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Abstract 13 

In crowding, perception of an object deteriorates in the presence of nearby elements. Although 14 

crowding is a ubiquitous phenomenon, since elements are rarely seen in isolation, to date there 15 

exists no consensus on how to model it. Previous experiments showed that the global 16 

configuration of the entire stimulus must be taken into account. These findings rule out simple 17 

pooling or substitution models and favor models sensitive to global spatial aspects. In order to 18 

investigate how to incorporate global aspects into models, we tested a large number of models 19 

with a database of forty stimuli tailored for the global aspects of crowding. Our results show that 20 

incorporating grouping like components strongly improves model performance.  21 
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Author Summary 22 

Visual crowding highlights interactions between elements in the visual field. For example, an 23 

object is more difficult to recognize if it is presented in clutter. Crowding is one of the most 24 

fundamental aspects of vision, playing crucial roles in object recognition, reading and visual 25 

perception in general, and is therefore an essential tool to understand how the visual system 26 

encodes information based on its retinal input. Classic models of crowding have focused only on 27 

local interactions between neighboring visual elements. However, abundant experimental 28 

evidence argues against local processing, suggesting that the global configuration of visual 29 

elements strongly modulates crowding. Here, we tested all available models of crowding that are 30 

able to capture global processing across the entire visual field. We tested 12 models including the 31 

Texture Tiling Model, a Deep Convolutional Neural Network and the LAMINART neural network 32 

with large scale computer simulations. We found that models incorporating a grouping 33 

component are best suited to explain the data. Our results suggest that in order to understand 34 

vision in general, mid-level, contextual processing is inevitable. 35 

Introduction 36 

When an element is presented in the presence of nearby elements or clutter, it becomes harder 37 

to perceive, a well-known effect called crowding. One of the main characteristics of crowding is 38 

that the element itself is not invisible, contrary to contrast- and backward-masking; rather its 39 

features appear jumbled and distorted (figure 1). Crowding is a ubiquitous phenomenon because 40 
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elements are rarely encountered in isolation in everyday situations (figure 1c). Thus, 41 

understanding crowding is crucial for understanding vision in general.  42 

For about half a century, the consensus was that flankers interfere with a target element only 43 

when placed within a spatially restricted window around the target, the so-called Bouma law 44 

(figure 1b; [1–4]):  45 

Size of Bouma’s window ≈ 0.5*eccentricity  46 

Classic models of crowding proposed that early visual areas, such as V1, process the features of 47 

stimuli with high precision. Crowding occurs when neural signals are pooled along the visual 48 

hierarchy, e.g., when V2 neurons pool neural signals from V1 neurons [5]. Hence, in line with 49 

classic hierarchical feedforward processing (figure 2a), crowding may be seen as a natural 50 

consequence of object recognition in the visual system. For example, a hypothetical neuron coding 51 

for a square might respond to signals from neurons coding for the lines making up the square. In 52 

order to achieve translational invariance, the square neuron is sensitive to lines all over its 53 

receptive field and pools this information in order to decide whether a square is present. According 54 

to this logic, crowding occurs when elements that do not belong to the same object are pooled. In 55 

this sense, crowding is an unwanted by-product of object recognition and, for this reason, a 56 

bottleneck of vision (for a reviews, see [2,6]). Other models have proposed that performance in 57 

crowding deteriorates because features of the target are substituted for features of the flanking 58 

elements [4,7]. As mentioned, all these models are local in the sense that crowding is determined 59 

by nearby elements only. Based on these two lines of thought, pooling and substitution, 60 
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researchers have suggested that with more flankers performance deteriorates because more 61 

irrelevant features are pooled or substituted.    62 

 63 

 64 

PLEASE INSERT FIGURE 1 AROUND HERE 65 

Figure 1: Crowding. a. In crowding, the perception of a target element deteriorates in the presence of 66 

nearby elements. When fixating the left cross, the target letter V on the right is hard to identify because of 67 

the nearby flankers. b. The task is easier than in (a), because the flankers are further away from the target 68 

letter V. Bouma’s law states that crowding occurs only when flankers are sufficiently close to the target, 69 

within the so-called Bouma’s window. c. Crowding is a ubiquitous phenomenon since elements are rarely 70 

seen in isolation. For example, when fixating the central red dot, the child on the left is easier to detect 71 

because it is not surrounded by nearby flankers, as is the child on the right.  72 

 73 

The understanding of crowding has largely changed in the last decade. For example, it has been 74 

shown that detailed information can survive crowding [8,9]. Crowding occurs in the fovea and is 75 

not restricted to the periphery, contrary to earlier proposals [10,11]. Most importantly for the 76 

present discussion, performance depends on elements far outside of Bouma’s window. For 77 

example, in supercrowding, elements outside of Bouma’s window decrease performance beyond 78 

the decrement arising from elements within the window [12]. Surprisingly, adding flankers can 79 

even reduce crowding, and such uncrowding effects can depend on elements outside of Bouma’s 80 

window (figure 2; [10,13–17], review: [18]). For example, observers performed a vernier 81 
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discrimination task. When a surrounding square was added to the vernier, the task became much 82 

more difficult: a classic crowding effect. However, adding more flanking squares improved 83 

performance gradually, i.e., performance improved the more squares were presented ([19]; figure 84 

2b). The entire line of squares extends over 17 degrees in the right visual field, while the single 85 

vernier offset threshold is less than 200’’ (figure 2d). Hence, performance is not exclusively 86 

determined by local interactions: fine-grained vernier acuity in the range of about 200’’ depends 87 

on elements as far away as 8.5 degrees - a ratio of two orders of magnitude, extending far beyond 88 

Bouma’s window. Moreover, performance depends on the overall configuration [20]. For example, 89 

in three-by-seven displays of squares and stars (figure 2c), a shift of the central row changes 90 

performance strongly (figure 2c, 4th and 5th configurations). Similar effects were found with stimuli 91 

other than verniers [21,22], as well as in auditory [23] and haptic crowding [24].  92 

  93 

PLEASE INSERT FIGURE 2 AROUND HERE 94 

Figure 2: a. Standard view of visual processing. First, edges are detected by low-level neurons with small 95 

receptive fields. Higher level neurons pool signals from lower level neurons in a hierarchical, feedforward 96 

manner, creating higher level representations of objects by combining low-level features [25,26]. For 97 

example, two low-level edge detectors may be combined to create a “corner” representation. Four such 98 

corner detectors can be assembled to create a rectangle representation. Receptive field size naturally 99 

increases along this pathway since, for example, a rectangle covers larger parts of the visual field than the 100 

lines making up the rectangle. b. Uncrowding. Observers performed a vernier discrimination task. The y-101 

axis shows the threshold for which observers correctly discriminate the vernier offset in 75% of trials (so 102 
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performance is good when the threshold is low). First, only a vernier is presented, an easy task 103 

(performance for this condition is shown as the dashed horizontal line). Then, a flanking square is added 104 

making the task much more difficult (leftmost stimulus). This is a classic crowding effect. Importantly, 105 

adding more flanking squares improved performance gradually, i.e., performance improved the more 106 

squares are presented [19]. We call this effect uncrowding.  c. The global configuration of the entire 107 

stimulus determines crowding. Performance is strongly affected by elements far away from the target as 108 

shown in these examples [15]. d. Performance is not determined by local interactions only. In this display, 109 

fine-grained vernier acuity of about 200’’ depends on elements as far away as 8.5 degrees - a difference of 110 

two orders of magnitude, extending far beyond Bouma’s window. 111 

 112 

Because they cannot produce long-range effects, local models cannot explain the global aspects 113 

of crowding. Here, we tested which global models, integrating information across large parts of 114 

the visual field, can explain global effects on crowding (see figure 3 for a list). We also tested the 115 

most prominent local models to verify our hypothesis that local models are inadequate to explain 116 

global aspects of crowding. 117 

The models that we tested differ with respect to four criteria:  118 

Spatial extent: Local vs. Global. In a local model, elements far from the target do not exert any 119 

effects on the target. By contrast, in a global model, any element in the visual field may potentially 120 

interfere with target processing. 121 

Mechanism of interference: Pooling, substitution, or other? 122 
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Organisation: Feed-forward (features at a given level are only affected by lower level features) vs. 123 

recurrent processing (features at a given level can be affected by lower or higher level features). 124 

Grouping component: Does the model incorporate a grouping component? Certain models 125 

explicitly compute grouping-like aspects by determining which low-level elements should belong 126 

to the same higher level group. Only elements within a group interfere with each other.   127 

 128 

PLEASE INSERT FIGURE 3 AROUND HERE  129 

Figure 3: Tested models and their characteristics. Models may integrate information locally or globally, and 130 

the interference mechanism may be pooling, substitution, or other. Models are feed-forward or recurrent, 131 

and may or may not compute grouping-like aspects of the stimulus.  The aim of the current work is to 132 

investigate which models can explain the global effects of crowding. 133 

 134 

Methods 135 

To test the models, we used human data from previous work exploring the crowding/uncrowding 136 

phenomena [10,11,15,17,19,20]. The stimulus database comprises 40 different stimuli belonging to 137 

11 different categories: circles, Gestalts, hexagons, irregular1, irregular2, lines, octagons, 138 

patternIrregular, patternStars, squares and stars. An example of each category is shown in figure 139 

4. Behavioral results can be found in the original papers (listed in figure 14a). In each category, we 140 

have the vernier target alone, plus crowding and uncrowding configurations. All the stimuli are 141 

shown in figure 14a and behavioural results can be found in the original papers. With a few 142 
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exceptions (see details in the results section), we ran each model on all stimuli. For some models, 143 

we could not use the entire database because computation time was too long (deep convolutional 144 

networks, LAMINART, Texture Tiling Model), or because the model was not adapted to 145 

accommodate certain kinds of stimuli (Population Coding). Human and model results are 146 

summarized in the discussion (figure 14). All the code we used is available online at 147 

https://github.com/adriendoerig/beyond-boumas-window-code  (except the Texture Tiling 148 

Model, which Rosenholtz and colleagues will share in a forthcoming publication). All the results 149 

can be found at https://github.com/adriendoerig/beyond-boumas-window-results. 150 

There are two fundamentally different approaches to measure model performance. First, a linking 151 

hypothesis may be used to relate model output to performance (both are scalar numbers). For 152 

example, template matching computes how similar the model output is to the target image. If they 153 

are similar, performance is good. The second, textural approach is used to quantify performance 154 

in textural models. The idea is that peripheral vision is ambiguous because information is 155 

compressed by summary statistics. If a model uses a proper algorithm for representing these 156 

ambiguities, presenting the processed image in the fovea should lead to similar human 157 

performance as presenting the original unprocessed image in the periphery [27]. Accordingly, to 158 

measure the performance of textural algorithms, the stimuli are fed through a texture synthesis 159 

procedure. Then, observers freely examine the output image and report vernier orientation. If this 160 

task is easy, performance is good. For each model, we used the linking hypothesis proposed by 161 

the original authors when available. When this was not possible (for example for Alexnet, which 162 

has never been applied to crowding results before), we detail which linking hypothesis we used in 163 

https://github.com/adriendoerig/beyond-boumas-window-code
https://github.com/adriendoerig/beyond-boumas-window-results
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the corresponding section. In the following, we present, first, textural models and, second, models 164 

using a linking hypothesis. 165 

An important point is that different readouts lead to different results. Hence, the different 166 

methods of model evaluation used here could affect our results. However, we are mainly 167 

interested in qualitative rather than quantitative comparisons and the readout functions we used 168 

cannot confuse crowding and uncrowding. More specifically, the readout processes we use 169 

produce results monotonically linked to the model outputs. Hence, they cannot confuse 170 

uncrowding cases (a U-shape function where the vernier alone condition leads to good 171 

performance, a single flanker deteriorates performance, and multiple flankers lead again to good 172 

performance) with cases that do not show uncrowding (a monotonic function where the vernier 173 

alone condition leads to good performance, a single flanker deteriorates performance, and 174 

multiple flankers deteriorate performance even more). 175 

Because different models were evaluated differently, it was impossible to come up with one 176 

performance measure and to compare models via something like the Akaike Information Criterion. 177 

However, despite this variety of performance measures, our results are qualitatively 178 

unambiguous: each model either is capable of producing uncrowding, or it is not. We took the 179 

parameters directly from the original models whenever possible. Otherwise, we tried our best to 180 

search the parameter space (see results). We cannot exclude that other combinations of 181 

parameters fit the dataset better. However, we will argue that the models that cannot produce 182 

uncrowding fail to do so for principled reasons, and not because of poor parameter choices (see 183 

discussion). 184 
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 PLEASE INSERT FIGURE 4 AROUND HERE 185 

Figure 4: Stimulus categories. We used 40 different stimuli from 11 different categories. The task was 186 

always to report the offset direction of the central vernier. This figure shows one example from each 187 

category. The stimulus database is tailored to test for global effects such as uncrowding. Human data was 188 

taken from previous work [10,11,15,17,19,20]. Human and model results are summarized in the discussion 189 

(figure 14 shows the results for all stimuli and models). 190 

  191 
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Results 192 

Texture-like models: 193 

The following models are based on texture analysis. The outputs are images, and the texture 194 

method is applied as described in the methods.  195 

 196 

Epitomes 197 

In the Epitomes model, described by Jojic et al. [28], large repeating patterns are summarized by 198 

small repeated representative image patches. Repeated patterns are substituted with their 199 

exemplars. The original image can subsequently be retrieved with good accuracy from the 200 

compressed representation, even though neighboring features encoded in the same patch are 201 

mingled. Epitomes are effectively a “substitution” model that exploits regularities. Although this 202 

model was not proposed as a model of crowding, it embodies many of the key characteristics of 203 

local pooling and substitution models.  204 

Using the Jojic et al.’s code available online 205 

(http://www.vincentcheung.ca/research/sourcecode.html) we ran the model on all stimuli with 206 

the original parameters (designed to optimize image reconstruction accuracy for natural images 207 

and texture overlays). To evaluate performance, we used the texture evaluation method with the 208 

authors as subjects, analysing the results qualitatively (see methods). In addition, we computed 209 

the model threshold as 210 

http://www.vincentcheung.ca/research/sourcecode.html
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 211 

where leftStim(x,y) is the normalized intensity of pixel (x,y) in the left vernier offset version of the 212 

output. Effectively, this equation quantifies how different the normalized output images are for 213 

the left and the right vernier offset versions of the stimulus. If they are very different, the task is 214 

easy. Consistently across the dataset, the model successfully produces crowding but not 215 

uncrowding: performance was always worse when adding more flankers (figure 5). We suggest 216 

that the model cannot explain uncrowding because it compresses information from local regions 217 

of the image, ignoring global structure. 218 

 219 

PLEASE INSERT FIGURE 5 AROUND HERE 220 

Figure 5: Epitomes. a. Illustration of the epitome model. An image (left) is compressed into an epitome 221 

(center), a summary of local features. The image on the right is reconstructed from the epitome. b. As an 222 

example for the classic texture evaluation, we show the stimulus and reconstructed image for the 1- and 223 

7-square conditions. Human vernier offset thresholds are better for the 1-square than the 7-square 224 

condition. The model does not produce uncrowding because vernier offset direction in the output is not 225 

easier to make out in the 7-square than in the 1-square case (according to the authors’ judgment). c. 226 

Example for our performance measure. Human and model thresholds (see main text for how model 227 

threshold was computed) for vernier alone (condition 1), single square (condition 2) and 7 squares 228 

(condition 3). The 7-square threshold is higher than the 1- square threshold, in contrast with human 229 

performance. Note: the model outputs a number quantifying how different the left and right vernier offset 230 

versions of the input are (so the higher this difference, the better the performance). To make comparison 231 



 
 

13 
 
 

with the human threshold easier, we applied the following monotonic transformation to the output: 232 

“threshold-like output” = 1/“raw output”. Then, we scaled the result to be in the same range as the human 233 

results. This monotonic re-scaling cannot not change the conclusions because monotonic outputs are 234 

mapped on monotonic performance and the same is true for U-shaped functions (see methods). 235 

 236 

Single Texture Model 237 

Portilla & Simoncelli [29] proposed a set of statistics capable of capturing key aspects of texture 238 

appearance to human vision (figure 6a). Balas et al., [27] suggested an explanation of crowding in 239 

which peripheral vision might measure these texture statistics in pooling regions that overlap and 240 

tile the visual field. The intuition is that summary statistics provide an efficient way of extracting 241 

relevant information at low computational cost from natural images. Though Balas et al. proposed 242 

a model covering the entire visual field as described in the next subsection, they initially tested 243 

the predictions of a single pooling region, since texture synthesis procedures did not exist for 244 

multiple overlapping pooling regions. Each of their stimuli fell within a single Bouma-sized patch. 245 

They have since suggested that this shortcut of using a single pooling region, which greatly reduces 246 

computation time, can often suffice for texture-like stimuli that fall within a single pooling region 247 

[30]. 248 

Although the model was intended by Balas et al. to be applied only over a Bouma’s window-sized 249 

patch, here we applied it to the entire stimulus to see if this kind of texture synthesis could capture 250 

long-range interactions between the vernier and other elements. The texture statistics are 251 

computed from pixel intensities taken from the entire image. Using the code provided online by 252 
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Portilla & Simoncelli (https://github.com/LabForComputationalVision/textureSynth), we created 253 

textures from all of our stimuli and the authors analyzed the results qualitatively using the texture 254 

measure (see figure 6c for two examples). The model produces strong crowding: vernier offsets 255 

are harder to discriminate from the textures when flankers are present. However, the model 256 

cannot explain uncrowding: consistently across our whole dataset, uncrowded conditions are 257 

worse than crowded conditions for this model (figure 6c). More elements always deteriorate 258 

performance. In their original contribution, Balas et al. seeded the texture synthesis algorithm 259 

using a low-pass, noisy version of the stimulus to reduce position noise. We also ran our stimuli 260 

using this method (see results repository online). While the output images became less distorted 261 

than without using the seed, it did not change the conclusion, because the target vernier remained 262 

much harder to detect in the textures synthesized from the uncrowded 7 flankers stimuli than 263 

from the crowded single flanker stimuli – i.e., there was no uncrowding. 264 

 265 

Texture Tiling Model (TTM) 266 

The TTM model was first described by Balas et al. [27], with its first full instantiation developed by 267 

Freeman & Simoncelli [31]. It computes summary statistics for overlapping local patches of the 268 

visual field, mimicking the way V2 receptive fields grow in size with eccentricity (figure 6b). Balas, 269 

Rosenholtz and others have studied this model extensively, calling it the Texture Tiling Model 270 

(TTM; [32,33]). In a series of papers, this model explained well the local aspects of visual tasks such 271 

as crowding and visual search. We ran a selection of stimuli through the TTM model (circles, 272 

squares, and irregular1). Similarly to the previous textures, the results were analysed by the 273 
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authors using the texture measure. Crowding was well captured, but uncrowding could not be 274 

explained by TTM (figure 6d). The vernier was not better represented as the number of flankers 275 

increased. 276 

 PLEASE INSERT FIGURE 6 AROUND HERE 277 

Figure 6: Texture Synthesis and Texture Tiling Model. a. A texture (right) synthesized from the input on the 278 

left using the Portilla & Simoncelli [29] summary statistics. The output resembles crowding. Pooling- and 279 

substitution-like effects occur. b. In the TTM, instead of applying the summary statistics process to the 280 

whole image at once, only local patches of the image are processed, yielding a local summary statistics 281 

model. The local patches are thought to reflect V2 receptive fields. c. Whole-field summary statistics. From 282 

left to right: stimuli and Portilla & Simoncelli textures for the vernier, 1-square and 7-square conditions. 283 

The vernier offset is easy to determine from the texture in the vernier alone condition, and slightly harder 284 

in the crowded condition (a right-offset is discernable in the middle top of the display). Across all data, the 285 

model consistently produces crowding, but no uncrowding, as exemplified in the right condition in which 286 

no offset is present at all. d. Texture Tiling model. The left column shows three synthesized examples from 287 

the 1-square condition. On the right is the 7-flanking squares case. The model cannot produce uncrowding: 288 

since the stimulus on the right is less crowded than the stimulus on the left in the human data, the direction 289 

of the vernier should be easier to make out on the right than on the left. However, this is not the case. 290 

 291 

We suggest that TTM alone cannot explain uncrowding because it is a sophisticated local 292 

mechanism that scrambles together neighboring elements. There is no mechanism allowing 293 

elements that do not share a pooling region with the target to directly affect the target 294 

representation. Our results suggest that neither pooling summary statistics over the entire 295 
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stimulus nor pooling over previously tested local regions explain the behavioural results. If the 296 

whole field is used, uncrowding cannot occur because more elements mean more interference 297 

and thus worse performance. On the other hand, using local regions does not help because far 298 

away elements cannot improve performance in cases where humans show uncrowding. 299 

 300 

Deep Textures 301 

Gatys and colleagues [34] used deep neural networks to create textures. The algorithm starts with 302 

a noise image and iteratively modifies it to match the correlations between neuron activities in a 303 

set of layers (figure 7a). This procedure synthesizes textures that are often indistinguishable from 304 

the original image, creating true metamers [35]. Deep textures were not intended to be applied 305 

to images like our stimuli, nevertheless we were interested in seeing if they could handle them 306 

because one could think of deep textures as synthesizing textures based on learned features 307 

rather than on the hand-coded features of Portilla & Simoncelli [29]. Perhaps the learned features 308 

provide a better representation and thus do a better job of predicting crowding. 309 

Using Gatys et al.’s code with their suggested set of parameters 310 

(https://github.com/leongatys/DeepTextures), we created textures of each stimulus in our 311 

database (Figure 7b shows a selection of examples). We first evaluated model performance by the 312 

texture measure performed by the authors. Since the results were much less clear than for the 313 

previous texture approaches, we also conducted a psychophysical experiment with naive 314 

participants. Five subjects performed the classic texture measure: they were first explained the 315 

texture synthesizing process and then were shown textures synthesized from our stimuli. They 316 
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were asked to report if they thought the texture was synthesized from a left- or right-vernier 317 

stimulus. We used three categories of stimuli (Gestalts, squares and circles), with ten textures per 318 

stimulus (a total of 100 textures). Performance was at chance for all stimuli. Textures for the 319 

untested stimulus categories strongly resemble the tested categories (the vernier offset 320 

orientation is not visible in the textures, even for the vernier-alone condition). We tried different 321 

stimulus sizes, but this did not improve the results. In conclusion, despite its clear success at 322 

texture synthesis for natural images, the model in its present form is not suitable to study crowding 323 

with our stimuli. 324 

Wallis et al. [36] have proposed a foveated model in which these deep statistics are computed 325 

over local image patches, just as the TTM computes Portilla and Simoncelli’s statistics over local 326 

patches. The code is not yet publicly available, so we did not test it explicitly, however, we believe 327 

it will not explain uncrowding for exactly the same reasons that the TTM does not handle 328 

uncrowding better than Portilla and Simoncelli’s whole field statistics: distant elements that are 329 

not in pooling regions around the target cannot affect the target representation. 330 

  331 

 PLEASE INSERT FIGURE 7 AROUND HERE 332 

Figure 7: Deep textures. a. In the deep textures algorithm, the correlation between a deep neural network’s 333 

unit activities is used as a summary statistic. Textures are then synthesized to match that statistic. b. 334 

Original stimuli and textures synthesized from these stimuli using the deep textures algorithm by Gatys et 335 

al. [34]. The vernier offset is poorly visible, therefore, despite its clear success at synthesizing textures, the 336 
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model in its present form in not suitable to model crowding with our stimuli. We tried different zooms on 337 

our stimuli but the results did not change. 338 

 339 

Models using a linking hypothesis 340 

The following models all use a linking hypothesis to relate their output (a number) to human 341 

performance. Whenever possible, we used the same linking hypothesis as in the original 342 

contribution. When no linking hypothesis was available, we specify the method used. 343 

 344 

Wilson & Cowan Network with End-Stopped Receptive Fields 345 

Wilson & Cowan [37] proposed a mathematical model of simple cortical (excitatory and inhibitory) 346 

neurons interacting through recurrent lateral connexions. Variations of this kind of model have 347 

successfully accounted for visual masking data using stimuli similar to our lines category [38]. We 348 

used a similar neural network for our crowding stimuli. The model first convolves the input image 349 

with an on-center, off-surround receptive field mimicking processing by the LGN. Next, the input 350 

activations are fed into both an excitatory and an inhibitory layer of neurons, which are 351 

reciprocally connected such that the excitatory units excite the inhibitory units and the inhibitory 352 

units inhibit the excitatory units. Details of the model, its filters, and its parameters can be found 353 

in [38] and [39]. Although the filters are local, the strength of activity at any given pixel location 354 

partly depends on the global pattern of activity across the network because of the feedback 355 

connections. More generally, the feedback in the network functions like a discontinuity detector 356 
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by enhancing discontinuities and suppressing regularities. Clarke, Herzog & Francis [40] applied 357 

this model to crowding stimuli, but it performed poorly and produced no uncrowding. For 358 

example, there was no difference between the stimuli in the Gestalts category and the length of 359 

the bars in the lines category had no effect at all on performance.  Here, to improve the model, 360 

we replaced the classic receptive fields by end-stopped receptive fields so that each neuron is 361 

optimally activated only by stimuli of a specific length. There were three different sizes for the 362 

end-stopped receptive-fields, corresponding to the size of a vernier bar, the size of the whole 363 

vernier, and the size of the flankers. To measure performance for each stimulus, for each end-364 

stopped receptive field size, we took as output the state of the excitatory layer after stabilization 365 

(40 time-steps) and cross-correlated it with the vernier alone output. The cross-correlations for 366 

each end-stopped receptive field size were summed to yield a single output number per stimulus. 367 

We then fitted a psychometric function on one class of stimuli (training set) and used this function 368 

to provide model performance for all other classes of stimuli (testing set). Apart from the end-369 

stopped receptive fields modification, we used the same parameters as in Hermens et al. [38]. 370 

We fit the psychometric function based on the model’s output for the squares category, i.e., the 371 

squares category is the training set, and used this fit to measure performance on all other stimulus 372 

categories, i.e., all other categories are the testing set. We also tried to use each of the other 373 

categories as the training set; using the squares yielded the best results. The model produces 374 

crowding: performance drops in the presence of flankers. It also produces uncrowding but only 375 

for the training set (squares) and, to a lesser extent, for the irregular1 category. Indeed, 376 

performance is better in the 7 squares than in the single square condition (Figure 8b), and 377 
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marginally better in the 7 irregular1 than in the single irregular1 condition (Figure 8c). For the 378 

other categories, there is no uncrowding (see Figure 8d for an example). The choice of the training 379 

and testing sets has a strong influence on the conditions that mimic human performance. Squares 380 

and lines are the categories for which size regularity seems to play the most important role. For 381 

all other classes, there is no uncrowding, regardless of the training. This poor generalization 382 

capability suggests that the model uses idiosyncratic features of its training set rather than 383 

capturing general regularities, similar to overfitting. 384 

 385 

 PLEASE INSERT FIGURE 8 AROUND HERE 386 

Figure 8: Wilson and Cowan network with end-stopped receptive fields: a. Structure of the network in [38] 387 

which we augmented with end-stopped receptive fields. An excitatory and an inhibitory layer of neurons 388 

are activated by the stimulus and interact with one another. The output of the excitatory layer is cross-389 

correlated with a vernier template to measure performance. b. Output for the squares category (with 390 

psychometric function fitted on the squares category). In accordance with human results, performance is 391 

better in the 7 squares than in the 1 square case. c. Output for the irregular category (with psychometric 392 

function fitted on the squares category). Performance is marginally better in the 7 irregular1 than in the 1 393 

irregular1 case. d. Output for the stars category (with psychometric function fitted on the squares 394 

category). There is no uncrowding for this stimulus. Uncrowding occurs only for specific kinds of stimuli, 395 

where element size regularities seem important. Further, performance depends strongly on which data are 396 

used for the training set (i.e.,  for fitting the psychometric function), suggestive of overfitting. e. Model 397 

output images. Columns are different stimuli: vernier, 1 square and 7 squares. The first row shows the 398 

stimuli, and the three subsequent rows show the model output for the short, medium and long end-399 
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stopped receptive fields. The crucial result is that the vernier is better represented in the short and medium 400 

populations in the 7 squares than in the 1 square conditions (i.e., uncrowding occurs). As mentioned, 401 

uncrowding occurred for very few stimuli categories. In cases that didn’t show uncrowding, the vernier 402 

representation deteriorated further when flankers were added (see results on the online repository). Note: 403 

the model outputs a cross-correlation quantifying how similar the model output is to the model output in 404 

the vernier alone condition (so the higher this cross-correlation, the better the performance). To make 405 

comparisons with human thresholds easier, we applied the same linking hypothesis as Hermens et al. [38]: 406 

we fitted a psychometric function to link model outputs to behavioural results, as explained in the main 407 

text. 408 

 409 

Zhaoping’s V1 Recurrent Model 410 

This recurrent neural network model is described by Li Zhaoping [41]. The network consists of a 411 

grid of neurons tuned to 12 orientations that are linked by lateral connections that follow a specific 412 

pattern (see figure 9a&b). The connectivity pattern allows the network to reproduce many 413 

experimental effects such as pop-out, figure-ground segmentation and border effects. It has also 414 

been shown to highlight certain parts of visual displays such as masked verniers [42], and we 415 

wondered if it could similarly produce uncrowding. We recoded the network from scratch 416 

following the detailed instructions and using the same parameters as in [41] and studied it as 417 

another recurrent model of early visual cortex. We ran all our stimuli and assessed performance 418 

by cross-correlating each output with the output of the vernier without flankers. The magnitude 419 

of the cross-correlation is taken as a measure of vernier offset discrimination performance. The 420 

model produces crowding but not uncrowding consistently across the dataset (see figure 9c). 421 
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 422 

 PLEASE INSERT FIGURE 9 AROUND HERE 423 

Figure 9: V1 Segmentation model. a. The input is sampled at each grid position by neurons tuned to 12 424 

orientations, mimicking V1 simple cells. b. The connectivity pattern between cells depends on their relative 425 

position and orientation as shown here. Solid lines indicate excitation and dashed lines indicate inhibition. 426 

As shown, each neuron excites aligned neurons and inhibits non-aligned neurons. Each neuron has the 427 

same connectivity pattern, suitably rotated and translated. c. Output images for the square category. Each 428 

small oriented bar shows the maximally active orientation at this grid position. d. Results for the squares 429 

category. The dashed red bar shows the vernier threshold, which is matched for humans and the model. 430 

As shown, uncrowding does not occur in the model, because performance is worse for the 7 squares than 431 

the 1 square stimulus. Note: the model outputs a cross-correlation quantifying how similar the model 432 

output is to the model output in the vernier alone condition (so the higher this cross-correlation, the better 433 

the performance). To make comparison with the human threshold easier, we applied the same procedure 434 

as we did for the epitomes, i.e., we applied the following monotonic transformation to the output: 435 

“threshold-like output” = 1/”raw output”. Then we scaled the result to be in the same range as the human 436 

results. This monotonic re-scaling does not change the conclusions – the phenomenon of uncrowding 437 

cannot be altered. 438 

 439 

A Variation of the LAMINART Model 440 

The LAMINART model by Cao & Grossberg [43] is a neural network capable of computing illusory 441 

contours between collinear lines. Francis, Manassi & Herzog [44] augmented it with a 442 

segmentation process in which elements linked by illusory contours are grouped together by 443 
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dedicated neural populations. This dedicated neural processing operates in the same way for all 444 

conditions and plays an important role in explaining many other visual phenomena (review: [45]). 445 

This model process was intended as an implementation of a two-stage model of crowding, with a 446 

strong grouping process: stimuli are first segmented into different groups and, subsequently, 447 

elements within a group interfere. After dynamical processing, different groups are represented 448 

by distinct neural populations. Performance is determined by template matching. Importantly, 449 

crowding is low when the vernier is alone in its group (i.e., when the population representing the 450 

vernier does not also represent other elements) and high otherwise.  451 

The segmentation process is started by local selection signals and spreads along connected 452 

contours (figure 10). The location of each selection signal follows a Gaussian distribution centred 453 

on a given location, with a constant standard deviation. Uncrowding occurs when the selection 454 

signals hit a group of flankers without hitting the vernier, rescuing it from the deleterious effects 455 

of the flankers. In our simulations, each stimulus is run twenty times, each time drawing a new 456 

selection signal location. The final performance is averaged over these twenty trials. Crucially, 457 

segmentation becomes easier with more flankers, because a group of many flankers connected 458 

by illusory contours produces a larger region for selection (figure 10).  459 

To account for the observers’ proclivity to succeed in the vernier discrimination task, the central 460 

location of a selection signal is tuned to produce the least amount of crowding for each condition. 461 

This assumption follows the idea that an observer does the best job possible in each given 462 

situation. Although this added flexibility is not present in other models, it does not constitute an 463 

unfair advantage for the LAMINART. Indeed, it is not strictly necessary in order for the model to 464 



 
 

24 
 
 

produce uncrowding. For example, if the segmentation signals’ central location followed a uniform 465 

distribution over the whole stimulus, it would still hit a large group of flankers (without hitting the 466 

target) more easily than a small group of flankers. In summary, whenever the flankers form a wide 467 

group that can be easily segregated from the vernier, uncrowding should be produced. Hence, 468 

uncrowding is largely independent of the selection signals’ distribution.  469 

Many stimuli in the dataset had been simulated by the model in Francis et al. [44]. Here, we 470 

improved the model by using more orientations and we ran the model on our dataset, using the 471 

template matching measure (some stimuli could not be run for reasons detailed below). Overall, 472 

the LAMINART explains the data set well (figure 10).  473 

More precisely, the categories circles, Gestalts, lines, octagons, squares and hexagons are all well 474 

explained. Categories irreg1, irreg2 and stars cannot be explained, but they include bars of many 475 

different orientations, and the current LAMINART simulation is only capable of handling eight 476 

orientations. We did not run the stimuli in the patternStars and patternIrregular categories 477 

because they are too large to be processed in realistic time. In general, situations where the model 478 

fails tend to be those in which the model groups elements while the data suggests it should not, 479 

leading in some cases to no uncrowding, and in other cases to excessive uncrowding. One example 480 

is when flankers (e.g., squares and stars) group together when they should not. Another example 481 

is when flankers group with the target vernier (e.g., irreg1), suggesting the need to improve the 482 

grouping mechanism itself (figure 10). 483 
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Across all stimuli and all models, the LAMINART is by far the most successful model in this 484 

comparative study because it can explain a wide range of uncrowding results, as well as capture 485 

classic crowding effects. 486 

 PLEASE INSERT FIGURE 10 AROUND HERE 487 

Figure 10: The LAMINART variation. a: Activity in the LAMINART model. Colors represent the most active 488 

orientation (red: vertical, green: horizontal). When a stimulus is presented, segmentation starts to 489 

propagate along connected (illusory or actual) contours from two locations marked by attentional selection 490 

signals. Visual elements linked together by illusory contours form a group. After dynamic, recurrent 491 

processing, the stimulus is represented by three distinct neural populations, one for each group. Crowding 492 

is high if other elements are grouped in the same population as the vernier, and low if the vernier is alone. 493 

On the left, the flanker is hard to segment because of its proximity to the vernier. Across the trials, the 494 

selection signals often overlap with the whole stimulus, considered as a single group. Therefore, the flanker 495 

interferes with the vernier in most trials, and crowding is high. On the right, the flankers are linked by 496 

illusory contours and form a group that spans a large surface. In this case, segmentation signals can easily 497 

hit the flankers group successfully (without hitting the vernier). The vernier thus ends up alone in its group 498 

in most trials and crowding is low. b:  The left row shows human performance with the square flanker 499 

stimuli. The right row is the output of the LAMINART model. It fits the data very well. The same holds true 500 

for a majority of our stimuli. To compute the LAMINART’s output values, we used the same linking 501 

hypothesis as in the original description of the model [44]: template matching is used to decide if the target 502 

vernier offset is left or right, and this result is monotonically transformed into a threshold-like measure. c: 503 

Sometimes flankers group together (illusory contours are formed) when they should not, erroneously 504 

predicting uncrowding for this condition. d: Sometimes flankers group with the vernier when they should 505 
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not. Here, weak illusory contours connect the central flanker and the vernier. No uncrowding can be 506 

produced for this condition because segmentation always spreads to the vernier, independently of the 507 

success of the selection signals. 508 

 509 

Alexnet (A Convolutional Neural Network) 510 

Deep Convolutional Neural Networks (CNNs) are local, feedforward, pooling networks. Training 511 

involves using feedback signals to adjust weights between neurons in subsequent layers. Once the 512 

network has been trained, users typically fix the weights and use the network in a feedforward 513 

manner. Given enough time and training samples, CNNs can learn any function by learning 514 

adequate weights [46,47]. CNNs fit very nicely in the standard view of vision research, in which 515 

basic features, such as edges, are combined in a hierarchical, feedforward manner to create 516 

higher-level representations of complex objects (figure 2a). We reasoned that crowding would 517 

occur in these networks for exactly the same reason as in classic local pooling models: the target 518 

and the flankers’ representations at a given layer are pooled within the receptive fields of the 519 

subsequent layer, thus, leading to poorer performance. Although CNNs obviously compute groups 520 

such as objects or animals, these groups have no effect whatsoever on crowding of lower level 521 

features. Indeed, there are no connections from higher to lower level layers. Thus, elements far 522 

away from the vernier cannot interact with nearby elements and lead to uncrowding. To test this 523 

hypothesis, we processed the square category through Alexnet [48], a CNN trained to classify 524 

natural images with high accuracy, using Tensorflow [49]. In order to determine vernier offset 525 

discrimination in different layers, we trained classifiers to identify the vernier offset from the 526 
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activations of different layers of Alexnet (figure 11a). The classifiers had a single hidden layer with 527 

512 units, followed by a softmax layer with two outputs, corresponding to left and right. In the 528 

training phase, we ran verniers through the network, and trained classifiers to identify the offset 529 

orientation from the different layers’ activations (which were normalized to zero mean and unit 530 

standard deviation). Each layer had its own classifier. We used all ReLU layers following the 531 

convolution layers and the last fully connected layer. A different classifier was trained for each of 532 

these layers. During the test phase, we used verniers alone, verniers flanked with a single square 533 

(crowded stimuli) and verniers with 7 squares flankers (uncrowded stimuli). Both training and 534 

testing stimuli had varying sizes, offsets and positions in the image. Figure 11 shows average 535 

performance for each layer over 6 runs. For each run, we trained a new classifier on each layer, 536 

using 250000 verniers in the training set. In the testing phase, we ran 3000 verniers, 3000 crowded 537 

stimuli and 3000 uncrowded stimuli through Alexnet. Our classifiers predicted vernier orientation 538 

from the layer activations for each of these inputs. Interestingly, our classifiers could well retrieve 539 

the test vernier orientations with 100% accuracy in all convolutional layers (layers 2, 3, 4 and 5). 540 

Adding square flankers deteriorated performance strongly. The single square (crowded) stimuli 541 

could be decoded only in the convolutional layers 2, 3 and 4, and in fully connected layer 7, but 542 

with much poorer accuracy than the vernier alone. Crucially, unlike in humans, the 7 squares 543 

(uncrowded) stimulus performance was always worse or equal to the performance on the single 544 

square (crowded) stimulus. Hence, the deep network produced crowding, but not uncrowding. 545 

We suggest that the mechanism leading to these results is similar to the classic local pooling 546 

account of crowding.  547 
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 548 

  PLEASE INSERT FIGURE 11 AROUND HERE 549 

Figure 11: Alexnet. a. Stimuli consisted of either verniers, verniers surrounded by a single square or verniers 550 

with seven squares. The stimuli had varying sizes, vernier offsets and positions. Alexnet’s architecture and 551 

a classifier are shown on the right (there was a classifier at each layer). The boxes correspond to the input 552 

(leftmost box) and activated neuron layers (see [48] for the detailed architecture of Alexnet). We trained 553 

softmax classifiers on all ReLU layers following the convolution layers and the last fully connected layer to 554 

detect vernier orientation from the layer’s activity. b. Accuracy of softmax classifiers trained to detect 555 

vernier orientation from different layers in the deep neural network Alexnet. Across all layers, the offsets 556 

in crowded stimuli (1 square flanker) are always better detected than offsets in uncrowded stimuli (7 square 557 

flankers). This runs contrary to human performance. NB. This model only produces percent correct, there 558 

is no output image. 559 

 560 

Hierarchical Sparse Selection (HSS) 561 

This model was described by Chaney, Fischer & Whitney [50]. In a series of experiments, it was 562 

shown that in spite of difficulty identifying a crowded target, crowding does preserve some 563 

information about the target, i.e., information is rendered inaccessible but not destroyed (see [8,9] 564 

for reviews). For example, a face surrounded by other faces cannot be explicitly identified, but 565 

information about its features can nevertheless survive crowding and contribute to the perceived 566 

average of a set of faces [51]. To accommodate these results, Chaney et al. proposed that 567 

information is not lost along the visual processing hierarchy. Instead, crowding occurs because 568 
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readout is sparse. Specifically, given a feature map representing a stimulus, only a subset of the 569 

neurons from this map can be used to decode the target, which leads to crowding’s deleterious 570 

effects (figure 12a). 571 

Using the author’s code, we tested all our stimuli and found that crowding could be explained, but 572 

uncrowding did not occur in the model (figure 12b). Originally, the model was used to detect 573 

crosses, triangles and circles. We modified the model’s readout layer to classify vernier 574 

orientation, which was achieved with 99.13% accuracy (the rest of the model does not need any 575 

change to accommodate new stimuli). Then, we dropped 75% of the neurons for the sparse 576 

readout, which led to a vernier classification accuracy of 81.48%. We tested all our stimuli by 577 

asking the model to classify the vernier orientation, first without dropping any neurons, then with 578 

75% of the neurons dropped for the sparse readout, as we did for the verniers. For all stimuli, 579 

performance dropped with the sparse readout. For example, the 1 square condition was classified 580 

with 93.35% accuracy when all neurons were used, and this dropped to 75.55% with sparse 581 

readout. The 7 squares condition had a similar profile, but classification accuracy was worse than 582 

for the 1 square condition (71.73% with all neurons and 59.23% with sparse readout). This pattern 583 

of results was found in all stimulus categories: sparse readout impaired performance, and adding 584 

more flankers impaired performance too. Thus, there was crowding but no uncrowding. We would 585 

like to mention that Chaney et al. argue that uncrowding can in fact be explained, if the target and 586 

flanker are represented in different feature maps, which are however not implemented at the 587 

moment. In essence, visual stimuli are segmented into different feature maps (this must happen 588 
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early in the visual pathway to explain the low-level vernier results), and subsequently the HSS 589 

model applies within feature maps, on this pre-segmented input. 590 

  591 

 PLEASE INSERT FIGURE 12 AROUND HERE 592 

Figure 12: Hierarchical Sparse Selection model. a. The model posits that receptive fields along the visual 593 

hierarchy are large and dense. This allows for “lossless” transmission of information through the visual 594 

system. For instance, the offset of the vernier in this illustration is not corrupted by pooling thanks to the 595 

density of the receptive fields (blue and red circles). Crowding occurs because, when we try to access 596 

information, only a few sparse receptive fields are used for readout (red circles). Hence, crowding occurs 597 

at readout because of sparse sampling of receptive fields. This sparse readout can occur at any stage of 598 

visual processing, from low-level features (shown here) to faces. b. Uncrowding does not occur in the 599 

Hierarchical Sparse Selection model because performance is worse for the model on the 7 squares than 600 

the 1 square condition, contrary to human performance. NB. This model only produces a scalar output, 601 

there is no output image. 602 

 603 

Models tested elsewhere 604 

The following models were not implemented here, but we mention them for completeness. 605 

 606 

Saccade-Confounded Summary Statistics 607 

Nandy & Tjan [52] proposed a model linking summary statistics to saccadic eye movements: 608 

crowding is proposed to occur because the acquisition of summary statistics in the periphery is 609 
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confounded by eye-movement artifacts. This leads to inappropriate contextual interactions in the 610 

periphery and in this way produces crowding. For the present purposes this is not directly relevant, 611 

because foveal and peripheral uncrowding results are qualitatively identical [11], which the 612 

saccade-confounded summary statistics model cannot explain since it suggests that crowding can 613 

only occur in peripheral regions. Furthermore, it is not clear how uncrowding can occur in this 614 

model. 615 

 616 

Population Coding 617 

This kind of model was first described by Van den Berg, Roerdink, & Cornelissen [53]. A similar 618 

model was proposed by Harrison & Bex [54]. Both models elegantly produce both pooling and 619 

substitution behaviour by assuming that an element’s orientation is represented by a population 620 

code: a probability distribution of its orientation. When many elements are present, the 621 

population codes interfere and disturb the target element’s representation, which leads to 622 

crowding. This interference depends on distance and is usually modeled as a 2D Gaussian. Dayan 623 

& Solomon [55] also proposed a model in which elements are represented as probability 624 

distributions. They added a Bayesian process to account for the accumulation of evidence over 625 

time. Their model captures local crowding effects similarly to Van den Berg et al. and Harrison & 626 

Bex’s models: the interference comes from the representations of neighbouring elements 627 

deleteriously affecting each other. This model and the one by Van den Berg and colleagues cannot 628 

handle images as input and thus could not be tested with our stimuli. 629 
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We have shown elsewhere that the Harrison & Bex [54] implementation cannot explain 630 

uncrowding [56]. Agaoglu & Chung [57] showed that the interaction between elements depends 631 

on which of them is considered as the target for report. Hence, the crowding interference between 632 

elements in the display depends on the task, which is not easily incorporated in the models without 633 

a dedicated process. Van den Berg et al. [53] suggested that elements do not interfere when they 634 

are represented in different perceptual groups, similar to the LAMINART model. Similarly, Harisson 635 

& Bex [54] have suggested that a preprocessing stage determining which elements interfere is 636 

needed. 637 

 638 

Fourier Model 639 

The Fourier transform is sensitive to global aspects of spatial configurations because it is based on 640 

periodic features. Even if it was never explicitly proposed to explain crowding, it may capture some 641 

effects of uncrowding that have to do with regularities in the stimulus. Previously [15,40], we used 642 

a Fourier-based model and tested it on the entire dataset. Essentially, this is a texture-like model, 643 

assuming that the brain Fourier transforms the visual input. Repetitive structures, such as arrays 644 

of squares are more compactly coded in the Fourier space than the 2D space. We restate the 645 

results here for comparison with the other models. The model first bandpasses filters the stimuli 646 

(passing a small range of frequencies at all orientations), then computes the Fourier transforms of 647 

the filtered left- and right-offset cases for each stimulus. Similarly to what was done to measure 648 

performance of Zhaoping’s recurrent V1 model, these are cross-correlated with the filtered 649 

versions of the verniers without any flankers and the magnitude of the cross-correlation is taken 650 
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as a measure of vernier offset discrimination performance. This process is repeated over all 651 

possible pass-bands (which is finite given a fixed image size) until the pass-band yielding 652 

performance most similar to humans is found. Across the dataset, this approach failed to 653 

reproduce the data (see figure 13), suggesting that such a simple use of global regularities in the 654 

display is insufficient to explain crowding. Depending on the set of Gabor filters, uncrowding 655 

occurred for certain stimuli, but this was never consistent over several stimulus types, which is 656 

suggestive of overfitting. With one set of filters the lines category could be explained, with another 657 

the Gestalts category could be explained. 658 

 659 

 PLEASE INSERT FIGURE 13 AROUND HERE 660 

Figure 13: Fourier model. a. The Fourier model computes Fourier transforms for the left- and right-offset 661 

versions of each stimulus. If these transforms are very different, crowding is low because the offset 662 

direction is easy to decode in Fourier space [15]. b. Output of the Fourier model. The model failed on most 663 

stimuli [15]. NB. This model only produces a scalar output, there is no output image. 664 

 665 

Discussion: 666 

For decades, crowding was thought to be fully determined by nearby elements. For this reason, 667 

target elements were presented only with a few nearby elements, and models were local in 668 

nature. However, experiments of the last two decades have shown that elements far beyond 669 

Bouma’s window can strongly affect performance. Crowding can become stronger [12] or weaker 670 
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[10,13–16] when elements are presented outside Bouma’s window. Hence, local models cannot 671 

provide a complete account of crowding. In addition to spatial extent, it is the specific stimulus 672 

configuration that determines crowding. Configurational effects are not small modulations of 673 

crowding but have large effect sizes and, more importantly, can qualitatively change the pattern 674 

of results. For example in figure 2b, performance changes in a non-linear U-shaped fashion with 675 

best performance for the unflanked target, strong crowding for few flankers, and weaker crowding 676 

when flankers make up a regular configuration.   677 

A major question is at which computational level crowding occurs. In local models, only nearby 678 

elements interfere with target processing, often due to low level mechanisms such as pooling. In 679 

global models, features across the entire visual field are potentially important. Global interactions 680 

may be restricted to low level features, such as the orientations of the stimulus elements. At the 681 

other extreme, explicitly computing objects (such as the squares in figure 2) may turn out to be 682 

necessary. Likewise, face crowding may or may not necessitate the explicit computation of faces 683 

[8,51,58,59]. For this reason, some global models explicitly compute grouping-like aspects. Only 684 

elements within a group interfere with each other. Classically, models restricting themselves to 685 

lower level features are given priority because they offer more parsimonious explanations. 686 

Model comparison  687 

Here, we investigated all available models suited to explain the global aspects of crowding.   688 

All models (leaving aside Deep Textures, which was never proposed to explain crowding with 689 

laboratory stimuli) produced crowding comparable to the human data. However, only the 690 
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LAMINART model was consistently able to produce uncrowding (figure 14). The Wilson and Cowan 691 

network produced uncrowding only for the squares category (and to a lesser extent for the 692 

irregular1 category). The Fourier model produced uncrowding only for the Gestalts and lines 693 

stimuli. In both models, uncrowding depended heavily on parameter values, a signature of 694 

overfitting. In the Wilson and Cowan network, the end-stopped receptive fields led to grouping 695 

elements of similar size, but this did not generalize to explain other global effects.  696 

 697 

 PLEASE INSERT FIGURE 14a AROUND HERE 698 

 PLEASE INSERT FIGURE 14b AROUND HERE 699 

Figure 14: a. Summary of results. Results for all models (columns). In black, the left panel displays all 700 

crowding stimuli and the right panel displays all uncrowding stimuli (i.e., better performance when extra 701 

elements are added to the crowded condition) as observed in human data (rows). Superscript numbers 702 

indicate which publication the results are taken from (1: Sayim, Westheimer & Herzog [17]; 2: Manassi et 703 

al. [11]; 3: Manassi, Sayim & Herzog [19]; 4: Manassi et al. [15]). Red indicates that the model predicts 704 

crowding, green indicates uncrowding and gray indicates that we did not run the model on the stimulus. A 705 

perfect model would have only red in the left half of the table and only green in the right half. Only the 706 

LAMINART is capable of producing uncrowding consistently. Fourier and the Wilson-Cowan network 707 

produce uncrowding, but suffer from overfitting (see discussion). For these two models, we provide the 708 

results for the best parameters. For example, the Wilson and Cowan with different parameters can explain 709 

the lines category but then it cannot explain the squares and irregular1 categories. b. Model comparison. 710 

All models produce crowding, but only the Fourier, Wilson and Cowan and LAMINART models produce 711 
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uncrowding. The Fourier and the Wilson and Cowan model overfit and thus do not capture general 712 

principles. The LAMINART is the only model that explicitly computes grouping like aspects and segments 713 

the image into different layers.   714 

 715 

We think there are principled reasons why most models cannot reproduce most of the global 716 

uncrowding findings. First, the effects of global configuration (figure 2c) operate on a much higher 717 

level than most models can capture. To phrase it this way, we think that human performance is 718 

based on global configurations and not on simple hidden sub-regularities, such as repeating 719 

patterns or simple summary statistics. Second, as Wallis et al. [36] put it: “Based on our 720 

experiments we speculate that the concept of summary statistics cannot fully account for 721 

peripheral scene appearance. Pooling in fixed regions will either discard (long-range) structure 722 

that should be preserved or preserve (local) structure that could be discarded. Rather, we believe 723 

that the size of pooling regions needs to depend on image content”. For this reason, we think that 724 

performance in crowding cannot be explained simply as a by-product of basic spatial processing, 725 

e.g., by summary statistics. In contrast, which elements interfere seems to depend on the global 726 

stimulus layout. We propose that the LAMINART can consistently produce uncrowding because it 727 

can deal with this requirement by incorporating a grouping-like process: elements linked by 728 

illusory contours are grouped together and segmented from elements in other groups. 729 

Interference happens only between elements within a group. 730 

Another way to approach the importance of grouping for crowding is that it provides extra 731 

information that makes one condition inherently easier than another. Vernier acuity tasks are 732 
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often thought to be mediated by the responses of one or more feature detectors. Each feature 733 

detector might itself look like a vernier offset, or might be similar to an orientation detector such 734 

as a Gabor. Regardless, correct performance at the vernier task requires precise placement of the 735 

detector; a slightly misplaced detector can easily give the wrong answer, particularly when the 736 

vernier is flanked by other stimuli. Crowding induces location uncertainty. Any information that 737 

can help correctly place the detector – essentially any cue to the right position – would improve 738 

performance. Strong stimulus grouping could be one such cue (Rosenholtz et al., under review). 739 

In this case too, it is crucial to understand how the brain groups visual elements across the entire 740 

visual field. 741 

The LAMINART model links elements by illusory contours, which is a rather basic grouping 742 

mechanism. It remains an open question whether more complex features are necessary to explain 743 

crowding/uncrowding such as an explicit computation of objects, e.g. squares, faces etc. For 744 

example, can the irregular shapes category be explained with simple contour integration? 745 

Likewise, it remains an open question whether face crowding can be explained without the explicit 746 

computation of faces.  747 

In the LAMINART model, the grouping and interference processes are separate. Alternatively, 748 

grouping and interference may be intimately linked. One possibility is that the groups correspond 749 

to optimal statistical representations. For example, elements may form a group when they can be 750 

well compressed by summary statistics. In this scenario, grouping is part of the summary statistics 751 

process itself. There are probably many other ways in which grouping may play a role. 752 
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A major problem with the grouping approach is the lack of a well-defined, objective measure of 753 

grouping. If there is no objective measure, groups can be chosen ad hoc to explain experimental 754 

results, leading to circular explanations. As a first step towards an objective measure of grouping, 755 

subjective measures (i.e., asking observers to report what they feel belongs to a group) can 756 

complement studies. Such subjective ratings about perceptual groups have correlated well with 757 

psychophysical performance levels [11].  758 

Future Models 759 

As we have shown, none of the current models can fully explain (un)crowding. What would the 760 

model of the future look like? What components are crucial?  761 

First, as mentioned earlier, we can rule out local models because elements across large parts of 762 

the visual field influence perception of the target.  763 

Second, to explain the complex effects of spatial configurations in crowding, our results suggest 764 

that grouping-like, mid or higher level aspects need to be incorporated in a model. However, the 765 

exact nature of this process is unknown. For example, it may or may not be that mid-level 766 

processing is sufficient. In addition, the incorporation of higher level processes does not exclude 767 

the additional use of summary statistics and other lower level components. The grouping stage is 768 

difficult to study because of the seemingly infinite number of possible visual configurations. We 769 

believe that new tools are needed to help navigate the huge search space effectively. For example, 770 

Van der Burg, Olivers, & Cass [60] have proposed a genetic algorithm to find configurational 771 

features important for crowding. 772 
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Third, we cannot rule out feedforward models. Indeed, it is a mathematical fact that any recurrent 773 

model can be “unfolded” into a feed-forward network [61–63]. However, these feedforward 774 

models are usually extremely large and computationally expensive. For this reason, we suggest 775 

that models with feedback connections are much more likely to be able to explain how complex 776 

spatial configurations influence target processing. For example, higher level grouping processing, 777 

such as computing the squares and grouping them together, may feed back to lower level 778 

processing of the target, i.e., the vernier. Support for this hypothesis comes from the finding that 779 

the Alexnet CNN could not produce uncrowding, presumably because high-level features cannot 780 

influence low-level processing.  781 

Fourth, the nature of interference remains unclear. One option is that interference occurs during 782 

complex spatial processing by an unknown mechanism. Another option is that the classic 783 

interference mechanisms operate after complex spatial processing is accomplished. For example, 784 

pooling may occur only for grouped elements. In the same line of reasoning, Chaney et al. [50], 785 

Van den Berg et al. [53] and Harrison & Bex [64] noted that adding a grouping stage to their 786 

interference mechanism may help explain a wider range of results. Combining complex spatial 787 

processing with good interference mechanisms may, therefore, allow for a happy marriage 788 

between interference- and grouping-based mechanisms leading to a truly unified model of 789 

crowding. 790 
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Conclusion: 791 

The global stimulus configuration plays a crucial role in crowding, which cannot be captured by 792 

local models. For this reason, we propose that models of crowding need to include grouping like 793 

processes. While our results show that none of the current models lacking a grouping process can 794 

explain the global uncrowding phenomena, they may be good candidates for a potential second, 795 

interference stage.  796 

How are basic features of the visual field grouped to form objects? The most successful model we 797 

analyzed, the LAMINART variation, suggests that this is done by linking features together by 798 

illusory contours. Further work is needed to assess how far this mechanism can go and what 799 

alternative or additional components are necessary, such as summary statistics. For example, the 800 

groups may correspond to optimal statistical representations (elements that can easily be 801 

compressed using summary statistics would form a group).  802 

Most importantly, large scale, configurational effects are not restricted to visual crowding with 803 

vernier targets. Uncrowding occurs also for letters and Gabors [65], as well as in audition [23] and 804 

haptics [24]. Similar effects are found in backward masking [66] and overlay masking [17,67]. 805 

Hence, crowding is a special case of contextual processing. Vision research has largely missed 806 

these aspects because of the use of well-controlled stimuli, which are usually presented in 807 

isolation or with only a few nearby flankers. Our results suggest that in order to understand vision 808 

in general, a mid-level, contextual processing stage is inevitable.  809 
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