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Abstract: It has been previously shown that the traffic control problem can be formulated as
a Linear Programming (LP) problem when the corresponding initial conditions are fixed while
they can be uncertain in actual control problems. This paper gives a stochastic programming
formulation of the control problem, involving chance constraints to capture the uncertainty
associated with the initial conditions. Different objective functions are explored using this
framework and the solutions to the control problems agree well with the Monte Carlo simulation
based control. To the authors’ best knowledge, this is the first time that the influence of initial
condition uncertainty on traffic control is investigated through stochastic programming with

chance constraints.
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1. INTRODUCTION

At present, the number of vehicles all over the world is
enormous and continues to grow. As the number of vehicles
increases, both people and the environment are affected
badly in terms of congestion and pollution, which trans-
lates into a waste of time and money. Therefore, reducing
traffic congestion is a critical issue to our human society.
There are a number of ways to help reduce congestion,
such as increasing the road capacity and decreasing user
demand. However, these methods are expensive or some-
times even impractical.

The traffic flow is usually modeled as various partial def-
ferential equations (PDEs) (See Lighthill and Whitham
(1955); Richards (1956)). Some promising techniques used
to mitigate traffic congestion, such as traffic congestion
forecasting and traffic flow control, are based on the
set of PDE equations. The Kalman Filter (Zhang et al.
(2012)) and Autoregressive Integrated Moving Average
model (Tan et al. (2007)) are the most frequently used
methods for the congestion forecasting in the past decade.
Numerous traffic control methodologies (Pasquale et al.
(2015); Pisarski and Canudas-de Wit (2016); Li et al.
(2014); Bekiaris-Liberis and Bayen (2015)) have been de-
veloped in the past decades. For example, ramp metering,
which is a device that regulates the flow of traffic enter-
ing freeways based on the current traffic condition, is a
widespread traffic control method. ALINEA (Papageor-
giou et al. (1991)) is one of the ramp metering strategies
that has been used around the world. However, the PDEs
used in the references (Lu et al. (2009); Carlson et al.

(2011)) were discretized to obtain ODEs to use methods in
De Wit (2011) to find the optimal solution. A new control
method in Li et al. (2014) doesn’t require the discretization
or approximation. This method shows that the traffic
control problem can be posed as a Linear Programming
(LP) problem under the triangular fundamental diagram
for the traffic flow modeled by the LWR PDE. This frame-
work significantly reduces computational complexity over
standard traffic control computational methods.

There are no reliable strategies to capture densities on
a highway link, and the measurment of the traffic den-
sity depends on indirect measurements of other variables
such as speed and flow. Both deterministic approaches
(Kurzhanskiy and Varaiya (2012)) and stochastic ap-
proaches (Tampere and Immers (2007)) have been pro-
posed to make the density estimation more dependable.
Unexpected consequences may be caused by the neglect of
the uncertainty associated with each of these quantities.
Therefore, robust control which considers the uncertainty
associated with each of these quantities is necessary for
the traffic control problem.

In this paper, we introduced uncertainty into the LP
problem and changed it into a Stochastic Programming
problem based upon on the model in Li et al. (2014). In the
Stochastic Programming problem, chance constraints were
used to formulate the uncertainty in the initial conditions,
which were assumed to have normal distributions.
Section 2 reviews the framework for the LP formulation
for the traffic control problem. Section 3 presents the
stochastic programming that takes into consideration the
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uncertainty of the initial densities. In section 4, to verify
that the relaxation made in section 3 was rational, solu-
tions from Monte Carlo simulation was compared to that
from Section 3. Section 5 shows potential future work.

2. LP MODEL DEFINITION

In this section, a comprehensive framework used to derive
an LP formula for the traffic control problem is explained.

2.1 Traffic flow models

Lighthill-Whitham-Richards (LWR) PDE model (Lighthill
and Whitham (1955)) is one of the most commonly used
models to depict the evolution of traffic flow,

Oplt.x) | OV (p(t,))

ot Ox
where p(t,x) is the density of the point z away from a
reference point at time ¢, v is the concave Hamiltonian,
which is used to denote the experimental relationship
between flow and density. For simplicity, a triangular
fundamental diagram is used to present the relationship
between flow and density such that,

_ 'Ufp p € [07 pC] 2

v) {w(p pm) P € [pe; pm] B
where vy is the free flow speed, w is the congestion speed,
pe is the critical density where the flow is maximum, py,
is the jam density, where the flow is zero due to the total
congestion.
Alternatively, the traffic flow can be modeled by a
scalar function M(¢,z), known as Moskowitz function
(Moskowitz (1965)), which represents the index of the
vehicle at (¢, ). The relationship between the Moskowitz
function and density and flow can be expressed as,

oM oM

p(t7x) = _%7 q(tvx) = ﬁ (3)
Therefore, another traffic flow model, Hamilton-Jacobi (H-
J) PDE, can be obtained from the integration of the LWR,
PDE model (1) in space,

OM(t, x) OM(t, x)
T Y=, ) =0 (4)

In this paper, the spatial domain [, x], where & is the
upstream boundary and x is the downstream boundary,
and time domain [0, tmaz], Where t,q, is the simulation
time, for a highway link were divided evenly into k,qz
and n,q; equal segments, respectively. Also, we defined
K = {1,..,kmaz} and N = {1,...;nnas}. The expres-
sion for piecewise affine initial, upstream boundary, and
downstream boundary conditions can be found in the
reference(Li et al. (2014)). Let X and T be the length
for the spatial segment and time segment, separately. p(4)
is the initial density for the ith spatial segment, ¢;, (i) and
Gout(?) are the inflow and outflow, respectively, for the ith
time segment at boundaries. In these conditions, we chose
the appropriate initial and boundary segment length and
assumed the initial density and boundary flow conditions
in the corresponding segments are constants. To ensure the
consistency with the physics of the problem, the segment
length needs to satisty the Courant-Friedrichs-Lewy (CFL)
condition (Courant et al. (1928)), |v;T/X| < 1.

=0 (1)

2.2 Moskowitz solutions

In this paper, we used the Barron-Jensen/Frankowska
(B-J/F) solution (Barron and Jensen (1990); Frankowska
(1993)) to solve the H-J equation. The B-J/F solutions are
fully characterized by the Lax-Hopf formula.

Definition 1 (Value Condition): A value condition c(-,-)
is a lower semicontinuous function defined on a subset of
[Oa tmaz] X [57 X}

In the following, all of the initial conditions and boundary
conditions are regarded as value conditions.

Proposition 1 (Laxz-Hopf Formula): Let ¢(-) be a concave
and continuous Hamiltonian, and let ¢(-,-) be a value
condition. The B-J/F solution M.(-,-) to (4) associated
with ¢(-,-) is defined Aubin et al. (2008); Claudel and
Bayen (2010a,b) by

M. (t,z) = (c(t —T,x+Tu) +Te*(u)) (5)

inf
(w,T)E(p*)x Ry
where ©*(-) is the Legendre-Fenchel transform of an upper
semicontinuous Hamiltonian ¢ (-), which is given by,

©*(u) ;= sup [p-u+(p)] (6)

pEDom(y)
Using Lax-Hopf formula, the Moskowitz solution from
each value condition can be obtained explicitly. We refer
the readers to (Claudel and Bayen (2011)) for a detailed
discussion of the solution.

2.8 Linear Constraints

So far, we have obtained the Moskowitz solutions from
the given conditions. However, the solution may not be
incompatible with the value condition, i.e. M.(t,x) may
not equal to ¢(t, x) at some points in the domain of ¢(-, -).
The Lax-Hopf formula (5) leads to the inf-morphism prop-
erty (Aubin et al. (2008)).

Proposition 2 (Inf-morphism property): Let the value con-
dition ¢(+,+) be minimum of a finite number of lower
semicontinuous functions:

v(t7x) € [O7tmax] X [§7X]7 C(t,CC) = ml}} cj(t’x) (7)

JjE
The corresponding solution M,(+,-) can be decomposed
Aubin et al. (2008); Claudel and Bayen (2010a) as

V(t,z) € [0, tmaz] X [€,x], Mec(t,x) = Ij;lei}lMcj (t,z)
(8)

Based on the Inf-morphism property, the Moskowitz solu-
tions have to satisfy the compatibility conditions (Claudel
and Bayen (2011)).
Proposition 8 (Compatibility Conditions): Use the value
condition ¢(¢,x) and the corresponding solution in Propo-
sition 2. The equality V(t, ) € Dom(c), M.(t,x) = c(t, )
is valid if and only if the inequalities below are satisfied,
Mc (t,l’) > Ci(t7x)7 V(tv‘r) € Dom(c,),V(z,j) € J2
9

3

These constraints are linear in terms of initial and bound-
ary conditions and can be expanded as (Canepa and

Claudel (2012, 2013)).
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Mg, (0,2) > Mp(0, zp) V(k,p) € K2 3.1 The stochastic programming formula
Mg (8T) 2 B0 X) VkeK, VpeN
Mar, (=25 3) > 8, (X - — 2k ) Vke K, WYpeN In the rest of this paper, the objective functions are only
! X — functions of boundary conditions and there are no uncer-
st vy €lp— DT pT) tainties in the objective functions. A general inequality
Mg, (pT,€) = vp(pT, §) Vke K, VpeN form of an LP problem is
Mﬂlk"(@’g)zyp(f_“*l,g) Vke K, VpeN o
e Minimize f(x)
6. 5751 ¢ — )T, pT] (13)
T w P ’(1100) st. Ax>D
When there is uncertainty in the constraints, we can con-
vert this LP problem to a stochastic programming problem
My, (pT, &) = vp(pT, §) V(n,p) € N with chance constraints,
M, (pT,x) 2 Bp(PT, X) VY(n,p) € N*
M., (nT + ¥,x) > By(nT + %»@ Y(n,p) € N* Minimize f(x) (14)
' ! 3 st. Pr{Az>b}>1—-«
s.t. nT+7€[(p71)TpT] . . . . .
1) where f(x) is a linear function of z, x is a decision variable
vector which is boundary conditions vector in this paper,
A is the coefficient matrix, b is the right-hand side vector,
Mpg,, (pT, &) > 'yp(pT €) V(n,p) € N? and 1 — « is the confidence level of the chance constraint.
Mg, (nT + =X f X ¢) > vy (nT + 5=X &) V(n,p) € N? Assume p(k) is subjected to a normal distribution with
w €— mean and standard deviation of (pg, oy ). In our stochastic
€ e = VT #Ehffic control problem, the constraints (10)-(12) needs to
Mg, (pT, x) 2 Bp(PT X) V(n,p) € N be expressed as the chance constraints form. For example,

(12)
Above all, specific traffic control problems can be modeled
as an LP formulation with linear constraints (10)-(12). In
such a formulation, the boundary conditions which are up-
stream and downstream flows are the decision variable, i.e.
the objective function can be realized through controlling
the inflow and outflow on a traffic link; the objective func-
tion can be any linear function of the decision variables.
Although there are no strategies yet used to control the
boundary flow on a highway link, it is reasonable to assume
that all highway links can be controlled in the future.
In this methodology, the initial conditions are known and
fixed in the LP model. In reality, however, there is uncer-
tainty in the initial conditions due to measurement error.
To deal with this situation, a stochastic programming
model was derived for the robust traffic control control
when the initial conditions are random variables with
normal distributions in the next two sections.
It should be noticed that the fundamental diagram is em-
pirical, and it is more reasonable to define those variables
as random variables as well. But in this paper, we only in-
troduced uncertainty into initial conditions because of the
complexity with uncertainty in parameters. Although the
Moskowitz solutions are piecewise linear function in the
initial and boundary conditions, the fundamental diagram
parameters are involved in the domain of the function.
Also the solutions are bilinear function of some param-
eters. All of these facts make it difficult to solve the
traffic control problem when the uncertainty is inserted
to fundamental diagram parameters.

3. RELAXATION OF ROBUST CONTROL WITH
UNCERTAINTY IN INITIAL CONDITIONS

In this section, only the initial conditions are regarded
with uncertainty and chance constraints are used to deal
with the uncertainty. Moreover, we relaxed the problem to
make it tractable.

the constraint of

should be converted to,

P(Mu, (9T, &) > 7 (0T, €)) > 1 —

Vke K, VpeN (15)

Vke K, VYpeN
(16)
To solve the stochastic programming problem with these
chance constraints, we converted the chance constraints
into deterministic linear constraints. Then the stochastic
programming became an LP problem and it could be
solved easily.
Here, we would show the derivation of deterministic
version for the chance constraint Pr{My, (pT,&) >
¥p(PT, &)} > 1—a in detail. Then the integrated determin-
istic constraints were obtained using the same method.
From (Claudel and Bayen (2011)), the Moskowitz solution
at upstream from the initial condition can be explicitly
expressed as:

400,
ift < w
w
k—1
= p@OX + peltvs + (k- DX — ),
ite> ST E DX k) < e
w
k—1

M (B8 = 257 00X 4 ph)w + (k= DX~ €) — prutu,

X
<t< )

and p(k) > pe

- E ()X + pe(tw + kX — &) — pmitw,
i=1
if t >

— kX
< and p(k) > pe
w

1n)

From (17) it is known that Myy, (¢,€) is a nonincreasing
function of p(k), as shown in Figure 1. Then the corre-
sponding chance constraint was simply divided into two
situations:

(). pe < pr + 21-q0k as shown left in Figure 1. We
should convert the chance constraint to fo(pr +21—q0k) >
w(PT,§) Vke K, VpeN;
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(ii). pe > pr + 21—a0k as shown right in Figure 1. We
should convert the chance constraint to f1(pg +21—a0k) >
v @T,6) Vke K, VpeN.

where z1_,, is defined as z score such that P(p(k) < pi +
Z1-a0k) =1 —a.

\ip\(’f)) ~ ,,,[,(P(kr)) o,
My 08) N“’ © M ] o
\(p
K
i plk) pk)
/ N\ / N
fa k) e piky

Fig. 1. Solution at upstream from initial condition and
associated initial density distribution.

Substituting the expressions of My, (t,€) and ~,(pT, &)
into the inequalities above leads to the following linear

deterministic constraint:
k—1 P

=) p@r+pepTos + (k= Dz =€) = Y ain(iT,
i=1 i=1

> S DX
k—1 w

=) X + (pk) + 21— (bw + (k= DX =€) = pmtw

i=1
P
> E qin ()T,

i=1
i E—(k—1)X

and pr + 21—a0k < pe

— kX
St§§ )
w

and pr + 21— a0k > pe
w
k—1
- g p(D)X — (p(k) + 21-a0k)X + pc(tw + kX =€) — pmtw
=1

i=
P
> E qin ()T,
i=1

— kX
iftzgi,
w

and pi + z1-a0k 2> pec

(18)
For simplicity, only p(k) for the constraints involving
My, was considered as a random variable, all of other
p(i)'s,i € {1,2,...,k — 1} were still regarded as fixed
values with their corresponding means. In section 4, the
complexity of regarding all of the p(i)’s,: € {1,2,...,k—1}
as random variables will be explained and the accuracy
of this relaxation will be demonstrated by Monte Carlo
simulation.
The other constraints in (10)-(12) were found in this same
manner. For the sake of simplicity and the space limit,
those constraints would not be displayed here.

3.2 Case study

We implemented our framework onto a single highway
link located between the PeMS vehicle detection stations
400536 and 400284 on Highway I-880 N around Hayward,
CA, USA. We divided this spatial domain of 3.858 km into
7 even segments and created a temporal domain of 7 min

with 28 even segments. In addition, the parameters in the
fundamental diagram were defined as follows: the critical
density p. = 0.03/m; the free flow speed vy = 30m/s; the
jam density p,, = 0.24/m. We assumed the initial densities
have normal distributions. The mean of the initial densities
on the seven segments were defined as six piece-wise affine
constants in the range [0.01,0.07]. We implemented the
IBMIlogCplex solver in Matlab to solve the LPs. The
International System of Units was adopted and the units
were omitted in the following analysis for simplicity.

Four scenarios with different standard deviation (0.01,
0.02, 0.03 and 0.04) in the initial condition segments
were investigated. For each single scenario, the standard
deviation in all initial condition segments were the same
and denoted by o. For those scenarios, 1 — « , the
confidence level, was set to 97.5%. The following objective
function was chosen to be optimized,

Nmax

Mazimize Y qour(i)— Y _ |Gout (i) — Gour (i—1)| (19)
i=1 =2

Nmax

In this objective function, we wanted to maximize and
smooth the outflows at the same time. However, the second
term in the objective function was not a linear function of
decision variables. To solve this problem, we added another
variable vector qq(7),7 € {2,3,...Nmaz } into this problem,

Nmax
Gout (Z) - qd(l)
=1 1=2
s.t. Qd(l) Z QOut<i) - QOut(i - 1)7
Qd(l) Z qout<i - 1) - QOut(i)7

Nmax

Max

Vi € {2,3, ..., Nmaz
Vi €{2,3, ..., Nmaz |
(20)

The optimal density field solutions are shown in Figure
2. In these cases, the confidence level was fixed, so the
confidence interval for the initial condition was wider when
the standard deviation was larger. Intuitively, the chance
constraints forced the solution to satisfy (10)-(12) for all
of the values of the initial conditions in the confidence
interval. Therefore, the wider the confidence level was,
the more restricted the feasible region was. As this is
a maximization problem, the optimal value should be
lower for the case with larger standard deviation (i.e.
with smaller feasible region). Therefore, with increasing
standard deviation, the bandwidth of the shock wave
(the yellow band) was wider because less vehicles could
proceed, as shown in Figure 2. Also, the shockwaves in
each scenario are consecutive due to the second term in
(19).

In general, we may not only want to maximize the outflow,
but also to minimize the congestion. There are several ways
to realize this objective, such as adding another constraints
to represent the worst level of service, change the objective
function, and so on. Here, we formulated this problem as
follow:

Nmax

min =AY our(i) + (1= N)Q
i=1

st Q2 (i)~ qow()), VieN (1)

Ax > b
x>0
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Fig. 2. Solution to robust control problem (19): a) o =
0.01; b) 0 =0.02; ¢) 0 = 0.03; d) o = 0.04.

where Q + Z:Zir p(k) is the maximum number of vehicles
stuck in the link during the simulation, A and 1 — X\ are
the weights of total outflow and @, respectively. Ax > b
represent the chance constraints we derived in the previous
section. The sum of weighted negative total outflow and
Q@ is the new objective function.

The standard deviation of the initial conditions was 0.02
and the confidence level of the chance constraints was
97.5%. To make the result more intuitive, we defined the
level of service as LoS = —Q. Optimal solutions for
different weightings (Figure 3) show there is a tradeoff
between outflow and the level of service. With an increase
in A, more vehicles can go through the highway link with
a poorer level of service. When A > 0.4, the optimal values
do not change much.

1.2

0.6

3 » 00
£ 210 2
f
e 06
T
° 195
a S
18.0+ 00 02 04 06 08 10
00 02 04 06 08 10 e
Weight 7 Weiaht %

Fig. 3. Optimal values for: a) total outflow; b) level of
service

4. MONTE CARLO SIMULATION WITHOUT
RELAXATION

In the previous section, some constraints were relaxed,
because only p(k) for the constraints involving My,
was considered as a random variable while all of other
p(i)'s,i € {1,2,...,k — 1} were regarded as fixed with their
corresponding means.

For simplicity, the Moskowitz solutions from the initial
conditions can be expressed as the following form:

MMk(t’x) — {fl(p(l:))7 %f p(k) ch??i 1727"‘7Kmal
f?(p(l>)v if p(k> < Pest = 1a27~-~7Kmaz
(22)
where f1 and fy indicate two linear functions and K4z
is the number of the initial condition segments. Therefore,
the typical chance constraint involving My, can be ex-
pressed as,

Pr(Mu, (t,x) = g(q)) = Pr(f1(p(i)) = 9(q),
+Pr(f2(p(2) = g(a), p(k) < pe)

where g is a linear function of boundary conditions.

If all of the initial conditions are independently normal
distributed, (f(p()), p(k)) is subject to a bivariate normal
distribution n(p, ),

Var(f(p(4))

_ _ Couv(f(p(2), p(k)))
# = s ol 3= [Cov(f(p(z‘),p(k))) }

Var(p(k))

(29)
Although the pdf of a bivariate normal distribution can
be obtained, there is no closed-form to calculate the cor-
responding cumulative distribution function (cdf). In fact,
there is no closed-form for the cdf of an univariate normal
distribution either. The integral of a normal pdf is an
error function, which is nonlinear. The reason why we can
convert the chance constraint into linear form is that the
normal table is available. Unfortunately, for a bivariate
normal distribution, there is no such table that can be used
to find the critical value for a corresponding confidence
level.
To test our relaxed model, Monte Carlo simulation were
used to convert the chance constraints into a linear form.
The algorithm for constraints Pr(Myy, (t,z) > v(t,x)) >=
1 — « is as follows.
Step 1. Generate N random numbers from the normal
distribution for each initial condition segment. In this
paper, N = 1000. p(k;) is the ith number for the kth
segment.
Step 2. Calculate Myy, (;y(t,x),7 = 1,2,...N using the ith
number from each segment from Step 1.
Step 3. Sort My, (;y(t,x) into ascending order. Find the
corresponding critical value. For example, if the confi-
dence level is 97.5%, then the critical value should be
My, (25)(t, ) in the ordered sequence.
Step 4. Replace the constraints involving My, and v of
Pr(My, (t,z) > y(t, 7)) >= 1 —a with My, (va)(t,2) >
v(t, ).
Other constraints can be obtained by the same manner.
The comparison of optimal total outflows from (19) be-
tween this Monte Carlo methodology and the relaxation
formulation is shown in Figure 4.
In this example, the mean value vector of initial densi-
ties was p = (0.01,0.02,0.03,0.04,0.05,0.06,0.07) and the
standard deviations were 0.02. As we mentioned before,
optimal value decreases with the variability increase. The
largest difference between these two methodologies is less
than 2 percent. Because this is a maximization problem,
the optimal value from the relaxation formulation is larger
than that from the original problem. The results shown
in Figure 4 coincide with this proposition. Above all, our
relaxed stochastic program fitted well with the Monte
Carlo simulation.

5. DISCUSSION

We used a set of individual chance constraints in this
framework, we are also interested in joint chance con-
straints and that will be a promising topic in the future
work. In addition, finding a stochastic programming for-
mulation to deal with the uncertainty in fundamental dia-
gram parameters will be an interesting research direction.
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Fig. 4. Comparison between two methodologies: (i) =
002, VieK.

What is more,applying this robust control framework on
the highway network to check its efficiency is necessary.
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