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A Convex Information Relaxation for Constrained Decentralized Control
Design Problems

Weixuan Lin

Abstract—We describe a convex programming approach to
the calculation of lower bounds on the minimum cost of con-
strained decentralized control problems with nonclassical informa-
tion structures. The class of problems we consider entail the de-
centralized output feedback control of a linear time-varying system
over a finite horizon, subject to polyhedral constraints on the state
and input trajectories, and sparsity constraints on the controller’s
information structure. As the determination of optimal control poli-
cies for such systems is known to be computationally intractable
in general, considerable effort has been made in the literature to
identify efficiently computable, albeit suboptimal, feasible control
policies. The construction of computationally tractable bounds on
their suboptimality is the primary motivation for the techniques
developed in this note. Specifically, given a decentralized control
problem with nonclassical information, we characterize an expan-
sion of the given information structure, which ensures its partial
nestedness, while maximizing the optimal value of the resulting
decentralized control problem under the expanded information
structure. The resulting decentralized control problem is cast as an
infinite-dimensional convex program, which is further relaxed via
a partial dualization and restriction to affine dual control policies.
The resulting problem is a finite-dimensional conic program whose
optimal value is a provable lower bound on the minimum cost of the
original constrained decentralized control problem.

[. INTRODUCTION

In general, the design of an optimal decentralized controller
amounts to an infinite-dimensional nonconvex optimization problem.
The difficulty in solution derives in part from the manner in which
information is shared between controllers—the so called information
structure of a problem; see [2] for a survey. Considerable effort has
been made to identify information structures under which the problem
of decentralized control design can be recast as an equivalent convex
program. For instance, partial nestedness of the information structure
[3] is known to simplify the control design, as it eliminates the incen-
tive to signal between controllers. In particular, linear control policies
are guaranteed to be optimal for decentralized LQG problems with
partially nested information structures [3]. Closely related notions of
quadratic invariance [4] and funnel causality [5] guarantee convexity
of decentralized controller synthesis, whose objective is to minimize
the closed-loop norm of an LTI system.

As the tractable computation of optimal policies for the majority of
decentralized control problems with nonclassical information struc-
tures remains out of reach [2], there is a practical need to quantify the
suboptimality of feasible policies via the derivation of lower bounds
on the optimal values of such problems. Focusing on Witsenhausen’s
counterexample [6] and its variants, there are several results in the
literature, which establish lower bounds using information-theoretic
techniques (e.g., using the data processing inequality) [7]-[9], and
linear programming-based relaxations [10]. However, looking beyond
Witsenhausen’s counterexample, it is unclear as to how one might
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extend these techniques to establish computationally tractable lower
bounds for the more general family of decentralized control problems
considered in this note. More closely related to the approach adopted
in this note, there is another stream of literature that investigates the
derivation of computationally tractable lower bounds via information
relaxations that increase the amount of information to which each
controller has access to ensure the partial nestedness [11]-[15] or
quadratic invariance [16] of the expanded information structure.
The specific setting that we consider entails the decentralized
output feedback control of a discrete-time, linear time-varying system
over a finite horizon, subject to polyhedral constraints on the state and
input trajectories. The system being controlled is partitioned into /N
dynamically coupled subsystems, each of which has a dedicated local
controller. In this setting, the decentralization of information is ex-
pressed according to sparsity constraints on the information that each
local controller has access to. Namely, each local controller is allowed
access to the outputs of some subsystems but not others. Naturally,
information constraints of this form may yield information structures
that are nonclassical in nature, thereby making the calculation of
optimal decentralized control policies computationally intractable for
such systems. As a result, significant research effort has been directed
towards the development of methods for the tractable calculation of
constraint admissible, albeit suboptimal, policies. See [17] for an
overview. The aim of this note—which serves to complement these
research efforts—is the tractable evaluation of their suboptimality.
Summary of Results: In this note, we develop a tractable ap-
proach to the computation of tight lower bounds on the minimum
cost of constrained decentralized control problems with nonclassical
information structures. The proposed approach is predicated on two
relaxation steps, which together yield a finite-dimensional convex
programming relaxation of the original problem. The first step entails
an information relaxation, which eliminates the so-called signaling
incentive between controllers by expanding the set of measurements
that each controller has access to. Specifically, we characterize an
expansion of the given information structure, which ensures its partial
nestedness, while maximizing the optimal value of the resulting de-
centralized control problem under the expanded information structure.
The relaxation is also shown to be tight, in the sense that the lower
bound induced by the relaxation is achieved for several families
of decentralized control problems with nonclassical information.
The relaxed decentralized control problem is then recast as an
equivalent convex, infinite-dimensional program using a nonlinear
change of variables akin to the Youla parameterization [18]. Although
convex, the resulting optimization problem remains computationally
intractable due to its infinite-dimensionality. As part of the second
relaxation step, we obtain a finite-dimensional relaxation of this
problem through its partial dualization, and restriction to affine dual
control policies. The resulting problem is a finite-dimensional conic
program, whose optimal value is guaranteed to be a lower bound
on the minimum cost of the original decentralized control design
problem. To the best of our knowledge, such result is the first to
offer an efficiently computable (and nontrivial) lower bound on the
optimal cost of a decentralized control design problem with multiple
subsystems, multiple time periods, and polyhedral constraints on state
and input. If the gap between the cost incurred by an admissible
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policy and the proposed lower bound is small, then one may conclude
that said policy is near-optimal.

Notation: Let R denote the set of real numbers. Denote the
transpose of a vector z € R" by z. For any pair of vectors
z = (z1,.,2n) € R" and y = (y1,..,ym) € R™, we define
their concatenation as (z,y) = (21,..,%n,y1,.,ym) € R*T™.
Given a process {z(¢)} indexed by ¢ = 0,...,T — 1, we denote
by z' = (x(0),z(1),...,x(t)) its history up until and including
time ¢. We consider block matrices throughout the paper. Given a
block matrix A whose dimension will be clear from the context, we
denote by [A];; its (4, 7)™ block. We denote the trace of a square
matrix A by Tr(A). We denote by K2 a second-order cone, whose
dimension will be clear from the context. Specifically, given a vector
z € R", x € Ky if and only if 1 > :c%—|—~~+:r,21.Givena
matrix A, we let A =k, 0 denote its columnwise inclusion in KCa.

Il. PROBLEM FORMULATION
A. System Model

Consider a discrete-time, linear time-varying system consisting of
N coupled subsystems whose dynamics are described by

N

zi(t+1) = 3 (A (025(1) + Big (0w (1)) + Gi0)Ew®), ()
j=1

for ¢ = 1,...,N. The system operates for finite time indexed by

t = 0,...,T — 1, and the initial condition is assumed fixed and

known. We associate with each subsystem ¢ a local state x;(t) €

R™= and local input u;(t) € R™. And we denote by £(t) € R™
K3

the stochastic system disturbance. We denote by y;(t) € R™v the

local measured output of subsystem i at time ¢. It is given by

N
vi(t) = D Cij(8)a;(8) + Hi(DE(), (b)
j=1
for ¢ = 1,..., N. All system matrices are assumed to be real and

of compatible dimension. In the sequel, we will work with a more
compact representation of the system Egs. (1) and (2) given by

z(t+1) = A(t)x(t) + B(t)u(t) + G(t)E(t)
y(t) = C(t)z(t) + H(t)E(t).
Here, we denote by z(t) := (z1(t),..,zn(t)) € R™, u(t) :=
(u1(t), ., un(t)) € R™, and y(t) = (y1(t),.,yn(t)) € R™
the full system state, input, and output at time ¢, respectively. Their
dimensions are given by ng = Zf\;l Ny Ny 1= Zivzl ny,, and
Ny = Efvzl ny, respectively. We will occasionally refer to the tuple

© := {A(t), B(t), G(¢t), C(¢), H(1)

as the system parameter when making reference to the underlying
system described by Eqgs. (1) and (2). The system trajectories are
related according to

r = Bu+ G¢

T-1
t=0

and y=Cz+ HE,

where z,u, £, and y denote the trajectories of the full system state,
input, disturbance, and output, respectively.] We denote them by

z = (2(0),...,2(T)) € R™=, Ny :=na(T + 1),
wi= (u(0),...,u(T—1)) e RN, Ny :=n,T,
€:=(L,E(0),...,&(T — 1)) e RNE,  Ng:=1+4nT,
y:=(1,9(0),...,y(T — 1)) e RM, Ny =1+ nyT.

Ut is straightforward to construct the block matrices (A(t), B(t), G(t),
C(t),H(t)) from the data defining the system Egs. (1) and (2). The
specification of the matrices (B, G, C, H) can be found in Appendix V.

Notice that in our specification of the both the disturbance and output
trajectories, £ and y, we have extended each trajectory to include a
constant scalar as its initial component. This notational convention
will prove useful in simplifying the specification of affine control
policies in the sequel.

We close this subsection by stating a structural assumption on
the system dynamics. Assumption 1, which is assumed to hold
throughout the paper, ensures that each subsystem’s local control
input can causally affect its local measured output.

Assumption 1. For each subsystem ¢ € V, there exist time periods
0 < s <t <T—1 such that the matrix [C(t)A%,1B(s)],; is
nonzero.

The matrix [C(t)A%,;B(s)],, refers to the (i,i)™ block of the
N x N block matrix C(t) A% | B(s). We refer the reader to Appendix
V for a definition of the matrix A% +1-

B. Disturbance Model

We model the disturbance trajectory £ as a random vector de-
fined according to the probability space (RV¢, B(R™¢), P). Here,
the Borel o-algebra B(R™¢) denotes the set of all events that
are assigned probability according to the measure P. We denote
by £2 = £2(RNe, B(RMe),P;R") the space of all B(R¢)-
measurable, square-integrable random vectors taking values in R”.
With a slight abuse of notation, we occasionally use £ to denote a
realization of the random vector £. The following assumption on the
probability distribution of the disturbance trajectory is assumed to
hold throughout the paper.

Assumption 2 (Elliptically Contoured Disturbance). The disturbance
trajectory £ is assumed to have an elliptically contoured distribution.
That is, there exists a vector p € RMe, a positive semidefinite matrix
¥ € RVexN ¢, and a scalar function g, such that the characteristic
function ¢, of the random vector § — p satisfies the functional
equation @¢_,(0) = g(0756) for every vector § € RV¢.

The family of elliptically contoured distributions is broad. It
includes the multivariate Gaussian distribution, multivariate ¢-
distribution, their truncated versions, and uniform distributions on
ellipsoids. If ¢ has an elliptically contoured distribution, then the
conditional expectation of £ given a subvector of £ is affine in
this subvector. And any linear transformation of ¢ also follows an
elliptically contoured distribution [19]. Such properties will play an
integral role in the derivation of our main result in Section V.

In order to ensure the well-posedness of the problem to follow, we
require that the disturbance trajectory satisfy the following conditions.
We assume that the disturbance £ has support that is an ellipsoid with
a nonempty relative interior in the hyperplane {¢ € RV & =1},
and is representable by

E={¢c RV | & =1 and W¢ =, 0},

where W € RNe*Ne  This assumption ensures that the correspond-
ing second-order moment matrix M := E[{fT} is positive definite
and finite-valued.

C. System Constraints

In characterizing the set of feasible input trajectories, we require
that the input and state trajectories respect the following linear
inequality constraints P-almost surely,

} P-as., 3)

Fg;x—&—Fuu—i—FE&—i—s:O
s>0
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where Fp € R™*Ne B, ¢ R™Nu and Fy € R™*N¢. Here,
s € E%L is a slack variable that is required to be non-negative P-
almost surely.

D. Decentralized Control Design

In this paper, we consider information structures that are specified
via sparsity constraints on the local controllers. More specifically,
we describe the pattern according to which information is shared
between subsystems with a directed graph Gy = (V, &r), which we
refer to as the information graph of the system. Here, the node set
Y ={1,..., N} assigns a distinct node ¢ to each subsystem %, and
the directed edge set £; determines the pattern of information sharing
between subsystems. More precisely, we let (¢, 7) € &y if and only if
for each time ¢, subsystem j has access to subsystem ¢’s local output
yi(t). We make the following assumption on the structure of the
information graph, which ensures that each subsystem ¢ has access
to its local output y;(t) at each time period ¢.

Assumption 3. The directed edge set £; is assumed to contain the
self-loop (4,%) for each i € V.

We also assume that each subsystem has perfect recall, i.e., each
subsystem has access to its entire history of past information at any
given time. Accordingly, we define the local information available to
each subsystem ¢ at time ¢ as

zi(t) = {yj | (G.9) € &r}. @
We restrict the local input to subsystem ¢ to be of the form
ui(t) = 7i(zi(t), 1), Q)

where ~;(-,t) is a measurable function of the local information
z;(t). We define the local control policy for subsystem ¢ as 7y; :=
(7i(+,0),...,7(-,T"—1)). We refer to the collection of local control
policies v := (y1,...,vN) as the decentralized control policy and
define I'(Gy) as the set of all decentralized control policies respecting
the information structure defined by the information graph Gy.

Of interest is the characterization of control policies, which solve
the following constrained decentralized control design problem:

minimize E [mTRmx + uTRuu

subject to v € I'(Gr), s € c2,
FTCC+FHU+F§§+S:O

= Bu+ G¢ ©)
y=Cx+ H¢ P-as
u="(y)

s>0

Here, the cost matrices, Ry € RNe*Ne and R, e RNu*Nu,
are both assumed to be symmetric positive semidefinite. We denote
the optimal value of problem (6) by J*(Gy), where we have made
explicit the dependence of the optimal value of problem (6) on the
underlying information graph G;. In general, the decentralized control
design problem (6) amounts to an infinite-dimensional, nonconvex
optimization problem with neither analytical nor computationally
efficient solution available at present time [2], [20], [21]. As a
result, considerable effort has been directed towards the development
of methods that enable the tractable calculation of feasible control
policies [17]. Although these methods are known to produce decen-
tralized controllers that perform well empirically, they are suboptimal
in general; and the question as to how far from optimal these policies
are remains unanswered. The primary objective of this note is the
development of tractable computational methods to estimate their
suboptimality.

I1l. PRELIMINARIES

In what follows, we describe how to equivalently reformulate the
decentralized control design problem (6) as a static team problem
[3] through a nonlinear change of variables akin to the Youla
parameterization. This reformulation is shown to result in a convex
program if and only if the underlying information structure is partially
nested.

A. Nonlinear Youla Parameterization

Define the nonlinear Youla parameterization of the decentralized
control policy v € I'(Gy) as

¢:=70(I—CBy) " )

Note that the map I — CB~y : RM — RM is guaranteed to be
invertible, as the decentralized control policy v is causal, and the
matrix CB is strictly block lower triangular.

The Youla parameter ¢ satisfies the following two important
properties. First, it is an invertible function of the policy + over
I'(Gr), where its inverse is given by v = ¢ o (I + CB¢)~!. Note
that the required inverse exists, as it is straightforward to verify that
I1+CB¢ = (I —C’Bv)_l. Second, given an input trajectory induced
by u = v(y), it holds that

d(n) =(y) ®)

for every disturbance trajectory £ € =. Here, 1 denotes the so-called
purified output trajectory defined by n := P, where the matrix
P e RYv*Ne is given by P := CG + H. Note that Eq. (8) follows
from the fact that the output trajectory y and purified output trajectory
7 are related according to

y=CBy(y) +n,

which in turn implies that y = (I — CB~)™1(n).

Together, these two properties reveal that problem (6) can be
equivalently reformulated as a static team problem by applying
the nonlinear change of variables in (7). This yields the following
optimization problem:

minimize E [wTRxﬂc + uTRuu]
subject to ¢ € ®(Gy), s € 2,
Fex+ Fyu+Fe§+s5=0

r = Bu+ G¢§ ®
n = P¢ P-as.
u=¢(n)

s>0

Here, the set of admissible Youla parameters is given by
®(Gy) i={yo (I -CBy) ™" | v €GN}

The only potential source of nonconvexity in problem (9) is in the
set of Youla parameters ®(Gy). In particular, problem (9) is a convex
program if and only if the set ®(Gy) is convex.

B. Convexity under Partially Nested Information Structures

In what follows, we show that the static team problem (9) is a
convex program if and only if the information structure is partially
nested. Before proceeding, we provide a formal definition of partially
nested information structures using the notion of precedence, as
defined by Ho and Chu in [22].

Definition 1 (Precedence). Given the information structure defined
by Gy, we say subsystem j is a precedent to subsystem i, denoted
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by j < 1, if there exist times 0 < s < ¢t < T — 1 and subsystem k
satisfying (k,¢) € &1, such that [C(t)AZ_,,_lB(s)]kj # 0.

Essentially, subsystem j is a precedent to subsystem ¢, if the local
input to subsystem j can affect the local information available to
subsystem ¢ at some point in the future. In particular, it follows from
Assumption 1 that j is a precedent to 4 if (j,¢) € £;. Equipped with
the concept of precedence, we now provide the definition of partially
nested information structures.

Definition 2 (Partially Nested Information). The information struc-
ture defined by Gy is said to be partially nested with respect to
the system ©, if j < ¢ implies that z;(t) C z;(t) for all times
t=0,...,7T—1.

We denote by PN(©) the set of information graphs that are partially
nested with respect to the the system ©. The information structure
defined by Gy is said to be nonclassical if G; ¢ PN(©). We note that
the above definition of partial nestedness is tailored to the setting in
which controllers are subject to sparsity constraints on the measured
outputs that each controller can access. A more general definition of
partial nestedness can be found in [3], [22], [23], which applies to
the setting in which controllers are subject to both delay and sparsity
constraints on information sharing. Equipped with this definition,
we state the following result, which shows that the set of Youla
parameters ®(Gy) is convex if and only if the information structure
is partially nested. We omit the proof of Lemma 1, as it directly
follows from existing arguments in [24, Thm. 1] and [25, Cor. 7].

Lemma 1. The following statements are equivalent:

(i) ®(Gr) is a convex set,
(i) (gr) =T'(9r),
(i) G; € PN(©).

Lemma 1 implies Ho and Chu’s classical result [3, Thm. 1] show-
ing that a dynamic team problem with a partially nested information
structure can be equivalently reformulated as a static team problem
with the same set of admissible policies. It follows from Lemma 1
that the reformulated decentralized control problem in (9) is convex if
and only if the underlying information structure is partially nested.

IV. A CONVEX INFORMATION RELAXATION

In what follows, we consider systems with nonclassical information
structures, and address the question as to how one might convexify the
corresponding decentralized control design problems via information-
based relaxations. Specifically, we characterize an expansion of the
given information graph that guarantees the partial nestedness of the
relaxed information structure, while maximizing the optimal value of
the relaxed problem. It is given by the optimal solution to:

maximize J"(G) subjectto G € PN(O).
axdmi (G)  subj (©) (10)

Recall that J*(G) is the optimal value of the decentralized control
design problem (6) given an information graph G. Also, note that any
feasible solution to problem (10) is required to both induce a partially
nested information structure, and be a supergraph of G;. We require
a few definitions before stating the solution to problem (10).

2We note that the convexity result in Lemma 1 does not depend on
the structure of the cost matrices or the probability distribution of system
disturbance. There is a related literature, which identifies structural conditions
on the system and cost matrices and the probability distribution of system
disturbance, under which the communication of private information from
any controller’s precedent to said controller does not lead to a reduction
in cost. Under these conditions, the optimal solution of problem (9) can be
computed via the solution of a convex program when the information structure
is nonclassical. See [11], [15], [26], [27] for recent advances.

Definition 3 (Precedence Graph). We define the precedence graph
associated with the system © and the information graph Gj as the
directed graph Gp(0,Gr) = (V,Ep(0,Gr)) whose directed edge
set is defined as

Ep(©,Gr) :=A{(i,5) | 3,5 € V, © < j with respect to (©,Gr)}.

Essentially, the precedence graph provides a directed graphical
representation of the precedence relations between all subsystems,
as specified in Definition 1.

Definition 4 (Transitive Closure). The transitive closure of a directed
graph G = (V, £) is defined as the directed graph G = (V, ), where
(i,) € £ if and only if there exists a directed path in G from node
i to node j.

The transitive closure of a directed graph can be efficiently
computed using Warshall’s algorithm [28]. Equipped with these
definitions, we state the following result, which provides a ‘closed-
form’ solution to problem (10).

Theorem 1 (Information Relaxation). An optimal solution to (10) is
given by Gp (O, Gy), the fransitive closure of the precedence graph.

Theorem 1 implies the following lower bound on the optimal value
of the original decentralized control problem (6):

J*(Gr(©,61) < J*(Gr). an

Moreover, this lower bound can be computed via the solution of a
convex infinite-dimensional optimization problem (9). In Theorem 2,
we provide a finite-dimensional relaxation of problem (9) to enable
the tractable approximation of the corresponding lower bound.

It is also worth noting that the transitive closure of the precedence
graph induces an information structure under which each subsystem
is guaranteed to have access to the information of those subsystems
whose control input can directly or indirectly affect its information.
This implies that the information relaxation Gp(©,Gy) yields a
partially nested information structure—a result that was originally
shown in [12]. Theorem 1 improves upon this result by establishing
the optimality of such a relaxation, in the sense that it is shown to
yield the best lower bound among all partially nested information
relaxations.

Remark 1 (Tightness of the Relaxation). We also note that the infor-
mation relaxation in Theorem 1 is tight. That is, J* (Q p(©,G 1)) =
J*(Gr) for certain families of nonclassical control problems. In
particular, it is known that signaling is performance irrelevant if
the partially nested information relaxation only introduces additional
information that is superfluous in terms of cost reduction—i.e., the
additional information does not contribute to an improvement in
performance. For such problems, one can establish the existence of
an optimal policy under the partially nested information relaxation
that also respects the original (nonclassical) information structure—
implying the tightness of the relaxation. We refer the reader to [13],
[15], [26, Sec. 3.5] for a rigorous explication of such claims. It can
also be shown that the lower bound (11) is achieved by nonclassi-
cal LQG control problems that satisfy the so-called substitutability
condition. See [11, Sec. 3] for a formal proof of this claim.

In Lemma 2, we present an alternative characterization of partially
nested information structures that will prove useful in the proof of
Theorem 1.

Lemma 2. G € PN(©) if and only if G = Gp(©,G).

The graph theoretic fixed-point condition in Lemma 2 implies that
an information structure is partially nested if and only if the given
information graph is equal to the transitive closure of the precedence
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graph that it induces. We also note that Lemma 2 is closely related
to the graph theoretic necessary and sufficient condition for quadratic
invariance presented in [29], which requires that the information
graph be equal to its transitive closure, and be a supergraph of the
transitive closure of the so-called plant graph.

Proof of Lemma 2: The proof of the “if” direction is straigthfor-
ward, and is omitted for brevity. We prove the “only if” direction
of the statement. Let G = (V,&). Assume that G € PN(O). It
follows from Assumption 1 that j < 4 if (j,4) € £. This implies
that G C Gp(©,G), which in turn implies that G C Gp(O, G).

To finish the proof, we will show that G O Gp(©,G). This
amounts to showing that (j,7) € £p(O,G) implies that (j,4) € £.
Note that (j,7) € Ep(O,G) implies that j is path connected to
¢ in the corresponding precedence graph Gp(©,G). That is, there
exist m > 1 distinct vertices v1,...,vm € V that satisfy j =
v] < v2 < -+ < vy = 4. Since G € PN(O), it also holds that
zv1 (t) C zuy(t) C -+ C 2y, (t) for each time ¢. In particular, it
holds that z;(t) C z;(t) for each time ¢. This nesting of information,
in combination with Assumption 3, implies that (j,4) € &. It follows

that G O Gp(0©, G), which completes the proof. [ |

We have the following Corollary to Lemma 2 showing that any
graph, which is feasible for problem (10), must also be a supergraph
of the transitive closure of the precedence graph. In other words,
this result precludes the existence of feasible information graph
relaxations that do not contain Gp(©,Gy) as a subgraph.

Corollary 1. If G € PN(©) and G D Gy, then G 2 Gp(O, 7).

Proof of Corollary 1: Lemma 2 implies that G = Gp (0, G). The
result follows, as G O Gy implies that Gp(©,G) 2 Gp(©,G7). A

Proof of Theorem 1: Corollary 1 implies that J*(Gp(©,Gr)) >
J*(G) for every graph G that is feasible for problem (10). Hence,
to prove the result, it suffices to show that the graph Gp(O,Gy) is
also feasible for problem (10). We previously showed in the proof of
Lemma 2 that Gp(©,Gr) 2 Gr. We complete the proof by showing
that Gp(©, Gr) € PN(O). It is not difficult to show that

Gr(0,61) = Gr (,00(0,01)).

This follows from the observation that each precedence relation 7 < j
induced by Gp(0©,Gr) necessarily corresponds to an edge (i,5) €
Ep(©,Gr). It follows from (12) and Lemma 2 that Gp(©,G;) €
PN(©), which completes the proof. [ ]

12)

V. A DUAL APPROACH TO CONSTRAINT RELAXATION

The information relaxation developed in Section IV provides a
convex programming relaxation of the original decentralized control
design problem (6). Despite its convexity, the resulting optimization
problem remains computationally intractable due to its infinite-
dimensionality. In what follows, we employ a general technique from
robust optimization [30]-[32] to obtain a finite-dimensional relaxation
of this problem through its partial dualization, and restriction to affine
dual control policies. The resulting problem is a finite-dimensional
conic program, whose optimal value is guaranteed to be a lower
bound on the minimum cost of the original decentralized control
design problem (6).

For the remainder of this section, we assume that the given
information structure is partially nested, i.e., G; € PN(O).

A. Restriction to Affine Dual Control Policies

The derivation of our lower bound centers on a partial Lagrangian
relaxation of problem (6). We do so by introducing a dual control

policy v € 53,1, and dualizing the linear equality constraints on the
state and input trajectories. This gives rise to the following min-max
problem, which is equivalent to problem (6):

minimize sup E [mTRmx + uTRuu
veLZ,
+ ’UT(F;cI + Fuu + Feé + s)]
subject to y € F(g[), ENS] ,C%n (13)
x = Bu+ G¢
n="re P-as.
u="y(n)
s>0

In presenting the equivalent min-max reformulation of problem (6),
we have used the fact that problem (6) is equivalent to problem (9);
and Lemma 1, which implies that ®(Gy) = I'(Gy) if G; € PN(©).
In order to obtain a tractable relaxation of problem (13), we
restrict ourselves to dual control policies that are affine in the
disturbance trajectory, i.e., v = V& for some V € R™* Ve With
this restriction, it is possible to derive a closed-form solution for the
inner maximization in problem (13). This yields another minimization
problem, whose optimal value stands as a lower bound on that of
problem (13). We have the following result, which clarifies this claim.

Proposition 1. The optimal value of the following problem is a lower
bound on the optimal value of problem (13):

minimize sup

E [mTsz + uTRuu
ver™*Ne

+ VT (Fox + Fuu+ Feé + s)]
subject to v € I'(Gy), s¢€ £,

(14)
r = Bu+ G¢
n="Fre P-as
u = ~y(n) h
s>0

Moreover, the optimal value of problem (14) equals that of the
following optimization problem:

minimize E [mTRg;ac + uTRuu]
subject to v € I'(Gy), s € 2,
E [(Fxx + Puu+ Feé + s)fT] —0

(15)
x = Bu+ G¢
n="re P-as.
u=y(n)
s>0

Proof of Proposition 1: The fact that the optimal value of problem
(14) lower bounds that of (13) is straightforward, since any dual affine
control policy v = V¢ is feasible for the inner maximization problem
in (13). To see that the optimal values of problem (14) and (15) are
equal, we note that

sup E[{TVT(FI:C + Fuu+ Feé + s)]

VERmXNE
= sup
VERmXN§

— 0,
+00,

E [Tr (VT(FN + Fuu+ Feé + s)gT) }

if B [(sz + Fuu+ Feg + s)gT] -0,

otherwise.
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B. Relaxation to a Finite-dimensional Conic Program

Problem (15) appears to be intractable, as it entails the optimization
over an infinite-dimensional function space. In what follows, we
show that it admits a relaxation in the form of a finite-dimensional
conic program. Before proceeding, we present a formal definition of
the subspace of causal affine controllers respecting the information
structure defined by Gj.

Definition 5. Define S(G;) € RN*Mv 0 be the linear subspace
of all causal affine controllers respecting the information structure
defined by Gy.

In other words, for all K € S(Gy), the decentralized control policy
defined by v(y) := Ky satisfies v € I'(Gy). Equipped with this
definition, we state the following result, which provides a finite-
dimensional relaxation of problem (15) as a conic program. We
note that the proposed conic relaxation is largely inspired by the
duality-based relaxation methods originally developed in the context
of centralized control design problems [30], [32]. We provide a
proof of Theorem 2 in Appendix I, which extends these techniques
to accommodate the added complexity of decentralized information
constraints on the controller.

Theorem 2. Let Assumption 2 hold. If G; € PN(©), then the optimal
value of the following problem is a lower bound on the optimal value
of problem (6):

minimize Tr (PTQTRQPM +2G TR, BQPM + GTR;EGM)

subjectto Q € S(Gy), Z € R™*Ne
(Fu+FeB)QP + FeG+ Fe + 72 =0,
T
WMZ =, 0,
e MZ' >0,

(16)
where R = Ry + B'R:B, and e = (1,0,...,0) is a unit vector
in RVe.

Let Jd(gj) denote the optimal value of the finite-dimensional
conic program (16). Theorem 2 states that J(G;) < J*(Gp) if
Gr € PN(©). The following result—an immediate corollary to
Theorems 1 and 2—provides a computationally tractable lower bound
for problems with nonclassical information structures.

Corollary 2. Let J*(Gy) denote the optimal value of the decentral-
ized control design problem (6). It follows that

J(Gp(,G1)) < J*(Gr),

where Gp (O, Gy) refers to the transitive closure of the precedence
graph associated with problem (6).

APPENDIX |
PROOF OF THEOREM 2

The crux of the proof centers on the introduction of new finite-
dimensional decision variables, which enable the removal of the
infinite-dimensional decision variables in problem (15). Consider the
following result, which we prove in Appendix II.

Lemma 3. Let Assumption 2 hold. For each s € E%L, there exists a
matrix Z € R™ V¢ that satisfies

ZM = E[s¢"]. (17)
For each v € I'(Gy), there exists a matrix @ € S(Gy) that satisfies
QPM =E[u¢'], (18)

where u = y(n).

With Lemma 3 in hand, we obtain an equivalent reformulation
of problem (15) as the following optimization problem—via the
introduction of the finite-dimensional decision variables Z and @
through the constraints (17) and (18), respectively.

minimize B [uTRu] +Tr (2GTRmBQPM + GTRIGM)

subject to v € I'(Gy), s€ L2, Qe S(Gy), ZeR™Ne
(Pu+ FuB)QPM + FuGM + FeM + ZM =0
QPM =E[u']

ZM = E[s¢"]
n=P¢

u=y(n) P-as
s>0

(19)
where R = Ry + B Ry B.
We now introduce two technical Lemmas that permit us to con-
struct a finite-dimensional relaxation of problem (19).

Lemma 4. Fix the matrix Q € S(Gy). It follows that y(n) = Qn is
an optimal solution to the following optimization problem:

minimize E [uTRu]

subject to vy € I'(Gr)

QPM =E[u¢']
n=P¢
u=7(n) } Pras

We omit the proof of Lemma 4, as it is an immediate corollary of
[32, Lem. 4.5]. A direct application of Lemma 4 yields the following
equivalent reformulation of problem (19) as:

minimize Tr (PTQTRQPM +9G TRy BQPM + GTRxGM)

subject to s € £2,, Q € S(Gy), ZeR™Ne
(Fu+ FyB)QP + FoG+F: +Z =0
ZM = E[s¢']
s>0 P-as.
(20
Note that, in reformulating problem (19), we have eliminated the
second-order moment matrix M from the equality constraint (Fy, +
FyB)QPM + FrGM + FeM+ZM =0, as M is assumed to be
positive definite, and, therefore, invertible.
Lemma 5 provides a conic relaxation of the constraints in problem
(20) involving the infinite-dimensional decision variable s € L?n. We
provide a proof of this technical Lemma in Appendix III.

Lemma 5. If s € £2, and Z € R™* ¢ satisfy ZM = E[s¢"] and
s > 0 P-a.s., then wMZ" ~x, 0 and e-lrMZT > 0.

We complete the proof with the following string of inequalities
and equalities relating the optimal values of the various optimization
problems formulated thus far.

(16) < (20) = (19) = (15) < (13) = (9) =(6)
(a) (b) (c) (d) ()

Inequality (a) follows from Lemma 5, which implies that problem
(16) is a relaxation of problem (20). Equality (b) follows from
Lemma 4. Equality (c) follows from Lemma 3. Inequality (d) follows
from Proposition 1. Finally, Equality (e) follows from Lemma 1, as
the assumption of a partially nested information structure implies
equivalence between the optimal values of problems (13) and (9).
The equivalence between (9) and (6) is argued in Section III-A.
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APPENDIX Il
PROOF OF LEMMA 3

This proof extends arguments originally developed in [32, Lem
4.4] to accommodate the more general setting considered in this note,
where the affine controller @ is subject to a decentralized information
constraint.

Proof of the first part: Fix s € Egn. The matrix M is invertible,
since it is assumed to be positive definite. Setting Z = E[sé‘T] M1
yields the desired result in (17).

Proof of the second part: We first introduce the notion of a trun-
cation operator. Given a nonempty set of indices J C {1,..., Ny}
and an arbitrary vector x € R™v, we define = J € R/l to be the
subvector of x, whose entries are given by x; for all j € J. The
entries of zj are ordered in ascending order of their indices. For
example, if J = {1, 3}, then x ; = (x1, z3). We define the truncation
operator 11 : RYy — R’ as the mapping from a vector x to its
subvector x j, i.e., xj = Il jx.

Now, fix v € I'(Gy), and let u = ~y(n). The following Lemma will
prove useful in establishing the existence of a matrix @ € S(Gr)
satistying Eq. (18). The proof of Lemma 6 is in Appendix IV.

Lemma 6. Let Assumption 2 hold. Let z € £% be random variable
that is a (possibly nonlinear) function of the random vector n; =
II;n, where {1} C J C {1,..., Ny} is a given index set. Then,
there exists another random variable z' € C%, which is an ajﬁne3
function of 77, and satisfies E[Zn' ] = E[zn'].

Stated in other words, Lemma 6 asserts the existence of a vector
q € R™v that satisfies

E[¢'nm'] =E[n'],

where the vector q respects the sparsity pattern encoded by the index
set J, i.e., ¢ = H}H 7. It follows that one can apply Lemma 6 to
each row of the matrix E[unT] to establish the existence of a matrix
Q € S(Gy) that satisfies

E [anT] =E [unT] .

Consider a matrix @ € S(Gy) that satisfies Eq. (22). We complete
the proof by showing that this matrix also satisfies Eq. (18). First
note that the combination of Assumption 2 and [19, Thm. 1] implies
that the random vector (£,7) = (&, P€) has an elliptically contoured
distribution. Hence, it follows from [19, Cor. 5] that the conditional
expectation of £ given 7 is an affine function of 7. The definition of
the matrix P ensures that n; = 1. Hence, the conditional expectation
can be expressed as

@n

(22)

E[¢ln] = Ly P-as.
for some matrix L € RN¢*™v_ 1t holds that
E[u'] = E[E[u¢" [n]| = E[un"|L" = QE[m"]L".

Here, the first equality follows from the law of iterated expectations;
the second equality follows from the fact that u = () and a direct
application of Eq. (23); and the third equality follows from Lemma
6. It also holds that

B[nB[¢ )]

which completes the proof.

(23)

E[m"]L" = —E[E[¢"|n]] = B[n¢"] = PM,

3 As a matter of notational convenience, we have required that 1 € J. This
enables one to represent affine functions of 77 as linear functions of 7z, since
m = 1 by construction.

7
APPENDIX Il
PROOF OF LEMMA 5
It follows from the symmetry of the matrix M that M AR
(zM)T = E[¢s"]. It, therefore, holds that
elMZT = e]E[¢s' | =Ele{&s' | =E[s'] >0
The last equality follows from the fact that eI{ = 1 P-almost

surely. To show that wMZzT =5 0, it suffices to show columnwise
inclusion in the second-order cone, i.e.,

E[si¢] =k, 0,

th

for t1=1,...,m,

where s; € ﬁ% is the ¢ element of the random vector s. By
definition, we have that W¢ =, 0 for all § € =. Also, since s; > 0
almost surely, we have that W (s;£) =, 0 almost surely. It follows
from the convexity of the second-order cone that WE[s;£] =« 0.

APPENDIX IV
PROOF OF LEMMA 6

Define the vector r € R according to

T .= E[zn)] (PyMP))T, 4)
where Py :=1I;P, and ()T denotes the Moore-Penrose pseudoin-
verse of a matrix. We first show that the vector r satisfies

E[zn)] =r'P;MP;. (25)
Define the matrix ¥ := P;M 1 2, where M 1/2 s the unique square
root of the symmetric positive definite matrix M. Note that the matrix
M2 is symmetric and positive definite (and hence invertible). It
holds that

rTP;MP] = B[z} (P;MP)) P;MP]
—E[¢")P] (P;MP]) P, MP]
— E[6" )M~ V2MY2P] (PyMmP)) Py M P
=Bl M V2T (wuT) weT
= E[z" | M 2ulweT
—E[z"|M V20T = E[2¢"|P] = E[zn)]

The second and the last equalities both follow from the fact that
ny = Il ;P = Pj€. The fourth equality follows from the definition
of the matrix ¥ and the symmetry of the matrix M /2 The fifth
equality follows from the fact [33, Prop. 3.2] that v (\II\I/T)Jr =
UT. The sixth equality follows from the fact [33, Prop. 3.1] that
ooyt = \IJT. It follows that the vector r satisfies Eq. (25).

Now, define the random variable z := rTn J- Clearly, Z is an affine
function of 77 7. We complete the proof by showing that Z satisfies

E [ET]T} =E [znT] .

First recall that the random vector (£,7) is shown to have an
elliptically contoured distribution in Appendix II. Hence, it follows
from [19, Cor. 5] that the conditional expectation of n given 7y is
affine in 77 ;. The assumption that 1 € J guarantees that the first entry
of ns equals 1. Hence, there exists a matrix L; € RNv*I71 such
that

(26)

Enns]=Lym; P-as. (27)

It holds that

E[:'] = E[E [znT|nJ]} =Bl |LY =rTP,MP] LY
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Here, the first equality follows from the law of iterated expectations.
The second equality follows from a combination of Eq. (27) and the
assumption that z is a function of 7 7. The third equality follows from
Eq. (25). It also holds that

rTP;MPJLy =1 Elnmj|L) =r'E [E [anan]]
=r"Elnm'] =E[Z'],
which completes the proof.

APPENDIX V
MATRIX DEFINITIONS

The block matrices (B, G, C, H) are given by:

- o )
AL1B(0) 0
A2B(0) A3B(1) 0
B :=
: 0
LATB(0) A¥B(®1) ALB(T - 1)
[ A9 (0)
Apz(0)  A1G(0)
G.— | Ajx(0)  AFG(0) A3G(1)
AT2(0) ATGO) ATGQ) - ALZG(T 1)
[0
c() 0
C = ~
c(rT-1) 0

H = diag(1, H(0), ..., H(T — 1)),

where A% = Hf,;é A(r) for s < t, and A} = I.
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