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ABSTRACT

Low background searches for astrophysical neutrino sources anywhere in the sky can be performed
using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low
as ~ 1 TeV. Previously, we showed that even with just two years of data, the resulting sensitivity to



sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks
induced by charge current muon neutrino interactions — especially if the neutrino emission follows a
soft energy spectrum or originates from an extended angular region. Here, we extend that work by
adding five more years of data, significantly improving the cascade angular resolution, and including
tests for point-like or diffuse Galactic emission to which this dataset is particularly well-suited. For
many of the signal candidates considered, this analysis is the most sensitive of any experiment. No
significant clustering was observed, and thus many of the resulting constraints are the most stringent
to date. In this paper we will describe the improvements introduced in this analysis and discuss our
results in the context of other recent work in neutrino astronomy.

Keywords: astroparticle physics — neutrinos

1. INTRODUCTION

Neutrino astronomy promises to reveal secrets of dis-
tant astrophysical objects that likely can never be ob-
served through other messenger particles. Because neu-
trinos only interact weakly, they can reach us from enor-
mous distances with no attenuation by intervening mat-
ter or background radiation and without deflection by
magnetic fields. Because they are only produced by
hadronic processes, high energy neutrinos are tracers of
high energy cosmic ray production (Halzen & Hooper
2002). While electromagnetic observations can estab-
lish that a source candidate provides sufficient energy
density for cosmic ray acceleration, direct cosmic ray ob-
servation is hindered by magnetic deflection at lower en-
ergies and by attenuation at higher energies. Therefore
neutrino astronomy may offer our best chance for iden-
tifying the sources of high energy cosmic rays (Ahlers &
Halzen 2018).

Neutrino observation is performed by detecting the
Cherenkov radiation emitted by relativistic charged par-
ticles produced when neutrinos collide with matter in
or near a Cherenkov detector. IceCube, the largest
such detector to date, consists of an array of photo-
multiplier tubes (PMTs) spanning one km?® deep in the
Antarctic glacial ice near the geographic South Pole.
IceCube is sensitive to all neutrino flavors and inter-
action types. Charged current (CC) muon neutrino in-
teractions yield long-lived muons that can travel sev-
eral kilometers through the ice (Chirkin & Rhode 2004),
leading to a track signature in the detector. Neutral
current (NC) interactions, and CC interactions of most
other flavors, yield hadronic and electromagnetic show-
ers that typically range less than 20m (Aartsen et al.
2014a), with 90% of the light emitted within 4m of
the shower maximum (Radel & Wiebusch 2013). The
small spatial extent of these showers compared to the
PMT spacing and the scattering length of light in the
ice (Aartsen et al. 2013b) results in a nearly symmetric
cascade signature in the detector.

In 2014, we reported the first observation of a flux of
neutrinos above ~ 60 TeV inconsistent with the expec-
tation from atmospheric backgrounds at greater than
50 significance (Aartsen et al. 2014b). While this mea-
surement was dominated by cascade events, the result
was soon confirmed using muon tracks above ~ 300 TeV
originating in the northern sky (Aartsen et al. 2015b,
2016b).

More recently, IceCube data revealed the first di-
rect evidence for high energy neutrino emission asso-
ciated with a specific astrophysical source, the gamma-
ray blazar TXS 05064056 (Aartsen et al. 2018a,b). Be-
fore and since, no other high energy astrophysical neu-
trino sources have been identified (e.g. Aartsen et al.
2017a). Most source searches have focused on the muon
track channel, which gives excellent sensitivity to upgo-
ing muon tracks induced by CC muon neutrino interac-
tions. As viewed by IceCube, upgoing events correspond
to sources in the northern celestial hemisphere.

In much of the southern sky, due to larger back-
ground rates, the sensitivity of the muon track chan-
nel to sources following an E~2 spectrum is weaker by
an order of magnitude (Aartsen et al. 2017a) — this
factor increases to two orders of magnitude or more if
the spectrum is as soft as E~3 or if it has a cutoff at
Eeut S 100TeV (see e.g. Aartsen et al. (2017d)).

In an initial analysis of two years of data, we demon-
strated that the sensitivity of IceCube in the southern
sky can be improved significantly by performing compli-
mentary searches using cascade events arising from neu-
trino interactions of all flavors (Aartsen et al. 2017d).
Here, we extend that work in a number of ways. First,
we apply similar, though slightly improved, event se-
lection criteria to seven years of data. Second, we ob-
tain significantly improved cascade angular resolution
through the use of a specially-designed Deep Neural Net-
work. Finally, we study additional point-like and diffuse
Galactic emission scenarios to which this analysis is ex-
pected to be especially sensitive. For many of the signal
candidates considered, this analysis is the most sensi-
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tive of any experiment to date. In this paper, we will
begin by describing the IceCube detector and the cas-
cade event selection and reconstruction. Then we will
introduce the astrophysical neutrino source candidates
considered and the design and performance character-
istics of the statistical methods used. Finally, we will
present our results and discuss them in the context of
other recent work in neutrino astronomy.

2. ICECUBE

The IceCube detector (Aartsen et al. (2017¢)) is com-
posed of 5160 Digital Optical Modules (DOMs) buried
at depths of 1450 m to 2450 m in the glacial ice near the
geographic South Pole. Each DOM includes a 10” pho-
tomultiplier tube (PMT) and custom supporting elec-
tronics (Abbasi et al. 2010). The DOMs are mounted on
86 vertical strings holding 60 DOMs each, arranged in
an approximately hexagonal grid. Seventy-eight of the
strings forming the bulk of the array are spaced 125 m
apart horizontally, with uniform vertical DOM spacing
of ~ 17m. The remaining 8 strings, which are con-
centrated near the center of the detector with 30 — 60 m
horizontal spacing, constitute a denser in-fill array called
DeepCore (Abbasi et al. 2012). On each of the DeepCore
strings, 50 of the DOMs are located in the exceptionally
clear ice at depths of 2100 m to 2450 m, with vertical
spacing of 7m. The strings were deployed during the
Austral summers of 2004-2011.

Digital readouts are triggered when at least eight
DOMs observe a signal above 1/4 of the mean expected
voltage from a single photoelectron (PE), each in coin-
cidence with such a signal on a nearest or next-nearest
neighboring DOM, within a 6.4 us time window. When
this criterion is met, the data acquisition system (DAQ,
Abbasi et al. (2009)) collects the data from all DOMs
into an event and initiates a first round of processing.
Each waveform is decomposed into series of pulse arrival
times and PE counts for use by event reconstruction
algorithms (Ahrens et al. 2004; Aartsen et al. 2014a).
Simple selection criteria are applied to reject the most
unambiguous cosmic ray-induced muon backgrounds, re-
ducing the data rate from ~ 2.7kHz at trigger level to
~ 40Hz at filter level. The filtered dataset is com-
pressed and transmitted via satellite to a data center
in the north for further processing.

3. DATASET

After the initial selection applied at the South Pole,
the remaining dataset is still dominated by atmospheric
muons. In order to search for neutrino sources, neutrino
candidates are selected, and their properties are recon-
structed based on the light arrival pattern observed in

the DOMs. In the following, we discuss a re-optimized
method for selecting neutrino-induced cascades and a
novel machine learning-based approach to reconstruct-
ing their arrival directions and energies.

3.1. FEwvent Selection

The procedure for rejecting the atmospheric muon
background depends on the event topology of interest.
Neutrino-induced muon tracks with energies 2 1TeV
originating in the northern sky can be selected with
high efficiency and low atmospheric muon contamina-
tion by identifying events reconstructed at declinations
0 2 5° with high confidence, as only neutrinos can travel
through so much intervening earth and/or ice before pro-
ducing muons that pass through the detector. Neutrino-
and cosmic ray-induced muon tracks originating in the
southern sky and entering the detector from above can
only be distinguished probabilistically, and only under
the assumption that the neutrino spectrum is harder
than the atmospheric muon spectrum. Thus the energy
threshold increases to ~ 100 TeV in the southern sky,
resulting in weaker sensitivity especially for a soft neu-
trino spectrum.

In this work, we instead turn our attention to cascade
events produced when the neutrino interaction vertex,
and hence first observed light, occurs inside the detec-
tor. With this approach we accept all neutrino flavors
and most interaction types, approximately independent
of declination, while efficiently rejecting downgoing at-
mospheric muons. An added benefit for astrophysi-
cal neutrino searches is that for declinations < —30°
the atmospheric neutrino background is naturally sup-
pressed because many are accompanied by incoming at-
mospheric muons originally produced in the same cos-
mic ray shower in the upper atmosphere (Schonert et al.
2009).

Most Cherenkov light from a muon traveling through
ice is radiated through stochastic processes, resulting in
a dense, linear series of cascade-like signatures that may
be observed in our detector. The mean distance between
these energy deposits decreases with increasing energy.
For energies 2 60 TeV, incoming muons can be rejected
with high confidence using a veto region consisting of
just the outermost DOMs, reserving the majority of the
instrumented region as a fiducial volume for neutrino
detection (Aartsen et al. 2014b). To lower the threshold
to ~ 1TeV while holding the incoming muon rejection
rate constant, the thickness of the veto region must be
increased. Below we summarize this method, which is
used as described in Wandkowsky & Weaver (2018) and
which further optimizes the approach first introduced in
Aartsen et al. (2015a).



We begin with all events passing one or more basic
filters at the South Pole. A splitting algorithm is ap-
plied to each event, identifying ~ 75% of unrelated but
temporally coincident physical events initially merged
in the DAQ output by clustering causally connected
sets of pulses. We reject any event in which the first
> 3 pulses appear in the outer layer veto region as de-
scribed in Aartsen et al. (2013a). An additional veto
is applied to reject events in which two or more PE
are observed consistent with a downgoing track passing
through the interaction vertex or a major energy depo-
sition. Finally, a cut is applied on the interaction vertex
location, scaling with observed charge as described in
Aartsen et al. (2015a) such that at 100 PE the fiducial
volume is reduced to just the DeepCore sub-array, while
at > 6000 PE the fiducial volume consists of all but the
outermost layer of DOMs. This final cut enables effi-
cient background rejection down to ~ 1TeV by keeping
the probability of observing veto photons approximately
independent of energy.

We rely on a traditional maximum likelihood method
(Aartsen et al. 2014a) to obtain initial reconstructions
used for cascade/track discrimination. The goal of this
reconstruction is to unfold the spatial and temporal pat-
tern of energy depositions for each event. Two fits are
performed: one which is constrained to find a single
dominant cascade-like energy deposition, and one which
finds a linear combination of such energy depositions dis-
tributed along a possible muon track. Events in which
at least 6000 PE were collected are classified as tracks
if the free track fit finds at least two non-negligible de-
positions more than 500 m apart, or if the free track fit
is associated with more charge than the single cascade
fit. Events with less total collected light are classified as
tracks if at least 1.5 PE are consistent with an outgoing
muon track originating at the reconstructed interaction
vertex (Wandkowsky & Weaver 2018). All other events
are classified as cascades and are used in the present
analysis.

The selection criteria described above were applied
to data taken from May 2010 to May 2017 as well as
to neutrino and atmospheric muon Monte Carlo (MC)
simulations used for performance estimates. The first
year of data comes from the nearly-complete 79-string
configuration while the remaining six years make use
of the complete 86-string detector. In a total of 2428
days of IceCube livetime, 10422 events survive until cas-
cade/track discrimination; of these, 1980 are identified
as cascades. Note that while the dominant improvement
in this dataset is the increase from two to seven years
of data, the neutrino effective area is also enhanced by
applying coincident event splitting and veto criteria to

5

data from every initial South Pole filter. This increases
the acceptance by 23% (67%) for a signal following an
E=2 (E~3) spectrum.

From MC simulations, we find that 98% of truly
cascade-like events which pass all selection criteria are
correctly identified as such. The rate at which CC muon
neutrino interactions are successfully classified as track
events increases with energy as more light is produced
by the outgoing muon. For a conventional atmospheric
neutrino spectrum, 30% of the cascade channel consists
of misclassified CC muon neutrino interactions; for an
astrophysical spectrum following E~2"° or harder, this
contribution reduces to 5% or less. This population of
misclassified events results in a tolerable background at
lower energies as well as a small signal contribution at
higher energies.

Because muon track analyses specifically target events
with high quality track reconstructions and reject events
dominated by individual cascade-like energy deposi-
tions, we expect the cascade analysis to be largely sta-
tistically independent in spite of the small but nonzero
misclassification rate. In fact, the final cascade selection
shares just a single ~ 2TeV event in common with the
latest muon track selection.

3.2. Event Reconstruction

In past work, we have used a maximum likelihood
method to reconstruct neutrino energy and direction
of travel from IceCube cascades (Aartsen et al. 2014a).
This approach relies on detailed parameterizations of the
position- and direction-dependent light absorption and
scattering lengths in the ice, neither of which is large
compared to the DOM spacing. This results in a com-
plex multi-dimensional likelihood function with many
local optima in the right ascension and declination co-
ordinates (o, d), such that it is computationally expen-
sive to find the global optimum for any given event and
prohibitive to estimate the per-event statistical uncer-
tainties.

In this work, we introduce a novel cascade reconstruc-
tion using a deep Neural Network (NN). A NN is a highly
flexible function mapping from an input layer to an out-
put layer via a series of hidden layers, where each suc-
cessive layer consists of a set of values computed based
on the values contained in the previous layer. The func-
tional forms of the layer-to-layer connections (the net-
work architecture) must be designed a priori; the nu-
merical parameters of those connections are optimized
through a training procedure to yield good results for a
given training dataset. NNs are well-suited to problems
in high energy physics for which we are typically able to
generate high-statistics MC datasets for use in training.
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Our NN-based reconstruction draws from recent ad-
vances in image recognition and is implemented using
Tensorflow (Abadi et al. 2015). The network architec-
ture used here is largely the same as one introduced
previously for muon energy reconstruction (Huennefeld
2018). The method will be described in detail in a sepa-
rate publication, but here we will outline the main con-
siderations relevant in this analysis.

IceCube data consists of a set of waveforms (repre-
sented as a series of pulse arrival times and PE counts)
accumulated over time on a number of DOMs dis-
tributed throughout the three-dimensional instrumented
volume, and thus is in general four-dimensional. Our
first step is to compute waveform summary values for
use in the input layer. For each DOM, these values
consist of the relative time of the first pulse; the time
elapsed until 20%, 50%, and 100% of the total charge
is collected; the total charge collected; the charge col-
lected within 100 ns and 500 ns of the first pulse; and the
charge-weighted mean and standard deviation of relative
pulse arrival times.

The detector is divided into three sub-arrays: IceCube,
lower DeepCore, and upper DeepCore. Each sub-array
is independently well-approximated by a regular spatial
grid suitable for processing by several initial convolu-
tional layers, which are able to exploit symmetries in the
structure of the input data to facilitate efficient network
optimization and usage! (see Huennefeld (2018) for di-
agrams of the relevant geometry). The output from
the convolutional layers is taken as the input for each
of two fully-connected neural networks (in which each
node in a given layer is connected to every node in the
preceding layer). One of these networks is optimized to
estimate the physical parameters of interest — the right
ascension, declination, and energy («,d, E) — while the
other is optimized to estimate the uncertainties on these
parameters.

All training was performed using 50% of the rele-
vant signal MC, with the remaining 50% reserved for
testing analysis-level performance. Two training passes
were performed. The first pass made use of several MC
datasets: one with baseline values for key parameters
such as DOM quantum efficiency and light absorption
and scattering lengths, and several more with modi-
fied values within estimated systematic uncertainties.
In addition to offering overall increased training statis-
tics, the use of these differing datasets may give the
NN some robustness against known systematic uncer-
tainties. The second training pass refined the network

L Alternative methods are being developed to avoid the reliance
on regular detector geometry.
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Figure 1. Expected angular reconstruction performance
as a function of neutrino energy, estimated using MC and
including systematic uncertainties (see Section 5.2). Shaded
regions indicate the radii of error circles covering 20%, 50%,
and 80% of events.

to give the smallest errors and, on-average, unbiased re-
constructions for the baseline MC. In each pass, a priori
per-parameter weighting was applied such that angular
resolution is valued over energy resolution by a factor
of 5.

The expected performance of the NN angular re-
construction (including systematics; see Section 5.2) is
shown as a function of energy in Figure 1. Compared
to the reconstructions used in our previous analysis of
two years of data (Aartsen et al. 2017d), the NN offers
significantly improved angular resolution above 10 TeV
(a factor of 2 improvement at 1PeV). While we do not
recover the optimal statistics-limited angular resolution
described in Aartsen et al. (2014a), we do obtain per-
formance that improves monotonically with increasing
energy up to ~ 1PeV. At higher energies, the esti-
mated systematic uncertainty becomes large enough to
prevent any further improvement. Note that an addi-
tional advantage of the NN angular reconstruction used
here is that it naturally provides per-event uncertainty
estimates usable in the statistical analysis described in
Section 5.1, whereas previous work relied on a param-
eterization of typical uncertainties derived from signal
MC.

The performance of the energy reconstruction is com-
parable to that used in previous work. The estimated
energy is within 60% of the true neutrino energy for 68%
of events, averaged over all neutrino flavors and interac-
tion types, and approximately independent of spectrum.
This performance estimate, like the sensitivities quoted
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in Section 5.3, assumes a flavor ratio of 1:1:1 with equal
contributions from v and 7, detected via a mixture of
CC and NC interactions.

The energy and declination distributions of cascade
events in data are compared with neutrino and atmo-
spheric muon MC in Figure 2. The distributions ob-
tained are similar to those observed in the two year sam-
ple (Aartsen et al. 2015a, 2017d).

4. SOURCE CANDIDATES

In this work, we search for neutrino emission from
a number of Galactic and extra-Galactic source candi-
dates. Each candidate has been studied previously by
IceCube, by ANTARES, a neutrino observatory located
deep in the Mediterranean sea (Ageron et al. 2011), or
by both, such that direct comparisons can be drawn
between the results presented here and past work using
IceCube tracks and all interaction flavors in ANTARES.
In this section, we outline the neutrino emission scenar-
ios that we have considered.

4.1. Point-like Source Candidates

One way to search for astrophysical neutrino sources
with only a minimal set of a priori assumptions about
source position is to search the entire sky for the most
significant point-like neutrino clustering in excess of
the background expectation on a dense grid of pixels
that are small compared to the neutrino angular reso-
lution. This approach has most recently been employed
by IceCube using tracks (Aartsen et al. 2017a) and cas-
cades (Aartsen et al. 2017d) as well as by ANTARES
using tracks and cascades in combination (Albert et al.

2017a), and we include it in the present analysis as well.
However, an all-sky scan is subject to a large trial factor
and thus is in general less sensitive compared to analyses
that use prior information to restrict the set of hypoth-
esis tests.

An alternative approach is to scan only the positions
of a modest number of well-motivated source candidates,
which substantially reduces the trial factor. In addition,
where multiple analyses report results for the same or
overlapping catalogs, direct comparisons can be made.
Here we scan the same catalog of 74 source candidates
that was studied in the previous IceCube cascade pa-
per (Aartsen et al. 2017d).

We consider one source in more detail: the supermas-
sive black hole at the center of the Galaxy, Sagitarius
A*. Based on hints from gamma-ray observations (e.g.
Herold & Malyshev 2019), there may be emission up
to some unknown high energy cutoff from a spatially
extended region centered approximately on this object.
Therefore we evaluate constraints on the flux from this
region as a function of possible spatial extension and for
several possible spectral cutoffs.

The gamma-ray blazar TXS 05064056 does not ap-
pear in the a priori catalog described above. In light of
this, and in anticipation of future identifications of unex-
pectedly promising source candidates based on neutrino
observations, we treat this object as a monitored source
to be studied separately from the catalog scan described
above.

For source classes for which we can predict approx-
imate relative signal strengths, it may be possible to
increase the signal-to-background ratio using a source-
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stacking method (e.g. Abbasi et al. 2011). Because the
present analysis offers good sensitivity in the southern
sky, roughly independent of possible spatial extension
up to a few degrees, we include stacking analyses for
three Galactic supernova remnant (SNR) catalogs de-
rived from SNR Cat (Ferrand & Safi-Harb 2012) and
previously studied using IceCube tracks (Aartsen et al.
2017b). These SNRs are categorized based on their envi-
ronment: those with associated molecular clouds, those
with associated pulsar wind nebulae (PWN), and those
with neither. The angular extension of these objects
reach up to 1.63°, and each catalog comprises a prepon-
derance of objects in the southern sky.

4.2. Diffuse Galactic Emission

Cosmic ray interactions with interstellar gas in the
Milky Way are expected to produce neutral and charged
pions, where neutral pions would decay to observable
gamma rays and charged pions would yield potentially
observable neutrinos. The hadronic gamma-ray emis-
sion up to 100 GeV has been identified by Fermi-LAT
using a multi-component fit (Ackermann et al. 2012). A
corresponding neutrino flux prediction can be obtained
by extrapolating this measurement to energies above
1TeV in the context of Galactic cosmic ray production
and propagation models.

The original model fits by Fermi somewhat under-
predict the measured gamma ray flux in the Galactic
plane, and especially near the Galactic center, above
10GeV. The KRA, models obtain better agreement
with gamma ray data in this regime by introducing
galactocentric cosmic ray diffusion parameter variabil-
ity and an advective wind (Gaggero et al. 2015, 2017).
Model-dependent neutrino flux predictions are provided
assuming cosmic ray injection spectra with exponential
cutoffs at 5 PeV or 50 PeV per nucleon; we refer to these
as KRA,5Y and KRAiO7 respectively.

The latest constraints on diffuse Galactic neutrino
emission depend on the KRA, models and were ob-
tained in a joint IceCube and ANTARES analysis (Al-
bert et al. 2018) which made use of complimentary fea-
tures of the IceCube track analysis (Aartsen et al. 2017b)
and ANTARES track and cascade combined analysis
(Albert et al. 2017b). In this work we search for emission
following KRAi as the primary diffuse Galactic emission
result; we also test for emission following KRA:O. Fi-
nally, we test for emission following the spatial profile
of the Fermi-LAT 7%-decay measurement, assuming an
E~25 neutrino energy spectrum.

4.3. Fermi Bubbles

The Fermi bubbles consist of a pair of gamma ray
emission regions that extend to ~ 55° above and below

the Galactic center (Su et al. 2010). Most of the Fermi
bubble region yields a relatively hard gamma ray spec-
trum up to ~ 100 GeV, with some evidence for spectral
softening above that energy (Ackermann et al. 2014).
The gamma-ray emission has been speculated to be of
hadronic origin (Crocker & Aharonian 2011), powered
by cosmic ray acceleration in the vicinity of the Galac-
tic Center; however, the true origin of the Fermi bubbles
has not yet been experimentally identified.

We derive constraints on emission from the Fermi
bubbles following spectra of the form dN/dE o« E~218.
exp(—E/Ecut), for Eqyy € {50TeV, 100 TeV, 500 TeV}
— the same spectra tested in recent work by ANTARES
(Hallmann & Eberl 2018). If there is neutrino emission
from the Ferm: bubbles with a significantly softer spec-
trum or lower cutoff energy, this analysis would not be
sensitive to it.

5. ANALYSIS METHODS AND PERFORMANCE

The source searches described in the previous sec-
tion use established methods from recent IceCube work.
In this section, we review the statistical methods and
describe the systematic uncertainty treatment applied
here. Then we discuss the sensitivity of this analysis to
the source candidates under consideration.

5.1. Statistical Methods

In this work we consider two broad categories of source
candidates: point-like and extended template, where
the latter include diffuse Galactic emission and emis-
sion spanning the Fermi Bubbles. Both analysis types
are based on the standard likelihood (Braun et al. 2008)
given by a product over all events ¢ in the dataset:

L) = [T [Fs@Em + (1-5) 8@

where NV is the total number of events; ng is the expected
number of signal events; « is the signal spectral index; &;
represents the event right ascension, declination, angular
uncertainty, and energy {a;,d;,0;, Fi}; Si(@;|y) is the
probability density function (PDF) assuming event i is
part of the signal population; and B;(#;) is the PDF
assuming event 7 is part of the atmospheric or unrelated
astrophysical background populations. For all source
types, n, is free to vary between 0 and N. For point-
like sources, the signal spectral index + is free to vary
between 1 and 4, while for extended templates v is fixed
to a source-dependent constant value (y = 2.5 for diffuse
Galactic emission and v = 2.18 for emission from the
Fermi bubbles).

The details of our signal and background likelihoods,
S; and B;, follow established methods applied previ-
ously to IceCube tracks for individual (Aartsen et al.



2017a) and stacked (e.g. Abbasi et al. 2011) point-like
sources as well as for extended templates (Aartsen et al.
2017b). We do not require a specialized treatment, in
contrast to our previous cascade analysis (Aartsen et al.
2017d), thanks to increased statistics in the experimen-
tal dataset as well as new per-event angular uncertainty
estimates given by the NN reconstruction.

As in previous work, we define the test statistic as
the log likelihood ratio 7 = —2In{L(n, = 0)/L(7s,%)},
where 7s and 4 are the values which maximize £, sub-
ject to the constraints specified above. This test statis-
tic is used to compute significances, sensitivities, discov-
ery potentials, and upper limits (ULs). For the all-sky
(source candidate catalog) scan, we compute a post-
trials significance based on the most significant pixel
(source candidate) tested, in order to guarantee the re-
ported false positive rates. Sensitivities (90% CL), up-
per limits (90% CL), and discovery potentials (50) are
defined as in our previous analysis (Aartsen et al. 2017d)
and are computed using the Neyman construction (Ney-
man 1937).

5.2. Systematic Uncertainties

The dominant systematic uncertainties in this analy-
sis include the optical properties of the ice, the quan-
tum efficiency of the DOMs, and the neutrino interac-
tion cross section. These uncertainties affect the angular
resolution and the signal acceptance. As in our previ-
ous cascade analysis (Aartsen et al. 2017d), we treat
these effects as approximately separable. However, we
have improved our approach to each consideration; we
describe our latest method in the following.

The NN reconstruction is trained to yield optimal per-
formance on baseline MC; the angular resolution for real
data events will be somewhat worse. To estimate how
much worse, we perform dedicated simulations of events
similar to those observed, but using depth-dependent ice
model variations intended to cover the uncertainties in
the model. By comparing the median resolution from
these modified simulations with that from the baseline
MC, we obtain a function of energy that quantifies how
much worse the resolution may be than expected from
the baseline. This factor ranges from 10% at 1TeV to
~ 50% at 2PeV, and is taken as a correction to the
angular separation between the reconstructed and true
direction for each event in the baseline MC. This factor
is similarly applied to the angular uncertainty estimates
o; for both MC and data events. In this way, we directly
account for systematic uncertainties impacting angular
resolution in the quantiles shown in Figure 1 as well as
in all p-values and sensitivity flux calculations in the
analysis.

9

The above treatment accounts for the analysis-level
impact of systematic uncertainties for each observed
event. To address the uncertainties in the detection effi-
ciency, and thus in sensitivity, discovery potential, and
upper limit fluxes, we compute the energy-integrated
signal acceptance, as a function of declination and for
each considered spectrum, based on additional MC
datasets produced with varied modeling assumptions
(the same modified datasets used in NN training; see
Section 3.2). We find that for plausible ice model and de-
tector variations, the signal acceptance variation ranges
from ~ 10% for an unbroken E~2 spectrum to ~ 17%
for E~2 with an exponential cutoff at 100 TeV, roughly
independent of declination. As was done in the previous
analysis, we estimate an uncorrelated 4% impact from
uncertainties in the neutrino interaction cross section.
These values are added in quadrature on a per-spectrum
basis to obtain a final estimate of uncertainties via signal
acceptance effects. In the remainder of this paper, all
sensitivity, discovery potential, and upper limit fluxes
include this factor.

5.3. Sensitivity

All sensitivities discussed in the remainder of this pa-
per are per-neutrino flavor (assuming a flavor ratio of
1:1:1 at the detector), but summed over v and 7. The
point source sensitivity flux as a function of source decli-
nation is shown in Figure 3 for several spectral scenarios:
unbroken power laws following hard (y = 2) and soft
(v = 3) spectra, and spectral cutoff scenarios dN/dE
E=2 . exp(—E/Ey) with E.y € (100 TeV, 1PeV, >
1PeV). Where published values are available for pre-
vious IceCube work with tracks (Aartsen et al. 2017a)
or cascades (Aartsen et al. 2017d), or for the most re-
cent ANTARES track and cascade combined analysis
(Albert et al. 2017a), these are shown for comparison.
We find that the present analysis improves upon the
previous IceCube work with cascades at all declinations
and across the tested spectra, with the largest improve-
ments reaching a factor larger than 4 in the southern sky.
Furthermore, we now obtain the best sensitivity of any
analysis for hard sources in the southern-most ~ 30%
of the sky (sin(d) < —0.4). This search also achieves
sensitivity comparable to that of ANTARES for spectra
with cutoffs as low as E.,; = 100 TeV, but with much
weaker declination dependence.

The sensitivities of the SNR stacking analyses are
listed in Table 1. In this work we obtain a sensitiv-
ity below previously set ULs (Aartsen et al. 2017b) only
for the SNR-with-PWN catalog, which consists of eight
southern SNRs and one northern SNR. It is neverthe-
less interesting to revisit all three catalogs here because,
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Figure 3. Per-flavor sensitivity as a function of sin(d) to point sources following an unbroken E~2 spectrum (left), unbroken
E~3 spectrum (center), and E~2 spectrum with some possible exponential cutoffs (right). This work is labeled as 7yr Cascades.
Past IceCube work shown here includes includes 2yr Cascades (Aartsen et al. 2017d) and 7yr Tracks (Aartsen et al. 2017a);

ANTARES curves are taken from Albert et al. (2017a).

while they all include southern source candidates, in
previous work the results necessarily were dominated
by northern candidates due to the strongly declination-
dependent signal acceptance of the IceCube track selec-
tion.

The sensitivities of the diffuse Galactic template
analyses are listed in Table. 2. This analysis obtains
~ 30% (40%) better sensitivity to KRAi (KRAiO) than
the recent joint IceCube+ANTARES analysis (Albert
et al. 2018). Compared to the IceCube analysis using
seven years of tracks (Aartsen et al. 2017b), this analysis
obtains ~ 15% better sensitivity to emission following
the spatial profile of the Fermi-LAT m°-decay measure-
ment. These improvements are possible because the
expected emission follows a soft (v ~ 2.5) spectrum and
is concentrated near the Galactic center at § ~ —30°,
where IceCube track analyses are subject to a large
background of atmospheric muons but the present cas-
cade analysis efficiently rejects this background as well
as some of the atmospheric neutrino background; the
improvement is larger for the KRA, models than for the
Fermi-LAT 7° model because the former are specifically
tuned to increase the concentration of the expected flux
near the Galactic center.

The sensitivity flux for the Fermi Bubble analyses is
~ 30% below the upper limits shown in Figure 8, ap-
proximately independent of spectral cutoff. This analy-
sis obtains sensitivity that is at least one order of mag-
nitude better than the recent ANTARES search (Hall-
mann & Eberl 2018), with the improvement increasing
with spectral cutoff energy, F..;. Because we assume an
even more extended template than ANTARES, covering
a total solid angle of about 1.18 sr compared to ~ 0.66 sr,
this factor is even larger if considered in terms of flux
per solid angle. Once again, this improvement is due

to efficient rejection of atmospheric backgrounds for the
cascade dataset used in this work.

6. RESULTS

The result of the unbiased all-sky scan is shown in
Figure 5. The most significant source candidate was
found at (o, §) = (271.23°,7.78°) with a pre-trial p-value
of 1.8x1073 (2.90), corresponding to a post-trial p-value
of 0.69.

The results of the source candidate catalog scan are
tabulated Table 3. The most significant source was
RX J1713.7-3946, a well-known SNR that is also in-
cluded in the SNR-alone catalog. For this source candi-
date we found a pre-trial p-value of 5.0 x 1073 (2.60),
corresponding to a post-trial p-value of 0.28. Flux up-
per limits for each source are plotted, along with the
sensitivity and 5o discovery potential of this analy-
sis, in Figure 4 as a function of source declination for
each of the benchmark point source spectra discussed
in the previous section. For the one monitored source,
TXS 05064056, we find ny = 0. Note that the mea-
sured flux for TXS 0506+056 is just E? - dN/dE ~
10712 TeVem =251, or about 5x lower than the cas-
cade sensitivity at § = 5.69°, and thus the null result
we find here is consistent with previous results (Aartsen
et al. 2018b).

We set constraints on extended emission in the vicin-
ity of the supermassive black hole at the center of the
Galaxy, Sagitarius A*, in Figure 6. For this object we
find a small but non-zero best fit (ppre = 0.357). We
then compute ULs, assuming a spectrum of the form
dN/dE < E~2-exp(E/E.y) for various choices of ey,
as a function of possible Gaussian source extension,
Osgr A+ € [0,5°]. In these calculations, we include the
source extension only in the signal simulation but not
in the likelihood test. The relative independence of this
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Figure 4. Per-flavor sensitivity, discovery potential, and source candidate upper limits as a function of sin(d), for point sources
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Tyr Cascades Tyr Tracks
Catalog Sensitivity p-value ns v UL p-value ns v UL
SNR with mol. cloud 9.9 0.12 172 376 24 0.25 16.5 3.95 2.23
SNR with PWN 6.3 1 0 — 6.3 0.34 936 395 11.7
SNR alone 7.5 0.082 82 242 15 0.42 3.82 225 2.06

Table 1.

Sensitivity and results of the SNR stacking analyses, compared to the previous analysis with tracks (Aartsen et al.

2017b). Sensitivity and ULs are given as E? - (F/100 TeV)%® . dN/dE in units 107'2 TeV cm ™2 s.

Tyr Cascades

Previous Work

Template p-value Sensitivity Fitted Flux UL p-value Sensitivity Fitted Flux UL
KRA?, 0.021 0.58 0.85 1.7 0.29 0.81 0.47 1.19
KRAZ® 0.022 0.35 0.65 0.97 0.26 0.57 0.37 0.90
Fermi-LAT #°  0.030 2.5 3.3 6.6 0.37 2.97 1.28 3.83

Table 2.

Sensitivity and results of the diffuse Galactic template analyses, compared to latest previous work: a joint

IceCube-ANTARES (Albert et al. 2018) for KRA, models, and seven years of IceCube tracks (Aartsen et al. 2017b) for
Fermi-LAT7® decay. Sensitivity, fitted flux, and ULs are given as multiples of the model prediction for KRA., models, and as
E? . (E/100TeV)®® - dN/dE in units 107" TeVem 257! for Fermi-LAT 7° decay.

result with respect to assumed source extension under-
scores the importance of atmospheric background rejec-
tion at the event selection level, relative to per-event an-
gular reconstruction, in the overall performance of this
analysis.

The results of the SNR stacking analyses are shown in
Table 1. We find n, = 0 for SNR with PWN and mild
excesses for the other two catalogs, the most significant
of which is an excess with p = 0.082 for SNR alone. The
SNR-~with-PWN category is the only one for which this
analysis finds a sensitivity flux below the previous UL
from the track analysis (Aartsen et al. 2017b); the UL
found here constitutes a reduction of ~ 50%.

The results of the diffuse Galactic extended template
analyses are shown in Table 2. The primary hypothesis
test, for emission following the KRAi model, was also
the most significant with a p-value of 0.021 (2.00) and
a best-fit flux? of 0.85 x KRA?Y. The best-fit fluxes for
each template are consistent with ULs set by previous
work (Aartsen et al. 2017b; Albert et al. 2018).

Prior to this analysis, the most significant (1.50) in-
dication for diffuse Galactic emission came from an
IceCube analysis using a spatially-binned method and
only events originating in the northern sky in order to

2 Note that fitted fluxes, unlike ULSs, are central values and are
thus not subject to the penalty factors described in 5.2
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Figure 5. Pre-trial significance as a function of direction,
in equatorial coordinates (J2000), for the all-sky scan. The
galactic plane (center) is indicated by a grey curve (dot).

constrain the spectrum of possible emission following the
Fermi-LAT 7 template (Aartsen et al. 2017b). As an
a posteriori test, we extend the template analysis de-
scribed in Section 5.1 to include the spectral index -~y
as a free parameter. A 2D scan of the resulting likeli-
hood for the Fermi-LAT «° model is shown in Figure 7,
with contours from the spatially-binned track analysis
shown for comparison. In both analyses, the best fit
is obtained for a harder spectrum close to v = 2, with
both normalization and spectral index consistent within
less than 1o. These independent results would remain
statistically insignificant even under a combined analy-
sis. Nevertheless, they are consistent with each other
and with a possible astrophysical signal, potentially im-
perfectly tracing the spatial dependence prescribed by
the KRA, and Fermi-LAT 7% models, at a level only
starting to approach the reach of existing detectors and
methods.

For emission from the Fermi bubbles, we obtain ng =
5.2, with a p-value of 0.30 (0.510). Flux upper limits
based on these tests are shown in Figure 8. In the ab-
sence of significant emission, we set the most stringent
limits to date on possible high energy neutrino emission
from this intriguing structure.

7. CONCLUSION AND OUTLOOK

In this work, we apply a novel NN reconstruction to
seven years of IceCube cascade data in order to search
for high energy neutrino emission from a number of as-
trophysical source candidates. By improving the an-
gular resolution and time-integrated signal acceptance
with respect to our previous analysis using two years of
data (Aartsen et al. 2017d), we obtain significant gains
in sensitivity, with the best sensitivity of any experi-
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FEcyt = 100 TeV

Ecut = 500 TeV

No cutoff

= No cutoff, ANTARES 2017

w
1

L
-
-

-——.—_—:=ﬁ"’;—/

) -

0 T 1 T
0 1 2 3 4 5

extension o [°]

Figure 6. Per-flavor upper limit for Sagitarius A*,
as a function of possible angular extension, including for
some choices of a possible exponential cutoff energy, Ecut.
ANTARES curves are taken from Albert et al. (2017a).

ment to date for sources concentrated in the southern
sky. Nevertheless, we did not find significant evidence
for emission from any of the sources considered.

While we have considered several neutrino source can-
didates, the ensemble of tests is far from exhaustive.
We have begun to revisit multi-wavelength EM data in
an effort to identify new catalogs of sources of inter-
est for individual and stacking analyses. Furthermore,
as in our previous paper (Aartsen et al. 2017d), we
have still used IceCube cascades primarily in just time-
integrated analyses. In future work we intend to explore
time-dependent source candidates, including e.g. high-
variability blazars as well as transients such as gravi-
tational wave candidates reported by Advanced LIGO
(Abbott et al. 2016). The NN reconstruction is espe-
cially promising for rapid follow-up of transient source
candidates because once the NN is trained, compute
time for the reconstruction is negligible.

In future work, we plan to revisit the event selec-
tion criteria. The selection used in this paper already
achieves very good rejection of atmospheric backgrounds
using explicit cuts on low-level parameters in the data.
However, it is possible to improve the signal accep-
tance by including machine learning methods not only
in the cascade reconstruction but in the event selection
as well (e.g. Niederhausen & Xu 2018).

Finally, we have deliberately attempted to maintain
statistical independence between this analysis and oth-
ers performed using IceCube tracks. We have sepa-
rately developed multiple throughgoing (e.g. Aartsen



et al. 2017a, 2016b) and starting (Aartsen et al. 2016a,
2019) track selections, each with differing energy- and
declination-dependent background rates and signal ac-
ceptances. Combined analyses using tracks and cas-
cades may offer the best sensitivity achievable using
the existing IceCube detector alone. Joint IceCube—
ANTARES analyses so far have not included IceCube
cascades (Adrian-Martinez et al. (2016), updated results
in preparation). All-flavor, multi-detector analysis will
likely give the best possible sensitivity in a future anal-
ysis.
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Figure 7. A posteriori likelihood scan of spatially-

integrated, per-flavor Galactic flux as a function of normal-
ization and spectral index. Solid (dashed) contours indicate
68% (95%) confidence regions. Grey contours show the re-
sult of past IceCube work using tracks from the northern sky
(Aartsen et al. 2017b), for comparison.

dN/dE < E=*'% . exp(—E/Eecy)

10-8 4 FEcue = 50TeV == ANTARES 2017
T 1= Ecut =100TeV  mmmm 7yr Cascades
e ] = E.¢ = 500 TeV
' | == No cutoff
-9 |
g 10775
z e -
1 L
1010 4 oy
o E
= ]
= ]
T 1071 4
o E
Eq .
10_12 LA LI | T LR | T LR |
10* 10° 108
E [GeV]
Figure 8. Per-flavor upper limits, shown as functions

of neutrino energy, for emission from the Fermi Bubbles.
Various exponential cutoffs are considered as indicated in
the legend. The horizontal span of each curve indicates the
energy range containing 90% of signal events for each spectral
hypothesis based on signal MC. Space-integrated fluxes are
shown; our Fermi bubble template spans a total solid angle
of 1.18 sr while the template used by ANTARES (Hallmann
& Eberl 2018) spans a total solid angle of ~ 0.66sr.
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Table 3. Summary of the source catalog search. The type, common name, and equatorial coordinates (J2000) are
shown for each object. Where non-null (75 > 0) results are found, the pre-trials significance ppre and best-fit s and 4
are given. ULs are expressed as E2 - dN/dE, in units 1072 TeV, at E = 100 TeV for unbroken E~2 and E~2 spectra
(@2 and 3 respectively) as well as at E < 100 TeV for a spectrum with dN/dE o« E~2 - exp(E/100 TeV) (®2c).

Type Source a(°) 0 (°) ppre Ns F Py D3 Do
BL Lac PKS 2005-489 302.37 —48.82 0.222 70 3.8 53 4.1 15
PKS 0537-441 84.71 —44.09 S 00 --- 3.6 2.6 10
PKS 0426-380 67.17 —37.93 S 00 --- 3.6 27 10
PKS 0548-322 87.67 —32.27 0.457 05 24 4.1 3.1 11
H 2356-309 359.78 —-30.63 0.452 00 --- 3.8 2.8 11
PKS 2155-304 329.72 —30.22 0.452 0.0 --- 38 2.8 10
1ES 1101-232 165.91 —23.49 0.030 3.6 23 9.2 7.4 25
1ES 0347-121 57.35 —11.99 . 00 --- 38 33 10
PKS 02354164 39.66 16.62 S 04 33 56 3.6 11
1ES 02294200 38.20 20.29 0459 00 --- 58 3.7 12
W Comae 185.38 28.23 0475 00 --- 6.0 34 11
Mrk 421 166.11 38.21 0.373 00 --- 7.0 3.5 13
Mrk 501 253.47 39.76 0373 00 --- 7.1 3.4 13
BL Lac 330.68 4228 0.160 6.5 34 99 5.0 18
H 14264428 217.14 42.67 0.311 1.1 28 79 3.8 14
3C66A 35.67 43.04 0.351 00 --- 74 3.5 13

1ES 23444-514 356.77 51.70 0.119 7.5 40 13 5.5 23
1ES 19594-650 300.00 65.15 0.137 6.1 4.0 20 5.2 30

S5 0716471 110.47 71.34  0.480 1.5 33 13 2.9 20
Flat Spectrum Radio Quasar PKS 1454-354 224.36 —35.65 0487 0.6 34 3.6 2.8 10
PKS 1622-297 246.52 —29.86 0.315 4.2 4.0 48 3.7 13
PKS 0454-234 7427 —2343 0483 00 --- 3.6 2.9 9.9
QSO 1730-130 263.26 —13.08 0.162 1.2 1.7 6.5 5.9 19
PKS 0727-11 112,58 —11.70 0.293 11.1 3.6 5.5 4.8 15
PKS 1406-076 212.23  —7.87 ... 00 --- 38 34 10
QSO 2022-077 306.42 —7.64 -»+ 00 --- 38 33 10
3C279 194.05 —5.79 .- 1.1 25 39 34 10
3C 273 187.28 2.06 0435 23 25 46 3.9 11
PKS 1502+106 226.10 10.49 S 27 38 53 3.7 11
PKS 0528+134 82.73 13.53 -+ 00 --- 54 37 12
3C 454.3 343.49 16.15 0.288 1.9 21 8.0 5.3 17
4C 38.41 248.81 38.13 0373 00 --- 7.1 3.5 13
Galactic Center Sgr A* 266.42 —29.01 0.357 2.2 3.0 45 3.5 12
HMXB/mgso Cir X-1 230.17 —-57.17 0.400 00 --- 3.7 25 11
GX 339-4 255.70 —48.79 0.016 59 21 92 6.6 26

Table 8 continued



Table 3 (continued)

Type Source a (%) 0(°)  Ppre s ¥ Py D3 DPoc
LS 5039 276.56 —14.83 0.459 4.6 3.6 43 34 11
SS433 287.96 4.98 0.011 309 3.1 14 10.0 33
HESS J06324-057  98.25 5.80 0.0 4.7 34 11
Cyg X-1 299.59 35.20 0.130 86 3.0 11 5.4 20
Cyg X-3 308.11 4096 0.150 7.7 32 11 5.0 19
LST 303 40.13 61.23 0.0 10 29 16
Massive Star Cluster HESS J1614-518 63.58 —51.82 0.0 36 25 11
Not Identified HESS J1507-622 226.72 —62.34 0.287 0.0 4.1 2.8 12
HESS J1503-582  226.46 —58.74 0.353 0.0 39 27 11
HESS J1741-302  265.25 —30.20 0.201 5.5 3.0 58 4.4 16
HESS J1837-069 98.69 —8.76 0470 43 34 39 35 10
HESS J1834-087  278.69 —8.76 0.102 223 35 7.5 6.6 20
MGRO J1908+06 286.98 6.27 0.018 283 3.0 14 96 32
Pulsar Wind Nebula HESS J1356-645  209.00 —64.50 0.286 0.0 38 28 12
PSR B1259-63 197.55 —63.52 0.287 0.0 4.0 2.8 12
HESS J1303-631 195.74 —63.20 0.287 0.0 4.0 238 12
MSH 15-52 228.53 —59.16 0.353 0.0 39 27 11
HESS J1023-575  155.83 —57.76 0.096 4.7 4.0 5.7 44 17
HESS J1616-508 243.78 —51.40 0.146 1.7 1.7 6.1 4.4 18
HESS J1632-478 248.04 —47.82 0.044 3.8 20 83 6.0 24
Vela X 128.75 —45.60 0.1 2.0 3.8 2.7 11
Geminga 98.48 17.77 0.0 55 3.7 11
Crab Nebula 83.63 22.01 0.461 0.0 6.0 3.6 12
MGRO J2019+37 305.22 36.83 0.182 6.8 3.0 9.8 4.9 18
Seyfert Galaxy ESO 139-G12 264.41 —59.94 0.247 1.6 2.6 46 3.3 13
Star Formation Region Cyg OB2 308.08 4151 0.144 80 32 11 5.0 19
Starburst/Radio Galaxy Cen A 201.36 —43.02 0.0 3.7 2.7 10
MS87 187.71 12.39 0.305 32 24 76 5.2 17
3C 123.0 69.27 29.67 0.302 1.0 22 8.0 4.7 16
Cyg A 299.87 40.73 0.060 11.2 3.1 13 64 24
NGC 1275 49.95 41.51 0.361 0.0 76 3.5 13
MS82 148.97 69.68 0.265 34 32 19 4.2 28
Supernova Remnant RCW 86 220.68 —62.48 0.287 0.0 4.1 2.8 12
RX J0852.0-4622  133.00 —46.37 0.0 3.7 25 11
TRX J1713.7-3946 258.25 —39.75 0.005 10.8 2.5 11 8.6 32
W28 270.43 —23.34 0.238 0.8 1.6 5.6 4.7 16
1C443 94.18 22.53 0.461 0.0 6.1 3.7 12
Cas A 350.85 58.81 0.028 124 4.0 24 7.0 38
TYCHO 6.36 64.18 0.069 95 3.7 22 6.0 34

J[Mos‘c significant source in the catalog, yielding ppost = 0.28.
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