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Figure 1. A recursive program built through output-directed program transformations, without any text-based programming.

ABSTRACT
For creative tasks, programmers face a choice: Use a GUI and
sacrifice flexibility, or write code and sacrifice ergonomics?

To obtain both flexibility and ease of use, a number of sys-
tems have explored a workflow that we call output-directed
programming. In this paradigm, direct manipulation of the
program’s graphical output corresponds to writing code in a
general-purpose programming language, and edits not possible
with the mouse can still be enacted through ordinary text edits
to the program. Such capabilities provide hope for integrating
graphical user interfaces into what are currently text-centric
programming environments.

To further advance this vision, we present a variety of new
output-directed techniques that extend the expressive power of
SKETCH-N-SKETCH, an output-directed programming sys-
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tem for creating programs that generate vector graphics.
To enable output-directed interaction at more stages of pro-
gram construction, we expose intermediate execution products
for manipulation and we present a mechanism for contex-
tual drawing. Looking forward to output-directed program-
ming beyond vector graphics, we also offer generic refactor-
ings through the GUI, and our techniques employ a domain-
agnostic provenance tracing scheme.

To demonstrate the improved expressiveness, we implement
a dozen new parametric designs in SKETCH-N-SKETCH with-
out text-based edits. Among these is the first demonstration of
building a recursive function in an output-directed program-
ming setting.
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INTRODUCTION

Direct manipulation [40] graphical user interface (GUI) appli-
cations are ubiquitous. Every day, direct manipulation GUIs
are used by millions for office tasks such as presentation and
document preparation as well as for specialized creative tasks
such as engineering and graphic design. Direct manipulation’s
intuitive point-click-modify experience enables a large number
of people to leverage computers to create novel artifacts.

Even so, experts may sometimes forgo a GUI application and
create their artifact using a programming language. In contrast
to the intuitive experience offered by direct manipulation GUISs,
text-based coding does not offer immediate and direct artifact
construction, but programmers use text-based languages to
gain flexibility not afforded by any GUI application.

Both paradigms—direct manipulation and text-based
programming—have proven useful. Naturally, there have
been efforts to combine their distinct strengths.

For example, some professional creative applications do of-
fer a scripting API (e.g. Maya [2]), but, beyond perhaps an
initial macro recording, script construction is a text editing
process with no direct manipulation support. Furthermore, in
the programming world, non-text paradigms such as blocks-
[4] or wires-based visual programming [43] allow direct ma-
nipulation of program elements. Even so, most professional
programming remains a strictly plain text activity.

Instead, could direct manipulation augment text-based pro-
gramming, providing user interfaces more like standard cre-
ative application GUISs, such as graphics editors? Rather than
directly manipulating program elements construed as blocks
and wires, could one construct a textual program by directly
manipulating a program’s output?

Output-Directed Programming (ODP)

We refer to this paradigm—in which a programmer constructs
a plain text program by mouse-based operations on the pro-
gram’s output—as output-directed programming (ODP). Each
operation triggers a transformation on the text-based program,
akin to automatic refactoring tools. Successive operations
build the program step by step. Because the program is plain
text throughout the process, desired changes that are not pos-
sible through the provided direct manipulation interactions
can be enacted by ordinary text editing. The system treats the
plain text as the artifact’s primary representation so that text
editing does not disable future direct manipulation actions.

This ODP paradigm for altering a program by manipulating
its output offers two tantalizing possibilities:

e Creative applications could represent the user’s artifact
not as an opaque internal data structure but as a visible,
editable, textual program. Direct manipulation of the arti-
fact can be freely mixed with computational generation.

o For general-purpose programming, ODP could facilitate
general program construction via output-directed ma-
nipulations. For experts, these ODP interactions might
accelerate common program construction tasks, and for
novices, ODP interactions might provide an approachable
pathway into programming.

A number of systems have made initial steps towards realizing
this paradigm. After first drafting a program using ordinary
text edits, several ODP systems allow direct manipulation of
the output to change constant literals in the program [46, 9,
24, 39, 29]. To also relieve the initial text editing burden, for
programs with graphical output a few systems provide ODP
mechanisms for program construction [31, 38, 19], akin to
drawing tools in graphics editors.

All prior ODP systems presented their workflow as a mix of
text edits and direct manipulation. Although the selling point
of ODP is that text edits can compensate for any missing direct
manipulation features, the standing question is how thoroughly
direct manipulation can subsume text-based editing. Therefore,
in this work we wonder: What kinds of programs can be
constructed entirely through output manipulations?

New ODP Techniques in SKETCH-N-SKETCH

We extend our prior work on SKETCH-N-SKETCH [9, 19],
a programming system for creating vector graphics, with new
ODP techniques that enable the system to construct 16 ex-
ample programs without text edits on the code—even though
ordinary text editing remains possible at any time during the
construction of each example. Specifically, we:

1. Expose intermediate execution values for manipulation,
instead of just the final output.

2. Offer expression focusing to enable contextual drawing.

3. Expose generic code refactoring tools through output-
directed interactions.

4. Use generic run-time tracing to track value provenance,
to associate output values with source code locations.

Although the SKETCH-N-SKETCH system is specialized for
programs that output vector graphics, the four principles above
are relevant for future output-directed programming systems
of all kinds.

Paper Outline and Supplementary Materials

To introduce the output-directed programming workflow in
SKETCH-N-SKETCH, in the next section we walk through the
creation of a simple example program. After this overview, we
present the core ODP mechanisms and our four innovations in
more detail, followed by an examination of the construction of
the 16 example programs. We conclude by discussing current
limitations of SKETCH-N-SKETCH, related work, and future
directions for ODP. Our implementation, examples, videos,
and appendices are available as Supplementary Materials and
on the Web (http://ravichugh.github.io/sketch-n-sketch/).

OVERVIEW

SKETCH-N-SKETCH is a bimodal programming environment,
as depicted in Figure 1: the left pane is an ordinary source
code text editor; the right pane renders the scalable vector
graphics (SVG) [47] design generated by the code and also
offers a graphical interface for performing transformations on
the SVG output (i.e., with mouse-based manipulations). The
programmer may perform keyboard text edits on the code at
any time during program construction, but this ability will not
be used in this paper.
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Figure 4. Code after drawing one square and snap-drawing two lines
(right). Freeze annotations, written !, tell SKETCH-N-SKETCH not to
change those constants when shapes are moved on the canvas [9].

from the top-left to the bottom-right corner and a second line
from the bottom-left corner to the center point (these two steps
are shown in the right side of Figure 4). SKETCH-N-SKETCH
interprets these snaps as constraints which should always hold,
i.e., the lines should still coincide with the corners and center
even if the square is moved or resized. SKETCH-N-SKETCH
encodes these constraints in the program via shared variables:
three new variables are introduced for the square’s top-left x
and y coordinates and its width w, and the spatial properties

color slider as well. Figure 5. Selecting a feature.

Whenever an item is selected, SKETCH-N-SKETCH displays a
floating menu of output tools. The programmer would like the
two selected colors to always be the same, so she moves her
mouse to the MAKE EQUAL tool, revealing a list of possible
program transformations in a submenu—in this case there is
only one, but if the lines had been different colors two results
would be offered to let the programmer decide which line’s
color should take priority (as simulated in Figure 6). Moving
her mouse over the single “Equalize by removing line2 color”
result in the submenu shows a preview of the new output on
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DESIGN AND IMPLEMENTATION

SKETCH-N-SKETCH is a browser application written in the
functional language Elm [14] extended with custom providers
for mutation and exceptions.

Figure 12 depicts the workflow for output-directed program-
ming in SKETCH-N-SKETCH. The programmer-facing lan-
guage for users is a standard functional language with Elm-
like syntax. A text-based program written in this language is
evaluated, and its SVG output value is rendered on the output
canvas. The output is overlaid with widgets for selecting and
manipulating sub-values (discussed below). The programmer
may draw a shape, or drag an item to change a number in
the program [9], or make a selection and choose a program
transformation from the floating tools menu (Figure 6). The
resulting modified program is placed in the code box and is
re-evaluated producing new output on the canvas.

Most of SKETCH-N-SKETCH’s tools (summarized in Fig-
ure 13) operate on selections on the canvas. Different kinds of
sub-values of the final output may be selected: whole shapes
may be selected, or sub-features of shapes may be selected—
namely, positional properties (via points rendered on the cor-
ners and edge midpoints of shapes), size properties (via selec-
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Figure 11. The final code for the lambda logo example (Figure 2),
produced entirely by output-directed manipulations on the canvas.

tion regions for width and height), colors (via color sliders),
or strokes (via stroke width sliders). When the programmer
makes a selection and then invokes a transformation, the se-
lected sub-values are “arguments” to the transformation and
are interpreted in a transformation-specific way.

Looking forward to applying ODP to larger programs, manipu-
lation of the final output alone will be insufficient. The output
by itself does not represent the process by which the output
was produced. We believe some of the intermediate process
should be exposed on the canvas for manipulation.

Therefore, in addition to the sub-values of the final output de-
scribed above, the programmer may also select two additional
kinds of terms associated with the program’s execution. First,
we also expose widgets on the canvas that correspond to inter-
mediate values produced during execution. Second, we allow
the programmer to select a sub-expression in the program to
denote the context under focus. These additional kinds of
selections—intermediate values and focused sub-expressions—
serve as further arguments to program transformations and
enable the programmer to modify portions of the computation
that do not have a direct representation in the final output.

To highlight the key ideas behind our implementation, we
discuss these two novel selection types below. We also discuss
the degree to which several of our transforms are ordinary
automatic refactorings (i.e. not specific to SVG), as well as
the generic provenance tracing that the transformations rely
upon to associate canvas selections with program locations.
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Figure 13. Program transformations and user interface features (UI)
in SKETCH-N-SKETCH. Those marked with % are new to our system;
the remainder are improvements upon [19]. The #Ex column indicates
the number of examples in Figure 15 in which the feature was used.

Intermediate Value Widgets

To allow manipulation of computation steps before the final
output, SKETCH-N-SKETCH displays widgets for three kinds
of intermediate values produced during execution: point val-
ues, offset values, and list values.

Points (number-number pairs, e.g. [10, 20]) produced at
intermediate execution steps are exposed for manipulation as
point widgets on the canvas. Between selected points, we also
draw distance features for selecting Cartesian distances.

In graphics code, it is common to define offsets from some
base x or y values. Therefore, during execution, when a nu-
meric amount is added to or subtracted from an x or y coordi-
nate, an offset widget is drawn on the canvas as a horizontal or
vertical arrow from the initial point, where the length of the
arrow is the numeric amount of the offset. The arrow itself
may be selected or dragged to change the offset amount.

To complement the new point widgets and offset widgets, a
“Point and Offset” tool in the toolbox (Figure 1b) allows the
programmer either to click on the canvas to add a point defini-
tion to the program (e.g. [x, y] as point = [10, 20])
or to drag on the canvas to add a new offset definition (e.g.
x0ffset = x + 5). Offsets not drawn from an existing point

[x, y] as point = [208, 256] Q.

halfW = 102
halfH

x0ffset = x + halfW

. halfw halfw
x0ffset2 = x - halfW ©
halfH = 145

halfH
yOffset = y - halfH
yOffset2 = y + halfH e}

Figure 14. Point and offset widgets are displayed based on program
execution to allow manipulation of intermediate computations. Depicted
is an early step in the creation of Figure 15xii.

also insert a new point for the base of the offset. To ease the
creation of symmetry, offset amounts may snap to each other
while drawing. The symmetry is enforced by introducing a
shared variable for offset distance. For example, the program
in Figure 14 is rendered on the canvas as a point widget from
which four offsets emanate. The variables halfW and halfH
are shared offset amounts produced by snap-drawing (and
subsequently renamed by the programmer). The ends of the
offsets can serve as snap targets for future drawing (e.g. the
rhombuses in Figure 15xii). Note that Figure 14 was created
by the using the “Point and Offset” tool, but the rendered wid-
gets would be the same if the program were instead written by
text edits—only the code matters. SKETCH-N-SKETCH emits
widgets from the evaluator when appropriate computation
patterns are encountered.

A third type of intermediate widget—a list widget—is emitted
whenever an execution step evaluates to a list of graphical
items. A list widget is drawn as a dashed box encompassing
the items (Figure 7). Any list of shapes, list of points, or list of
lists in the program can thus be selected. List widgets obviate
the need for a graphics-specific construct to denote groups of
shapes—a group is just a list of shapes, and the list widget
facilitates selection of, and thus operations on, the group.

Expression Focusing

To enable manipulation of subsections of the program, a pro-
gram expression may be selected to control the syntactic scope
of changes made to the code. Most notably, focusing a shape
group (i.e. list of shapes) or a function causes drawing opera-
tions to insert shapes into that group or function rather than the
final output. Accordingly, a recursive design can be created
by drawing a function inside itself.

When a function call produces graphical elements, a call wid-
get is displayed around the returned elements as a box with a
gray solid border. Clicking the gray border focuses the func-
tion call (Figure 10). The remainder of the program’s output
is hidden and drawing operations are interpreted inside the
focused function. Clicking the call widget again or pressing
the “escape” key returns focus back to the entire program.

Literal (non-function) definitions may also be focused. If a
canvas selection refers to the right hand side of an assignment,
a Focus EXPRESSION tool is offered to focus that assignment.
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Generic Refactoring

Looking forward to applying ODP to domains beyond vec-
tor graphics, a number of SKETCH-N-SKETCH’s tools apply
standard automatic refactorings.

Most notably, labels are drawn next to most widgets on the
canvas to aid comprehension—any label may be clicked to
RENAME the associated variable and its uses.

SKETCH-N-SKETCH also includes tools for refactoring func-
tions. The ABSTRACT tool performs a generic “Extract
Method” refactoring, building a new function parameterized
over the expression’s free variables. Also, when a function call
is focused by clicking its call widget, SKETCH-N-SKETCH of-
fers actions to add, remove, or reorder arguments. Finally, the
MERGE tool performs clone elimination.

Provenance Tracing

While the widgets for intermediate values expose relevant
steps of the computation on the canvas, occasionally the trans-
formations require knowledge about parts of the computation
that are not directly represented by widgets. For example,
the ADD ARGUMENT tool searches for every expression that
affected the selected value and separately offers each such
expression as a possible new argument to the function.

To help the tools answer these kinds of questions, the
SKETCH-N-SKETCH evaluator performs tracing on every exe-
cution step: the resultant value is tagged with the expression
being evaluated as well as pointers to the prior (tagged) val-
ues used in the immediate computation; transitively following
these prior tagged values reveals the dependencies of the com-
putation. To answer containment queries, we additionally add
pointers from list elements to the list(s) containing them. Our
tracing discards certain control flow information, most notably
pattern match de-structuring operations; future versions of
SKETCH-N-SKETCH may adopt the Transparent ML [1] trac-
ing scheme to preserve this information. Neither our tracing
nor Transparent ML is specific to SVG—we suspect generic
tracing will be useful for ODP in multiple domains.

SKETCH-N-SKETCH becomes sluggish on larger examples.
Although tracing theoretically adds memory and time over-
head to evaluation, the culprit not the tracing itself but is
usually comparison between large traces or widget processing.

CASE STUDY OF ODP EXAMPLES

To explore the expressiveness of ODP in SKETCH-N-SKETCH,
we implemented 16 parametric designs summarized in
Figure 15. Drawn from various sources [9, 19, 34, 5, 8],
the designs exercise different features: 6 designs are param-
eterized functions that appear as drawing tools at the end
of construction, 6 involve repetition by position, 1 involves
repetition by other features (radius and color, Figure 15xiii),
and 1 uses recursion (Figure 151). All 16 programs, spanning
427 lines of code total, were built entirely via output-directed
manipulations, without any text editing in the code box.

Below, we discuss common patterns in how we used the tools
to implement the examples. Next, we recount the key steps
in building the recursive Koch curve and explain the process
to construct designs involving repetition. Finally, we describe

limitations by discussing the tasks from the Watch What I Do:
Programming by Demonstration [34] benchmark suite that the
current system cannot complete without text edits.

Authoring

The lambda logo walkthrough in the overview framed the
SKETCH-N-SKETCH workflow as a four stage draw-relate-
abstract-refactor authoring process. In practice, design con-
struction cannot always be cleanly delineated into precise
stages in a fixed order. For example, while constructing the de-
signs of Figure 15, we often specified the relationships before
drawing the shapes: we laid out the desired parameterization
of the design using points and offsets (as in, e.g., Figure 14)
and afterwards attached shapes using snap-drawing.

The #Ex column of Figure 13 lists how many of the Figure 15
examples utilized each tool. Indeed, besides shape drawing
and variable renaming, the most widely used functionality was
SKETCH-N-SKETCH’s snap-drawing ability—not surprising
given that the goal was to create parametric designs.

It is notable that to encode spatial constraints we more often
preferred to snap-draw rather than use the MAKE EQUAL tool.
MAKE EQUAL is more flexible, but not only does it require
extra clicks compared to snap-drawing, MAKE EQUAL can
offer a large number of different but hard-to-distinguish ways
to enforce a constraint (Figure 6 is a tame example). To help,
SKETCH-N-SKETCH employs a ranking heuristic that seems
to work well in practice: MAKE EQUAL prefers changes that
rewrite terms near each other and later in the program. The
least used tool for specifying relationships was the RELATE
tool. RELATE guesses a mathematic relationship between se-
lected items—we only used it for constraints involving thirds.

Offsets plus snaps and MAKE EQUAL was sufficient, but not
always convenient, for creating reasonable parameterizations
of the designs. Laying out offsets beforehand requires fore-
thought. A future SKETCH-N-SKETCH might benefit from
tools to break constraints or invert dependencies after the fact.

As indicated in Figure 13, we did not use the MERGE tool and
three tools were used only once, all on the most challenging
example, the Koch snowflake. The MERGE tool merges multi-
ple copies of a shape into a function—we prefer ABSTRACT
instead because it requires only a single example. The three
tools only used for the Koch fractal all played a role in the
workflow to specify recursion, which we now recount.

Recursive Koch Snowflake

We highlight the key steps in creating the recursive von Koch
snowflake design [45] (Figure 1, Figure 15i). This task re-
quires manipulating intermediates—program has no output
throughout most of its development—and focused editing is
needed to build the recursive function. Here we emphasize the
steps to specify the recursion, although the video in the Sup-
plementary Materials walks through the entire construction.

Each side of the Koch snowflake is based on a recursive motif
shown in Figure 1f. The motif requires two helper functions:
a function that, given two points, computes a point % of the
way between them (oneThirdPt, Figure 1d), and a function
that, given two points, computes a third point that completes an
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(iv) Balance Scale v

34 LOC, 21 MO 81 LOC 441L0OC
(vs. 53 LOC, 40 MO)

(i) Koch Snowflake % (ii) Precision Floor Plan ¢

31 LOC 9LOC, 3 MO
(vs.25 LOC, 27 MO)

(iii) Mondrian Arch 1

15 LOC, 4 MO
(vs.23 LOC, 9 MO)

x i (s -m—‘ - ﬂ@ il

(vi) Xs Ak (vii) Battery 1 (viii) Ladder %

13 LOC, 5 MO 18 LOC
(vs.21 LOC, 2 MO)

(ix) Logo (via Three Tris) A%  (x) N Boxes % (xi) Ferris Wheel % (xii) Tree Branch % (xiii) Target (xiv) Pencil Tip 15 (xv) Arrows A% (xvi) Rails %
40 LOC 7L0C 25LOC 31LOC 8LOC 28 LOC 20 LOC 23 LOC
Figure 15. Example programs created solely via output-directed manipulations. LOC = Source lines of code. A = Final design is a function that

appears as a drawing tool. COMPARISON TO [19]: If an example can similarly be created in [19], code metrics for [19] appear in parentheses.
Math operations (MO) indicate code simplifications due to our improvements. % (resp. ) = Task cannot (resp. can with undesired parameterization)
be created in [19]. SOURCE OF EXAMPLES: WWID: PBD [34]: Tasks marked with underline (dashed = only partially completed). Lillicon [5]:
(vii) Battery. QuickDraw [8]: (viii) Ladder. SKETCH-N-SKETCH [19]: (ix) Logo (via Three Tris). SKETCH-N-SKETCH [9]: (x) N Boxes, (xi) Ferris Wheel.

equilateral triangle (equiTriPt, Figure le). The two helpers
are created without text edits via the RELATE and MAKE
EQUAL tools, respectively. Each helper takes in two points
and is thus exposed as a drawing tool (Figure 1c).

The Koch motif is created by o (o)
snap-drawing oneThirdPt LS 0]
forward and backwards to

yield the % and % points; 0]

equiTriPt is used to create
a point equidistant from the
; and 2 5 points. The bottom o
of Flgure 16 shows this
initial motif after abstraction. ° o o o
Note that when a function is
focused, as in Figure 16, input
points are rendered in orange
and output points in blue. The code is not recursive yet:

makeKochPts
point X 4» point2 X «4»

Figure 16. Initial Koch motif.

makeKochPts point point2 =
let oneThirdPt2 = oneThirdPt point point2 in
let oneThirdPt3 = oneThirdPt point2 point in
equiTriPt oneThirdPt3 oneThirdPt2

Drawing the function inside itself causes SKETCH-N-SKETCH
to insert a recursive skeleton and the recursive call:

makeKochPts point point2 =
let oneThirdPt2 = oneThirdPt point point2 in
let oneThirdPt3 = oneThirdPt point2 point in
let equiTriPt2 = equiTriPt oneThirdPt3 oneThirdPt2 in
if ??terminationCondition then
equiTriPt2
else
let makeKochPts2 = makeKochPts point oneThirdPt3 in
equiTriPt2

To avoid infinite recursion, the temporary guard expression
??7terminationCondition evaluates to false the first time
the function is encountered, and true if the function has
appeared earlier in the call stack, affecting termination at a
fixed depth. The termination condition may be selected later.

Recursive Case
makeKochPts not <| ??terminationCondition
point X 4» point2 X <4»

After drawing the
function  between
the remaining three
pairs of points the

design looks like a makeKochPts o
fractal (Figure 17). ° OOO 000 °
However, only one 06000 000 ©

point is output from
the  function—the
white points are
only intermediates.
Moreover, most of those intermediates are inside calls to the
base case. Although focused on the function’s recursive case,
to modify the output of the base case, the programmer can
click the call widget of a call to the base case (the inner light
gray border in Figure 17) to focus that call instead (Figure 18).

Figure 17. Recursive case.

Base Case
makeKochPts fition
point X 4» point2 X <4»

The ADD TO OUTPUT and REORDER
IN LIST tools are used to place the
selected points into the output of the
base case (resulting in the list on line o

16 of Figure 1). Once complete, the 0000
recursive case may be refocused, and,
using the same two tools, its output is
specified to be the concatenation of the
lists returned from calls the the base case (line 22 of Figure 1).

Figure 18. Base case.

What remains is to choose a termination condition. The fo-
cused call widget for makeKochPts displays the conditional
not <| ??terminationCondition for the recursive case.
Clicking the conditional offers termination conditions. Cur-
rently, SKETCH-N-SKETCH implements only one: fixed depth,
in which a depth argument is decremented on the recursive
calls. These changes are visible in the final code (Figure 1f).

With all the points for the Koch snowflake now on the canvas,
a polygon is attached to them by selecting the “Polygon” tool
and clicking the list widget to select the points. With widgets
hidden, the final snowflake is shown in Figure 1.



rhombusFunc2 ([x, y] as point) =
let halfW = 40 in
let halfH = 83 in
rhombusFunc point halfW halfH

repeatedRhombusFunc2 =
map rhombusFunc2 leafAttachmentPts

Figure 19. Code fragment from Figure 15xii produced by the REPEAT
OVER EXISTING LIST tool. The tool creates a function (rhombusFunc?2)
that produces a shape given a single point, and maps that function over
a list of points defined elsewhere in the program (leafAttachmentPts).

Repetition

Of the Figure 15 examples, 7 utilize SKETCH-N-SKETCH’S
tools for creating repetitive designs. A selected shape may be
repeated either over an existing list of points in the program or
over a new call to any function that returns a list of points (the
default toolbox in Figure 1a contains several such functions).
Figure 19 illustrates code produced by these repetition tools.

For creating designs that vary over a non-spatial attribute,
SKETCH-N-SKETCH alternatively offers a programming by
demonstration workflow: after manually laying out the first
few shapes of a repetitive design, the REPEAT BY INDEXED
MERGED tool syntactically merges the shape expressions into
a single function that is called with an argument i that takes
on the values 0, 1, 2, etc. Using a simple form of sketch-
based synthesis [41], a special tool called FILL HOLE resolves
syntactic differences between the original shape expressions
by synthesizing expressions that refer to the index variable i.
Figure 15x and xiii were constructed with this workflow.

Limitations: Remaining Tasks

Of the 15 tasks in the Watch What I Do: Programming by
Demonstration [34] benchmark suite that may be interpreted
as parametric drawings, our system is able to fully complete 4.
What is needed to complete all the tasks without text edits?

Two of these remaining WWID: PBD tasks can be partially
completed in this work (Figure 15v, vi). To fully complete
them, “Box Volume” would require an interaction to com-
pute and display the numeric volume of the folded box, and
“Xs” would require more precise control over what definitions
are abstracted. (Not all uses of a squareWidth parameter
are pulled into the abstraction, causing the design to render
incorrectly when drawing an X with different sized squares.)

The remaining nine tasks are diverse; no single feature would
help with more than two or three. A prominent missing feature
is arbitrary text boxes, with other elements placed relative to
the text size. Beyond this, several examples require various list
operations. SKETCH-N-SKETCH would also need to reason
about intersections of lines with shape edges, to offer ways to
specify overlapping and containment constraints, and to solve
different kinds of such constraints simultaneously. Finally,
one example would require creating if-then-else branches
outside of a recursive or hole-filling setting.

RELATED WORK
Many related approaches provide direct manipulation tools to
(a) transform programs and/or (b) build parametric designs.

Parametric Computer-Aided Design (CAD)

Feature-based parametric CAD systems record user actions as
a series of steps that together act as a program encoding the
creation of the design. If an element’s property is changed,
dependent actions in the sequence are re-run. Among CAD
systems, EBP [33] is notable for offering a programming by
demonstration workflow to create loops and conditionals.

Drawing With Constraints

Several visual design systems integrate constraint specifica-
tion (e.g. [48, 22]). Notably, Apparatus [37], Recursive Draw-
ing [36], and Geometer’s SketchPad [21] support recursion.
Like CAD, but unlike SKETCH-N-SKETCH, these systems
do not represent the design in a general-purpose, text-based
programming language.

Constraint-Oriented Programming (COP)

Other constraint-oriented systems, following in the footsteps
of SketchPad [42], explicitly view building a constrained sys-
tem as a programming task [6, 20, 15]. While offering varying
degrees of visibility into the code, these systems are distin-
guished by running constraint solvers alongside the program.
We instead rely on standard execution semantics.

Programming by Demonstration (PBD)

Several PBD approaches [10] use shape drawing as a domain
for exploring non-textual programming techniques. These sys-
tems usually rely on a visual rather than representation of the
program (e.g. [23, 25]) or show actions step-by-step [28]. We
also use shape drawing as our application domain, but we do
not hide the program text. Although not as visual as peer PBD
systems, Tinker [26] is notable for supporting recursion by
demonstration; indeed, any Lisp expression may be created, al-
beit via manipulations performed on a symbolic representation
not far removed from the underlying Lisp. More recently, PBD
techniques have been developed for data visualization [44],
mobile applications for collaboration [12], web scraping [3,
71, API discovery [49], and hand-drawing recognition [13].

Output-Directed Programming

Several recent systems augment a regular text-based program-
ming experience with abilities to directly manipulate output
to enact code changes. The transformations available may be
“small” (such as changing constants [9, 24, 29], strings [46,
39, 24, 29], or list literals [29]), but several systems enable
“larger” program changes via output manipulation.

Transmorphic [38] re-implements the Morphic Ul frame-
work [27] but with stateless views. Transmorphic retains
Morphic’s ability to manipulate shapes by affecting changes
to a view’s (text-based) code rather than changing live object
state. Adding and removing shapes as well as changing a
shape’s primitive properties are both supported.

APX [31, 32], like SKETCH-N-SKETCH, is a two-pane (code
box and output canvas) environment for creating shape-
drawing programs (APX also supports dynamic visual simula-
tions). On the canvas, manipulating shape attributes changes
appropriate numbers in the program; a few larger changes (e.g.
grouping and inserting shapes) are also supported. However,
most of APX’s interactions focus on directly manipulating
terms in the code box rather than on the canvas.



Prior SKETCH-N-SKETCH

Our prior work on SKETCH-N-SKETCH [19] introduced a
draw-relate-abstract workflow, including the ability to select
sub-values in the output and invoke certain program transfor-
mations. Figure 13 indicates which tools also appeared in
this prior work. In the present work, besides exposing inter-
mediates for manipulation, offering expression focusing, and
adding repetition and generic refactoring tools, we also sought
to improve the prior draw-relate-abstract tools.

The prior SKETCH-N-SKETCH [19] relied on syntactic restric-
tions: shapes followed a strict “left-top-right-bot” bounding
box parameterization, special functions were needed to com-
pose shapes, and the program needed to be a series of top-level
definitions followed by a list literal “main” expression refer-
ring to the top-level definitions. If, through text-editing, the
programmer veered outside of this syntactic subset of the lan-
guage, many output-directed tools became unavailable.

In this work, we relaxed these syntactic restrictions and moved
the operation of SKETCH-N-SKETCH’s tools closer to ordi-
nary programming concepts. The drawing tools now operate
based on types rather than a syntactic bounding box construct.
No longer are special function calls needed to compose shapes:
groups are now ordinary lists . Our generic provenance tracing
enables the tools to transform shapes not defined at the top
level. We also now offer multiple results for transformations.

We additionally improved code generation. Four of the ex-
amples in Figure 15 (ii, iii, iv, vii) can also be constructed
without text edits in the prior SKETCH-N-SKETCH [19], al-
beit with undesirable parameterizations for two of the four
(i1, iv). Figure 15 lists the source lines of code (LOC) and
math operations (MO) for the programs in both the present and
prior versions of SKETCH-N-SKETCH. Reductions in LOC
are incidental—our drawing tools now insert single-line func-
tion calls instead of wordier multi-line definitions. Reductions
in math operations, however, do indicate better code: the prior
SKETCH-N-SKETCH sometimes inserted large math expres-
sions too complex for human comprehension. Besides discard-
ing the bounding boxes that required properties such as shape
width to be computed (e.g. as right - left), we also more
aggressively reuse variables and simplify math in the MAKE
EQUAL tool, aided by connecting SKETCH-N-SKETCH to an
external solver (REDUCE [18]).

During our upgrades, some functionality was disabled but
would be useful to restore. Most notably, unneeded by our
examples, the current SKETCH-N-SKETCH lacks a path tool.
Also, tools to re-parameterize shapes en masse could be useful,
if, for example, a bounding box parameterization is desired.

CONCLUSION AND FUTURE WORK

We improved expressiveness in SKETCH-N-SKETCH, show-
ing how to construct a variety of non-trivial programs entirely
through direct manipulation. Our long-term goal, however,
is not to create a practical drawing tool but to use this par-
ticular application domain as a laboratory for advancing the
expressiveness of output-directed programming for a variety
of future programming settings. There are several avenues to
explore in this direction.

ODP for Novices

Our work so far has assumed the SKETCH-N-SKETCH user is
comfortable working in code to understand program operation.
ODP interactions might also help those with little program-
ming experience—such as domain experts or students—to
quickly produce rudimentary programs. Design considera-
tions for novices should be investigated.

Widget Visibility

Because program execution may involve a large number of
intermediate evaluation steps, even simple programs might
clutter the canvas with widgets, making it unusable. Therefore,
our current implementation hides most widgets by default and
uses heuristics to determine when to show them—generally,
upon the mouse hovering over some associated shape. Addi-
tionally, widgets from intermediate expressions in standard
library code—outside the visible program—are generally not
shown. In the future, these visibility choices could be more
systematically controlled, e.g., by source code annotations or
user interface options.

Customizing Widgets

Mechanisms for customization may help address the open
question of how to render graphical representations of pro-
gram evaluation and of domain objects that are not inherently
visual. One approach would be to design an API for “toSvg”
functions that specify how to render graphical representations
of intermediate data structures. Analogous to “toString”
functions that render text, a toSvg API might similarly render
composite data structures via recursively calling toSvg for
each of the structure’s elements.

Synthesizing Program Transformations

Each program transformation offered by SKETCH-N-SKETCH
has been hand-coded one-by-one. This effort is time-
consuming, error-prone, and limits the composability of trans-
formations. Program synthesis techniques have been suc-
cessfully incorporated into refactoring tasks for class-based
languages [35]; perhaps such techniques can be extended to
streamline the specification of output-directed transforms that
operate simultaneously on both abstract and concrete syntax.

User Interactions for Deciphering Human Intent

There are often multiple valid program changes associated
with a specific user action. To resolve ambiguity, our sys-
tem displays code and output differences and asks the user
to choose. Richer interactions are needed to explain the dif-
ferences (e.g., change impact analysis [16, 11]) and to bet-
ter resolve the user’s intent (e.g., by asking additional ques-
tions [30]).

In order for the live and immediate experience afforded by
output-directed programming to scale into usable systems for
different programming tasks and user scenarios, developing
and refining such user interaction techniques remain crucial
challenges to tackle in future work.

ACKNOWLEDGEMENTS

Our thanks to Philip Guo and the anonymous reviewers for
helpful feedback. This work was supported by U.S. National
Science Foundation Grant No. 1651794.


http:level.We

REFERENCES
[1] Umut A. Acar, Amal Ahmed, James Cheney, and Roly
Perera. 2013. A Core Calculus for Provenance. Journal
of Computer Security (2013).

[2] Autodesk Inc. Maya.

http://www.autodesk.com/products/maya/overview.

[3] Shaon Barman, Sarah Chasins, Rastislav Bodik, and
Sumit Gulwani. 2016. Ringer: Web Automation by
Demonstration. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[4] Andrew Begel. 1996. LogoBlocks: A Graphical
Programming Language for Interacting with the World.
Advanced Undergraduate Project, MIT Media Lab.

[5] Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon:
Using Transient Widgets to Create Scale Variations of
Icons. Transactions on Graphics (TOG) (2015).

[6] Alan Borning. 1981. The Programming Language
Aspects of ThinglLab. Transactions on Programming
Languages and Systems (TOPLAS) (October 1981).

[7] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical Web
Data. In Symposium on User Interface Software and
Technology (UIST).

[8] Salman Cheema, Sumit Gulwani, and Joseph LaViola.
2012. QuickDraw: Improving Drawing Experience for
Geometric Diagrams. In Conference on Human Factors
in Computing Systems (CHI).

[9

—

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and
Jacob Albers. 2016. Programmatic and Direct
Manipulation, Together at Last. In Conference on
Programming Language Design and Implementation
(PLDI).

Allen Cypher, Daniel C. Halbert, David Kurlander,
Henry Lieberman, David Maulsby, Brad A. Myers, and
Alan Turransky (Eds.). 1993. Watch What I Do:
Programming by Demonstration. MIT Press.

[11] Bogdan Dit, Michael Wagner, Shasha Wen, Weilin
Wang, Mario Linares Vasquez, Denys Poshyvanyk, and
Huzefa H. Kagdi. 2014. ImpactMiner: A Tool for
Change Impact Analysis. In International Conference on
Software Engineering, Companion Proceedings
(ICSE-C).

Jonathan Edwards, Jodie Chen, and Alessandro Warth.
2016. Live End-User Programming. In LIVE Workshop.

[13] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama,
and Josh Tenenbaum. 2018. Learning To Infer Graphics
Programs From Hand-Drawn Images. In Conference on
Neural Information Processing Systems (NIPS).

[10

—

[12

—

[14] Evan Czaplicki. 2012-2019. Elm. http://elm-lang.org.

[15] Tim Felgentreff, Alan Borning, Robert Hirschfeld, Jens
Lincke, Yoshiki Ohshima, Bert Freudenberg, and Robert

Krahn. 2014. Babelsberg/JS - A Browser-Based
Implementation of An Object Constraint Language. In

European Conference on Object-Oriented Programming
(ECOOP).

[16] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys
Poshyvanyk. 2012. Integrated Impact Analysis for
Managing Software Changes. In International
Conference on Software Engineering (ICSE).

[17] Michael Gleicher and Andrew Witkin. 1994. Drawing
with Constraints. The Visual Computer: International
Journal of Computer Graphics (1994).

[18] Anthony C. Hearn. 1968. REDUCE: A User-Oriented
Interactive System for Algebraic Simplification. In
Interactive Systems for Experimental Applied
Mathematics. Academic Press.

[19] Brian Hempel and Ravi Chugh. 2016. Semi-Automated
SVG Programming via Direct Manipulation. In
Symposium on User Interface Software and Technology
(UIST).

Allan Heydon and Greg Nelson. 1994. The Juno-2
Constraint-Based Drawing Editor. In Technical Report
131a, Digital Systems Research, Digital Equipment
Corporation.

[21] R. Nicholas Jackiw and William F. Finzer. 1993. The
Geometer’s Sketchpad: Programming by Geometry. In
Watch What I Do: Programming by Demonstration. MIT
Press.

[20

—_

[22] Jennifer Jacobs, Sumit Gogia, Radomir Mech, and
Joel R. Brandt. 2017. Supporting Expressive Procedural
Art Creation Through Direct Manipulation. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, Denver, CO, USA, May
06-11, 2017.

[23] David Kurlander. 1993. Graphical Editing by Example.
Ph.D. Dissertation. Columbia University.

[24] Kevin Kwok and Guillermo Webster. 2016. Carbide
Alpha. https://alpha.trycarbide.com/.

[25] Henry Lieberman. 1993a. Mondrian: A Teachable
Graphical Editor. In Watch What I Do: Programming by
Demonstration. MIT Press.

[26] Henry Lieberman. 1993b. Tinker: A Programming By
Demonstration System for Beginning Programmers. In
Watch What I Do: Programming by Demonstration. MIT
Press.

[27] John H. Maloney and Randall B. Smith. 1995.
Directness and Liveness In the Morphic User Interface
Construction Environment. In Symposium on User
Interface Software and Technology (UIST).

[28] David L. Maulsby, Ian H. Witten, and Kenneth A.
Kittlitz. 1989. Metamouse: Specifying Graphical
Procedures by Example. In Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH).


http://www.autodesk.com/products/maya/overview
http://elm-lang.org
https://alpha.trycarbide.com/

[29] Mikaél Mayer, Viktor Kuncak, and Ravi Chugh. 2018.
Bidirectional Evaluation with Direct Manipulation.
Proceedings of the ACM on Programming Languages
(PACMPL), Issue OOPSLA (2018).

[30] Mikaél Mayer, Gustavo Soares, Maxim Grechkin, Vu
Le, Mark Marron, Oleksandr Polozov, Rishabh Singh,
Benjamin Zorn, and Sumit Gulwani. 2015. User
Interaction Models for Disambiguation in Programming
by Example. In Symposium on User Interface Software
and Technology (UIST).

[31] McDirmid, Sean. 2015. A Live Programming
Experience. In Future Programming Workshop, Strange
Loop. https://onedrive.live.com/download?cid=
51C4267D41507773&resid=51C4267D41507773%2111492&
authkey=AMwcxdryTyPiuW8
https://www.youtube.com/watch?v=YLrdhFEAiqo.

[32] McDirmid, Sean. 2016. The Future of Programming will
be Live. In Curry On.
https://www.youtube.com/watch?v=bngkglrSqrg.

[33] Guy Pierra, Jean-Claude Potier, and Patrick Girard.
1996. The EBP System: Example Based Programming
System for Parametric Design. In Modelling and
Graphics in Science and Technology. Springer Berlin
Heidelberg.

[34] Richard Potter and David Maulsby (Eds.). 1993. A Test
Suite for Programming by Demonstration. In Warch

What I Do: Programming by Demonstration. MIT Press.

[35] Veselin Raychev, Max Schifer, Manu Sridharan, and
Martin Vechev. 2013. Refactoring with Synthesis. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA).

[36] Schachman, Toby. 2012. Recursive Drawing. Master’s
thesis. New York University Interactive
Telecommunications Program.
http://recursivedrawing.com/.

[37] Schachman, Toby. 2015. Apparatus. http://aprt.us/.

[38] Robin Schreiber, Robert Krahn, Daniel H. H. Ingalls,
and Robert Hirschfeld. 2016. Transmorphic: Mapping
Direct Manipulation to Source Code Transformations.

[39] Christopher Schuster and Cormac Flanagan. 2016. Live
Programming by Example: Using Direct Manipulation
for Live Program Synthesis. In LIVE Workshop.

[40] Ben Shneiderman. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Computer (August
1983).

[41] Armando Solar-Lezama. 2008. Program Synthesis by
Sketching. Ph.D. Dissertation. UC Berkeley.

[42] Ivan Sutherland. 1963. Sketchpad, A Man-Machine
Graphical Communication System. Ph.D. Dissertation.
MIT.

[43] William Robert Sutherland. 1966. The On-line
Graphical Specification of Computer Procedures. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[44] Victor, Bret. 2013. Drawing Dynamic Visualizations.
http:
//worrydream.com/#! /DrawingDynamicVisualizationsTalk.

[45] Helge von Koch. 1904. Sur une courbe continue sans
tangente, obtenue par une construction géométrique
élémentaire. Arkiv for Matematik, Astronomi och Fysik 1
(1904), 681-704.

[46] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and
Hong Mei. 2012. Automating Presentation Changes in
Dynamic Web Applications via Collaborative Hybrid
Analysis. In International Symposium on the
Foundations of Software Engineering (FSE).

[47] World Wide Web Consortium (W3C). Scalable Vector
Graphics (SVG) 1.1 (Second Edition).
http://www.w3.0org/TR/SVG11/.

[48] Haijun Xia, Bruno Aratjo, Tovi Grossman, and Daniel J.
Wigdor. 2016. Object-Oriented Drawing. In Conference
on Human Factors in Computing Systems (CHI).

[49] Kuat Yessenov, Ivan Kuraj, and Armando Solar-Lezama.
2017. DemoMatch: API Discovery from
Demonstrations. In Conference on Programming
Language Design and Implementation (PLDI).


https://onedrive.live.com/download?cid=51C4267D41507773&resid=51C4267D41507773%2111492&authkey=AMwcxdryTyPiuW8
https://onedrive.live.com/download?cid=51C4267D41507773&resid=51C4267D41507773%2111492&authkey=AMwcxdryTyPiuW8
https://onedrive.live.com/download?cid=51C4267D41507773&resid=51C4267D41507773%2111492&authkey=AMwcxdryTyPiuW8
https://www.youtube.com/watch?v=YLrdhFEAiqo
https://www.youtube.com/watch?v=bnqkglrSqrg
http://recursivedrawing.com/
http://aprt.us/
http://worrydream.com/#!/DrawingDynamicVisualizationsTalk
http://worrydream.com/#!/DrawingDynamicVisualizationsTalk
http://www.w3.org/TR/SVG11/
http:Synthesis.In
http:Demonstration.In

	Introduction
	Overview
	Drawing Shapes
	Relating Properties
	Abstracting the Design
	Refactoring

	Design and Implementation
	Intermediate Value Widgets
	Expression Focusing
	Generic Refactoring
	Provenance Tracing

	Case Study of ODP Examples
	Authoring
	Recursive Koch Snowflake
	Repetition
	Limitations: Remaining Tasks

	Related Work
	Conclusion and Future Work
	Acknowledgements
	References 

