeleton and the resulting data fed
into voxelwise cross-subject statistics. Specifically, regions where
nonobese and obese participants differed were analyzed using the
same covariates as in the regional analysis. Analyses were done
both in all participants and in CN only. However, results were very
similar, and thus, only the voxelwise results for all participants are
shown for simplicity. Results are displayed at p < 0.05 corrected for
multiple comparisons using 500 permutations (Winkler et al.,
2014).

2.12. Statistical analysis

All statistical analyses for RNA-seq data are provided in the RNA
and protein extraction with TRIzol, library construction, sequencing
and analysis section. For all other tests, data were analyzed using
GraphPad Prism software. p-Values for all pairwise comparisons
were determined using unpaired (two-sample) t-tests. For com-
parisons between multiple groups, one-way multifactorial analysis
of variance followed by Tukey post hoc tests were performed. p-
Values are provided as stated by GraphPad Prism software, and
significance was determined with p-values less than 0.05. Standard
error of the mean was used in all graphs. For all quantification with
statistical analysis, samples size is provided in the figure legends
(n = biological replicate and refers to number of mice/samples used
in each experiment).

3. Results

3.1. Gene profiling predicts a western diet causes vascular and
myelin perturbations

High-fat diet, WD, and obesity have been shown to induce
cognitive decline in both humans and mice (Elias et al., 2005;
Kanoski and Davidson, 2011; Pistell et al., 2010; Valladolid-Acebes
et al, 2011) but the mechanisms are not well understood. To
address this, the impact of chronic consumption of a WD on the
brains of male C57BL/6] (B6) mice was assessed (Fig. S1). The WD
was developed previously to mimic diets commonly consumed in

the western world (Graham et al., 2016). To avoid confounding ef-
fects of age-dependent estrogen changes (see Methods), only male
mice were used in this study. Mice were fed a WD from 2 to
12 months. In B6 mice, 12 months is commonly considered middle-
aged (Flurkey et al., 2007) and so our studies model midlife obesity
in human populations. For the purpose of this study, herein after,
we refer to 3.5 months as “young” and 12 months as “aged.” Control
B6 mice were fed a standard control chow diet (see Methods,
Fig. S1). Significant weight increases were seen in WD-fed mice at
12 months (Fig. S1), despite no significant difference in food intake
comparing control and WD-fed mice (Fig. S1). In addition, a sig-
nificant decline in forepaw grip strength (force) was observed in
aged WD-fed mice compared to young chow-fed and young WD-
fed mice (Fig. S1).

To determine the genes and pathways that were altered as a
result of the WD, transcriptional profiling was performed on brain
samples from young and aged WD-fed and chow-fed mice. Two
brain regions were profiled: (i) the HP and (ii) the FPC/CC (Fig. 1A
and E). In total, 32 samples were separately profiled—2 brain re-
gions from 4 mice from 2 age groups fed 2 diets. Pairwise analyses
comparing young chow samples to both aged chow and WD sam-
ples were performed to determine DE genes (see Methods).

First, to identify the diet-specific effects (independent of aging),
the aged control chow and aged WD samples were compared. A
total of 411 genes were DE in the HP (Fig. 1B) and 1238 genes were
DE in the FPC/CC. (Fig. 1F). Enrichment of Gene Ontology (GO) terms
was determined using The Database for Annotation, Visualization
and Integrated Discovery (DAVID v 6.7). GO terms are a set of
controlled vocabulary to assign Biological Processes, Molecular
Functions, and Cellular Components to genes based on experi-
mental evidence or computational predictions. GO term analysis of
the 411 DE genes in the HP showed an enrichment of genes relating
to neuronal function (neuron differentiation, neuron migration, and
synaptic transmission), axon guidance, and vascular control
(regulation of blood pressure, regulation of angiogenesis, regulation
of heart rate) (Fig. 1C). These data suggested the WD caused per-
turbations to both neuronal health and to support cells including
glial cells and cells that form the cerebrovasculature (e.g., endo-
thelial cells, astrocytes, pericytes). Many of the downregulated DE
genes were associated with regulation of blood pressure and
angiogenesis suggesting a reduction in the health of the cere-
brovasculature. GO term analysis of the 1238 DE genes in the FPC/
CC showed an enrichment of genes involved in ion/cellular ho-
meostasis, immune responses, myelination (nerve impulse, axon
ensheathment, axon potential in neurons, myelination of CNS), and
gliogenesis (Fig. 1G). These GO terms suggested the WD altered
inflammatory processes and axonal health/maintenance. Specif-
ically, the axon/myelin-related terms suggested oligodendrocyte
function may be affected by a WD.

Next, to identify the age by diet effects, the young control chow
and aged WD samples were compared. A total of 335 genes were DE
in the HP (Fig. 1B) and 381 genes were DE in the FPC/CC (Fig. 1F). GO
term analyses of the 335 DE genes in the HP using DAVID identified
enrichment of cell proliferation, vascular control (e.g., blood circu-
lation and blood vessel development), and immune response
(Fig. 1D). Terms relating to vascular control and immune responses
were also enriched in the aged control chow versus WD comparison
(Fig. 1C). However, the enrichment of GO terms such as acute im-
mune responses, acute inflammatory response, and classical com-
plement cascade in this age by diet comparison suggested a
synergistic relationship between age and WD consumption with
respect to inflammatory responses. GO term analyses of the 381 DE
genes in the FPC/CC showed enrichment of terms including im-
mune response, axonogenesis, and inflammatory response
(Fig. TH). This analysis again pointed toward the WD impacting


http://enigma.loni.usc.edu/wp-content/uploads/2012/06/ENIGMA_TBSS_protocol.pdf
http://enigma.loni.usc.edu/wp-content/uploads/2012/06/ENIGMA_TBSS_protocol.pdf
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
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axon/myelin health/maintenance and neuroinflammation (partic-
ularly innate immune response such as complement activation)—
processes that are potentially influenced by an age-dependent
consumption of the WD (i.e., an age by WD affect).

From the GO term analyses described previously, we were most
intrigued by the myelination- and inflammation-related terms
enriched in the 1238 DE genes in the FPC/CC comparing aged
control chow to aged WD samples (Fig. 1F—H). To further

investigate these findings, we used GOrilla that allowed us to
visualize Molecular Function and Cellular Component GO terms
(Fig. 11-]). Providing further evidence of myelin changes, GOrilla
showed that the most enriched Molecular Function term in the
1238 DE genes was dysfunction in the structure of myelin sheath
(Fig. 11). Interestingly, the analysis of Cellular Component terms
(Fig. 1)) identified the term connexin complex as enriched. Three
connexins (Gjb1, Gjb2, and Gjc2) are DE in the FPC/CC in the aged
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Fig. 1. Transcriptional profiling predicts WD affects myelin integrity, cerebrovasculature, and immune responses. (A) Depiction of the hippocampus (HP) that was dissected for RNA
sequencing. (B) The number of differentially expressed (DE) genes in the HP comparing aged WD with aged chow mice (left) and aged WD with young chow-fed mice (right). (C) GO
terms overrepresented in the DE genes in the HP comparing aged WD with aged chow mice. Black bars represent GO terms associated with cerebrovascular health. (D) GO terms
overrepresented in the DE genes in the HP comparing aged WD with young chow (all bars). Black bars represent terms involved in cerebrovascular health (E) Depiction of the
frontoparietal cortex and corpus callosum (FPC/CC) that was dissected for RNA sequencing. (F) The number of DE genes in the FPC/CC comparing aged WD with aged chow mice
(left) and aged WD with young chow-fed mice (right). (G) GO terms overrepresented in the DE genes in the FPC/CC comparing aged WD with aged chow (all bars). Black bars
represent GO terms associated with myelination/oligodendrocyte function. (H) GO terms overrepresented in the DE genes in the FPC/CC comparing aged WD with young chow (all
bars). Black bars represent GO terms associated with myelination/oligodendrocyte function and myeloid cell function. (I) A subset of Molecular Function GO terms overrepresented
in the DE genes comparing aged WD with aged chow mice in the FPC/CC highlighting the significance of myelin sheath—related genes. (J) A subset of Cellular Component GO terms
overrepresented in the DE genes comparing aged WD with aged chow mice in the FPC/CC highlighting the significance of extracellular matrix—related genes. Data for I and ] were

predicted using GOrilla, an online tool to visualize GO terms.
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Fig. 2. Myelin integrity is compromised in WD mice. (A—E) By immunofluorescence, aged WD mice show decreased myelin basic protein (MBP, red) within the FPC (A—C) and
corpus callosum (D—E) compared to young and aged chow mice. (F) The reduction in MBP was confirmed by western blotting (p = 0.0014). (G—L) Electron microscopy (EM) in both
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WD. There are significantly more axons with myelin that is <0.1 pm in samples from aged WD mice compared to both young chow and aged chow mice (**ANOVA p = 0.0036,
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WD versus control chow comparison. Connexins are gap junctions
that form cell-to-cell channels that facilitate the transfer of ions and
small molecules (Orthmann-Murphy et al., 2008). Gjb1, Gjb2, and
Gjc2 are expressed by oligodendrocytes and astrocytes (Ahn et al.,
2008; Sargiannidou et al., 2009; Wasseff and Scherer, 2011) sug-
gesting a dysregulation in the connections involving astrocytes and
oligodendrocytes. The most enriched terms in the Cellular
Component analyses related to extracellular region, extracellular
matrix, and proteinaceous extracellular matrix (Fig. 1]). Although
vascular-related GO terms were not enriched in the previous ana-
lyses using DAVID (Fig. 1F—H), this finding using GOrilla predicts
WD modified basement membrane proteins (such as collagens and
laminins) that surround the cerebrovascular in the FPC/CC.

3.2. A western diet causes myelin loss and structural abnormalities
of the white matter

Transcriptional profiling of the FPC/CC predicted structural
changes to myelin and oligodendrocyte activity in WD-fed mice
(Fig. 1). To validate these findings, a detailed characterization of
myelin integrity was performed. A significant reduction in MBP, a
major constituent of the myelin sheath (Ainger et al., 1997;
Sternberger et al., 1978), was observed by immunofluorescence
comparing brain sections from both the FPC and CC of WD-fed to
chow-fed mice (Fig. 2A—E). To quantify MPB protein levels, western
blotting was performed. There was a 50% reduction in MBP protein
levels in the brains of aged WD-fed compared to aged chow-fed
mice (Fig. 2F and Figs. S2). Furthermore, ultrastructural analyses
using transmission electron microscopy showed normal densely
packed myelin sheaths surrounding axons in the CC in both sagittal
(Fig. 2G, H, J and K) and coronal (Fig. 2I and L) sliced brains of young
and aged chow-fed mice compared to abnormal, loosely packed,
ballooned myelin surrounding axons in aged WD-fed mice
(Fig. 2]—L). Ballooned myelin has been shown previously in aged
brains of rodents and primates and associated with type Il diabetes
and neuroinflammation (Mizisin et al., 2007).

To quantify myelin integrity, g-ratios (myelin thickness
compared to axon diameter) (Chomiak and Hu, 2009; Rushton,
1951) were calculated. The g-ratios of aged WD-fed and aged
chow-fed mice were compared to young chow-fed mice. There was
an observable difference in g-ratios comparing aged WD-fed mice
to either aged chow or young chow mice (Fig. 2M—P). Specifically,
there was a significant increase in the number of axons with myelin
thickness less than 0.1 um in aged WD-fed mice compared to both
young and aged chow-fed mice (Fig. 20). Although trending, there
was no significant difference between aged chow-fed and young
chow-fed mice. There was also a significant decrease in axons with
myelin thickness of 0.1-0.2 um and >0.3 pm in aged WD-fed mice
compared to young and aged chow-fed mice (Fig. 20). However,
there were significant differences in axon diameter comparing aged
WD-fed mice to young or aged chow-fed mice (Fig. 2P). Together,
these data are consistent with the WD causing myelin thinning.

3.3. A western diet causes cerebrovascular damage

Previous studies, including our own, have shown cerebrovas-
cular decline occurs with age in both humans and mice (Bell et al.,
2010; Iturria-Medina et al., 2016; Montagne et al., 2015; Soto et al.,
2015). In this study, transcriptional profiling predicted the WD
caused cerebrovascular changes in the HP and FPC/CC (Fig. 1). To

validate these predictions, key components of the neurovascular
unit (NVU) including endothelial cells, astrocytes, pericytes, and
vessel-associated basement membrane protein laminin were
assessed by immunofluorescence and confocal microscopy. All
images were standardized to chow-fed controls (see Methods). Cell
number quantification was performed by manual counting of 20x
images, fluorescence area was determined using a FIJI plugin (see
Methods). At least 4 images from at least 4 samples per group were
assessed.

There was a significant decrease in CD31+ density comparing
aged WD mice to either young WD mice or young chow mice
(Fig. 3A—C). However, there were no significant differences in
endothelial cell density comparing aged WD mice to aged chow
mice or aged chow with young chow-fed mice. These data suggest
that endothelial cell density is affected by an interaction between
aging and WD (i.e., chronic consumption) and not simply by either
aging on a chow diet or short-term WD exposure. In contrast to
endothelial cell density, there was a significant increase in GFAP+
reactive astrocytes in aged WD compared to aged chow mice
(Fig. 3A, B and D). Astrocyte reactivity was not quantified for young
chow or young WD mice as there were insufficient numbers of
GFAP+- cells in the cortex to produce meaningful results. There were
30% fewer PDGFRB-+ pericytes in the cortex of aged WD compared
to aged and young chow mice (Fig. 3E—H). Finally, there were both
age-dependent and diet-dependent decreases in laminin area and
evidence of extravascular fibrin deposits in the cortex of WD mice
compared to chow mice (Fig. 3I-M).

3.4. Cerebrovascular dysfunction precedes myelin loss in young
western diet—fed mice

We would predict that WD would first induce cerebrovascular
dysfunction and myeloid cell activation, which subsequently causes
white matter damage and cognitive decline. To test this, 2-month
B6 male mice were fed a WD for 6 weeks. Mice fed the WD for
this short time gained a significant amount of weight compared to
chow-fed controls (Fig. S3A). However, there was no evidence of
cognitive deficits in these mice (Fig. S3B—E). We next assessed ce-
rebrovascular, astrocyte, myeloid cell, and myelin changes in young
WD-fed mice. There was a significant increase in astrocytes in the
corpus callosum (Fig. S3F—H) that was accompanied by a decrease
in laminin (Fig. S3I-K). In addition, young WD-fed mice had
significantly more IBA1+ myeloid cells in FPC/CC and HP compared
to young chow-fed mice (Fig. S4A—F). Importantly, no significant
changes to the myelin or the number of OLIG2+ oligodendrocytes
were observed in the corpus callosum (Fig. S4G—I). Therefore, ce-
rebrovascular damage and increased myeloid cell numbers pre-
cedes myelin loss.

3.5. Obesity is associated with white matter integrity loss in older
adults

To further support our findings in mice and previous human
studies that had suggested white matter damage as a feature of
obesity (Kullmann et al, 2016; Stanek et al., 2011), DTI data
generated as part of the Alzheimer’s disease Neuroimaging Initia-
tive (ADNI) (Weiner et al., 2012) was assessed. DTI allows for the
study of the microstructural properties of the brain that includes
white matter tracts. Data were controlled for age, gender, diagnosis,
and history of hyperlipidemia, hypertension, or diabetes by

F =2.557 [DFn = 2, DFd = 7]). Conversely, there is significantly fewer axons with myelin that is 0.1-0.2 pm and >0.3 pm in aged WD mice compared to aged chow fed mice (FANOVA
p = 0.0208, F = 1.983 [DFn = 2, DFd = 8] and *ANOVA p = 0.049, F = 1.495 [DFn = 2, DFd = 8], respectively). (P) Distribution plots of axon diameter for myelinated axons of young
chow, aged chow, and aged WD. There are no significant differences in axon diameter comparing samples from young chow, aged chow, and aged WD mice. Scale bars: A—C,

100 um; D—E, 40 pm; G, H, J, K, 4 pm; I, L, 2 pm.
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Fig. 3. WD induces cerebrovascular dysfunction and astrocyte reactivity. (A—C) Aged WD mice showed a significant reduction in CD31 (an endothelial cell marker) compared to
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Aged WD mice showed significantly less laminin (LAM) compared to aged chow mice (n > 8, ****p < 0.0001). (L, inset) Representative image of a region showing fibrin deposited

outside the vessels in aged WD mice. Scale bars for all images: 40 um.

including these as covariates. Although multiple white matter tracts
have been suggested to be affected by obesity (Bolzenius et al.,
2015; Papageorgiou et al., 2017), we focused on the corpus cal-
losum as this was the region assessed in our mouse studies. Obese
individuals (defined as a BMI > 30; n = 54) showed significantly
reduced FA, a nonspecific measure of white matter integrity, in
widespread white matter regions relative to nonobese individuals
(defined as a BMI < 30; n = 202; Fig. 4A and B), including the corpus
callosum and anterior corona radiata. When evaluated on a regional
basis, the high BMI group mean FA was significantly reduced in the
corpus callosum in the full sample and in CN older adults only
(Fig. 4B; p < 0.05). Furthermore, MD, a measure of decreased axonal
membrane density, edema, and degeneration was significantly
increased in the right frontal lobe of obese individuals relative to
nonobese individuals (Fig. 4C and D). On regional analysis of the
corpus callosum, significant differences were observed in the CN-
only group, where obese individuals showed higher MD in the
corpus callosum than nonobese individuals (Fig. 4D, p < 0.05).
Finally, RD, a measure of demyelination, was significantly increased
in obese individuals relative to nonobese individuals in widespread
regions, including throughout the corpus callosum and frontal
white matter (Fig. 4E and F). On regional analysis of the corpus

callosum, RD was significantly higher in the obese individuals,
relative to the nonobese individuals in the CN-only analysis (Fig.4F,
p < 0.05). No differences in AD were observed in either the full
sample or CN-only group. These findings were independent of age,
gender, diagnostic group (CN, MCI, Alzheimer’s disease), and his-
tory of comorbidities (such as hypertension, hyperlipidemia, and
diabetes).

3.6. WD-fed mice show increased numbers of oligodendrocytes in
white matter tracts

Despite an overall reduction in MBP protein levels, disorganiza-
tion of myelin and decreased g-ratios in the FPC/CC of aged WD
compared to chow mice (Fig. 2), transcriptional profiling indicated
myelin-related genes were upregulated (Fig. 1). These include Mbp
(1.699), Otf2 (1.48), Plp (1.26), Mog (1.30), Mobp (1.58), Mag (1.52), and
Myrf (1.51) (Fig. 5A). Furthermore, using a riboprobe for the pro-
teolipoprotein (Plp) gene (expressed in mature, myelin producing
oligodendrocytes (Cai et al., 2010; Fumagalli et al., 2011)), a greater
number of Plp-expressing oligodendrocytes were observed in the HP,
FPC, and CC of aged WD-fed compared to aged chow-fed mice
(Fig. 5B—C). To quantify the numbers of oligodendrocytes and
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oligodendrocyte precursors, immunofluorescence using antibodies
against OLIG2 (all oligodendrocytes and precursors) and CC1 (mature
oligodendrocytes) was performed. There was a significant increase in
both the numbers of OLIG2+ cells (Fig. 5D—I and L) and CC1+ cells
(Fig. 5SH—K and M) in the corpus callosum of aged WD-fed compared
to chow-fed mice. In WD-fed mice, there were many more OLIG2+
cells (average = 99.8 cells/20x image) compared to CCl+ cells
(average of 19.5 cells/20x image) suggesting a significant proportion
of the OLIG2+ cells were immature oligodendrocytes.

3.7. WD-fed mice show increases in CD8-+IBA1+ myeloid cells

Gene profiling of the FPC/CC and the HP showed an increase in
myeloid cell genes Trem2 (1.68), Tyrobp (2.36), and the phagosome

marker Cd68 (1.68) in aged WD-fed compared to chow-fed mice
(Figs. 1 and 5A). To further characterize myeloid cells, IBA1+ cells
were assessed in the corpus callosum. As expected, given the in-
crease in IBA1+ cells in the short-term diet study (Fig. S4), there
was a significant increase in IBA1+ cells within the corpus callosum
of aged WD-fed compared to aged chow-fed mice (Fig. 6A—C).
Unlike chow-fed mice, most IBA1+ cells in the WD-fed mice also
expressed CD68, a commonly used marker of activated or phago-
cytic cells (Fig. 6A—B). Next, using three-dimensional re-

constructions of the confocal images using IMARIS software (see
Methods), MBP was localized next to and within IBA1 regions
(Fig. 6D—G). This close proximity of CD68+IBA1+ cells to myelin
tracts suggests the white matter damage may be a result of
phagocytosis of myelin by myeloid cells.
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Fig. 4. White matter integrity is decreased in obese individuals. Cognitively normal older adults (CN) and patients with mild cognitive impairment (MCI) and Alzheimer’s disease
(AD) who are obese (BMI > 30) showed reduced white matter integrity relative to nonobese (BMI < 30) individuals. (A and B) Reductions in fractional anisotropy (FA), a general
measure of white matter integrity, were observed in obese (n = 54) relative to nonobese (n = 202) individuals throughout the corpus callosum and frontal white matter. (B) On a
regional basis, mean FA in the corpus callosum was reduced in obese relative to nonobese individuals both in the full sample and in CN older adults only (n = 88, *p < 0.05). (C and
D) Increased mean diffusivity (MD), a reflection of increased white matter damage, was also observed in the frontal white matter in obese relative to nonobese individuals. (D)
Regional analysis shows a significant increase in MD in the corpus callosum only in CN individuals (*p < 0.05). (E and F) Increased radial diffusivity (RD), reflecting either
demyelination or axonal swelling, was also observed in obese relative to nonobese individuals in the corpus callosum and frontal white matter. (F) Upon regional analysis, mean
corpus callosum RD was increased in obese relative to nonobese individuals in the CN-only group (*p < 0.05).
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3.8. Exercise prevents western diet—induced cognitive deficits,
white matter damage, and cerebrovascular decline

Increased physical activity, such as running, has been shown to
have beneficial effects to multiple diet- and obesity-related outcomes
and comorbidities (Lavie et al., 2015; Ruegsegger et al., 2015; Williams
and Thompson, 2013), including frailty, anxiety and cognitive decline.
(Dishman et al., 2006; Lavie and Milani, 2004; Villareal et al., 2006).
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However, the impact of running on white matter damage has never
been tested. Therefore, mice were provided running wheels at
1 month and WD at 2 months (Fig. 1). Appropriate sedentary and
control chow-fed mice were also included. Although there was a
significant reduction in weight between running and sedentary WD-
fed mice, running WD-fed mice still showed a significant increase in
weight compared to either sedentary or running chow-fed mice
(Fig. 7A). This was independent of the distance run by either of the
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Fig. 5. WD-induced white matter damage is caused by unbalanced myelin turnover. (A) Gene expression analysis of the FPC/CC showed genes associated with phagocytosis (gray
bars), myelin maintenance, and oligodendrocytes (black bars) were upregulated in aged WD compared to aged chow mice. (B and C) By RNA in situ hybridization, expression of Plp, a
marker of mature oligodendrocytes, was greater in the cortex, corpus callosum, and hippocampus of aged WD compared to aged chow mice. (D and E) By immunofluorescence, aged
WD mice showed a significant increase in OLIG2+ oligodendrocytes in both the FPC and corpus callosum. (F and G) Higher resolution images of the areas from the inlays in E and F
showed OLIG2+ cells aligned in the corpus callosum of aged WD mice. (H and I) Higher resolution images of the areas from the inlays in E and F without myelin staining showed
OLIG2+ cells aligned in the corpus callosum of aged WD mice (arrows, OLIG2+ cells, white). (J and K) By immunofluorescence, aged WD mice showed a significant increase in CC1+
oligodendrocytes in the corpus callosum (arrows, CC1+ cells, green). (L) OLIG2+ cells are significantly increased in the corpus callosum in aged WD compared to aged chow mice
(n=28,***p <0.0001). (M) CC1+ cells are significantly increased in the corpus callosum in aged WD compared to aged chow mice (n = 6, **p < 0.01). Scale bars: D—E, 100 pm; F—K,

40 pm.
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Fig. 6. WD causes activation of phagocytosing myeloid cells. (A and B) A representative image of the corpus callosum from an aged WD mouse showing myelin (MBP), myeloid
cells (IBA1), and phagosome-containing myeloid cells (CD68). (C) There was a significant increase of IBA1+ cells in the corpus callosum of aged WD compared to aged chow
mice (n > 7, **p = 0.0012). (D) Myelin-myeloid cell interactions were also significantly increased in aged WD compared to aged chow mice (n > 5, **p = 0.0035). (E—-G) IMARIS
was used to identify myeloid cells that were actively phagocytosing myelin. The image shows activated myeloid cells interacting with myelin visualized with anti-MBP (E). F
and G are higher resolution images from the boxed region in E and show MBP (red) contacting myeloid cells (green). Labeling in purple shows the interactions between
CD68+IBA1+ cells. Arrows (F and G) show MBP inside the cell body of the myeloid cells.
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Fig. 7. Running prevents age- and WD-induced cognitive deficits. (A) Aged WD mice, irrespective of sedentary or running, demonstrated significant increases in body weights
related to aged state-matched controls (n > 8, sedentary chow vs. sedentary WD ****p < 0.0001, sedentary WD vs. running WD *p < 0.03). (B) Aged WD mice demonstrated wheel
running activity levels comparable to that of aged running chow mice with no significant differences between groups (n = 8, p = 0.375). (C) Activity levels in the open field as
measured by cumulative distance traveled revealed a significant reduction in aged sedentary WD mice relative to aged sedentary chow subjects. Activity levels were significantly
increased in aged running WD compared to aged sedentary WD mice. (D) Aged sedentary WD mice demonstrated significant increases in time spent at the margin of the open field,
relative to aged sedentary chow mice, indicative of an anxiogenic-like phenotype. Running produced a modest, nonsignificant attenuation in cumulative margin time comparing
aged running WD with aged sedentary WD mice (p = 0.1). (E—F) Young sedentary WD mice and young sedentary chow mice showed no significant impairment in % correct al-
ternations. However, aged sedentary WD mice showed a significant impairment in % correct alternation (E, n = 9 **p < 0.001, *p < 0.5), which was not due to reductions in total
activity as measured by total arm entries (F). Running significantly improved the WD induced deficit in % alternation in aged mice. (G) Short-term memory was intact in young
sedentary mice regardless of diet as indicated by a preference for novel versus familiar in a novel spatial recognition task. Aged sedentary mice failed to demonstrate a preference
for the novel arm indicative of impaired short-term memory while running prevented/protected short-term memory as both aged chow and WD mice with access to a running
wheel demonstrated the expected preference for the novel versus familiar arm.
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groups (Fig. 7B) suggesting the benefits of exercise on the aging brain
of obese mice are not solely due to weight loss.

First, to determine the effects of WD with and without voluntary
running on cognitive ability and related behaviors, WD-fed and
chow-fed mice were assessed through a battery of behavioral tests
(Fig. 7C—G). Open field activity in WD mice in the absence of a
running wheel revealed significant reductions in exploration time as
measured by cumulative distance traveled over a 60-minute period,
relative to sedentary mice on control chow. In the presence of a
running wheel, exploratory activity levels were restored in WD mice
relative to sedentary WD mice and interestingly to a level of activity
demonstrated in chow-fed mice (Fig. 7C). Thigmotaxis behavior in
the open field, as measured by time spent at the margin of the arena
and indicative of an anxiogenic-like phenotype, was significantly
increased in sedentary WD mice relative to sedentary chow mice
(Fig. 7D). Access to a running wheel did not significantly reduce
thigmotaxis behavior although there was a modest reduction in
running WD mice relative to sedentary WD mice (p = 0.1) (Fig. 7D).

Hippocampal working memory as assessed in the spontaneous
alternation task revealed no significant differences in young mice
irrespective of diet (Fig. 7E). In aged mice, however, WD con-
sumption resulted in a significant reduction in % alternations
indicative of impaired spatial working memory, relative to age-
matched chow mice. Spatial working memory was restored in
aged WD mice with access to a running wheel (Fig. 7E). Impor-
tantly, there were no significant differences in motor activity as
measured by total arm entries (Fig. 7F). In the novel spatial recog-
nition task, intact short-term memory is indicated by a preference
for spending a greater % of time in the novel arm versus the familiar
arm. Young sedentary mice regardless of diet demonstrated the
expected preference for the novel arm versus the familiar arm
(Fig. 7G). However, sedentary aged mice (irrespective of diet) did
not demonstrate a preference for the novel arm versus the familiar
arm indicative of impaired short-term memory. Both running aged
WD and running aged chow mice demonstrated intact short-term
memory as measured by a preference for the novel versus the
familiar arm of the maze (Fig. 7G).

Next, the effects of running on WD-induced cerebrovascular
dysfunction, myelin loss, and myeloid cell numbers were assessed in
the FPC/CC region. Running prevented WD-induced cerebrovascular
changes including the reduction in endothelial cell and pericyte
numbers (Fig. 8A—B) as well as the increase in reactive astrocytes
(Fig. 8C). Running aged WD mice also showed significantly fewer
microglia compared to young chow sedentary control and trended
lower when compared to aged sedentary WD mice (Fig. 8D). IMARIS
was then used to quantify the effects of running on WD-induced
myelin loss and myeloid cell numbers (Fig. 8E—L). Although not sig-
nificant, myelin levels were generally increased in running aged WD
compared to sedentary aged WD mice (Fig. 8I). This may suggest some
mouse-to-mouse variability in the effect of running on WD-induced
white matter damage and may be as a result of individual differ-
ences in diet consumption or running distances. However, running
prevented the increase in IBA1+ cells in the corpus callosum (Fig. 8])
and the levels of MBP-IBA1 interactions seen in sedentary WD-fed
compared to chow-fed mice (Fig. 8K). There was a significant in-
crease in CD68+ surfaces in WD-fed compared to chow-fed mice that
was prevented by running (Fig. 8L). These data support the model that
white matter damage in WD-fed mice may be due in part to the in-
crease in numbers of CD68+IBA1+ phagocytosing myeloid cells.

4. Discussion
The long-term effects of a WD and sedentary lifestyle are of

great interest to better understand the environmental risk factors
for age-related cognitive decline, dementias, and other

neurodegenerative diseases. It is known that diet, obesity, and
physical inactivity can have direct effects on the structure and
function of the brain (Gray et al., 2006; Medic et al., 2016; Tucsek
et al., 2014; Veit et al.,, 2014) but the precise mechanisms have
not previously been determined. To study this, we used a mouse
model of WD-induced obesity to elucidate the damaging effects of
WD-induced neuroinflammation and cerebrovascular damage on
white matter in the FPC, corpus callosum, and HP. White matter
density via magnetic resonance imaging has been correlated to
cognitive function (Turken et al., 2008), suggesting that the white
matter damage we observed may contribute to the cognitive
decline. Structural changes to white matter have been associated
with obesity and the aging brain (Feldman and Peters, 1998;
Kullmann et al., 2015; Peters, 2009). We also further corroborated
the importance of these findings to obesity in the human popula-
tion. Based on DTI data from the ADNI cohorts (Petersen et al.,
2010), high BMI (>30) correlated strongly with a general break-
down of white matter integrity and changes in radial diffusivity in
the corpus callosum suggesting demyelination or axonal swelling.
Previous studies correlated high BMI with lower gray matter vol-
ume and changes to white matter density in humans (Kalaria, 2010;
Kullmann et al., 2015, 2016; Medic et al., 2016; Stanek et al., 2011;
Veit et al., 2014), but this is the first time the ADNI cohort has
been analyzed in this manner. In both the mouse and human
studies, we chose to focus on the corpus callosum as this was the
white matter tract that was profiled by RNA-seq in the mouse and
showed the greatest differences in MBP protein levels assessed by
immunofluorescence. However, obesity and high BMI have also
been shown to affect other white matter tracts including the
anterior and posterior thalamic radiation, the uncinate fasciculus,
the internal capsule and the cingulum (Bolzenius et al., 2015;
Papageorgiou et al., 2017). It is still to be determined whether the
WD mice and the ADNI cohorts also show similar white matter
changes in other brain regions.

Our data support a model in which white matter damage is due
to changes in cells necessary for myelin turnover—a process that
occurs throughout adulthood to prevent neuronal functional
decline. The production of myelin by oligodendrocytes and the
removal of myelin fragments by phagocytosing myeloid cells are
required to maintain healthy myelinated axons throughout aging
and adulthood (Lasiene et al., 2009). However, previous studies
have shown that myelin turnover is impacted by the aging process.
Human studies estimate length of total myelinated axons is reduced
by 27%—45% depending on brain region in old age (Pakkenberg
et al., 2003; Peters and Sethares, 2002; Tang et al., 1997). These
reductions are known to cause cognitive decline in rodents and
primates (Feldman and Peters, 1998; Peters et al., 1996; Rivera et al.,
2016; Zhan et al., 2014). Furthermore, myelin fragments accumulate
throughout aging and the number of myeloid cells interacting with
myelin increases (Poliani et al., 2015; Safaiyan et al., 2016). With
increasing age, the levels of myelin debris and the number of myelin
defects (including ballooning and loosely packed myelin) increase
(Feldman and Peters, 1998). Collectively, our data suggest that the
WD turns a homeostatic function of myeloid cells into a damaging
one, promoting excessive and premature myelin loss leading to
cognitive decline before old age.

Myelin-related genes have been previously shown to be differ-
entially expressed in the spinal cord of mice in response to a high-
fat diet (Yoon et al., 2016). In this study by Yoon and colleagues, they
show that short-term exposure to a high-fat diet led to a loss of
myelin-forming cells and an exercise regime prevented this loss
and promoted myelinogenesis. This study contrasts with our find-
ings that show that myelin genes are increased in the corpus cal-
losum in WD-fed mice but there is an overall loss of myelin.
Exercise prevents the myelin loss. A number of factors could
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Fig. 8. Running prevents WD-induced cerebrovascular damage and increases in phagocytosing myeloid cells. (A—D) Running prevented WD-induced endothelial cell loss (A, n > 11,
chow run vs. sedentary WD *p = 0.049, sedentary WD vs. running WD *p = 0.040) and the associated decrease in the number of PDGFRB+ pericytes covering the blood vessels (B, n
> 11, sedentary chow vs. sedentary WD **p = 0.005, running chow vs. sedentary WD ***p = 0.0007, sedentary WD vs. running WD *p = 0.02). Running also prevented the increase in
GFAP-+ astrocytes surrounding blood vessels (C, n > 9, sedentary chow vs. sedentary WD *p = 0.011, running chow vs. sedentary WD *p = 0.047, sedentary WD vs. running WD *p =
0.018) and the increase in IBA1+ myeloid cells (D, n > 9, running chow vs. sedentary WD *p = 0.026). (E—H) Representative 3D reconstructions of the corpus callosum using IMARIS
software of chow sedentary (E), chow run (F), WD sedentary (G), and WD run (H). Images show myelin (MBP, red), DAPI (blue), myeloid cells (IBA1, green), and CD68 (white) to
identify phagocytosing myeloid cells. (I-L) Aged running WD mice tended to have more myelin surfaces than aged sedentary WD mice (I). However, in the corpus callosum, running
prevented the WD-dependent increase in IBA1+ myeloid cells (J, sedentary chow vs. sedentary WD ***p = 0.0002, running chow vs. sedentary WD ****p < 0.0001, sedentary WD vs.
running WD **p = 0.001), the increase in myelin-myeloid cell interactions (K, sedentary chow vs. sedentary WD ***p = 0.0002, running chow vs. sedentary WD ****p < 0.0001,
sedentary WD vs. running WD ***p = 0.0003), and the increase in CD68-+ surfaces (L, sedentary chow vs. sedentary WD **p = 0.01, running chow vs. sedentary WD *p = 0.011,

sedentary WD vs. running WD **p = 0.006). Scale bar for all images 40 pm.

account for the differences between the 2 studies. Yoon and col-
leagues used a high-fat diet, whereas ours combines a number of
additional features of a westernized diet (Fig. 1; Graham et al,,
2016). The previous study also did not assess the effect of a high-
fat diet on myeloid cells. Furthermore, the different CNS regions
studied (spinal cord compared to brain) may have different re-
quirements or responses to western or high-fat diets.

Given the possible imbalance in myelin turnover, 2 cell types
known to be involved in this process, oligodendrocytes (and pre-
cursors) and myeloid cells, were assessed. First, transcriptional
profiling showed an upregulation of DE genes associated with myelin
maintenance by oligodendrocytes, including Mbp, Mag, and Plp,
despite our data showing an overall loss of the myelin protein MBP.
We also observed an increase in the number of Plp-expressing and
CC1+ oligodendrocytes in WD-fed mice. The increase in myelin-
related genes could be a survival response as oligodendrocyte
morphology looks similar between control chow- and WD-fed mice
via electron microscopy. In WD-fed mice, despite the myelin
appearing ballooned and loosely packed, OLIG2+ oligodendrocytes
were aligned within the white matter tracts, suggesting differenti-
ation of oligodendrocytes (Lee et al., 2013; Meyer-Franke et al., 1999;
Prayoonwiwat and Rodriguez, 1993). Therefore, based on our data,
we propose that the remyelination portion of myelin turnover may

still be functioning in WD-fed mice. Second, we tested removal of
myelin by myeloid cells. Genes relevant to inflammatory pathways
and phagocytosis, including Cd68, Trem2, and many complement
genes were upregulated in both the FPC/corpus callosum and HP of
WD fed mice compared to control chow. Previous studies have
shown that complement components are necessary for myelin
phagocytosis (Brosnan et al, 2013; Domingues et al, 2016;
Rutkowski et al., 2010). In addition, in areas of white matter (e.g.,
corpus callosum), activated, phagocytosing cells pervade these re-
gions and phagocytose myelin ensheathments. In our study, there
was a significant increase in interactions between IBA1 (myeloid cell
marker) and MBP (myelin protein) “surfaces” (Figs. 6, 8). This analysis
included areas where MBP was localized within IBA1 surfaces
(indicative of myelin phagocytosis) although MBP inside IBA1 sur-
faces was not calculated specifically. Further supporting myelin
phagocytosis by myeloid cells, many of the IBA1+ cells were also
positive for CD68, a commonly used marker of the phagosome. More
work is required to determine the precise mechanism(s) by which
myelin changes occur in WD-fed mice. However, the increase in
genes in the complement cascade in the FPC/CC comparisons (Fig. 1),
and previous studies showing the complement cascade is necessary
for phagocytosis of synapses, suggest similar mechanisms may be
causing phagocytosis of myelin by myeloid cells in obesity.
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Young mice fed the WD for only 6 weeks showed cerebrovas-
cular damage and an increase in IBA1+ cells but no evidence of
myelin loss. White matter hyperintensities have been identified in
areas of astrocyte reactivity and vascular compromise in dementia
patients (Fellgiebel et al., 2004; Kalaria, 2010; Zhan et al., 2014).
White matter hyperintensities have also been shown in patients
with cardiovascular and cerebral small vessel disease (de Leeuw
et al., 2001; van Norden et al., 2011). We, and others, have shown
previously that astrocyte reactivity occurs in aging and correlates
with NVU decline (Montagne et al., 2015; Soto et al., 2015; Zhao
et al., 2015) and age-related astrocyte reactivity is exacerbated by
the WD (Graham et al., 2016). NVU breakdown and cerebral small
vessel disease are known to increase damaging neuroinflammatory
responses by macrophages and astrocytes (Del Zoppo, 2009;
Fornage et al., 2008; Rouhl et al., 2012; Soto et al., 2015; Yang and
Rosenberg, 2011). Given that astrocyte reactivity could directly
impact myelin turnover independent of myeloid cell activity
(Markoullis et al., 2014; Sharma et al., 2010) and may cause a
breakdown in astrocyte-pericyte or astrocyte-endothelial cell in-
teractions leading to cerebrovascular damage (Abbott, 2002; Zhao
et al., 2015) targeting astrocyte responses to obesity could provide
valuable insights to prevent cerebrovascular and white matter
damage and cognitive decline.

The effects of a WD and/or obesity in the context of cognitive
aging require more investigation. Midlife obesity has been impli-
cated in increasing risk for age-related cognitive decline and age-
related neurodegenerative diseases including many dementias.
Many of the changes in the brain that we observed in response to
the WD at 12 months (neurovascular changes, increase in astrocyte
reactivity, increase in IBA1+ cells) have also been shown at older
ages. For instance, we have shown that NVU decline (e.g., loss of
pericytes, loss of basement membrane proteins) was apparent in
18—22 months B6 mice fed a normal chow (Soto et al., 2015). These
changes correlated with higher numbers of IBA1+ cells suggesting a
link between neuroinflammation and neurovascular damage.
White matter damage was not assessed in our previous aging study
(Soto et al., 2015), and so, a detailed assessment of white matter
changes during aging in humans and animal models is still needed.
The question remains whether diet/obesity primarily accelerates
the aging process or modifies it in synergistic ways. To determine
this, more precise assessments of the different cell types in both
aging and obesity are required. Data from this study, our (Graham
et al., 2016; Soto et al., 2015) and other previous studies (Hong
et al., 2016; Shi et al.,, 2017; Stephan et al., 2013) predict that
myeloid cells play an important role in brain health during aging,
obesity, and neurodegenerative diseases (reviewed in the study by
Newcombe et al., 2018). Myeloid cells include resident microglia,
infiltrating monocytes, and macrophages. Recent studies are now
identifying subpopulations of resident microglia by single-cell RNA
sequencing that change with age (Hammond et al., 2019). Inter-
estingly, 1 study identified a specific population of myeloid cells
expressing Gpnmb and Clec7a that they termed white matter
associated microglia (Li et al., 2018). They align with oligodendro-
cytes during development and brain maturation but aging tissue
was not assessed. Similar single-cell profiling approaches can be
used to determine how populations of myeloid cells change with
diet. Our assessment of myelin phagocytosis by myeloid cells is
similar to previous studies that show phagocytosis of synapses by
myeloid cells in aging and in neurodegenerative diseases such as
Alzheimer’s disease. This process is mediated by multiple pathways
including the complement cascade. For instance, deletion of Clqa
and C3, key components of the complement cascade improve
cognitive aging and prevent synapse loss in mouse models of Alz-
heimer’s disease (Hong et al., 2016; Shi et al., 2017; Stephan et al.,
2013). In our transcriptional profiling data, we observed a

significant enrichment of genes in the complement cascade in both
the HP and FPC/CC comparing aged WD to young chow mice. These
data suggest that activation of the complement cascade during
aging is exacerbated by chronic consumption of a WD. To date, the
role of the complement cascade in diet-induced white matter
damage or in diet-induced and age-related neurovascular decline
has not been assessed.

Our study showed that exercise, independent of total weight
loss, prevented many of the damaging effects of a WD. Voluntary
running was able to prevent WD-induced memory deficits
measured in 2 separate assays. However, future studies evaluating
learning and longer-term memory will be required as the current
set of short-term memory tests did not have the sophistication
beyond evaluating intact versus impaired short-term memory.
Prevention of short-term memory deficits by running correlated
with a preservation of white matter damage and neuro-
inflammation in WD mice. For instance, running prevented the
increase in interactions between MBP and IBA1, and the increase in
CD68+ cells that were observed after chronic consumption of a WD
(Fig. 8). This supports our model that the white matter damage due
to excess phagocytosis of myelin by myeloid cells is prevented by
running. The precise mechanisms by which exercise prevents diet-
induced damage are not clear. However, it is likely that exercise acts
in multiple ways to counter the damaging effects of a WD and
midlife obesity. A recent study showed that exercise moderates
high-fat diet—induced oligodendrocyte death that is seen in adult
spinal cord. Previous studies from our laboratory and others have
documented the benefits of exercise on age-dependent NVU
decline, neurogenesis, cerebral blood flow, and cognition (Gibbons
et al., 2014; Nokia et al., 2016; Soto et al., 2015). Cardiovascular risks
associated with obesity are significantly reduced in response to
exercise. Exercise has also been shown to improve blood flow and
angiogenesis in the brain as well as reducing systemic inflamma-
tion (Bolduc et al., 2013; Lavie et al., 2011; Swain et al., 2003).
Studies have also demonstrated that exercise upregulates neuro-
trophic factors, such as BDNF, in activity-sensing neurons (Alomari
et al,, 2013; Vaynman et al., 2004). It is likely that exercise protects
the brain through a myriad of factors. Identifying these factors that
modify neuroinflammation and prevent neurovascular decline and
white matter damage may lead to new combinatorial treatments
that protect the brain from the damaging effects of chronic con-
sumption of a WD.
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