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decreasing in the energy storage capacity, which reveals that the greatest marginal benefit from energy
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marginal value of small energy storage capacity to the WPP. The formulae we derive shed light on the
relationship between the value of storage and certain statistical measures of variability in the underlying

wind power process.
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1. Introduction

Driven by concerns of climate change and energy security, there
is a growing worldwide investment in renewable energy [2]. The
available supply of power from sources like wind and solar is
variable—it is uncertain, intermittent, and largely uncontrollable.
These characteristics pose major challenges to the deep integration
of renewables into the grid [3-5].

There is considerable investment and interest in energy storage
as a means to mitigate the variability of renewable generation [6-
11]. For instance, California’s strategic storage mandate calls for
1.3 GW of ramping capability to be commissioned by 2020. Hydro-
power has traditionally been used for such purposes [12]. While
pumped hydro is an efficient and flexible storage modality, its sit-
ing is geographically constrained and thus offers limited balancing
capability to the system at large due to transmission constraints.
As utility-scale renewable energy resources continue to proliferate,
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the ability to directly shape their power output with alternative
forms of electric energy storage becomes more compelling.

In this paper, we investigate the ability of energy storage to
mitigate the cost of balancing variable renewable power. The per-
spective taken is that of a wind power producer (WPP), whose ob-
jective is to sell its variable power in conventional, two-settlement
energy markets akin to those previously studied in [ 13-20]. In such
markets, imbalances arising between the contracted and realized
supply of power are subject to financial penalty. Accordingly, we
quantify the value of co-located energy storage in terms of its ability
to reduce the expected cost of such contract imbalances, and,
thereby, increase the profitability of wind power in such markets.

1.1. Contribution and related work

Energy storage devices such as pumped-hydro, compressed
air [21-23], sodium-sulfur batteries [24], and more general
battery-based technologies [10] offer the capability to firm vari-
able wind power. The ability to do so depends centrally on the
placement, sizing, and control of such energy storage systems. For
a review of papers that consider the problem of optimally siting
energy storage in (deterministic) transmission-constrained power
systems, we refer the reader to [25-27]. There are also a number
of papers that explore the economic viability of these hybrid wind-
storage systems in producing baseload generation [7,28,29]. These
studies conclude that such hybrid systems compete favorably with
gas turbine, conventional fossil fuel, and nuclear generation.
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This paper considers the problem of leveraging energy storage
systems to improve the profitability of a wind power producer
(WPP) participating in a two-settlement energy market. In the
setting considered, the WPP offers a contract for firm power in
the day-ahead market, subject to financial penalty for deviations
between the contracted and realized supply in the real-time mar-
ket. The recourse opportunity afforded by storage serves to reduce
the risk exposure of the WPP, enabling it to offer larger contracts,
which in turn increases its expected profit. We show that the
optimal contract sizing problem reduces to convex programming.
We also prove that the maximum expected profit of the WPP is
a concave and non-decreasing function of the storage capacity.
As a result, the greatest marginal benefit is derived for a small
energy storage capacity. In Theorem 5.5, we provide an explicit
characterization of the marginal value of small energy storage
capacity in terms of a specific statistical measure of variation in
the underlying wind power process.

There are a number of related papers in the literature, which
attempt to characterize the economic value of energy storage
capacity across a variety of electricity market settings using either
deterministic (offline) optimization methods [30-32], stochastic
optimization methods [13,33], online convex optimization meth-
ods [34], or dynamic programming-based methods [35-40]. With
the exception of [35,36], the majority of the aforementioned papers
calculate the economic value of storage capacity using sensitivity
analyses that are largely numerical in nature—in contrast to the
closed-form marginal value expressions established in this paper.
Closer to the approach adopted in this paper, the authors in [35,36]
derive analytical expressions for the marginal value of storage,
albeit under the somewhat restrictive assumption that the wind
power generated in each time period be uniformly distributed.
In contrast, the structural and marginal value results derived in
this paper are distribution-free, in the sense that they hold for any
(possibly nonstationary) wind power process with an absolutely
continuous joint distribution. We note, however, that an important
limitation of our results is their reliance upon the assumption of
constant real-time imbalance prices.

Organization: The remainder of the paper is organized as fol-
lows. Sections 2 and 3 describe the models that we employ in
our analysis, and formulate the specific problems that we address,
respectively. Our main results are presented in Sections 4 and 5,
followed by concluding remarks in Section 6.

Notation: For any finite set A, we denote its cardinality by |A|.
Let N denote the set of non-negative integers, R the set of real
numbers, R, the non-negative reals, and RV the usual Euclidean
space. For x € R, let x* = max{x, 0} and x~ = min{x, 0}. For any
subset A € RN, we define the indicator function 14 : RN — {0, 1}
as

1,(x) = {1, xeA

0, x¢A.
2. Supply, storage and market models
2.1. Intermittent supply model

Time is slotted and indexed by k. The intermittent generation
of the WPP in time period k is &. This is normalized to nameplate
capacity so & € [0, 1]. We model the wind farm output as a
discrete-time random process & = (&, &1, ..., En—1). Let

Dy(x)=P{& <x}, k=0,...,N—1 (1)

denote the cumulative distribution function of &,. Define the time-
averaged cumulative distribution function as

1 N—1
FO = D Pilx). (2)
k=0

We assume that the intermittent supply has a zero cost of produc-
tion, as it is derived from wind and solar energy.

2.2. Energy storage model

We consider a simple energy balance model [11] for perfectly
efficient energy storage':

Zyv1=zk—U, k=0,1,... (3)

Here, z; > O represents the amount of energy in the storage at
the beginning of time slot k, and u; denotes the energy that is
extracted from or injected into the storage during time slot k. The
sign convention is such that u, > 0 corresponds to an energy
extraction, and u, < 0 corresponds to an energy injection. Without
loss of generality, we assume a zero initial condition, zg = 0. We
impose the state and input constraints:

0<z <b (4)
—r<u=<r (5)

to capture the energy capacity b and the maximum
charging/discharging rate r. We refer to the storage type as the
parameter vector 8 = (b, r).

2.3. Market model

We consider a two-settlement electricity market consisting of
a day-ahead (DA) market and a real-time (RT) imbalance market.
In the DA market, a generator can submit offers to produce power
over the following day according to a sequence of power contracts
that are typically piecewise constant over hour-long time intervals.
Normally, the DA market will close for offers by 10 AM, and clears
by 1 PM on the day immediately preceding the delivery day. The
contracts cleared in the DA market are financially binding and call
for delivery in the RT market, where uninstructed deviations be-
tween the contracted power and the delivered power are penalized
according to imbalance prices determined in the RT market.?

Day-Ahead (DA) Market.

In this paper, we restrict our analysis to a single DA contract
interval, which we discretize into N time slots reflecting the finer
temporal granularity of RT market operations.> We let x € R
(MWh) denote the offered contract, which is taken to be constant
across the N time slots defining the contract interval. The supplier
is payed according to the DA market clearing price p € Ry
($/MWh) associated with that contract interval. This yields the
supplier a revenue of N - px in the DA market.

1 The assumption of perfectly efficient storage is for ease of exposition. All of
our results can be generalized to accommodate non-ideal storage systems with
leakage and energy conversion inefficiencies. See Remark 2 for a discussion on such
generalization.

2 We note that the market model considered in this paper conforms with the
prevailing literature on the integration of wind power through two-settlement
electricity markets [1,14-17,20,41].

3 We note that it is straightforward to extend the formulation and results pre-
sented in this paper to accommodate the more general setting in which a supplier
can offer a sequence of multiple DA contracts (e.g., one for each hour of the day)
that are remunerated according to the corresponding sequence of hourly DA market
prices. We refer the reader to Section II-C of [ 1] for the mathematical details of such
a formulation.
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Real-Time (RT) Market.

As the forward contract x is offered with significant lead time on
delivery, deviations naturally arise between the offered contract
and the delivered power. These contract deviations are penal-
ized according to imbalance prices derived from the RT market.
A shortfall in generation during period k is penalized at a price
a € Ry ($/MWh), while an excess in generation is penalized at
a price B € Ry ($/MWh). Typically, deviations from hour-long
forward contracts are measured on a finer temporal granularity
corresponding to intervals of length five minutes. Accordingly, we
consider a temporal discretization of the contract interval into N
discrete time periods, where each period’s imbalance is measured
relative to the baseline contract x. We also note that, in practice, a
WPP may possess the ability to physically curtail its power output
in real-time by pitching its turbine blades to avoid overproduction
imbalance penalties. One can reflect the economic impact of this
curtailment capability by setting the overproduction imbalance
price 8 equal to zero.

Market Assumptions.

We make several common assumptions regarding the determi-
nation of prices in the two-settlement energy market under con-
sideration. First, we assume that the WPP’s production capacity is
small relative to the aggregate capacity of other generators partici-
pating in the DA energy market. Under this assumption, it is fair to
assume that the WPP cannot appreciably affect the determination
of prices. Accordingly, we require the WPP to behave as a price
taker in the DA energy market, and model the DA energy p as fixed
and known at the time of forward contract offering. We refer the
reader to Remark 1, which provides an alternative interpretation
of the optimal forward contract offering as a supply function offer
in the DA market.

Second, as the RT imbalance prices («, 8) are not known to
the WPP at the time of committing to a forward contract in the
DA market, we model them as random variables whose expected
values at the time of forward contract offering are denoted by

m, = E[a] and mg = E[S].

Additionally, the RT imbalance prices («, 8) are assumed to be
independent of the intermittent supply process &. Again, such an
assumption is reasonable if the WPP’s production capacity is small
relative to the market size, as the WPP’s realized contract devia-
tions will have negligible effect on the determination of prices in
the RT market. Naturally, this assumption may need to be reex-
amined for markets scenarios in which the aggregate capacity of
participating wind power producers is large. We refer the reader
to several recent papers [16,19], which treat the possibility of
correlation between imbalance prices and wind power in simpler
settings without energy storage.
Finally, we make the following technical assumption.

Assumption 1. The DA market price satisfies p < m,,.

From a technical perspective, such an assumption ensures con-
cavity of the WPP’s expected profit function (6) in the forward con-
tract x. More practically, this assumption eliminates the perverse
incentive for the WPP to offer larger forward contracts in the DA
market with the explicit intention of underproducing in the RT
market relative to the offered forward contract.

3. Problem formulation

Working within this idealized setting, we now formalize the
question of how a WPP with intermittent supply might optimize a
forward contract offering for energy given a subsequent sequence
of recourse opportunities to reshape the realized supply profile us-
ing a constrained energy storage device. Building on intermediary

results characterizing the structure of the optimal value function,
the eventual goal is a parametric sensitivity analysis yielding an
explicit characterization of the marginal value of energy storage
capacity. We begin by characterizing the space of admissible, causal
storage control policies.

Admissible Control Policies.

An admissible storage control policy m = (uo, - .., un—1) iS any
finite sequence of decision functions that causally map from the
available information to actions, and respect constraints on both
the input to and state of storage. We define the system state at
period k as the pair (zx, &) € Ry x R,, where we recall that z;
represents the energy storage state just preceding period k, while
& denotes the intermittent supply realized during period k. We
assume perfect state feedback and consider control policies with
full information history. Namely, the information available to any
controller at time k is the vector Iy = (X, z<k, &<x), where z¢, =
(z0, ..., 2zx)and &é<x = (&, . . ., &). Naturally, we allow the control
policy to depend explicitly on the forward contract x. A control
policy 7 thus defines the map

Uy = ug(ly) for k=0,1,...,N—1,

where u; € R is the input to the storage system at time k.

We now characterize the space of admissible control policies, as
determined by the storage type & = (b, r). We define the feasible
state space Z(b) as the set of all energy storage states respecting
the energy capacity constraint. Namely, Z(b) = {z € Ry |0 <
z < b}. Given an energy storage state z € Z(b), we define the
corresponding feasible input space as the set of all inputs belonging
to

Uiz;0) = ueR|z—ue z(b), |u <r},

which guarantees one-step state feasibility and input rate con-
straint satisfaction.

Definition 3.1 (Admissible Policies). A control policy 7 = (uo, ...,
un_1) is deemed admissible if

wi(ly) € U(zy; 0)

almost surely for all [y and k = 0, ..., N — 1. We denote by 1(9)
the space of all admissible control policies with full information
history.

Criterion.

We define the expected profit J™(x; ) derived by a supplier,
with a storage of type 6, as the revenue derived from a forward
contract offering x less the expected imbalance cost incurred under
an admissible storage control policy & € I1(8). More precisely, we
define the expected profit as

N—-1
]ﬂ(x70) = pr - ]E|:Zg(xv ugvgk)i| s (6)

k=0

where expectation is taken with respect to («, 8, §) and g(x, ug , &)
denotes the imbalance cost realized at each time period k. More
precisely, we have

gxu &) =akx—&—-w" + pE+u—x". (7)

Notice that the stage cost g is indeed a convex function of its
arguments. For notational concision, we suppress the dependency
of g on the imbalance prices («, §).In addition, we will occasionally
write the storage state and control processes as {z; } and {u}} to
emphasize their dependence on the storage control policy .

We wish to characterize forward contract offerings x and con-
trol policies 7 that together yield a maximum expected profit. This
amounts to the solution of a two-stage stochastic program, where
the recourse problem constitutes a constrained stochastic control
problem. Problem optimality is defined as follows.
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Definition 3.2 (Optimality). An admissible pair (7 *, x*) € IT(0)xR
is deemed optimal if

J(x*:0) > J7(x;0) forall (m,x) e MM(0) x R.

We will occasionally write the optimal value function and an
optimal solution pair as J*(#) and (7*(0), x*(0)), respectively, to
emphasize their parametric dependency on the storage type pa-
rameter 6.

The optimal forward contract may be non-unique. In order
to avoid technical issues associated with such non-uniqueness,
we will restrict our attention to the smallest contract among all
optimal contracts for each 6. Specifically, define the minimal op-
timal contract as x*(0) = infa*(@), where x*(#) = {x €
R | J7Ox;0) > J7O)(y;0) Vy € R} denotes the set of all
optimal contracts associated with a storage type 6.

4. Optimal contract properties

We now characterize the optimal storage control policy and
establish concavity of the expected profit criterion in the forward
contract x.

4.1. Optimal contract sizing forb = 0

Consider first the special case of optimal contract sizing in
the absence of storage, i.e., b = 0. Naturally, in the absence of
storage capacity, the set of admissible storage control policies is
identically zero. And the problem of selecting a forward contract to
maximize the expected profit reduces to the so-called newsvendor
problem [42]. The convexity of this optimization problem is guar-
anteed under our postulated assumptions. We have the following
result established in [15,16].

Lemma 4.1. Consider a storage type 6 € R%r with b = 0. The
corresponding optimal contract is given by the quantile

x*(0) =F ' (y) ;== inf{x € R| F(x) > y}, (8)
where y = (p + mg)/(my + mg) € [0, 1].

The quantile structure of the optimal contract will prove essen-
tial to characterizing the marginal value of storage at the origin,
which we present in Theorem 5.5.

Remark 1 (Supply Function Offer). It is also worth noting that
the optimal contract specified in (8) is a monotone nondecreasing
function in the DA market price p. Hence, the optimal contract
can be equivalently interpreted as a supply function offer in the DA
market, which indicates the maximum amount of energy that the
WPP is willing to produce given a price p. Accordingly, all of the
results presented in this paper can be shown to hold for the more
general setting in which the WPP does not have explicit knowledge
of the DA market price, but rather offers a supply function into
the DA market, which specifies the amount it is willing to produce
as a function of price. It is important to note that the validity of
this interpretation is reliant upon the assumption that the WPP
behaves as a price taker in the DA market, which ensures that it
has no influence on the determination of the DA market price.

4.2. Optimal contract sizing forb > 0

In the presence of positive storage capacity, b > 0, the selec-
tion of an optimal forward contract will naturally depend on the
storage type implicitly through the choice of optimal control policy
m* € II(#). We now characterize the optimal control policy in
Proposition 4.2.

Proposition 4.2 (Optimal Control Policy). Given a storage type 6 €
Ri, the optimal control policy 7* = (u*,...,un*) € II(0) is (i)
myopic and (ii) of a threshold-type satisfying

min{x —§, z, r},
—min{é —x, b—2z, r},

§<x
E>x

wix,z, &) = { (9)

forall(x,z,&) € Ry x Z(b) x Ry.

We omit the proof of Proposition 4.2, as optimality of the
control policy (9) can be shown by direct inspection of the corre-
sponding dynamic programming equations.

While we do not offer an explicit expression for the optimal
contract size in this more general setting, we establish in Theo-
rem 4.3 concavity of the expected profit criterion J7"(x; 6) in the
contract size x, under the optimal control policy 7 * specified in (9).
See Appendix A.1 for a proof of Theorem 4.3.

Theorem 4.3 (Convexity of Optimal Contract Sizing). Let &* € I1(0)
denote the optimal control policy associated with a storage of type 6
and a particular forward contract x € R... It follows that, the expected
profit J™* (x; 0) is a concave function in x over Ry.

It follows from Theorem 4.3 that an optimal contract can be
computed by solving a finite-dimensional, unconstrained convex
optimization problem given by sup,.z {J™ (x; 0)} .

5. The marginal value of storage

As the cost required to deploy a storage facility can be large,
it is of vital importance to quantify the fiscal benefit that a wind
power producer (WPP) might derive from an initial investment
in energy storage capacity. Theorem 4.3 shows that the problem
of computing optimal contract offerings and the corresponding
optimal expected profit is a convex program. In Theorem 5.1, we
show that the optimal expected profit function J*(6) is concave and
nondecreasing in the storage type 6 = (b, r).

Theorem 5.1. The maximum expected profit J*(6) is concave and
nondecreasing in the storage type parameter 6 € ]Ri.

We refer the reader to Appendix A.2 for a proof of Theorem 5.1.
The consequences of Theorem 5.1 are twofold. First, consider the
problem of optimal storage sizing SUpeemi {J*(8) — C(0)}, where
C(#) denotes the capital cost of energy storage capacity. If we
assume a convex capital cost function,* then Theorem 5.1 re-
veals that the problem of optimal storage sizing reduces to a finite-
dimensional, convex optimization problem. Second, the concavity
and monotonicity of the maximum expected profit function J*(9)
in the storage type 6 shows that the marginal value of storage
capacity is greatest for initial investments in storage capacity. In
Theorem 5.5, we provide a closed-form expression for the marginal
value of energy storage capacity dJ*(6)/db at the origin (b = 0).

5.1. y-Quantile Level Crossings

In Theorem 5.5, we make precise the intuition that a larger vari-
ation in the intermittent supply process will manifest in a larger
value of storage. In particular, we establish an explicit relationship
between the marginal value of storage capacity at the origin and a
specific measure of variation of the underlying intermittent supply
process. Before stating our main result, we first establish a prelimi-
nary result in Lemma 5.4, which quantifies the expected number of
times a stochastic process exceeds a fixed level over a fixed interval
of time. We have the following definition.

4 This is a standard assumption in the literature. In fact, it is common to assume,
more strongly, that the capital cost of energy storage capacity is linear [7,12].
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Fig. 1. A graphical illustration of the times at which a process & = {&} exhibits
strict upcrossings (o) and strict downcrossings (x) of a fixed level x. For this
example, we have that Ay(x, §) = 3.

Definition 5.2 (Strict Level Crossing). A scalar sequence a =
(ag, ..., ay_1)issaid to have a strict downcrossing of the levelx € R
at time k if @, > x and ax; < x. Thus, a strict downcrossing of x
at time k corresponds to the event x € Dy(a), where we define
Dr@a) = {y € R|ax > y > ary1}. Analogously, the sequence a is
said to have a strict upcrossing of the level x at time k if x € U4(a),
where we definetfy(a) = {y e R|ay <y < Qys1}-

See Fig. 1 for a graphical illustration of Definition 5.2. We make
the following technical assumption in order to restrict our atten-
tion to strict level crossings.

Assumption 2. The joint distribution of the intermittent supply
process & is assumed to be absolutely continuous.

Under Assumption 2, sample paths of the process & are, with
probability one, not identically equal to x € R for any k. More
precisely, we have that P(|J {& = x}) < > P{& =x} = 0.
Henceforth, we shall refer to all strict crossings as crossings, unless
otherwise unclear from the context.

Definition 5.3 (Number of Strict Downcrossings). We denote the
number of strict downcrossings of x € R incurred by a scalar
sequence a = (do, ..., ay_1)on the interval {0, ..., N — 1} by

N-2
An(x,a) = Y 1pa(X). (10)
k=0

We will omit the subscript N when it is clear from the context.

We have the following Lemma characterizing the number of
times the intermittent supply process is expected to strictly ex-
ceed, or fall below the quantile F~'(y ). First, define

K¥(x,8)={0<k<N-—1|&>x},
K(x,8)={0<k<N-1]§& <x}

as the number of times which the supply strictly exceeds, and strictly
falls below the level x € R, respectively.

Lemma 5.4. Let & = 0 and denote by x* € R the corresponding
optimal contract. The following properties hold:

(i) EIC™(x*, &)l = Ny
(i) E[CH(x*, &) = N(1 —y)
(i) |K~(x*, &) + |KT(x*, &) = N, almost surely,

where y := (p + mg)/(my + mg).

Lemma 5.4 reveals an interesting interpretation of the price
ratio y € [0, 1]. Namely, in the absence of energy storage capacity
(i.e., & = 0), the quantile structure of the optimal contract x* =
F~1(y)is such that the fraction of times at which the intermittent
supply is expected to fall short of the contract is precisely equal to

V.

Proof of Lemma 5.4. We first prove part (iii). One can write the

sum as
N—-1

(¢ BN+ ICT (X, 8 = Y A aone(Ei) + Lo ().
k=0

The result follows, as Assumption 2 implies that 1(_o x+)(&) +
1(x* 0)(&k) = 1 almost surely for all k. We now establish part (i)
through the following string of equalities:

N—1
ElC (X", ) =E [Z 1<_oo.x*>(sk)}
k=0

N-1
=> Pl <x1 2 N-F) 2 Ny.
k=0

Here, equality (a) follows from the definition of the time averaged
distribution F, and (b) follows from the fact that x* = F~1(y) (cf.
Lemma 4.1). Part (ii) is an immediate consequence of parts (i) and
(iii), thus completing the proof.

5.2. Level crossings and the marginal value of storage

We now characterize the marginal value of energy storage
capacity at the origin. Theorem 5.5 reveals that the marginal value
of initial investment in energy storage capacity depends on the
statistical variation of supply, as measured through its expected
number of strict contract downcrossings. To the best of our knowl-
edge, Theorem 5.5 is the first explicit characterization of the value
of storage under general distributional assumptions on the in-
termittent supply process—requiring only that said process has
an absolutely continuous joint distribution. The marginal value
characterization (11) holds for general nonstationary processes.
This is a point of practical importance, as the behavior of wind and
solar power processes have been observed to be far from normal
or stationary. Furthermore, it is straightforward to construct a
consistent empirical estimator of the marginal value statistic (11)
from time series data.

Theorem 5.5 (Marginal Value at the Origin). Letr > 0. The marginal
value of energy storage capacity at the origin (b = 0) exists and is
given by

VO (my + mBLAGE, £+ mePlev > X1, (1)
L

where x* = F~!(y)and y := (p + mg)/(my + mg).

See Appendix A.3 for a proof of Theorem 5.5. Theorem 5.5 has
an appealing interpretation. The marginal value of energy storage
capacity at the origin is proportional to the expected number of
energy arbitrage opportunities—or, equivalently, the expected num-
ber of contract downcrossings. As an illustrative example, consider
a system with a small amount of energy capacity, b = ¢ > 0,
and power capacity, r > ¢. Each time the intermittent supply
process crosses the contract from above, one has the opportunity to
inject an e amount of energy into the storage system to decrement
the surplus penalty by B - e. This contract downcrossing event
is also accompanied by the additional opportunity to extract ¢
energy from the storage device and thus decrement the shortfall
penalty by « - . Clearly then, the total realized benefit for small
storage capacity is roughly equal to (« + 8) - ¢ multiplied by the
number of energy arbitrage opportunities. The exact derivation
of the marginal value of storage at the origin is more complex,
however, as one has to additionally account for the sensitivity of
the optimal contract to the storage size.
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Remark 2 (Lossy Storage Systems). Theorem 5.5 can be extended
to accommodate inefficiencies in storage. Consider the following
generalization of our original storage model:

Zky1r = Az — (w)™ — mim(u)” (12)

Nout

for k = 0,...,N — 1. Here, the scalar A € (0, 1] represents a
leakage coefficient; and the scalars n,, € (0, 1] and i, € (0, 1]
represent the conversion efficiency of energy extraction and injec-
tion, respectively. We recover our original storage model under a
choice of parameters A = ni; = N = 1. Working in this more
general setting, it is straightforward to establish a generalization
of the marginal value result in Theorem 5.5 as

8_’;;9) — (Pma =+ mﬁ)E[A(x*’ S)] + mﬂp{ngl - X*}, (13)
b=0

where x* = F~1(y). The parameter p = Anjfou € (0, 1] can be
interpreted as a discount factor reflecting the roundtrip inefficiency
associated with an energy arbitrage opportunity (downcrossing
event). Naturally, the more lossy the storage system, the lower
its marginal value. We omit a formal proof of (13), as it can be
established using arguments that are analogous to those used in
the proof of Theorem 5.5.

We have the following corollary to Theorem 5.5, which is some-
what surprising. In the event that the intermittent supply is de-
scribed by an independent and identically distributed (iid) random
process, the marginal value expression (11) reveals itself to be
insensitive to the choice of probability distribution, and dependent
only on the expected market prices.

Corollary 5.6. Let & be and iid process. Then the marginal value of
energy storage capacity at the origin (b = 0) satisfies

o)
b |_o

where y := (p + mg)/(my + mp).

(N = 1)(me +mp)(1 —y)y + mp(1—y),

Proof of Corollary 5.6. Using the independence assumption, the
expected number of strict x*(0)-level downcrossings can be ex-
pressed as

N-2
E[A(X(0), §)] = Y E[1p,e(x*(0))]
k=0

N-2
= Y Pl& > x*(0), &1 < X(0)}
k=0
N-2
= Y (1= B(x(0)) - Piya(x(0)).
k=0
And, as the marginal distributions are time invariant, we necessar-

ily have equivalence between the time averaged distribution and
each marginal distribution, which yields

N-2

E[A(X*(0),8)] = ) (1—y)y = (N=1)-(1-y)y.

k=0

It similarly follows that P{éy_;y > x*(0)} = 1 — y. Direct
substitution of the previous two identities into Eq. (11) yields the
desired result.

We establish as an intermediary result in the proof of Corol-
lary 5.6 that the expected number of downcrossings satisfies
E[A(x*(0), £)] = (N — 1) - (1 — y)y, under the assumption of an
iid wind power process. This structural dependency on the price
ratio y € (0, 1] admits a simple probabilistic interpretation of the

interplay between the volatility of supply and the value of storage.
Specifically, the expected number of strict downcrossings of the
optimal contract level is equal to the mean of a Binomial random
variable with N — 1 trials and success probability (1 — y)y. That s,
under the assumption of an iid wind power process, the sequence
of contract downcrossings can be interpreted as a sequence of
independent coin flips, each of which has a success probability
equal to (1 — y)y. This probability is maximized for y = 1/2.

6. Conclusion

In this paper we have formulated and solved the problem of
optimal contract sizing for a wind power producer (WPP) partic-
ipating in a conventional two-settlement electricity market, with
co-located energy storage. Specifically, we have shown that the
problem of determining optimal contract offerings for a WPP with
co-located energy storage reduces to a finite-dimensional convex
optimization problem. Our results have the merit of providing
key analytical insights into the trade-offs between a variety of
factors such as energy storage capacity and maximum expected
profit. In particular, we show the marginal value of storage capacity
to be largest for initial investments, and provide an analytical
characterization of this marginal value—which reveals an explicit
dependency of the marginal value of storage on a certain statistical
measure of variability in the underlying wind power process.

As a direction for future research, it would be of value to expand
the framework for analysis developed in this paper to allow for
time-variation in the RT imbalance prices, and the possibility of
statistical correlation between the wind power and price pro-
cesses. We also note that the potential value that a WPP might
derive from energy storage goes well beyond the application of
energy arbitrage considered in this paper. For example, certain
storage technologies possess the capability of providing voltage
support or frequency regulation services—cf. [6] for a compre-
hensive survey of energy storage applications. As a challenging
direction for future research, it would be of value to investigate the
potential economic tradeoffs that might emerge in using storage to
tap these multiple value streams.

Appendix A

A.1. Proof of Theorem 4.3

We establish concavity of J"(x; 6) directly. Fix a storage type
6 € R% and let x;) € R, and xz) € R, be arbitrary forward
contracts.” Let

Xy = M) + (1= 1))

denote a convex combination of said contracts, where A € [0, 1].
We denote by n(’f) € I1(0) the optimal control policy associated
with the contract x.). And, given any admissible policy = e I1(9),
we let {77} and {u} } denote the random state and input processes
induced by the policy .

We establish the desired result by showing:

T 06y 0) = AT O(Xay; 0) + (1= 1)@ (x); 0).

Consider the forward contract X(). And consider a policy ;) in-
* *

T
ducing the input process u;” = A u," + (1 — i) u?,

where the associated state process is recursively determined by

TG JH — ™ for zg® = 0.1t is not difficult to see that

5 The subscripts here are not to be confused with time indices.
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immediate, as the underlying constraints on both the state and
input define convex sets. It follows that

T0(x0:0) = ' (x0: 60),

by optimality of the policy n(’;) € TII(9) for the contract x;).
Expanding the expression to the right of the inequality further, we
have that

J®(x0: 0)

N
:N-pX()L) — E|:

1

I

(o
g (xu), THECH Ek) i|
-1 «
T,
A g (x(l)a uk(l)’ $k>
=0

+ (1—?»)8'( z»uk Sk)i| (14)

=1 O(xq);0) + (1—-21)J" (x X2); 0), (15)
where the inequality (14) follows from convexity of g and the
decomposition & = A&, + (1 — A)&. The final equality (15) follows
from the optimality of the policies ”(1 e I1(0 )and ”(z) € I1(9) for

the contracts x(1) and x(,), respectively. Thus, J7"(x; ) is a concave
function in x over R;.

=

ZN'pX(A) — E

=~

A.2. Proof of Theorem 5.1

Monotonicity is straightforward. Fix a storage type 6 € Ri. Let
€€ Ri. Clearly, I7(6 +¢) 2 I1(0) and hence J*(6 +¢) > J*(6). The
proof of concavity of J*(6) in 6 over Ri is analogous to the proof of
Theorem 4.3.

A.3. Proof of Theorem 5.5

Fix r > 0, and write x*(b) = x*(0) and 7 *(b) = 7*(0) to isolate
their dependence on the energy capacity parameter b, as we have
fixed r. It will be convenient to decompose the optimal expected
profit associated with a storage type 6 as

J(0) = pNe'(b) — E[Q™ Vx'(b), )]
where
N-1
Q" P(x*(b), &) = > g(x*(b) uy V. &)
k=0
denotes the imbalance cost realized under (x*(b), 7*(b), &).

We begin the proof by expressing the (right) part1a1 derivative
of J*(0) with respect to b at the origin as

ajre) ax*(b)
b |, 7" b |,
T¥(&) (4% _ O F(0) (4
3 lim]E|:Q (x*(e), &) — Q" V(x*(0), E)]. (16)
el0 &€

We proceed in establishing existence of the limit through its ex-
plicit characterization. First, define a sequence of functions {f;},
mapping sample paths & € [0, 1]V into R, as

Q™ En(x*(£n), £) — Q™ O(x*(0), &)
f®) = .8 Y nen

En

where {¢,} is a sequence of non-negative real numbers converging
monotonically to zero. We will prove Theorem 5.5 through appli-
cation of the Bounded Convergence Theorem. We first have the

following result establishing almost sure convergence and uniform
boundedness of the sequence {f,,(§)}. See Appendix A.4 for its proof.

Proposition A.1. Let (R, B(R), P) denote the complete probability
space according to which the random variables & = (&g, &1, ..., En—1)
are defined, where B(R) denotes the Borel o -algebra on R. Define the
sequence of functions {f,,} according to

fe) = L en). £) — QT Ox(0). §)

&n

neN

where {e,} is a sequence of non-negative real numbers converging
monotonically to zero. It follows that:

(i) {f2(&)} is a sequence of real-valued random variables converg-
ing almost surely to the real-valued random variable f (&) defined by

9x°(b) (o 1K (x*(0), &)l — B - [KH(x*
b |p_o

— (@ +B)- Ax*(0),8) — B~

The random variables f(&) and {f,(&)} are defined on the common
probability space (R, B(R), P).

(ii) There exists a constant M < oo, such that |f,(§)| < M almost
surely.

f&) = (0, £)))

x* 0)00(§N 1)

It follows from Prop. A.1 and the Bounded Convergence The-
orem that lim,_. E[f,(§)] = E[f(§)]. Note that it suffices for
uniform boundedness to hold almost surely, as the underlying
probability space is complete by assumption. Finally, it follows
from Lemma 5.4 that

E[a - |K™(x*(0), &) — B-|K*(x*(0), §)I] = pN.

The desired result follows.
A.4. Proof of Proposition A.1

Throughout the proof, we restrict our attention to only those
sample paths &, which exhibit strict crossings of the contract x*(0).
Accordingly, define the set of sample paths & that are nowhere
equal tox*(0)as S = (& € [0, 1]V | & # x*(0) V k}. It follows
from Assumption 2 that P{§ € S} = 1.

Proof of Part (i). We first show that the sequence of functions
{fa} converges pointwise to f on S. Fix & € S. We begin by
controlling the behavior of the sequence {f,(&)} for n large enough.
Denote by

I, (§) =
I (&) =

the collection of time indices at which the sample path & exhibits
strict downcrossings and upcrossings of the level x*(¢;), respec-
tively.

It follows from the right continuity of the optimal contract x*(b)
at b = 0 that there exists an integer N1(£) € N such that 7, (§) =
Iﬁl(g)(é) and 7, (§) = I,Ql(g)()‘;‘) foralln > N;(&).It will also be useful

to define the integer

Na(§) = min{n > N1(§) | &n < min{r, |§ —x"(en)| } V k}.

{0 <k <N—=2]|1p,(x"()) =1}, and
{0 <k <N—=2]1ypx(en)) =1}

Essentially, n > N,(&) ensures that any downcrossing (upcrossing)
of the level x*(e,) will result in a full discharge (charge) of the
energy storage in the amount of ,, under the optimal control policy
7*(en). We now derive a closed form expression for the optimal
imbalance cost Q™ ¢n)(x*(ey,), &) for n > Ny(£).

Let n > Ny(&). It is not difficult to see that, under the optimal
control policy 7w*(e,) (cf. Prop. 4.2), the storage system is fully
charged (discharged) only at times immediately following a strict &
upcrossing (downcrossing) of x*(&,,). More precisely, the sequence
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of optimal control inputs can be explicitly expressed as
TR (17)

_ | en Toog(X*(en)), k=0
en - Ty o(x*(en)) — &n - 1p,_,&(x*(&r)), k>0

for k = 0,...,N — 1. Substituting Eq. (17) into our nominal
expression for the imbalance cost
N-1
QI (en), £) = Y g(X"(en), uf ™, &),
k=0
we have
fa(8) = — (o + B)A(X"(en), &) — Bliv(en).c0)(En—1)
e s . X*(en) —x*(0)
+ (aIK (& X" (&)l — BIKT (£, X (En))|> (ns—
n
The pointwise convergence {f;} to f on S follows from the fact that
K*(&, x*(en)) = (£, x*(0)),

for £ € Sand n > N,(&).

We now show that the convergence is almost sure. First notice
that each function f, : RY — R—being a finite linear combination
of indicator functions defined on Borel measurable sets—is Borel
measurable. Since the composition of measurable functions is mea-
surable, it follows that the composition f;(£) is a random variable
on (R, B(R), P). The same is true for the pointwise limit function
f(&). Almost sure convergence is immediate as

p{ lim (&) = &)
>p{ lim f,(5) =f(§)| § € 5| Plg e 5} = 1.

This completes the proof of Part (i).

Proof of Part (ii). We first show uniform boundedness of each
function f, : RY — R on &. By assumption, we have restricted the
image of each random variable & to [0, 1] for all k. As an immediate
consequence, we have that 0 < x*(b) < 1for all b > 0. It follows
from this fact, and the right differentiability of x*(b) at b = 0, that

— { (o)~ ¥(©)

neN} < 0.

Combining this upper bound with the observation that
I~ (&, x*(en))l, IKT(E, x*(en))l, A(E, x*(&y)) are less than or equal
toN foralln € Nand & € S, we have that

[fa(§)l = NB-(ax+B)+N-(a+pB)+p

foralln € Nand & € S. Uniform boundedness holds almost surely
as P{& € S} = 1. This completes the proof of Part (ii).
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