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Abstract—Cross-Technology Communication (CTC) is envi-
sioned to serve as an effective approach to address the ever-
increasing spectrum shortage and interference issue in the
already crowded ISM band. Given the fact that the number
of Internet of Things (IoT) devices has increased exponentially,
CTC becomes a viable solution to enable direct communication
among heterogeneous wireless devices, and thus provide reliable
data transmission. However, CTC may offer opportunities for
adversaries to manipulate IoT devices. In this paper, we identify a
new attack built on CTC, where the WiFi device is able to hide the
pre-intercepted ZigBee control message into the signal to achieve
the objective of controlling the ZigBee device by sending the WiFi
emulation signal. To defend against this attack, we analyze the
constellation using higher-order statistics at the ZigBee receiver
for detection. Extensive experiments using the commodity devices
(CC26x2R1) and the USRP-based prototype show the existence of
the newly identified attack, and further validate the effectiveness
of the proposed defensive approach while maintaining a very low
false alarm rate.

Index Terms—Cross-Technology Communication, IoT, Emula-
tion Attack, Physical-Layer Defense

I. INTRODUCTION

The proliferation of Internet of Things (IoT) applications
enables ubiquitous connections among various wireless de-
vices for bettering our daily life. According to a recent
report [1], the number of IoT devices is expected to reach
55 billion by 2025, which will pose significant challenges
on spectrum resources. Current IoT devices deploy different
wireless technologies. Some of them share the same spectrum
resources when they coexist in the common space. For ex-
ample, [oT devices using the WiFi, ZigBee, and Bluetooth
protocols occupy the Industrial, Scientific, and Medical (ISM)
2.4 GHz band, leading to intense coexistence of wireless
technologies. Due to their incompatibility, multiple costly and
device-independent gateways are always needed to fully con-
nect IoT devices from different manufacturers. Nevertheless,
the deployment of gateways not only incurs extra hardware
costs, but also introduces more traffic overhead and longer
communication delay. As one of the most promising paradigm,
Cross-Technology-Communication (CTC) allows the direct
communication among devices across different wireless tech-
nologies [2]-[4].

Unfortunately, the usage of CTC could potentially bring
severe security concerns. Assuming the WiFi transmitter is an
attacker or has been compromised by an attacker, it would be

able to send a “well-prepared” packet in the same frequency
band to control the Bluetooth or ZigBee receiver via CTC.
It is worth noting that existing higher-layer cryptographic
approaches do not work because most CTC happens in the
physical layer, in the sense that most receivers get compro-
mised soon after they receive the packet. Even worse, the
wide deployment and longer transmission range render larger
rooms for WiFi devices to attack the short-ranged Bluetooth
and ZigBee [oT devices, such as enabling the cooling on smart
thermometer during winter, unlocking the smart garage door,
and turning off the security camera for break-in, etc. Given the
fact that the deployment of IoT devices increases dramatically,
it is critical to detect this type of attack and design an effective
countermeasure to mitigate the potential threats.

In this paper, we identify a new attack named as CTC
Waveform Emulation Attack, where a WiFi attacker pre-
intercepts the control message from the communication be-
tween ZigBee devices and further hides the control message
into the signal to manipulate the functionality of ZigBee
devices. The WiFi emulation signal is able to pass the de-
coding and demodulation process by the ZigBee receiver, and
thus it is infeasible to be detected. As a countermeasure, we
propose a new defensive strategy to seek the malicious WiFi
attacker based on the constellation recognition. Specifically,
our contribution is listed as follows,

o To the best of our knowledge, we are the first to discover
this new attack. We have demonstrated the practicality of
the waveform emulation attack from a WiFi device to a
ZigBee device, where the WiFi emulation signal is able
to bypass higher-layer protocols and further control the
ZigBee device.

« An effective and efficient defensive strategy is proposed
to identify the WiFi emulation signal from the authentic
ZigBee signal. To be more specific, we deploy higher
order statistics to analyze the constellation diagram of
the received signal for identification purposes.

« Extensive simulations and experiments are conducted
in both the AWGN and real environments. The results
demonstrate the existence of the CTC waveform emula-
tion attack together with the effectiveness of the proposed
defensive strategy.

The rest of this paper is organized as follows. Sec. II



presents the related work. In Sec. III, we demonstrate the
motivation of the proposed CTC waveform emulation attack
and its adversarial model. The details of the waveform emula-
tion attack are introduced in Sec. IV while its corresponding
dependence strategy is detailed in Sec. V. We evaluate the
performance of both the emulation attack and its defensive
strategy in Sec. VI, followed by the conclusion in Sec. VII.

1I. RELATED WORK
A. Cross-Technology Communication

Existing works on Cross-Technology Communication
(CTC) mostly focus on how to improve the communication
throughput and alleviate the cross-technology interference.
B2W? [3] enables the high throughput and long distance
concurrent [N-way cross-technology communication between
Bluetooth low energy and WiFi by leveraging channel state
information. Zheng et. al in [5] discuss interference-resilient
CTC in coexisting environment. In FreeBee [6], Esense [7]
and GSense [8], the communication between WiFi and ZigBee
devices is enabled using RSS to measure the WiFi signal. Dif-
ferent from existing CTCs deploying packet-level modulation
using the packet length [7], timing [6], and sequence patterns
[9], [10], Li et. al in [2] propose a physical-level emulation
technique, which motivates our newly identified attack.

B. Constellation Recognition

Automatic modulation classification (AMC) of digital mod-
ulations mounts to identify the constellation used by a digital
communication system [11]. Generally, AMC algorithms can
be categorized into two classes, relying on likelihood function
or features of the received signal [12]. As for the QPSK
constellation recognition, a hybrid likelihood ratio test (HLRT)
structure is utilized to classify QPSK and BPSK modulation
with unknown parameter signal level and the angle of arrival
in [13], [14] respectively. Second - and fourth - order moments
of the received signal were applied to distinguish between
QPSK and 16-QAM in [15]. Similar but different, second and
fourth order cyclic cumulants are deployed to differentiate the
QPSK, 16QAM and 64QAM constellations in [16], [17]. Since
the feature-based cumulant analysis has lower complexity than
the likelihood function in classifying the modulation [12], we
consider the cumulant analysis in our work.

III. ADVERSARIAL MODEL
A. Motivation

The Cross-Technology Communication (CTC) enables di-
rect communication between heterogeneous wireless devices
using different protocols. Given the above facts on CTC, it is
highly possible for attackers to mimic the designated ZigBee
packets, and then intentionally control passive IoT devices.
Specifically, we identify a new type of attack, CTC Waveform
Emulation Attack, where a WiFi device leverages CTC to
control the ZigBee device while bypassing the original ZigBee
gateway. Due to the lack of detection methods, the ZigBee
device is unable to distinguish whether the control message
is coming from the authentic gateway or the malicious WiFi

device, and thus severe consequences may occur along with
the controlled devices.

To launch the CTC waveform emulation attack, a malicious
WiFi attacker first creates the desired time-domain waveform,
and then makes the ZigBee receiver believe that the received
signal is coming from the legal ZigBee transmitter. This newly
identified attack is very critical and needed to be mitigated
due to the following reasons: 1) the waveform emulation
attack fools the passive ZigBee device from the physical-
layer, so the existing higher-layer cryptographic method cannot
detect it; 2) WiFi devices have longer transmission distance
(max. 100m) than ZigBee devices (1 — 10m), where WiFi
attackers can launch the attack without being noticed in the
line-of-sight (LoS); 3) the wide deployment of WiFi-enabled
mobile devices extends opportunities for launching the attack.
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Fig. 1: CTC Waveform Emulation Attack Process

B. Adversarial Model

We give an example to demonstrate our adversarial model
in Fig.1. Two ZigBee devices work at the central fre-
quency 2435MHz with 2MHz bandwidth whereas WiFi de-
vices occupy the 20MHz bandwidth centered at the frequency
2440MHz. The attacking process consists of two steps as
follows.

1) Channel Listening: In the time slot ¢1, a pair of ZigBee
devices communicate with each other (e.g., a ZigBee gateway
and a smart light bulb), where a WiFi attacker located close
to the ZigBee receiver eavesdrops the ZigBee communication
channel. Since the spectrum of ZigBee and WiFi devices are
overlapped, the WiFi attacker would be able to observe and
record the time-domain waveform from the ZigBee transmitter.
In particular, we assume that no other devices occupy the over-
lapped spectrum and the WiFi attacker knows the beginning
of the received ZigBee time-domain waveform.

2) Waveform Emulation Attack: In the time slot t5, when
the WiFi attacker confirms that the ZigBee device does not
transmit the signal, it emulates the received ZigBee waveform
and then transmits it to the ZigBee receiver. After receiving
the “legal and authentic” time-domain waveform, the ZigBee
receiver continues the higher layer processing. The WiFi
attacker achieves its objective of controlling the ZigBee device.

IV. ZIGBEE WAVEFORM EMULATION ATTACK

In this section, we first describe some basic principles of
ZigBee and WiFi protocols, and then illustrate how the WiFi
device emulates a time-domain waveform such that it can be
correctly received and demodulated by the ZigBee device.



A. ZigBee Transmitter and Receiver

As shown in Fig. 2, we first briefly review how the ZigBee
device transmits and receives packets. For physical-layer trans-
mission, the ZigBee transmitter packages the data from the
MAC layer and adds a prefix (e.g., 0x0007A) to each packet
header. Then, Direct Sequence Spread Spectrum (DSSS) is
used to improve interference and noise resilience by mul-
tiplying original bits with a pseudo-random noise spreading
code. Specifically, each 4-bit ZigBee symbol is mapped into
a 32-chip sequence, followed by the Offset Quadrature Phase-
Shift Keying (OQPSK) modulation. OQPSK offsets the timing
of the odd and even chips by one chip-period and maps the
new pair of chips in each chip-period into QPSK symbols,
which are sent in every 0.5us. Hence, the duration of each
ZigBee symbol will last 16us. At the ZigBee receiver, after
OQPSK demodulation and clock recovery, every 32 chips are
collected and mapped into one ZigBee symbol according to
the predefined symbol-to-chip spreading relationship in the
DSSS process. Specifically, in DSSS, a correlation threshold
is defined to control the maximum Hamming distance between
the received 32-chip sequence and the predefined chip se-
quence that the receiver can tolerate [18]. If the Hamming
distance is less than the threshold, the received chip sequence
is decoded to the corresponding ZigBee symbol. Otherwise,
the chip sequence is dropped.
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Fig. 2: ZigBee Transmitter and Receiver

B. WiFi Transmitter

Different from the ZigBee transceiving, the WiFi transmitter
processes the data from MAC layer using IEEE802.11g stan-
dard as given in Fig. 3. Following the channel coding and inter-
leaving, every 6 bits are mapped into one of the 64 Quadrature
Amplitude Modulation (QAM) constellation points. Then,
every 48 constellation points, together with 4 pilot symbols
and 12 null symbols are modulated onto 64 subcarriers to
form a frequency Orthogonal Frequency Division Multiplexing
(OFDM) symbol. With 312.5 KHz subcarrier space, each
OFDM symbol occupies 20 MHz bandwidth. The 64-point
Inverse Fast Fourier Transform (IFFT) is then employed to
turn each OFDM symbol into a time-domain signal lasting
3.2us. By cyclic prefixing, a guard 0.8us interval, which is
the repetition of the time-domain signal end, is added to the
beginning, forming a complete WiFi symbol lasting 4s.
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Fig. 3: WiFi Transmitter

C. ZigBee Waveform Emulation

1) Overview and Technical Challenges: To emulate a per-
fect ZigBee waveform signal is a non-trivial task for WiFi
attackers. Since each ZigBee symbol lasts 16us whereas each
WiFi symbol lasts 4us, the WiFi attacker needs to create 4
WiFi symbols to emulate one complete ZigBee symbol. Here,
we focus on using one WiFi symbol to emulate 1/4 of the
time-domain waveform corresponding to one ZigBee symbol.
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Fig. 4: ZigBee Waveform Emulation

In order to obtain the emulated signal without any change
on the WiFi transmitter, the attacker needs to get the original
source bit information from the received ZigBee waveform.
Hence, motivated by [2], a reverse process is carried out on
ZigBee waveform as shown in Fig. 4. We take 1/4 of the
time-domain waveform as a unit waveform to illustrate the
emulation process. FFT takes the first 1/4 of the unit wave-
form and takes the last 3/4 to get its frequency information of
the subcarriers. From the bandwidth relationship between the
ZigBee and WiFi signal, we observe that at most 7 subcarriers
(2MHz ~ 7 x 0.3125MHz) of each WiFi signal can carry
the information of the ZigBee waveform, while 64-point FFT
operation will get the 64 frequency points of the ZigBee
Signal. Thus, the information on 7 constellation points is kept
while other information on other points has to be discarded,
which becomes one of the main reasons to cause the difference
between the original and the emulated ZigBee signal. Due
to the different modulation schemes between the ZigBee and
WiFi, the chosen frequency points of the ZigBee signal cannot
match the original QAM points of the WiFi signal. Therefore,
QAM quantization is needed to map the FFT output to QAM
constellation points, which intrinsically introduces errors and
makes difference further between these two signals. Therefore,
the WiFi attacker has to uttermost diminish the difference
brought by the FFT and QAM quantization to achieve the
goal of controlling the ZigBee device.

2) Choosing Frequency Points after FFT: At the WiFi
transmitter, the time-domain waveform z(n) after 64-point
IFFT is expressed as,

K
1 .
wn) = 2= S X(R)e PPN =12 N ()
k=1

where X (k) is the frequency component corresponding sub-
carrier ¢/27k"/N N = K = 64. From (1), we see that the
waveform in the time domain is actually composed by the K
frequency components with the subcarriers in the frequency
domain. The weight X (k) represents the importance of the



subcarrier e727%"/N to the waveform. Since only 7 subcar-
riers can be used to emulate the ZigBee signal, we choose
the largest frequency components to decrease the difference
between the original and the emulated ZigBee signals.

In practice, the WiFi attacker cannot choose the frequency
components for each coming % ZigBee signal due to the
complexity. Since the central frequency and the bandwidth
of the coming ZigBee signal is fixed, the distribution of
X(k),k = 1,2,--- ,K is similar for each unit waveform.
Thus, the WiFi attacker only determines the subcarrier indexes
k in which the frequency components are kept. A two-
step algorithm is proposed to decide the index, the coarse
estimation and detailed estimation. We describe it based on the
example in Table. I, where we list the frequency components of
each coming 1/4 ZigBee signal in each column. Note that we
ignore the frequency component with the subcarrier indexes
8—54. In the coarse estimation, the WiFi attacker highlights all
the frequency components above the threshold (set as 3 in the
example), marked as red in Table. I. In the detailed estimation,
the WiFi attacker determines the 7 subcarrier indexes, at which
the most highlighted frequency components locate. In the final,
the subcarriers with 1 —4 and 62 — 64 indexes are chosen. The
frequency components on these subcarrier indexes are sent into
the QAM quantization.

TABLE I: Frequency Points of ZigBee Waveform

Index 1 2 3 4 5 6
1 19.8135 14.4096 14.9512 | 40.0943 19.8135 14.4096
2 142990 | 50.3424 | 44.0796 | 27.5399 | 14.2990 | 50.3424
3 11.1025 | 28.8303 | 23.1920 | 14.1483 11.1025 | 28.8303
4 8.3671 12.1972 14.9302 17.9765 8.3671 12.1972
5 5.6639 1.4931 5.5869 2.2252 5.6639 1.4931
6 3.0938 1.6792 3.5464 2.5908 3.0938 1.6792
7 1.0538 2.1977 1.4703 2.8351 1.0538 2.1977
55 1.1616 0.1748 2.5695 1.4498 1.1616 0.1748
56 0.8171 1.0029 3.2787 0.9751 0.8171 1.0029
57 0.6807 0.6807 3.0777 0.6807 0.6807 0.6807
58 1.6783 0.7128 4.6410 0.8608 1.6783 0.7128
59 2.6743 2.0764 5.2603 4.1972 2.6743 2.0764
60 2.9140 3.0542 5.9928 2.7222 2.9140 3.0542
61 1.5631 4.4502 14.0955 3.4206 1.5631 4.4502
62 4.3057 7.1549 11.4675 13.7336 4.3057 7.1549
63 39.2439 7.8455 8.4652 22.6196 | 39.2439 7.8455
64 40.7812 | 14.1395 | 227630 | 20.6058 | 40.7812 | 14.1395

3) Quantizing Chosen Points: According to the Parseval’s
theorem related to the FFT/IFFT, the energy of the waveform
in the time domain is equaled to that in the frequency domain
after Fourier transform. Taking the linear property, we have
the following equation for the errors introduced by the QAM
quantization on the chosen frequency points,
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where z(t) denotes the ZigBee time domain signal composed
of 7 subcarriers. The emulated ZigBee signal is denoted as
z(t), and X (k), X (k) are their corresponding FFT points.
The difference-energy equation (2 )shows that minimizing
the signal distortion in the time-domain under energy metric
is equivalent to minimizing the total deviation of frequency
components after QAM quantization. Therefore, QAM quan-
tization is to choose the closest QAM constellation point in

term of Euclidean distance to each of the chosen frequency
points. However, the WiFi attacker just knows the 64 QAM
structure as follows,

X (k) = o (X1 (k) +jXq(k)) 3)

where X;(k),Xq(k) € {-7,-5,-3,—1,41,+3,+5,+7}
are the real and imagine part of the complex symbol X (k), and
« is used to scale the constellation. The attacker has to choose
a scalar for and QAM constellation first before quantizing the
chosen frequency points. The QAM quantization becomes an
optimization problem with the variable o, where the objective
is to minimize the total Euclidean distance between the chosen
frequency points and the QAM constellation points. Specifi-
cally, the optimization problem is formulated as follows,

mczn Z (XIA(k?) - OfXI(k?))Q + (XQA(]{:) - aXQ(k))2
s.t. akZ 0 @

in which X/ (k) and XQA(k:) are the known real and imaging
parts of the chosen frequency point X (k). Since the X (k)
and X (k) depend on the discrete values, the WiFi attacker
employs a numerical global research method to obtain the
value of the scaler, followed by finding the QAM constellation
for each frequency point.

4) Carrier Allocation and Cyclic Prefix: Since the pre-
processing in the WiFi transmitter is invertible, the source
bits of the emulated signal can be easily obtained given the
quantized QAM constellation points. Hence, we directly get
into the pilot/null subcarrier insertion step when emulating
the ZigBee signals, which is actually a subcarrier allocation
process among data, pilot, and the null points. A common
subcarrier allocation scheme is to put 48 data points into
subcarriers [—26, —22], [-20, —8], [-6, —1], [1, 6], [8, 20], and
[22, 26], respectively, and allocate subcarriers —21, —7, 7 and
21 to the pilot points. Since the WiFi signal transmitted in
the pilot/null subcarrier cannot be controlled by software, the
WiFi attacker has to put the quantized frequency points into
the data subcarriers. Because the WiFi attacker knows the
central frequency of the ZigBee receiver, it can set its central
frequency to achieve the above goal. Taking the ZigBee 17
channel as an example, it works at the central frequency
2435MHz. The WiFi attacker sets its central frequency at
2440MHz, under which the data subcarriers [—20, —8] carry
the information of the Zigbee signal. information.

Because the cyclic prefix must be added to the beginning of
each WiFi symbol, the beginning parts and the end parts of the
emulated signal remains the same whereas the ZigBee signal
does not have such a repetition. Nevertheless, the emulated
signal can still pass the ZigBee receiver detection and decoding
since DSSS demodulation is able to tolerate a certain number
of errors.

D. Emulation Attack Simulation

As an initial validation, we simulate the CTC waveform
emulation attack on the USRP N210 devices [19].



1) Simulation Process: Our simulation process follows the
attacking process: channel listening and emulation attack. We
first create ZigBee waveform using a ZigBee transmitter with
2MHz bands and 4MHz sampling rate. Given the assumption
that the WiFi attacker synchronizes the ZigBee waveform
perfectly, we interpolate the ZigBee waveform with parameter
5 creating 80 points in each WiFi symbol duration. Then, we
put the last 64 points into FFT, and choose the frequency
points at the location 1 — 4 and 62 — 64, which are sent into
the QAM quantization with an optimized scaler o = 1/26. The
preprocessing is ignored and the produced QAM constellation
points are sent into 64-point IFFT. We add the last 16 points
of the IFFT output to the beginning as the cyclic prefix. A new
80-point emulated ZigBee signal is formed, which is actually
a WiFi signal with the sample rate 20MHz and will be sent
to the ZigBee receiver.

2) Simulation Result: Fig. 5 plots the In-Phase and Quadra-
ture waveform of both the original and emulated ZigBee
signals, respectively. We can see that the WiFi attacker can
perfectly emulate each quarter segment of ZigBee waveform
using one WiFi symbol except for the first 0.8us.
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Fig. 5: Emulated Signal Comparison

Meanwhile, we test whether the emulated ZigBee waveform
can pass the detection and demodulation process at the ZigBee
receiver. In the experiment, although 0.8u1s waveform in the
emulated ZigBee signal is totally different than the original
one, the receiver still decodes the emulated signal, which
demonstrates the effectiveness of the emulation attack.

To see whether the emulated ZigBee signal can survive
in the noise environment, we conduct the receiving test at
the ZigBee receiver. Additive White Gaussian Noise (AWGN)
is added to the emulated ZigBee signal. In each signal-to-
noise ratio (SNR), we perform 1000 transmissions from the
WiFi attacker to the ZigBee receiver. The successful rate is
listed in Table. II, which shows that the WiFi attacker can
totally control the ZigBee devices by launching our proposed
emulation attack in high SNR.

TABLE II: Emulation Attack Performance Under AWGN

SNR | 7dB 9dB  11dB 13dB 15dB 17dB
Successful Rate | 42.4% 69.2% 87.4% 93.3% 97.2% 100%

V. DEFENSIVE MECHANISM DESIGN

In the previous section, the WiFi attacker is able to fool
the ZigBee receiver to believe that the received signal is from

the authentic ZigBee transmitter or the gateway. At ZigBee
receiver side, it seems there is no way to differentiate between
the signal from the WiFi attacker and that from the ZigBee
transmitter. Existing schemes built upon higher-layer protocols
are not able to thwart the proposed waveform emulation attack.

A. Defensive Strategy Analysis

Our intuition on defending the CTC waveform emulation
attack is to find differences between the ordinary ZigBee
signal and the WiFi signal containing the ZigBee packet.
Although the emulated waveform is close to the original
ZigBee waveform, different transmission schemes must leave
enough “footprints”, which paves way for detection.

1) Warm-up Solutions: We analyze the possible defensive
strategies by scrutinizing the information flow from Fig. 2. At
first glance, cyclic prefix sheds light for us. In each emulated
ZigBee waveform segment, the beginning and the end segment
are the same. If the ZigBee receiver detects the repetition, it
could potentially conclude that the suspicious signal comes
from the WiFi attacker. However, this methodology is not
reliable. In practice, the signal received by the ZigBee device
suffers from the AWGN and even fading effect, which results
in the situation that the ZigBee device fails to find the above
repetition. We also consider using the output of OQPSK
demodulation, which is the signal frequency related to the
sample rate, for identifying the authentic ZigBee transmitter.
However, the sampling rates for both the ZigBee signal and
the emulated signal are the same at the ZigBee receiver side,
and thus it is infeasible to differentiate the attacker. Last but
not least, in the DSSS demodulation, the hard decision is
deployed to decode the chip sequence from the chip samples.
Since there are intrinsic errors between the ZigBee and the
emulated signals, the chip sequence from these two signals
must different, which may be a good candidate for detection.
Unfortunately, since DSSS demodulation can tolerate a certain
number of errors on chip sequences for decoding, both of
the emulated signal and ZigBee signal can be decoded as the
same ZigBee symbol even if the received chip sequences are
different.

2) Constellation Analysis: The QAM quantization moti-
vates us to differentiate the received signal in the view of the
constellation. If the signal comes from an actual ZigBee trans-
mitter, it has the QPSK constellation in the time domain; if
not, the signal has the 64-QAM constellation in the frequency
domain. Without transforming to the frequency domain, the
constellation analysis can be easily done in the time domain.
Compared to the actual ZigBee signal, the emulated signal has
much larger offsets coming from the quantization errors and
the FFT process (i.e., losing non-overlapping high-frequency
components), both of which serve as the basis for detecting
the waveform emulation attack.

To identify the emulated ZigBee signal, we first get complex
symbols from the received time-domain waveform. Consid-
ering the DSSS decoding in Fig. 2, every 32 float values
are collected, which are then determined as binary O or 1
chip and mapped into one ZigBee symbol according to the



predefined symbol-to-chip spreading relationship in the DSSS
process. At the ZigBee transmitter, the output of DSSS is
OQPSK modulated, in which we can use the input of the DSSS
demodulation to construct a new QPSK constellation diagram.
Specifically, we divide those input as odd and even parts,
where odd parts are put to the real axis and even parts being
put to the imaginary axis. Therefore, the defensive strategy
becomes a simplified constellation recognition problem. In
particular, we carry out the digital modulation classification
[11] to determine whether the newly constructed constellation
diagram belongs to a QPSK structure or not.

In what follows, we mainly consider two scenarios for
emulation attack detection. In the ideal scenario, the received
signal only suffers AWGN at the ZigBee receiver side. In the
practical scenario, the frequency/phase offset happens at the
received signal due to the complex channel condition.

B. Emulation Attack Detection under Ideal Scenario

Higher-order statistic is a common and easy method used
in the digital modulation classification problem, which can
efficiently characterize the shape of the distribution of the
noisy baseband samples. Given the newly constructed con-
stellation diagram, we focus on the fourth-order cumulant
characteristics.

1) Preliminaries: For a complex-value random variable z,
its second-order moments are defined in the following two
ways based on the placement of conjugation,

Cao = E[z?], Ca = E[|z]?] 5)

As for the fourth-order moments and cumulants, they can be
defined in three different ways,

Cyp = cum(z,z,z,)
Cpn = cunm(z,z,z,x") 6)
Cyp = cum(z,z,z* %)

where x* represents the conjugate the random variable x, and
for zero-mean random variables w, x, y, and z,

cum(w, z,y,z) = E(wzyz) — E(wz)E(yz)—
E(wy)E(xz) — E(wz)E(xy)
2) Sample Estimation: According to [20], we are able to

)

use the collected complex sample d;,i = 1,2,--- , D output

from the Clock Recovery to estimate (5) and (6) as follows,
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where - denotes the sample average. Considering the fourth-
order cumulant estimation using complex samples, we have,
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In (8), the sample estimates of the second-order cumulants
include the effect of the noise random variable. Thus, a local
estimate of its variance has to be obtained and subtracted
from Cyy and Cs;. In addition, such a noise effect affects
the estimate of the fourth-order cumulants according to (9).
However, the constellations are not necessarily normalized
after decoding at the ZigBee receiver in practice. To deal with
the problem, the fourth-order cumulant estimates are usually
normalized as Cy, = Cy,/C3,, where ¢ = 0,1,2. The final
normalized fourth-order cumulant estimates are then compared
with the corresponding theoretical cumulants in order to decide
the constellation type, which are shown in Table. III .

TABLE III: Theoretical Cumulants for Cy; = 1

Modulation ‘ Cy  Cuo Cao
BPSK 1 —2.0000 —2.0000
QPSK 0 1.0000 —1.0000

PSK(>4) | 0 0.0000 —1.0000
4-PAM 1 —1.3600 —1.3600
8-PAM 1 —-1.2381 —1.2381
16-PAM 1 —1.2094 —1.2094
16-QAM 0 —0.6800 —0.6800

64-QAM 0 —0.6190 —0.6190

256-QAM | 0 —0.6047 —0.6047

3) Defensive Strategy: As shown in Table. III, both Cy( and
Cy2 are used to decide constellation types among PSK, PAM
and QAM. Specific to our defensive strategy, since the recon-
structed constellation is known to be QPSK modulation, we
mainly compare how far the estimated fourth-order cumulants
are to the theoretical values by using the received chips.

We first define a Voronoi tessellation [21] of the feature
space as v 2 [|Cyol, Cu2]”, where Cyg and Cyy are the the-
oretical values as listed iE Table. IH. Similarly, our estimated
fourth-order cuml%lants |Cyo| and C4o compose a new vector

¢ = |6’40|7 @42} . The Euclidean distance Dpg is used to be
the distance measure metric between the Voronoi tessellation
v and our estimated vector ¢, where Dg = ||¢ — v]||2. We
decide whether the received signal is transmitted by the ZigBee
transmitter or the WiFi attacker by deploying the hypothesis
testing. Specifically, we have,

{ Hj : From the ZigBee Transmitter (10)

H; : From the WiFi attacker

If the signal comes from the WiFi attacker, the error brought
the FFT and QAM quantization puts a negative effect to
the decision of the constructed constellation type. Here, we
introduce a threshold @ to help us make the decision,
Hy
Dy Z @

<
Ho

(1)

We will give the value of ) according to our experiments.

C. Emulation Attack Detection under Real Scenario

We first give an example of the newly constructed con-
stellation in both AWGN and real environments as shown in



Fig. 6. Given the chip samples, we deploy k-means clustering
algorithm [22] to help find the constructed constellation points.
Denote the chip samples as a set S = {Sc1,Sc2," " ,Scc}s
where C' is the number of chip samples, k-means clustering
algorithms aim at partitioning all the chip samples into 4 sets
S = {51, 52, S5, 54} so as to minimize the within-cluster sum
of squares. Mathematically, its objective is to find:

4
arg;ninz > 118 — pal?

i=1S.€85;

12)

where (; is the mean of points in S;.
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Fig. 6: Constellation Diagram Comparison

From Fig. 6, we can see that the new constellation in the
real environment has an obvious phase offset compared to
that in AWGN environment, which further proves that the
existence of significant phase offset in the real environment.
Facing the phase offset effect, we reconsider the higher-order
statistics deployed in the constellation recognition for the
AWGN environment. Denote the frequency offset and the
phase offset as Af and 6, respectively. According to [23],
C,o is scaled by (24 In order to avoid the frequency and
phase offset, we consider the estimate of the absolute value
of Cyo instead of the Voronoi tessellation in the defensive
strategy in the real environment.

VI. PERFORMANCE EVALUATION

We build a prototype to further demonstrate the effective-
ness of ZigBee waveform emulation attack and the proposed
defensive strategy in both the simulation and real environment
respectively. In the end, a thorough complexity analysis is
conducted on both the attack and defensive approach.

A. Simulation Settings

We construct two complete communication links including
APP layer, MAC layer, and PHY layer from the ZigBee
transmitter to the ZigBee receiver and from the WiFi attacker
to the ZigBee receiver. We assume that the WiFi attacker has
the knowledge about the signal waveform sent by the ZigBee
transmitter. The WiFi attacker follows the signal processing
as explained in Section IV. Besides, we add another function
in the ZigBee receiver to achieve the defensive strategy as
described in Section V.

An additive white Gaussian noise (AWGN) with the noise
variance o2 is transmitted along with the original ZigBee sig-
nal and the WiFi emulation signal. respectively. The power of
the transmitted signal is normalized and we define the signal-
to-noise ratio SNR as SNR = % For each communication
link, the transmission and reception process repeat 100 times.
We collect the physical-layer data in the first 50 times to
calculate the threshold in (11) at the ZigBee receiver. The
rest of the physical-layer data is used in the hypothesis testing
show the effectiveness of the proposed defensive strategy.

B. Experimental Results

1) Performance of Waveform Emulation Attack:: We denote
the text from 00000’ to *00099° as the input of the APP
layer. The ZigBee transmitter sends its waveform directly to
the ZigBee receiver. The WiFi attacker emulates its waveform
and then transmits the emulated one to the ZigBee receiver. We
demonstrate the chip-level performance in Fig.7, which shows
the Hamming distance distribution of the received chips. When
the signal comes from the ZigBee transmitter, the received
chip sequences are exactly the same with the predefined chip
sequences as shown in the upper figure in Fig.7. lllustrated in
the lower figure, there are 4 to 8 error chips between each chip
sequence and the predefined one when the emulated ZigBee
signal is received. Since DSSS has the error resilience, the
sequences with error chips could be decoded as the correct
ZigBee symbols with a feasible threshold. In our simulation,
all of the emulated signals are decoded correctly with a
feasible threshold of 10. Such observation further testifies
that the WiFi attacker could control the ZigBee device by
deploying the principle of the DSSS explained in IV-A.
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Fig. 7: Hamming Distance Distribution Comparison

2) Performance of Warmup Strategy: We first show the
defensive approach performance of the warmup strategy in
Sec.V-Al. For the experiment, we choose high SNR to avoid
the noise effect. Fig.8 shows the received In-Phase and
Quadrature waveform at SNR = 17dB respectively. We can
hardly find the repeated segment from the waveform. Thus,
we can hardly identify the emulation attacker by comparing
the beginning and the end segment of the received signal.
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In Fig.9a, we demonstrate the output of the OQPSK demod-
ulation process, which shows the signal frequency in relation
to the sample rate. It is obvious that the trends of these two
waveforms are the same, and thus we cannot use the output
from the OQPSK demodulation to distinguish the transmitter.
In addition, we show the chip sequence performance after hard
decision in DSSS demodulation in Fig. 9b. Although the chip
sequence performance under the ZigBee and emulated signal
cases are totally different, the ZigBee receiver can obtain
the same ZigBee symbol. Thus, we cannot distinguish the
transmitter or attacker from these chip sequence.
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Fig. 9: Received Signal Comparison

3) Performance of Constellation-based Approach: To
demonstrate the effectiveness of our proposed constellation-
based defensive strategy, we conduct experiments at different
SNRs to evaluate the fourth-order cumulant Cy5 performance
of signals from the ZigBee transmitter and the WiFi attacker,
respectively.

As shown in Fig. 10, we mainly compare the value of
Cj2, where more approaching to the theoretical value —1 will
be categorized as authentic ZigBee transmitters. In Fig.10a,
it shows the Cys performance of the actual ZigBee signal.
With the increase of SNR, the value of Cyp will be much
closer to —1. However, the Cyo value of emulated signals
are far from the theoretical value and keeps on changing to
an opposite way. Due to the errors in the QAM quantization
and the information lost on the non-overlapped frequency,
the newly constructed constellation under the emulated signal
intrinsically has an offset to the QPSK constellation. As the
SNR becomes lower, the noise with larger variance decreases
such offset on the contrary. Therefore, the trends of the
Cyo under the emulated signal and ZigBee signal cases are
opposite. Such observation validates the effectiveness of our
proposed defensive strategy. The fourth-order cumulant Cjyq
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Fig. 10: C45 Performance

performance is also demonstrated in Fig. 11. The calculation
methods are the same with the C4s. Comparing the value
of Cyo under the ZigBee signal in Fig.11a and the emulated
signal case in Fig.11b, the Cyo value under the ZigBee signal
case is more close to the theoretical value 1 than that under
the emulated signal. However, the ZigBee receiver cannot
distinguish the transmitter using the above trends because it
cannot get the Cyo and/or Cyg performance of the received
signal at different SNRs at once. Therefore, the predetermined
threshold decision is needed for WiFi attacker detection.
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Fig. 11: Cyo Performance

4) Effectiveness of Threshold Decision: When receiving a
signal, the ZigBee cannot know the transmitter except for
calculating the value of |Cyo| and Cy2. For detection purpose,
it needs a threshold to decide whether the signal is from the
ZigBee transmitter and the WiFi attacker. Note that we have
demonstrated that the packet reception rate is low at the SNR
below 7dB when the signal is coming from the WiFi attacker
in Table. II. Thus, we reconsider the fourth-order estimation
performance at the SNR above 7dB. Instead of the Euclidean
distance, we first calculate average Euclidean distance square
using the first 50 signal samples under both the ZigBee signal
and emulated signal at each SNR, which is listed in the Table.
IV. We observe that there is a large gap between the ZigBee
signal and emulate signal, which make our decision on the
threshold easier. To find out the specific threshold value,

D =|lp—v[} = (Ci—Cu)*+ (Ci2 — Cu2)?
= (Cyo— 1)+ (Cyo +1)2

So, we decide the threshold of 542 as —0.5 and @40 as 0.5.
Therefore, the final threshold () in (11) becomes 0.5.



TABLE IV: Averaged Euclidean Distance Square (Dg?)

SNR ‘ 7dB 12dB 17dB
ZigBee Signal 0.1546 0.0642 0.0421
Emulated Signal | 1.7140 1.6238 1.5536

The average of the Euclidean distance square over 100
ZigBee signal samples and 100 emulated signal samples in
Fig. 12. We observe that the maximum Dz? is below 0.5 at
the SNR above 7dB for the ZigBee signal while the minimum
Dg? is above 0.5 for the emulated signal at the corresponding
SNR. Since the WiFi attacker can fool the ZigBee devices at
the SNR above 7dB, the ZigBee receiver can distinguish the
ZigBee signal and the emulated signal effectively by using our
proposed defensive strategy while receiving the message.
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Fig. 12: Defense Strategy Performance

C. Experimental Settings and Results

We conduct the experiment using the USRP N210 and
the commodity device TI LaunchPad CC26x2R1 [24]. The
USRP N210 is equipped with AD and DA converters before
the RF front ends and UBX-40 daughter boards operating in
the 2.4GHz range as transceivers. Its corresponding software
toolkit is GNURadio [25]. The LaunchPad CC26x2R1 is part
of the micro-controller unit (MCU) platform supporting the
IEEE 802.15.4g protocol. In the experiment shown in Fig.13,
we deploy one USRP N210 as the ZigBee transmitter and
WiFi attacker alternately. The ZigBee transmitter works on the
spectrum centered at 2435MHz with the sample rate 4MHz.
Whereas the WiFi attacker operates at the center of 2440MHz
with the sample rate 20MHz. The power gain of them is
set at 0.75. Because the Zigbee receiver begins to decode
the sequence only after getting a zero sequence, we add 10
zero points at the beginning of each emulated packet. The
other USPR N210 and the launchpad CC26x2R1 play the
role of the ZigBee receiver. Both of them is centered at the
2435MHz. The received power gain of the USRP receiver is
set as 0.75. Because the Zigbee receiver begins to decode the
sequence only after getting a zero sequence, we add 10 “0” at
the beginning of each emulated packet. The distance between
the transmitter and receivers ranges from 1m to 8m. During
the experiment, there are human activities such as walking.
We illustrate the value of received signal strength indication
(RSSI) at the launchpad CC26x2R1 under different distances

in Table. V in Fig.13. RSSI is an indication of the power level
being received by the receive radio after the antenna loss [26].

Table V: RSSI at CC62x2R1 vs. Distance

Distance(m)[ 1 [ 2] 3[ 4[ 5[ 6] 7] 8
RSS! (dBm) | -59] -56] -64] -64] -69] -65] -71] -71

Fig. 13: Experimental Setting

We mainly focus on the performance of the waveform em-
ulation attack in the practical environment. As the same as the
simulation, the ZigBee transmitter and the WiFi attacker send
the text from ‘00000’ to ‘00099’, respectively, we evaluate the
error rates of the packet and symbol at the USRP receiver and
CC26x2R1. As shown in Fig.14, the error rates of both the
packet and symbol are lower than that of the emulated packet
and symbol. This is because the noise and interference in the
real scenario enlarge the difference between the emulated and
original signal at the ZigBee receiver. Meanwhile, the packet
error rate is larger than the symbol error rate because the
packet is received correctly only if all the symbols in the
packet are exactly received.
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Fig. 14: Waveform Emulation Attack Performance

As demonstrated in Fig.14a, the error rates of both the
packet and symbol are less than 0.1 for both the emulated
and original ZigBee signal when the distance between the
transmitter and the USRP receiver is below 5m. When the dis-
tance increases, e.g., 7m, the WiFi attacker could not fool the
ZigBee device due to the large error rate. At the distance 8m,
the USRP receiver cannot decode the original ZigBee signal
either. Thus, it is obvious that a WiFi attacker performs a little
bit worse than the ZigBee transmitter at the USRP receiver.
However, shown in Fig.14b where CC26x2R1 is deployed as
the receiver, the error rates of both the emulated packet and
symbol are less than 0.1 even if the distance between the



WiFi attacker and the receiver is long, e.g., 8m. Since the
commodity ZigBee device has stronger demodulation function
than the experimental USRP, we conclude that the proposed
waveform emulation attack could effectively fool the ZigBee
device even from a long distance.

D. Complexity Analysis

1) Waveform Emulation Attack: The attacking process
mainly consists of FFT and QAM quantization. The N-point
FFT is done with O(N log(NN)). The coarse estimation after
FFT is a binary hard-decision process with O(M), where M
denotes the number of samples. Following with it, we sum up
the binary elements in each row and get a final vector, where
each element denotes the number of the highlighted signal
samples related to the subcarrier index. The detailed estimation
is to sort the vector and find the first 7 maximized elements,
which has the complexity O(n), where n is the number
of total subcarriers. The QAM quantization includes finding
the optimal scalar and mapping the frequency components
of the ZigBee Signal to the QAM constellation. Meanwhile,
our global search method is based on the mapping process.
According to [2], choosing the closest N QAM points in term
of total Euclidean distance to each of K FFT points of desired
signals is easily done in O(K).

In general, FFT has a complexity O(N log(N)). However,
N fixed at 64 while others depend on the number of the sam-
ples from coming ZigBee waveform. Therefore, the waveform
emulation attack can be done easily in O(M ), where M is the
number of the coming ZigBee samples.

2) Defensive Approach: The main part of our defensive
strategy is to calculate the fourth-order cumulants. According
to [20], the fourth-order cumulants estimation can be done in
O(N), where N denotes the complex sample number. There-
fore, our proposed defense strategy is easy to be implemented
with the order of the sample number.

VII. CONCLUSION

In this paper, we discovered a new emulation attack built on
CTC, where the WiFi device fully controls the ZigBee device
directly bypassing the ZigBee gateway. To defend against
this attack, we proposed a countermeasure to identify the
WiFi attacker by using higher-order statistics to recognize the
constellation of the received signal. We perform a thorough
evaluation on the USRP platform and the commodity device
in both AWGN and real scenario. The experimental results
demonstrated the effectiveness of the CTC emulation attack
and the defensive strategy.
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