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Abstract

We present a basis approach to refine noisy 3D human

pose sequences by jointly projecting them onto a non-linear

pose manifold, which is represented by a number of ba-

sis dictionaries with each covering a small manifold re-

gion. We learn the dictionaries by jointly minimizing the

distance between the original poses and their projections

on the dictionaries, along with the temporal jittering of the

projected poses. During testing, given a sequence of noisy

poses which are probably off the manifold, we project them

to the manifold using the same strategy as in training for re-

finement. We apply our approach to the monocular 3D pose

estimation and the long term motion prediction tasks. The

experimental results on the benchmark dataset shows the

estimated 3D poses are notably improved in both tasks. In

particular, the smoothness constraint helps generate more

robust refinement results even when some poses in the orig-

inal sequence have large errors.

1. Introduction

A 3D human pose is usually represented by a vector of

joint locations in 3D space due to its simplicity. However,

the representation is not compact because it treats the whole

ambient space R3P without discrimination where P is the

number of joints, and ignores the fact that the reasonable

3D human poses, which have valid bending angles and limb

lengths, actually lie on a small low-dimensional space em-

bedded in the ambient space.

The above problem may cause serious ambiguities for

under-constrained tasks. For example, when we estimate

3D pose from a single image, multiple 3D poses including

some illegitimate ones, may correspond to the same image

after projection. Current works such as [13, 16] rely on deep

neural networks to regress legitimate 3D poses. But they

may get illegitimate estimations when the input 2D poses

have errors as is often the case in practice. This is validated

Figure 1. Our 3D pose sequence refinement approach. The mixture

of small triangles (basis dictionaries) compactly approximates the

pose manifold. The blue points in (a) are the poses in a sequence.

The points highlighted by blue circles are off-the-manifold. See

(b) for the refined pose sequence.

in [13]: when the input 2D poses are from ground truth, the

3D error is only 37.10mm; the error is doubled when the 2D

poses are estimated by [17].

To resolve those challenges, we propose to learn a com-

pact dictionary representation for pose manifold in which

only reasonable 3D poses can be accurately reconstructed.

The approach is motivated by some conjectures about

poses. On one hand, human poses are believed to lie on

a low-dimensional but non-linear space [20, 29, 10]. This

suggests that we need to learn multiple linear dictionaries,

instead of a single one, to accurately represent the curved

manifold. Second, the manifold is bounded because the

joint bending angles and limb lengths of poses are con-

strained to be within appropriate ranges. Third, the man-

ifold is smooth in the sense that neighboring poses in a se-

quence should be close on the manifold.

To that end, we present an efficient approach to jointly

learn multiple basis dictionaries from public human pose

databases such as H36M [9]. Every dictionary consists of a

small number of bases and represents poses by their convex

combinations. Intuitively, convex combinations of the bases

forms a bounded convex hull, covering a small region of the
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whole pose manifold. For example, a small triangle in Fig-

ure 1 corresponds to the convex hull of one dictionary. The

union of all convex hulls (dictionaries) serves as piece-wise

linear approximations of the curved manifold. Meanwhile,

we also encourage the neighboring poses in a sequence are

represented by the same or adjacent dictionaries.

However, learning such dictionaries with the desired

properties is a challenging problem because it involves two

interrelated factors: (1) assign each pose to the correspond-

ing dictionary; (2) optimize the bases in the dictionary using

the assigned poses. We may solve the problem in theory by

the EM algorithm but it will become extremely slow when

scaling to millions of poses. Alternatively, we adopt the

normalization trick proposed in [27, 15] which significantly

simplifies the problem by simply normalizing all training

poses and bases to a unit sphere. The merit of normaliza-

tion is that it allows us to safely ignore the first assignment

step and directly optimize the bases by the fast stochastic

gradient descent algorithm [11].

During testing, given a sequence of noisy poses, we re-

fine them by projecting them to the dictionaries. It jointly

minimizes the distance between the original and the refined

poses, along with the temporal jittering of the latter. It is

worth noting that the two targets can be naturally achieved

by our basis representation.

We apply our approach to refine the output 3D poses of

different tasks. The first is monocular 3D human pose es-

timation from a 2D pose. We obtain initial 3D pose esti-

mations by an existing state-of-the-art approach [13] which

usually has large errors when the input 2D poses are inaccu-

rate. We observe that by projecting the estimated 3D poses

to the manifold using our approach, we obtain more legit-

imate poses with smaller errors. The second task is long

term motion prediction given the first few frames. Most of

methods fail to generate long sequences because errors will

accumulate over time. We apply our approach to refine the

predicted pose at each time step before it is used to generate

the next pose. This small modification notably improves the

robustness of long term motion prediction.

2. Related Work

We first review the existing work on pose refinement.

Akhter et al. [1] propose a pose-conditioned joint angle

prior for 3D poses which is learned on motion capture

dataset. It refines illegitimate segments of a pose by trun-

cating the joint angles to be valid values. It locally refines

a pose in a segment-by-segment basis but does not consider

the global configuration of all joints. Fieraru et al. [7] use

a network to refine a 2D pose by exploring the dependency

between the image and the pose space. But the approach is

not validated for 3D poses.

We also review the techniques which are used in 3D pose

estimation to suppress illegitimate poses. The first type of

approaches [19, 24, 5, 27, 25, 28] learn lower dimensional

representations for 3D poses in order to avoid generating

illegitimate poses that are off-the-manifold. Typical dimen-

sion reduction methods include Principal Component Anal-

ysis (PCA) [20] Sparse Coding (SC) [29] and Sparse Sub-

space Clustering (SSC) [6]. They represent the pose mani-

fold by unbounded hyper-planes which contradicts that the

pose manifold is bounded. As demonstrated in their exper-

iments [29], they still admit illegitimate poses suggesting

that the representation is not compact. Our approach be-

longs to this type of works. But different from PCA, SC

and SSC, our representation is bounded, which is more ef-

fective in terms of suppressing illegitimate poses.

The second type of approaches [22, 3, 20, 29, 18, 1]

enforce limb length constraints on the 3D pose to sup-

press the estimations which have illegitimate limb lengths.

For example, the pioneering works [22, 3] use the limb

lengths to compute the relative depth between neighbor-

ing joints and manually resolve the sign ambiguity. Later

work [20, 29, 18] leverages these constraints in modeling

and encourages estimations that have correct limb lengths.

The optimization algorithm in [29] is complex and may

not reach the global minimum. The authors in [20] solve

the problem by using a relaxed easy-to-optimize constraint.

However, theses approaches are not adequate because the

poses having correct limb lengths are not necessarily legiti-

mate. For example, they may have incorrect joint angles.

3. Dictionary Learning

We first give a straightforward formulation based on our

conjectures of the pose manifold. Then we present a re-

formulation which is easier to optimize. Finally, we show

how to introduce the smoothness constraint into dictionary

learning which generally outputs more robust bases.

3.1. Straightforward Formulation

Denote a set of N training poses as Y = {y1, · · · ,yN}.

The core of our approach is to learn a set of bases D =
{d1, · · · ,dK} and the division of the big dictionary D
into multiple small dictionaries {D(1), · · · ,D(M)} where

D(z) ⊆ D. A 3D pose y is represented by a single dictio-

nary which has the smallest reconstruction error:

α
∗, I∗ =argmin

α,I

‖y −
M∑

z=1

I(z) ·

|D(z)|∑

l=1

αz,l · dz,l‖
2

s.t. I(z) ∈ {0, 1},
M∑

z=1

I(z) = 1

αz,l ≥ 0,
M∑

z=1

|D(z)|∑

l=1

I(z)αz,l = 1

(1)
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Figure 2. Illustration of the pose manifold and the proposed rep-

resentation. The green and black points represent the normalized

3D poses and bases, respectively. We learn a convex hull (i.e. the

pentahedron) inside the sphere and represent the poses by the sur-

faces of the convex hull. Each pose is represented by its projection

on the closest surface.

where I(z) is a binary indicator which is one only when D(z)

is the assigned dictionary and zero otherwise. The coeffi-

cient αz,l corresponds to the lth basis dz,l in D(z). The

reconstructed pose ŷ is computed as: ŷ =
∑M

z=1 I
∗(z) ·

∑|D(z)|
l=1 α∗

z,ldz,l. The convex constraint on the coefficients

ensures the representation is bounded.

The reconstruction error ε between the input and recon-

structed poses is ε = ‖y − ŷ‖2. We learn the dictionaries

D to minimize the average reconstruction error on the train-

ing set. There are actually two sub-problems involved: (1)

assign each training pose to one dictionary; (2) learn the

dictionary based on the assigned poses. The problem is ex-

tremely difficult to optimize in its original form when the

number of training data is large. But we show that it can

be reformulated into a simpler form which has geometric

interpretations and can be optimized efficiently.

3.2. Reformulation

We require the poses y and the bases d to have unit l2-

norm. Geometrically, the poses and the basis functions are

normalized to lie on a unit hyper-sphere. We show this sim-

ple normalization step enables us to safely ignore the sub-

problems described in the above section and focus on learn-

ing the big dictionary D.

As shown in Figure 2, after normalization, both poses

and bases lie on the unit sphere. The convex combination

of the basis functions D forms a convex hull CD inside the

sphere. The boundary of the convex hull is defined by a

set F∂ of boundary surfaces. Each surface Δz ∈ F∂ is

specified by a set of basis functions {dz,l : l = 1, ..., |Δz|}.

A pose is represented by the closest surface of the con-

vex hull. This is similar to formulation (1). The difference

is that, for normalized poses and bases, directly minimizing

the reconstruction error over the big dictionary D is equiv-

alent to enumerating all the sub-dictionaries D(z) and then

selecting the closest one. This is because when we project a

pose onto the convex hull, the minimum projection error is

achieved when projected to the closest surface. This obser-

vation enables us to reformulate the problem as follows

min
α

‖y −Dα‖2, s.t. ‖α‖1 = 1, α � 0 (2)

The surfaces of the convex hull naturally divide D into

smaller dictionaries — each surface is a small dictionary.

See how the polygons in Figure 2 naturally divide the bases

into sub-groups. In other words, directly minimizing the re-

construction error on the training set gives the optimal basis

dictionary and its divisions:

min
D,αi

N∑

i=1

||yi −Dαi||
2, s.t. ||αi||1 = 1, αi � 0, ∀i (3)

3.3. Smoothness Constraint

We encourage the neighboring poses in a sequence to be

represented by similar bases. Specifically, as shown in Fig-

ure 2, most neighboring poses in a sequence are represented

by the same surface, e.g., the purple surface. Few poses

which are near the surface boundaries may be represented

by different surfaces but these surfaces usually share a num-

ber of bases. This strategy encourages to learn a smooth

charting of the pose manifold. In addition, we experimen-

tally find that using the smoothness prior during basis learn-

ing ends up with consistently better bases especially when

the training poses have noise.

Incorporating this prior can be easily achieved by adding

a smoothness term to the original objective

D∗ = argmin
D,α

N∑

i=1

{‖yi −Dαi‖
2 + λ

∑

j∈Ni

‖αi −αj‖
2}

αi � 0, ‖αi‖1 = 1, ∀i
(4)

where Ni defines the neighbors of pose yi and λ is the bal-

ancing parameter. We consider the simplest chain model

where a pose depends on only the previous and next poses.

More complex graph models can also be used to have

stronger regularization but it is beyond the scope of this

work.

The problem (4) is not convex with respect to D and α

jointly. But it is convex when we fix one and optimize the

other. If we fix α, updating D can be solved by the pro-

jected gradient descent algorithm as in [11]. If we fix D,

updating α can be solved by the active set algorithm as in

[4]. Learning several hundreds of basis functions on the

H36M dataset takes only several minutes.



Table 1. Reconstruction errors measured by MPJPE (mm) when we learn different numbers of bases on the H36M dataset w/o the smooth-

ness constraint. The top and bottom sections of the table show the results on the training and testing sets, respectively.

K (train) Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

100 24.71 23.64 23.35 28.01 29.70 33.02 36.37 26.94 33.68 44.62 29.57 32.10 32.91 25.30 25.89 29.99

200 18.25 17.63 17.94 21.17 23.19 24.59 28.81 21.46 26.07 34.78 22.24 24.31 25.53 19.04 19.71 22.98

400 13.62 13.55 13.35 16.03 17.68 18.69 21.86 16.70 19.92 26.54 16.91 17.74 19.95 14.10 14.33 17.40

600 11.31 11.31 11.05 13.56 14.56 15.21 17.59 14.17 17.14 22.27 14.23 14.52 17.04 11.67 11.83 14.50

1000 8.93 8.94 8.96 10.88 11.42 11.84 13.51 11.47 13.04 17.59 11.19 10.82 13.70 9.12 9.26 11.38

K (test) Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

100 24.72 28.95 29.30 29.33 36.97 46.00 29.69 27.37 41.65 46.96 33.61 29.70 31.02 24.40 28.77 32.56

200 20.74 25.10 24.89 24.93 31.10 40.64 25.73 23.13 36.93 40.92 29.35 26.01 27.30 20.94 23.92 28.11

400 18.13 22.46 22.09 21.65 27.63 35.69 22.34 20.33 33.00 36.67 26.67 22.87 24.37 17.96 21.08 24.86

600 16.73 20.75 20.45 19.84 26.04 33.47 20.71 18.82 31.03 34.70 24.78 21.18 22.87 16.75 19.19 23.15

1000 15.36 18.78 18.41 17.90 23.79 31.03 18.69 17.49 29.40 32.67 23.27 19.42 21.08 15.08 17.16 21.30

3.4. Refine Pose Sequences

After learning the dictionary D, we refine a sequence of

poses (y1, · · · ,yL) by solving

α
∗
i = argmin

αi

L∑

i=1

{‖yi −Dαi‖
2 + λ

∑

j∈Ni

‖αi −αj‖
2}

αi � 0, ‖αi‖1 = 1, ∀i
(5)

Each pose yi is projected to a refined pose ŷi = Dα
∗
i . The

first term in the equation forces the refined pose to be on the

manifold and to be similar to the input pose. The second

term forces the refined poses to have smooth transitions over

time. The problem can be efficiently solved by the active set

algorithm [4].

4. Experiments on Pose Reconstruction

We first evaluate whether a small number of bases can

accurately reconstruct the poses in the dataset. We learn

different numbers of bases ranging from 100 to 1, 000 on

the training set and report the reconstruction errors on the

training and testing sets, respectively.

4.1. Datasets and Metrics

We evaluate on the H36M dataset [9]. The poses of sub-

jects 1, 5, 6, 7 and 8 are used for training, while 9 and 11
are used for testing. We transform the 3D poses to the lo-

cal camera coordinate system to remove the global rotations

and translations. We normalize an input 3D pose so that it

has unit l2-norm. The normalized pose is reconstructed by

the basis dictionaries. We align the reconstructed pose to

the input to recover its scale.

The 3D pose estimation accuracy is measured by Mean

Per Joint Position Error (MPJPE) which is computed be-

tween the ground-truth 3D pose y = [p31, · · · , p
3
m] and the

reconstructed 3D pose ŷ = [p̂31, · · · , p̂
3
m]. The error (for one

pose) is computed as MPJPE = 1
m

∑m
i=1 ‖p

3
i − p̂3i ‖2. Then

we compute the average error over all poses in the dataset.

4.2. Reconstruction w/o Smoothness Constraint

We independently reconstruct each pose in the training

set without the smoothness constraint by solving equation

(2). The top section of Table 1 shows the results. We can see

that the reconstruction error is already as small as 17.40mm

when we learn only 400 bases for the whole dataset with

several million poses. It suggests that 3D poses do lie on

a low dimensional space which can be accurately recon-

structed by a small number of bases. In addition, increasing

the number of bases consistently decreases the reconstruc-

tion error. For example, the error becomes 11.38mm when

we learn 1, 000 bases.

We also compute the reconstruction error on the testing

set (which have not been used for learning the dictionary).

Achieving a small error on this subset is critical for the ap-

proach to have practical values. The bottom section of Ta-

ble 1 shows the results. First, the errors on the testing set

are generally larger than those on the training set. Second,

further increasing the number of bases only marginally de-

creases the reconstruction error after after exceeding 400.

This is reasonable because the pose distributions are differ-

ent for the training and testing sets, and increasing the num-

ber of bases does not help decrease the representation error

on the poses which have not been seen during basis learn-

ing. But in practice, the error of 21.30mm is sufficiently

small for many tasks such as pose estimation.

4.3. Reconstruction with Smoothness Constraint

We also report the reconstruction error when we use the

temporal constraint (i.e. equation (4) and (5)) to reconstruct

pose sequences. Table 2 shows the results. Note that since

we are reconstructing the ground truth 3D poses in this ex-

periment, the reconstruction errors are slightly larger than

the errors when we reconstruct them without the smooth-

ness constraint. But the increase of error is very subtle

which means that adding the temporal constraint will not

affect its representation capability. This actually suggests

that the pose sequences are indeed smooth and our learned

bases support smooth reconstruction of them.

As will be demonstrated in the subsequent experiments,



Table 2. Reconstruction errors measured by MPJPE (mm) when we learn different numbers of bases on the H36M dataset with the smooth-

ness constraint. The top and bottom sections of the table show the results on the training and testing sets, respectively.

K (train) Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

100 25.26 24.28 23.76 28.84 30.03 33.22 36.70 27.20 33.74 44.67 29.90 32.39 33.69 26.46 26.79 30.46

200 18.96 18.49 18.48 22.25 23.67 24.88 29.28 21.83 26.18 34.86 22.68 24.71 26.50 20.52 20.90 23.61

400 14.53 14.62 14.07 17.40 18.29 19.12 22.48 17.26 20.08 26.66 17.48 18.27 21.22 15.96 15.80 18.22

600 12.39 12.56 11.90 15.11 15.30 15.74 18.32 14.85 17.36 22.43 14.90 15.16 18.49 13.83 13.55 15.46

1000 10.18 10.39 9.97 12.66 12.31 12.51 14.39 12.32 13.32 17.82 11.97 11.59 15.42 11.59 11.32 12.52

K (test) Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

100 25.64 29.40 29.64 30.05 37.20 46.21 30.19 27.74 41.69 46.96 33.85 30.09 31.86 25.92 29.85 33.08

200 21.86 25.68 25.39 25.87 31.44 40.97 26.38 23.68 36.99 40.94 29.68 26.51 28.32 22.80 25.19 28.78

400 19.43 23.21 22.74 22.84 28.04 36.11 23.15 21.02 33.11 36.71 27.10 23.51 25.65 20.32 22.71 25.71

600 18.14 21.63 21.23 21.15 26.51 33.96 21.60 19.64 31.16 34.76 25.27 21.92 24.29 19.33 20.75 24.09

1000 16.93 19.78 19.28 19.36 24.33 31.62 19.74 18.48 29.57 32.75 23.84 20.25 22.67 17.99 19.04 22.37

Figure 3. Sample pose refinement results from H36M testing set. The figures of (a), (b), (c) and (d) denote the ground truth poses, corrupted

poses, refined poses w/o smoothness constraint and refined poses with smoothness constraint, respectively. First, we can see that when the

ground truth poses are severely corrupted by noise, both of our approaches (c) and (d) achieve reasonably good results. Second, the poses

refined with smoothness constraint (d) are closer to the ground truth compared to (c).

when the 3D poses are not from ground truth and have er-

rors, for example, when they are estimated from images, us-

ing the smoothness constraint will significantly decrease the

reconstruction error by regularizing the outlier poses which

have large errors using the neighboring poses.

5. Experiments on Pose Refinement

We design two experiments to evaluate our approach

when it is used to refine 3D poses. In the first experiment,

we create a synthetic dataset by adding noise to the ground

truth 3D poses, and then refine them using our approach.

We evaluate whether our approach improves the quality of

the poses. In the second experiment, we directly work on

the 3D poses estimated by [13].

5.1. Implementation Details

We learn the bases from the ground truth poses of the

training set in H36M. The number of bases is set to be 400
by cross validation. Changing this number does not signif-

icantly impact the refinement performance as long as it is

sufficiently large. The balancing parameter λ is set to be

100 by cross validation.

5.2. Metrics

We use two evaluation metrics in this experiment. The

first is the MPJPE described in the previous section. The

second is the Percentage of Correct Keypoints for 3D poses

(PCK3D) [14] which is a 3D extension of the PCK used

in 2D pose estimation [23]. If the estimated joint location

is within a neighborhood of the ground truth location, it is

regarded as being correctly estimated. We compute the per-

centage of the correctly estimated joints. The neighborhood

threshold is set to be 150mm as in the previous work. This

metric is more expressive than MPJPE, revealing individual

joint mispredictions more strongly.

5.3. Refine Synthetic 3D Poses

We first create a synthetic dataset consisting of several

sequences of illegitimate 3D poses. This is achieved by



Table 3. The metric is MPJPE(mm) on the detected 2D poses. The top section shows the results when the 2D pose estimator is finetuned

on the H36M dataset. The bottom section shows the results when it is not finetuned. Simple means the results are not refined. DAE means

denoising auto-encoder. w/o T means our approach without temporal constraint. with T means our approach with temporal constraint.

finetuned Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 43.3 46.4 48.2 49.5 53.3 54.6 44.3 43.8 56.9 62.8 52.3 47.5 52.7 46.5 50.2 50.2

PCA 45.0 47.4 50.4 50.6 56.3 57.4 45.5 44.4 58.9 65.8 53.8 49.4 54.1 46.9 51.2 51.8

DAE 43.5 46.5 49.7 49.8 53.9 57.0 46.1 43.8 58.4 63.4 52.5 48.6 52.7 46.0 50.2 50.8

w/o T 43.0 46.6 49.3 49.9 54.0 59.2 45.7 44.0 60.0 64.7 52.4 48.4 52.3 43.7 48.9 50.8

with T 40.7 44.5 47.3 47.6 52.0 57.6 43.9 41.8 58.3 62.7 50.1 46.3 50.3 41.8 46.9 48.8

not finetuned Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 58.4 70.8 62.0 68.7 82.2 72.8 63.0 80.0 81.0 92.9 74.7 69.1 81.9 77.8 79.1 74.3

PCA 58.7 67.5 61.4 67.3 81.0 71.6 62.4 76.1 79.7 91.0 72.5 67.9 75.3 73.3 75.2 72.1

DAE 54.7 64.3 59.1 64.8 78.5 69.5 60.8 74.7 77.4 88.6 71.0 66.0 73.5 72.3 73.8 69.9

w/o T 54.3 63.1 57.3 63.3 76.0 69.7 59.9 72.5 77.8 87.8 68.5 64.4 70.9 67.3 69.3 68.1

with T 52.4 61.2 55.5 61.0 73.6 68.0 58.3 71.1 75.7 85.4 66.3 62.7 69.0 65.4 67.1 66.2

adding Gaussian noise to the ground truth 3D poses in the

H36M dataset. For each pose corrupted by noise, we apply

the approach proposed in [1] to test whether its bones are

valid in terms of joint angles. The corrupted pose will be

added to our synthetic dataset if any of its bones is invalid.

The synthetic dataset consists of 10k illegitimate poses.

5.3.1 Experimental Results

We test whether the bones of the poses become valid after

refinement by [1]. The number of valid bones in a pose is

used as a metric to reflect how “legitimate” it is. Figure

4 shows the results. When no refinement is applied to the

corrupted poses, only 21.5% poses have more than 13 valid

bones. The total number of bones in a pose is 16. But after

refining the corrupted poses using our approach, most poses

become legitimate and have much more valid bones.

Figure 3 shows some examples of the refined poses.

First, the corrupted 3D poses become severely degraded in

terms of both limb lengths and joint angles. Second, af-

ter being refined by our approach w/o the smoothness con-

straint, almost all poses become legitimate. Third, adding

the smoothness constraint further improves the results. In

particular, the refined poses are closer to the ground truth

poses compared to our approach w/o smoothness constraint.

See the regions highlighted by purple ellipses.

5.4. Refine Estimated 3D Poses

We refine the estimated 3D poses by [13]. The 3D pose

estimator is trained on the ground truth 2D and 3D pose

pairs. We compare our approach to two baselines. The

first is denoising auto-encoder [26] which projects poses to

a low-dimensional latent space using a neural network. The

second is Principal Component Analysis (PCA) which ap-

proximates the pose manifold by a hyperplane.

5.4.1 Estimating 2D Poses by Pose Detector

We estimate 2D poses using the stacked hourglass model

[17] which was first trained on the MPII dataset [2] and

Figure 4. Histogram of the valid bones in the refined poses. The

x-axis denotes the number of valid bones. The y-axis denotes the

percentage of the poses having such a number of valid bones.

then finetuned on the H36M dataset. We also conduct ex-

periments when it is not finetuned on H36M. The former

model achieves better 2D poses.

The top section of Table 3 shows the results when the

2D pose estimator is finetuned on the H36M dataset. The

average error of the initially estimated 3D poses by [13]

(denoted as Simple) is about 50.2mm. Applying PCA and

denoising auto-encoder on the estimated poses doesn’t im-

prove the poses. This is because the input 2D poses are

mostly accurate and the estimated 3D poses are mostly le-

gitimate. However, our approach with the smoothness con-

straint (with T) decreases the error by about 1.4mm.

The gain is much larger when the 2D poses are estimated

by the model which is not finetuned on the H36M dataset.

The bottom section of Table 3 shows the 3D pose estima-

tion results. We can see that the estimation error of the

baseline method increases significantly to 74.3mm. Apply-

ing PCA and DAE both decreases the error. But our ap-

proaches with and without the smoothness constraint out-

performs PCA and DAE. In particular, using the smooth-

ness constraint provides larger improvement.



Table 4. The metric is MPJPE(mm) on synthetic 2D poses. The 2D poses are the corrupted ground truth by adding Gaussian noise of

different variances δ.

Noise=5 Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 41.1 46.5 46.3 49.1 49.0 54.8 44.9 44.3 52.7 60.6 48.6 47.1 51.0 51.3 52.5 49.3

PCA 43.5 48.0 49.4 50.5 52.6 58.0 46.4 44.8 55.8 64.0 50.9 49.7 52.8 51.9 53.8 51.5

DAE 41.3 46.0 47.1 48.5 48.9 56.3 46.1 43.2 53.0 59.1 48.4 47.7 50.2 49.4 51.2 49.1

w/o T 40.8 46.4 47.0 49.0 50.5 59.4 46.1 43.5 56.1 61.7 49.8 48.4 50.3 48.8 51.1 49.9

with T 34.0 39.6 39.7 41.5 43.1 52.5 39.9 36.8 49.9 53.8 42.9 42.0 43.3 40.2 42.4 42.8

Noise=10 Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 62.6 69.8 71.0 75.4 73.7 81.2 63.7 68.6 77.3 93.0 72.4 68.5 77.3 84.4 83.7 74.9

PCA 62.2 68.4 70.2 74.2 73.0 80.1 62.7 65.0 76.4 91.2 70.9 67.9 75.4 82.2 82.0 73.5

DAE 57.3 63.1 66.4 68.7 67.3 75.9 59.7 61.3 71.2 84.2 66.0 63.8 70.2 75.9 75.4 68.4

w/o T 57.1 62.7 65.4 68.5 67.3 77.0 59.8 59.4 72.4 83.7 66.1 63.7 68.1 74.0 73.9 67.9

with T 41.6 46.9 49.4 52.2 51.1 61.8 45.2 43.6 57.8 66.7 50.2 49.4 52.2 56.3 55.9 52.0

Noise=15 Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 84.6 94.3 96.2 101.5 99.9 109.4 83.7 95.2 103.6 125.1 97.6 90.6 104.8 115.7 113.9 101.1

PCA 82.3 90.7 92.4 98.5 95.8 104.9 80.9 88.6 99.5 119.8 93.3 87.8 100.1 111.9 110.1 97.1

DAE 74.4 82.1 86.3 89.1 87.6 97.1 74.7 82.1 92.0 110.1 85.6 81.2 91.6 101.3 99.2 89.0

w/o T 73.0 79.5 83.0 87.1 84.4 95.2 73.9 76.8 90.3 105.9 82.8 79.1 86.1 96.2 94.6 85.9

with T 51.5 57.2 60.0 64.2 61.4 74.4 52.7 54.9 69.2 83.1 60.1 58.8 63.9 71.4 69.3 63.5

Table 5. The metric is PCK3D on synthetic 2D poses. The 2D poses are the corrupted ground truth by adding Gaussian noise of different

variances δ.

Noise=5 Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 98.85 97.98 98.55 97.57 98.17 96.76 98.68 98.70 96.71 94.84 97.77 97.80 97.22 96.79 96.57 97.53

PCA 98.78 97.90 98.46 97.53 97.76 96.43 98.61 98.66 96.52 93.96 97.63 97.67 96.98 96.70 96.45 97.34

DAE 98.91 98.16 98.68 97.73 98.36 96.55 98.74 98.79 96.98 95.34 97.86 97.83 97.25 96.88 96.69 97.65

w/o T 98.87 98.10 98.68 97.54 98.03 95.57 98.56 98.70 96.39 94.64 97.60 97.56 97.27 97.02 96.78 97.42

with T 99.35 98.75 99.42 98.54 98.91 96.94 99.42 99.24 97.41 96.53 98.60 98.44 98.21 98.07 98.12 98.40

Noise=10 Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 95.14 92.96 92.86 91.41 92.13 89.61 95.47 93.65 90.49 84.56 92.33 93.27 90.77 87.92 88.15 91.38

PCA 95.12 93.09 93.00 91.41 91.96 89.57 95.46 94.19 90.42 84.60 92.36 93.14 90.91 88.00 88.09 91.42

DAE 96.15 94.61 94.25 93.01 94.05 91.20 96.20 95.18 92.44 87.56 93.93 94.29 92.52 90.09 90.40 93.06

w/o T 96.14 94.75 94.53 92.94 93.94 90.38 96.02 95.64 91.80 87.42 93.68 94.13 93.05 90.53 90.63 93.04

with T 98.51 97.94 97.98 96.65 97.78 95.04 99.04 98.49 96.19 93.20 97.66 97.44 96.68 94.68 94.95 96.82

Noise=15 Direct. Discuss Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 88.48 84.08 83.30 81.50 81.59 77.99 89.03 83.96 80.40 71.37 82.72 85.39 79.86 74.79 75.65 81.34

PCA 88.77 85.06 84.42 82.21 82.76 79.43 89.37 85.87 81.40 73.33 83.84 85.93 81.33 76.05 76.70 82.43

DAE 91.48 88.48 87.18 86.17 86.65 83.16 91.81 88.60 84.97 77.68 87.25 88.61 85.05 80.88 81.86 85.99

w/o T 91.88 89.50 88.39 86.84 87.72 83.54 91.89 90.39 85.11 78.77 87.90 89.18 87.06 82.78 83.41 86.96

with T 97.29 96.12 96.22 94.17 95.87 91.14 97.83 96.51 93.21 87.73 95.59 95.64 94.24 90.95 91.33 94.26

5.4.2 Adding Noise to Ground truth 2D Poses

Since the images in the H36M dataset are relatively simple,

achieving accurate 2D pose estimations on this dataset does

not mean we can achieve similar performance in practical

scenarios. So in this section, we systematically evaluate the

3D pose estimator and our approach when the 2D poses are

corrupted by different levels of noise.

We estimate the 2D pose scale s by finding the maximal

length of each pose along x, y-axis. Then we sample zero-

mean Gaussian noise with standard variance σ = δ% × s,

where δ are set to be 5, 10 and 15, respectively. Table 4, 5

shows the 3D estimation errors when the noise are added to

the ground truth 2D poses. First, when the smallest amount

of noise (δ = 5) are injected into 2D poses, most 3D estima-

tions are rather accurate. For example, the error of the base-

line Simple is 49.3mm. Directly projecting the estimations

to the learned manifold doesn’t offer improvement because

most 3D estimations are already legitimate. However, we

see a big improvement by using the temporal smoothness

constraint. The error decreases from 49.3mm to 42.8mm.

Second, when we add large noise (δ=10) to 2D poses,

the 3D estimation error of the baseline approach increases

significantly to 74.9mm. In this case, projecting the esti-

mations to the manifold significantly decreases the error to

67.9mm. This means many 3D estimations are illegitimate

when the 2D poses have large errors.

Third, when we increase the noise from 5 to 15, the er-

ror of the baseline increases significantly from 49.3mm to

101.1mm which shows that most approaches heavily de-

pend on the accuracy of the 2D poses. However, the error

for our approach increases from 42.8mm to 63.5mm which

is much smaller than the baseline.

6. Experiments on Motion Prediction

In this section, we evaluate our approach in the context

of human motion prediction. The task aims at generating



Figure 5. Typical motion prediction results of the baseline (top) and our method (bottom).

LSTM

Project on Manifold

LSTM

Project on Manifold

Figure 6. Human motion prediction pipeline. We use LSTM to

model the historical motions following many related works [12,

21, 8]. Since the predicted 3D pose may be inaccurate, especially

when the input (estimated previously) has errors, we project the

3D pose to the nearest pose on the manifold. In this way, we can

solve the problem of error accumulation and significantly improve

the robustness of the predictions.

Figure 7. Confusion matrixes of the predicted pose sequences of

our approach (left) and baseline (right).

future frames of human poses based on an observed short

sequence of poses. Recent work has focused on using deep

recurrent neural networks (RNNs) to model human motion,

with the goal of learning time-dependent representations.

But there is a drawback with this model. Since the pre-

dicted pose at time t will be used to predict pose at t+1, the

prediction error of the current frame degrades the following

predictions. We find in experiments that the long term pre-

dictions either gradually converge to the natural poses or

end up with predicting very inaccurate poses. The problem

is more severe for long term predictions because the errors

accumulate over time.

Our solution is to refine the predicted pose before it is

fed to the network for the following predictions. In particu-

lar, we project the pose to the manifold and represent it by

the nearest data on the manifold. Although the approach is

simple, it enables long term motion predictions up to sev-

eral minutes without converging to the natural poses or very

inaccurate poses. Figure 6 shows the pipeline for motion

prediction. The network structure in LSTM consists of two

fully connected layers with each having 1024 neurons.

Figure 5 shows two example sequences predicted by the

baseline and our method, respectively. We can see that the

baseline converges to a certain pose and fails to further gen-

erate meaningful sequences. In contrast, our method, by

refining the pose at each time step, generates consistently

better pose predictions.

6.1. Quantitative Evaluation

We also adopt an approach to quantitatively evaluate the

motion prediction method. For long term prediction, it is

not appropriate to evaluate the predicted poses frame by

frame with the ground truth poses because there are many

possibilities to accomplish the target action. In other words,

a good (predicted) sequence of poses are not necessarily to

be similar to the ground truth sequence in a frame-to-frame

matching scheme. So we follow the previous work and eval-

uate the predicted sequences by action recognition.

We select four actions (i.e. walking, eating, posing and

sitting down) from the H36M dataset which have large

inter-class distances. Then we train LSTM based action

classifiers based on the training set. Then we feed the pre-

dicted pose sequences to the classifier. Ideally, if the pre-

dictions are good, the classifiers should be able to correctly

classify them. Figure 7 shows the classification results of

our method and the baseline, respectively. The classifica-

tion accuracy of our approach is about 98.25%. In contrast,

if we don’t refine the pose sequences, the classification ac-

curacy decreases to 82.50%. The main reason for the de-

graded accuracy is because the prediction error will accu-

mulate overtime if we don’t correct them in time.

7. Conclusion

We present an approach to refine pose sequences by

jointly considering (1) to constrain the poses to lie on a man-

ifold, (2) to constrain the pose sequences to be smooth. This

is achieved by learning basis dictionaries to approximate the

pose manifold. We evaluate the proposed approach by two

important tasks: (1) 3D pose estimation from a monocular

video, and (2) long-term motion prediction. Consistently

better pose sequences are obtained by our approach which

demonstrates its practical values.
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