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ABSTRACT: This paper examines the distributional properties of univariate and linear composite measures of long bone asymmetry. The
goal of this paper is to examine models that best fit the distribution of asymmetries with implications for the improvement of forensic pair-
matching techniques. We use the software R to model reference data (N = 2343) and test data (N = 71) as normal distributions, an exponential
power distribution, and a skew exponential power distribution—the latter two include the normal as a special case. Our results indicate that the
data best fit the latter two distributions because the data are nonnormal. We also show how asymmetry statistics that use absolute values of side
differences can be fit as folded distributions. This obviates the need for empirical distributions or for transformations that attempt to convert
nonnormal distributions to normal distributions. The results of this study lay the framework for improving pair-matching methods that use
comparative reference data.
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The matching of antimeres (in this case left and right femora)
from commingled remains has been suggested as a basis for
estimating the most likely number of individuals in an archeo-
logical or forensic assemblage (1–5). In contrast to the mini-
mum number of individuals estimate, which only sets a lower
bound, the most likely number of individuals gives a more real-
istic assessment of the scale for a mass disaster in an “open
population” (6) setting. This matching of antimeres may be per-
formed by visual comparisons of left with right bones, but the
development of algorithms that use one or more measurements
is generally viewed as desirable from the standpoint of method
standardization. To make matches on the basis of measure-
ments, it is necessary to first characterize the directional and
fluctuating asymmetry for paired elements. Previous methods
that rely on multiple measurements have generally used a linear
composite, such as the sum of differences between left and
right side measurements (7–10). After finding that this linear
composite did not follow a normal distribution, Vickers et al.
(10) suggested using the sum of absolute differences between
sides. However, they did not note that such a measure would
follow a “folded” distribution. Similarly, Thomas et al. (11)
produced tables for “pair-matching” on single measurements
that could have been obviated as the statistic they used should
follow a folded normal distribution if the signed differences
were normally distributed.

Osteometric pair-matching algorithms like those by Thomas
et al. (11) and Byrd and LeGarde (9) that rely on t-tests, nec-
essarily rest on assumptions of asymptotic normality. Although
technically these methods rely on t-distributions, generally the
reference sample sizes are large enough that the normal distri-
bution should be a good approximation. Demonstrating the
lack of normality invalidates these methods and points to a
gap in the field that needs to be addressed. In correctly char-
acterizing the distributional models, it is possible to estimate
the levels of asymmetry that should be present in a case,
thereby increasing the accuracy of pair-matching methods.
The first part of this paper examines univariate measures

of asymmetry, or in other words asymmetry based on one
measurement from each side. This presentation runs counter
to Thomas et al.’s (11) argument for using empirical distribu-
tions. As Vickers et al. have called into question the distribu-
tional assumption underlying the linear composite approach,
the second part of this paper examines the distribution of
this composite on a large reference sample. This is per-
formed by estimating an exponential power distribution (12)
for the linear composite. The “absolute value of sum differ-
ence” suggested by Vickers and co-workers (10:103) can
then be shown to follow a folded exponential power distribu-
tion. For the “summed absolute value of differences” as
described by Lynch and co-workers (13:2), it was necessary
to fit a skew exponential power distribution (14). Rather than
only assessing a single quantile, which in Vickers et al.’s
case was at the 0.10 probability value, this paper uses com-
plete quantile-quantile plots to check the fit of the composite
score to theoretical distributions. More importantly, this paper
also uses an independent test sample and quantile-quantile
plots to compare the distribution of univariate and composite
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scores in the test sample to distributions derived from the
reference sample.

Materials and Methods

The Samples and Data

The reference sample used in this study is taken from two large
databases. The first is the online Goldman data set (15,16) avail-
able at http://web.utk.edu/~auerbach/GOLD.htm from which the
maximum femoral length, mid-shaft mediolateral diameter, and
mid-shaft anteroposterior diameter measured on the right and left
femora were extracted. Complete data were available for 1326
individuals from this collection. The second source was the foren-
sic database from which complete data on these six measurements
were available for 1017 individuals. The total reference sample
size was consequently 2343 individuals. The test data consists of
the same measurements as taken on the reference sample for 59
individuals in the collections of the American Museum of Natural
History and twelve individuals from the Office of the Chief Medi-
cal Examiner, New York City for a total of 71 individuals.

Distribution of a Univariate Statistic: M Statistic

Thomas et al. (11) have defined what they refer to as an M
statistic, which is:

M ¼ jR� Lj= ðLþ RÞ=2ð Þ; ð1Þ

where L and R represent the same measurement taken on left
and right bones. Thomas et al. wrote M using the absolute value
of L-R instead of R-L used here. While the absolute values are
the same, there will be an occasion to use the signed difference
later in this paper. Asymmetry is usually calculated using right
minus left measurements (17). Thomas et al. noted the similarity
of M to a statistic used by Van Valen (18). In fact, Thomas
et al.’s M statistic is identical to what Palmer and Strobeck (17)
referred to as “Index 2” of fluctuating asymmetry (their Table 1),
a commonly used measure in studies of fluctuating asymmetry.
Palmer (19:339) notes that measures based on the absolute value
“will be very biased if either DA or antisymmetry is present”
(emphasis in the original). “DA” refers to directional asymmetry,
the tendency for the measurement to be larger on a given side.
As there is known directional asymmetry for long bones (15), it
is difficult to argue in favor of using Thomas et al.’s M statistic.
With that said, the absence of a statistical hypothesis testing
framework for M is also problematic. Thomas et al. provided a
table of the empirical 90th, 95th, and 100th percentile values
from their study, but did not give summary statistics that might
be used to calculate probability values for future observed pair-
ings of antimeric bones. If the signed version of Thomas et al.’s
M statistic is normally distributed, then the absolute value con-
verts the distribution to that of a folded normal (20) which
makes statistical hypothesis testing readily available. If the
folded normal distribution provides an adequate fit, then refer-
ence sample data can be compared to the fitted distribution from
the test sample using a quantile-quantile plot. Oldford (21)
describes “self-calibrating quantile-quantile plots” that can be fit
using the R package “qqtest.” These plots simulate from the
hypothetical (fitted) distribution to produce confidence envelopes
around the empirical quantile-quantile plot for the test data.
If the signed version is not normally distributed, then one can

consider more general distributions, of which the exponential
power distribution is probably sufficient. Writing x for the

signed version of Thomas et al.’ M statistic (i.e., without the
absolute value), the density function for the exponential power
distribution is:

fEP xjl; r; að Þ ¼ 1
2a 1=að Þ C 1þ 1=að Þr exp

�jx� lja
ara

� �
; ð2Þ

where l is a location parameter (mean),r is a scale parameter
(the standard deviation when a = 2), and a is a shape param-
eter (14). Equation 2 is identical with Equation 4 in Mineo
(12) and with equation 4.1 in Azzalini and Capitanio (22)
assuming l = 0 and r = 1. When a = 2 the denominator in
the first term is equal to

ffiffiffiffiffiffi
2p

p
r and the distribution is normal.

For a equal 1.0 the distribution is a Laplace (double exponen-
tial) while between 1.0 and 2.0 the distribution is similar to a
normal but with greater weight in the tails. As a increases
above 2.0, the distribution approaches a uniform distribution.
The density in Eq. 2 can be fit to data using the function
“estimatep” in the R package normalp. If this density gives
an adequate fit, then it can be converted to the folded distri-
bution using the “folded” scripts in the R package “gendist.”
Again, self-calibrating quantile-quantile plots can be used with
the reference and the test data.

Distribution of the Linear Composite: Byrd’s D Statistic

The linear composite is as defined in Byrd and co-worker’s
publications (7–9), which is:

D ¼
Xp
j¼1

Rj � Lj
� �

; ð3Þ

where there are p measurements on both the right and left sides
within an individual. To make the notation clearer, particularly
with reference to the possibility of taking absolute values, we
rewrite Eq. 3 in the equivalent form:

D ¼
Xp
j¼1

Rj �
Xp
j¼1

Lj: ð4Þ

Unfortunately, Byrd (7) in his Table 10.2 and Byrd and
Legarde (9) in their Table 8.2 either reversed the subtraction to
left measurements minus right measurements, or they reversed
the labeling of columns for “Left” and “Right.” The sum of the
measurements in the column labeled “Right” is 643 while the
sum from the column labeled “Left” is 698. The value of D
should consequently be �55, but in both the 2008 and the 2014
Tables the listed value is 55. This led Vickers et al. (10:103) to
suggest that in both Tables what was actually used was the
“absolute value of sum difference,” or:

D ¼
Xp
j¼1

Rj �
Xp
j¼1

Lj

�����
�����: ð5Þ

Vickers et al. then noted a poor fit, yet did not mention that the
D value as defined in Eq. 5 should follow a folded form. We look
at the distributional form for the D statistic in Eqs 4 and 5 much as
we did for the simple univariate statistic. Note that the “absolute
value of sum difference” as defined by Vickers et al. is generally
not the same value as the sum of the absolute values of the individ-
ual differences. More formally, we have:
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Xp
j¼1

Rj �
Xp
j¼1

Lj

�����
����� �

Xp
j¼1

jRj � Ljj ð6Þ

Lynch et al. (13:2) refer to the value on the right-hand side
as the “summed absolute value of differences” and suggest that
this statistic should have a half-normal distribution. The half
normal is a folded normal distribution where the “folding” at
zero coincides with a mean of zero. In point of fact, if R-L for a
given measurement has a normal distribution with a mean of
zero, then jR� Lj will have a half-normal distribution, the sum
of two such variables will have a skewed normal distribution,
and as the number of absolute values in the sum increases the
distribution will approach a normal distribution under the central
limit theorem.
In order to fit the “summed absolute value of differences,” we

had to use a skew exponential power distribution. The density
function for this is (14):

fSEP x l; r; k; ajð Þ ¼ 2=að ÞU wð ÞfEP x� lð Þ=r l¼ 0; r¼ 1; ajð Þ;

w ¼ sgn x� lð Þ x� lj ja=2
ra=2

k

ffiffiffi
2
a

r
;

ð7Þ

where U wð Þ is the standard normal integral up to w while fEP is
the density function from Eq. 2.

Results

Univariate Statistics

Figures 1–3 show the folded normal distributions for Tho-
mas et al.’s statistic for maximum femoral length, mid-shaft
medial-lateral diameter, and mid-shaft anterior-posterior diame-
ter. The Figures are drawn as “self-calibrating quantile-quantile
plots” where the sample quantiles are from the 71 test indi-
viduals and the hypothetical quantiles are from the 2343 refer-
ence individuals. These Figures also show the mean right
minus left (signed) measurements divided by the individual
averages, the signed version of Thomas et al.’s M statistic,
and the standard deviations of the signed M in the upper right
corner. The variable names are shown in the bottom right cor-
ners. It is clear that while the femoral length and the medial-
lateral diameter fit folded normal distributions for Thomas
et al.’s M statistic, such is not the case for the anterior-poster-
ior diameter. Figure 4 shows the folded exponential power
distribution, which does fit. Note that the fitted exponential
power of 1.149 is considerably less than 2.0, the power for a
normal distribution. Indeed, the fitted distribution is closer to
a Laplace distribution (with a power of 1.0) than it is to a
normal distribution.

Linear Composite

Figures 5 and 6 show the self-calibrating quantile-quantile
plots for Byrd’s D statistic for the composite scores. Figure 5
shows that the data do not fit a normal distribution, however,
they do fit the exponential power distribution as shown in
Fig. 6. As the signed differences of sums follow an exponen-
tial power distribution, then the absolute values of the

differences of sums should follow a folded distribution. This
is shown in Fig. 7, which compares the parametric model (a
folded exponential power distribution) to the boundary kernel
density plot for the reference data. Here the boundary is at
zero and the kernel density was drawn using the R library
bde with Vitale’s (23) method. Figure 8 is a self-calibrating
quantile-quantile plot that shows that the absolute value of the
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FIG. 1––Self-calibrating quantile-quantile plot (21) using a hypothetical
folded normal from the reference sample for maximum femoral length and
the 71 test cases. The signed parameters from the reference sample are
shown in the upper right corner. The hypothetical and sample quantiles are
from Thomas and co-workers (11) M statistic shown as Eq. 1.
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FIG. 2––As in Fig. 1 but for the medial-lateral mid-shaft diameter from
the femur.
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difference of sums for the test data does indeed follow a
folded exponential power distribution.
Figure 9 shows a comparison of the parametric model (a skew

exponential power distribution) for the test data using the sum of
absolute values of differences to the boundary kernel density plot.
Again, the boundary is at zero, but this time we used an ordinary
kernel density estimator with a Gaussian kernel and the default

bandwidth. It was possible to use an ordinary kernel density esti-
mator without a boundary because the density at the boundary is
so low. Figure 10 shows the self-calibrating quantile-quantile plot
for the test data against the hypothetical skew exponential power
distribution from the reference data. This shows, as expected, that
the sum of absolute differences should follow some form of
skewed normal distribution, and not the half normal claimed in
Lynch et al. (13).
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FIG. 3––As in Fig. 1 but for the anterior-posterior mid-shaft diameter
from the femur. Note that the 65th–67th and 71st sorted points for the test
sample fall outside of the 95% range.
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FIG. 4––As in Fig. 3 but using a hypothetical folded exponential power
distribution which brings all of the test points within the 95% central range.
The three parameters in the upper right corner are the mean, scale, and
exponential power from the signed distribution.
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FIG. 5––Self-calibrating quantile-quantile plot using the hypothetical nor-
mal of the difference of sums for the three measurements from the reference
sample. Note that the 68th and 69th ordered points from the test sample fall
outside of the 95% central range.

Hypothetical exponential power

Hypothetical distribution quantiles

S
am

pl
e 

qu
an

til
es

−10 −5 0 5 10

−
20

−
10

0
10

20

Simulated ranges n = 1000

95% central range
50% central range

∑
j=1

p

Rj − ∑
j=1

p

Lj

μ = −1.0297, σ = 4.2803, α = 1.444

FIG. 6––As in Fig. 5 but using an exponential power distribution from the
reference and test data.
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Discussion

The presence of asymmetry in long bones introduces compli-
cations when estimating the number of individuals in a commin-
gled assemblage. Previous studies have found significant levels
of long bone directional asymmetry in the human population,
suggesting that pair-matching methods predicated on an assump-
tion of zero asymmetry would prove problematic. Precise
distributional models are important in the creation of automated

pair-matching methods, a concept that has been a recent subject
of interest in the literature (13,24–26) and ostensibly represents
the future in forensic analysis of commingled assemblages.
While we are not the first to suggest that the distribution of side

differences violates the normality assumption, this study investi-
gates the best fit model for the true distribution. The results show
that an exponential power distribution for the signed composite
score and the signed univariate anterior-posterior diameter data and
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FIG. 7––Comparison of the folded exponential power distribution from
Fig. 6 (parametric model) to the kernel density fit for the absolute values of
difference of sums in the reference samples. Note that a folded distribution is
appropriate.
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exponential power distribution (from the reference sample) for the absolute
value of the difference of sums.
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best fit these nonnormal data. The folded distributions are an accu-
rate representation of the unsigned (absolute value) differences and
lend themselves well to the exponential power models put forth in
this paper. The exponential powers used in the models were closer
to 1.0 than to 2.0 (“normal”), which makes sense considering that
the model needed to be adjusted to fit a heavy-tailed, kurtotic distri-
bution. These results not only confirmed that the data violated
assumptions of normality but also characterized the nonnormality.
Our work also points out some methodological issues with

recent analyzes. Lynch (25) and Lynch and co-workers (13)
have suggested that the “summed absolute value of differences”
should follow a half-normal distribution, in other words, a folded
normal with a mean of zero on the signed scale. We have argued
instead that the expected distributional form is a skewed normal
if the number of paired variables is small and a (symmetric) nor-
mal distribution if the number of paired variables is large. Rather
than referencing their statistics to a half or a folded normal dis-
tribution, these researchers have applied a Box-Cox (27) trans-
formation for normality. Additionally, rather than estimating the
parameters for the Box-Cox transformation, these researchers
used values of k1 = 0.33 and k2 = 5 9 10�5. Swaddle and
co-workers (28:987) wrote for univariate (one paired variable)
that “values of k1 around 0.3 and k2 set to be somewhat smaller
than the smallest nonzero asymmetry work well,” while Graham
and co-workers (29:474), citing Swaddle and co-workers, wrote
that “One can normalize |di| with a power transform:
(|di| + 0.00005)0.33.” While in the past the Box-Cox transforma-
tion was a useful tool to transform nonnormal data to normal
data, we believe that it is more useful now to find the distribu-
tional form of potentially nonnormal data. Further, if the
Box-Cox transformation is used it is more appropriate when it is
estimated on the relevant data rather than based on independent
values from the literature.
While our work has focused on the statistical approach to uni-

variate and composite measures of asymmetry, we believe that a
more useful approach to asymmetry will be the true multivariate
characterization (5,29,30). For those who choose not to take a
multivariate approach, this study represents the first step toward
characterizing univariate and composite measures of asymmetry
as used in the forensic pair-matching method. Our results better
model the distributional properties of asymmetry, particularly
when absolute values are used, and define the relationship
between the sample and reference distributions. These results lay
the framework for future applications of these models in improv-
ing and automating current standard practices. Further work also
needs to be focused on the sequential testing setting, particularly
when the number of right and left bones may not be equal
because of the loss of elements.
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