
Microprocessors and Microsystems 67 (2019) 56–70

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Resource optimized quantum architectures for surface code

implementations of magic-state distillation

Adam Holmes a , 1 , ∗, Yongshan Ding
a , 1 , Ali Javadi-Abhari b , Diana Franklin

a ,
Margaret Martonosi b , Frederic T. Chong

a

a Department of Computer Science, University of Chicago, Chicago, IL 60637, United States
b Department of Computer Science, Princeton University, Princeton, NJ 08540, United States

a r t i c l e i n f o

Article history:

Received 20 June 2018

Revised 3 December 2018

Accepted 12 February 2019

Available online 22 February 2019

Keywords:

Quantum computing

ECC

Distributed system

Modeling

a b s t r a c t

Quantum computers capable of solving classically intractable problems are under construction, and

intermediate-scale devices are approaching completion. Current effort s to design large-scale devices re-

quire allocating immense resources to error correction, with the majority dedicated to the production of

high-fidelity ancillary states known as magic-states. Leading techniques focus on dedicating a large, con-

tiguous region of the processor as a single “magic-state distillation factory” responsible for meeting the

magic-state demands of applications.

In this work we design and analyze a set of optimized factory architectural layouts that divide a sin-

gle factory into spatially distributed factories located throughout the processor. We find that distributed

factory architectures minimize the space-time volume overhead imposed by distillation. Additionally, we

find that the number of distributed components in each optimal configuration is sensitive to application

characteristics and underlying physical device error rates. More specifically, we find that the rate at which

T-gates are demanded by an application has a significant impact on the optimal distillation architecture.

We develop an optimization procedure that discovers the optimal number of factory distillation rounds

and number of output magic states per factory, as well as an overall system architecture that interacts

with the factories. This yields between a 10x and 20x resource reduction compared to commonly ac-

cepted single factory designs. Performance is analyzed across representative application classes such as

quantum simulation and quantum chemistry.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Quantum computers promise to provide computational power

required to solve classically intractable problems and have sig-

nificant impacts in materials science, quantum chemistry, cryp-

tography, communication, and many other fields. Recently, much

focus has been placed on constructing and optimizing Noisy

Intermediate-Scale Quantum (NISQ) computers [1] , however over

the long term quantum error correction will be required to ensure

that large quantum programs can execute with high success prob-

ability. Currently, the leading error correction protocol is known as

the surface code [2,3] , which benefits from low overheads in terms

of both fabrication complexity and amount of classical processing

required to perform decoding.

∗ Corresponding author.

E-mail addresses: adholmes@uchicago.edu (A. Holmes), yongshan@uchicago.edu

(Y. Ding).
1 These two authors contributed equally.

A common execution model of machines protected by surface

code error correction requires a process called magic-state distilla-

tion . In order to perform universal computation on a surface code

error corrected machine, special resources called magic states must

be prepared and interacted with qubits on the device. This process

is very space and time intensive, and while much work has been

performed optimizing the resource preparation circuits and proto-

cols to make the distillation process run more efficiently internally

[4–8] , relatively little focus has been placed upon the design of an

architecture that generates and distributes these resources to a full

system.

This study develops a realistic estimate of resource overheads

of, and examines the trade-offs present in, the architecture of a

system that prepares and distributes magic states. In particular, in-

stead of using a single large factory to produce all of the magic

states required for an application, the key idea of our work is

to distribute this demand across several smaller factories that to-

gether produce the desired quantity. We specifically characterize

these types of distributed factory systems by three parameters: the

https://doi.org/10.1016/j.micpro.2019.02.007

0141-9331/© 2019 Elsevier B.V. All rights reserved.

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 57

Fig. 1. Space and time tradeoffs exist for distributions of resource generation facto-

ries within quantum computers. These trends are shown assuming same total fac-

tory output capacity. By explicit overhead analysis, we can discover optimal space-

time volume design points.

total number of magic states that can be produced per cycle, the

number of smaller factories on the machine, and the number of

distillation rounds that are executed by each factory.

The primary trade-off we observe is between the number of

qubits (area/space) and the amount of time (latency) spent in the

system: we can design architectures that use minimal area but im-

pose large latency overheads due to lower magic-state output rate,

or we can occupy larger amounts of area dedicated to resource

production aiming to maximally alleviate application latency. The

two metrics, space and time, are equally important as it is easy

to build small devices with more gates or large devices with few

gates. This concept is closely related to the idea of “Quantum Vol-

ume” [9] , when machine noise and topologies are taken into con-

sideration. To capture the equal importance of both of these met-

rics, we use a space-time product cost model in which the two

metrics simply multiply together. This model has been used else-

where in similar analysis [7,8,10,11] .

Fig. 1 illustrates the opposing trends for space and time when

we increase the magic-state production rate. Our goal is to find the

“sweet spot” on the combined space-time curve, where the overall

resource overhead is at its lowest. In summary, this paper makes

the following contributions:

1. We present precise resource estimates for implementing differ-

ent algorithms with magic-state distillation on a surface code

error corrected machine. We derive the estimates from mod-

eling and simulating the generation and distribution of magic

states to their target qubits in the computation.

2. We quantify the space and time trade-offs of a number of ar-

chitectural configurations for magic-state production, based on

design parameters including the total number of factories, total

number of output states these factories can produce, and the

desired fidelity of the output magic states.

3. We study different architectural designs of magic-state distilla-

tion factory, and present an algorithm that finds the configura-

tion that minimizes the space-time volume overhead.

4. We highlight the nontrivial interactions of factory failure rates

and achievable output state fidelity, and how they affect our

design decisions. We analyze the sensitivity of these optimized

system configurations to fluctuations in underlying input pa-

rameters.

5. We discover that dividing a single factory into multiple smaller

distributed factories can not only reduce overall space-time vol-

ume overhead but also build more resilience into the system

against factory failures and output infidelity.

The rest of the paper is structured as follows. In Section 2 ,

a basic background of quantum computation, error correction,

magic-state distillation and the Bravyi-Haah distillation protocol, as

well as the block-code state-distillation construction are described.

Section 3 describes previous work in this area. Sections 4 and

5 discuss important space and time characteristics of the distilla-

tion procedures that we consider, and derive and highlight scaling

behaviors that impact full system overhead analysis. Section 6 de-

scribes in detail how these characteristics interact, and shows how

these interactions create a design space with locally optimal de-

sign points. Section 7 details the system configurations we model,

describes a novel procedure for discovering the optimal design

points, and discusses the simulation techniques used to validate

our model derivations. Section 8 shows our results and the ex-

plains the impacts of optimizing these designs. Sections 9 and

10 conclude and discuss ideas to be pursued as future work.

2. Background

2.1. Quantum computation

The idea of quantum computation is to use quantum mechan-

ics to manipulate information stored in two-level physical systems

called quantum bits (qubits). In contrast to a bit in a classical ma-

chine, each qubit can occupy two logical states, denoted as |0 and

|1, as well as a linear combination (superposition) of them, which

can be written as | ψ = α| 0 + β| 1 , where α, β are complex coeffi-

cients satisfying | α| 2 + | β| 2 = 1 .

It is sometimes useful to visualize the state of a single qubit

as a vector on the bloch sphere [12,13] , as we can rewrite

the state | ψ in its spherical coordinates as | ψ = cos (θ/ 2) | 0 +

exp (iφ) sin (θ/ 2) | 1 . Any operations (called quantum logic gates)

performed on single qubit can thus be regarded as rotations by

an angle ϕ along some axis ˆ n , denoted as R ̂ n (ϕ) . In this paper

we will focus on some quantum gates that are commonly used

in algorithms, such as the Pauli-X gate (X ≡R x (π)), Pauli-Z gate

(Z ≡R z (π)), Hadamard gate (H ≡R x (π) R y (π /2)), S gate (S ≡R z (π /2)),

and T gate (T ≡R z (π /4)). For multi-qubit operations, we will con-

sider the most common two-qubit gate called controlled-NOT

(CNOT). It has been shown [14] that the above mentioned oper-

ations form a universal gate set, which implies that any quantum

operations can be decomposed as a sequence of the above gates.

As quantum logic gates require extremely precise control over

the states of the qubits during execution, a slight perturbation of

the quantum state or a minor imprecision in the quantum oper-

ation could potentially result in performance loss and, in many

cases, failure to obtain the correct outcomes. In order to main-

tain the advantage that quantum computation offers while bal-

ancing the fragility of quantum states, quantum error correction

codes (QECC) are utilized to procedurally encode and protect quan-

tum states undergoing a computation. One of the most prominent

quantum error correcting codes today is the surface code [2,3] .

2.2. Surface code

In a typical surface code implementation, physical qubits form a

set of two-dimensional rectangular arrays (of logical qubits), each

of which performs a series of operations only with its nearest

neighbors. A logical qubit, under this construction, is comprised of

a tile of physical qubits, and these tiles interact with each other

differently according to different logical operations. These interac-

tions on the grid create the potential for communication-imposed

latency, as routing and logical qubit motion on the lattice must be

accomplished.

58 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

An important parameter of the surface code is the code dis-

tance d . Larger code distance means a larger tile for each logical

qubit. The precise number of physical qubits required in each tile

also depends on the underlying surface code implementation. Most

common implementations assume a logical qubit of distance d re-

quires ∼d 2 physical qubits [3,15] . Code distance also determines

how well we can protect a logial qubit. The logical error rate P L of

a logical qubit decays exponentially in d . More precisely:

P L ∼ d(100 ǫin)
d+1
2 (1)

where ǫ in is the underlying physical error rate of a system [7] .

In particular, this work will focus on two relatively expensive

operations on surface code, namely the logical CNOT gate and the

logical T gate. Our overhead analysis will hold regardless of the

underlying technology, e.g. superconducting or ion-trap implemen-

tations. Earlier work [11] has also performed such analysis with

technology-independent frameworks. Firstly, a logical CNOT be-

tween two qubits can be expensive, because the two logical qubits

can be located far apart on the lattice and long-distance interac-

tion is achieved by the topological defect braiding methodology. Sec-

ondly, a logical T gate can also be costly because it requires some

ancillary state to be procedurally prepared in advance, called the

magic-state distillation .

2.2.1. CNOT braiding

A braid is a path in the surface code lattice, or an area where

the error correction mechanisms have been temporarily disabled

and where no other operations are allowed to use. In other words,

braids are not allowed to cross. A logical qubit can be entangled

with another if the braid pathway encloses both qubits, where en-

closing means extending a pathway from source qubit to target

qubit and then contracting back via a (possibly different) pathway.

It is important to note that these paths can extend up to arbitrary

length in constant time, simply by disabling all area covered by the

path in the same cycle. Furthermore, each path must remain open

for a constant number of surface code cycles to establish fault tol-

erance. More precisely, one CNOT braid takes T cnot = 2 d + 2 cycles

to be performed fault tolerantly [3,11] .

2.2.2. T magic-states

Now T (and S) gates, as described earlier, are necessary for uni-

versal quantum computation, and yet are very costly to imple-

ment on the surface code. For simplicity of analysis, we assume

all S gates will be decomposed into two T gates, because of their

rotation angle relationship. This is potentially an overestimate of

the actual gate requirements, as it is also possible to perform an

S gate via separate distillation of a different type of magic state.

We are also aware of another surface code implementation that al-

lows for S gate to be executed without distillation [16] . These tech-

niques have different architectural implications which are outside

the scope of the analysis of this work.

To execute these gates, an ancillary logical qubit must be first

prepared into a special state, known as the magic state [17] . Once

prepared, this magic-state is to be interacted with the target qubit

as in [3] , via a probabilistic circuit involving the magic state and

between 1 or 3 CNOT braids, each with probability 1/2. The extra 2

CNOTs are required to perform a corrective S gate in the case that

the probabilistic circuit fails, which we assume to be consisting of

2 CNOT braids. This circuit is called the state injection circuit. We

can therefore write the expected latency of a T gate as

E [T t] = T cnot +
1

2
(2 ∗ T cnot) = 4 d + 4 (2)

where we use T t to denote latency of a T gate and T CNOT as latency

of a CNOT gate.

Table 1

T gate statistics in the Ising Model (IM) and Ground State Estimation (GSE)

benchmarks. For our analysis, we consider a 500-qubit spin chain in our IM

simulation, and we simulate a small molecule in GSE comprised of 5 spin or-

bital states. The reason T peak for IM can be more than the number of qubits is

because in this calculation every S gate in the application has been decom-

posed into 2 T gates.

Application n qubits T count L T avg T std T peak

IM 500 9,06 8,34 8 20,589 440 107 778

GSE 5 775,522 546,708 1.419 1.464 12

Since the task of preparing these states is a repetitive process, it

has been proposed that an efficient design would dedicate special-

ized regions of the architecture to their preparation [18,19] . These

magic-state factories are responsible for creating a steady supply of

low-error magic states. The error in each produced state is mini-

mized through a process called distillation [4] , which we will in-

troduce in detail in Section 2.4 .

2.3. T-gates in quantum algorithms

Among the different classes of quantum algorithms, quan-

tum simulation and quantum chemistry applications have drawn

significant attention in recent years due to the promises they

show in transforming our understanding of new and complex

materials, while still potentially remaining tractable in near-term

intermediate-size machines [20–24] .

The benchmark algorithms studied in this work include the

Ground State Estimation (GSE) [23] of the Fe 2 S 2 molecule and the

Ising Model (IM) [25] algorithms. They are representative applica-

tions for the purpose of this study as they present very different

demand characteristics for T gate magic states. A more detailed

description of T gate distributions in these two algorithms can be

found in Section 5.1 . Here we list in Table 1 the two benchmarks

alongside with some of their T gates statistics, namely the number

of qubits (n qubits), total T count (T count), total schedule length (L),

average T gates per time step (T avg), standard deviation of T gates

per time step (T std), and maximum T gates per time step (T peak).

The Ising Model and Ground State Estimation applications, and

others in the same application class, have a predictable struc-

ture. Contemporary methods to simulate quantum mechanical sys-

tems employ Trotter decomposition [26] to digitize the simula-

tion, which involves large numbers of structurally identical Jordan-

Wigner Transformation circuits [27] , each of which involves a se-

ries of CNOT gates (called the “CNOT staircase”) followed by a con-

trolled rotation operation. This arbitrary-angle rotation will often

be decomposed to sequences of H, S, and T operations in a proce-

dure called gate synthesis [28] .

Take as an example finding molecular ground state energies of

the molecule Fe 2 S 2 requires approximately 10 4 Trotter steps for

“sufficient” accuracy, each comprised of 7.4 ×10 6 rotations [29] .

Each of these controlled rotations can be decomposed to sufficient

accuracy using approximately 50 T gates per rotation [30] . All of

this can amount to a total number of T gates of order 10 12 , which

is also the number of prepared magic-states needed. In these types

of applications, magic-state distillation will be responsible for be-

tween 50% − 99% of the resource costs when executing an error-

corrected computation [8] . Because of this, the number of T gates

present in an algorithm is often used as a metric for assessing the

quality of a solution [31,32] .

2.4. Bravyi-Haah distillation protocol

In order to execute T gates fault tolerantly, an interaction is re-

quired between a target logical qubit and an ancillary magic state

qubit. The fidelity of the operation is then tied to the fidelity of the

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 59

magic state qubit itself, which requires that magic states are able

to be reliably produced at high fidelity. This is achieved through

procedures known as distillation protocols.

Distillation protocols are circuits that accept as input a num-

ber of potentially faulty raw magic states (n) and output a smaller

number of higher fidelity magic states (k). The input-output ratio

n → k is generally used to assess the efficiency of a protocol. Be-

cause many distillation protocols are extremely resource-intensive,

a key design issue of quantum architectures is to optimize them.

In this work we restrict our focus to a popular low-overhead

distillation protocol known as the Bravyi-Haah distillation protocol

that has received much attention in the field recently [6,7,33] . Here

we describe in detail the process for preparing and distilling the

magic-states. Bravyi-Haah state distillation circuits [4] take as input

3 k + 8 low-fidelity states, and output k higher fidelity magic-states,

and thus are denoted as the 3 k + 8 → k protocol. Notably, if the

raw input (injected) states are characterized by error rate ǫinject

(which could be different from the physical input error rate ǫin as

in Eq. 1 depending on hardware implementations), the output state

fidelity is improved with this procedure to:

ǫoutput = (1 + 3 k) ǫ2
inject , (3)

or in other words, a second-order suppression of error.

This imposes a tolerance threshold on the underlying input er-

ror rate that can be precisely written as:

ǫthresh ≈
1

3 k + 1
(4)

because when ǫinject ≥ ǫthresh , the output error rate is no better

than where we started before distillation.

Moreover, this process is imperfect. For any given implementa-

tion of this circuitry, the true yield could be lower than expected.

The success probability of the protocol that attempts to output k

high fidelity states is, to the highest order, given by:

P success ≈ 1 − (8 + 3 k) ǫinject . (5)

In performing a rigorous full system overhead analysis, these

effects will become extremely significant.

2.5. Block codes

In certain types of applications, the second-order error suppres-

sion achieved by single round of Bravyi-Haah distillation is not

enough. To overcome this, multiple rounds (also referred to as lev-

els in our work) of the distillation protocol can be concatenated to

obtain higher and higher output state fidelity.

To ensure successful execution of a program, systems must be

able to perform all of the gates in the computation with an ex-

pected value of logical gate error rate less than 1. So the success

probability desired for a specific application (P s) relates to the re-

quired logical error rate per gate P L as follows:

P L ≤
P s

N gates
(6)

where N gates is the number of logical gates in the computation. P L
therefore sets a bound on the fidelity of generated magic states.

Many circuits contain of order 10 10 logical gates or more [29] ,

while physical error rates may scale as poorly as 10 −3 [7] . In these

cases, clearly squaring the input error rate will not achieve the

required logical error rate to execute the program. Instead, we

can recursively apply the Bravyi-Haah circuit ℓ times, with permu-

tations of the intermediate output states in between distillation

rounds. Throughout this work, we use the terminology “round” and

“level” to both refer to a single iteration of the Bravyi-Haah distil-

lation protocol within a factory. Constructing high fidelity states in

this fashion is known as Block Code State Distillation [6] . As shown

in Fig. 2 , realizing Bravyi-Haah block code protocols would require

6 k + 14 total logical qubits [33] .

Fig. 2. The recursive structure of the block code protocol. Each block represents a

module for Bravyi-Haah (3 k + 8) → k protocol, and lines indicate the magic-state

qubits being distilled, and dots indicates the extra 3 k + 6 ancillary qubits used, to-

taling to 6 k + 14 . This figure shows an example of 2-level block code with k = 2 .

So this protocol takes in total (3 k + 8) 2 = 14 2 states, and outputs k 2 = 4 states with

higher fidelity. The qubits (dots) in round 2 are drawn at bigger size, indicating the

larger code distance d required to encode the logical qubits, as they have lower

error rate than in the previous round [33] .

2.5.1. Magic-state factory error and yield scaling

To perform a rigorous full system overhead analysis, it is neces-

sary to quantify the behavior of multi-level block code factories in

terms of output state fidelity and production rate. By construction,

the error rate of the produced magic-states will be squared after

each round. So the final output states error rate after ℓ rounds of

distillation will be ∼ ǫ2 ℓ

inject
.

Since the output states from the previous round will be fed into

the next round, the success probability of a distillation module at

round r depends on the output error rate of the previous round

ǫr−1 , i.e. P
(r)
success = 1 − (3 k + 8) ǫr−1 . The success probability for the

entire ℓ -level factory will be explicitly derived later in Section 4 .

2.5.2. Magic-state factory area scaling

Within any particular round r of an ℓ -round magic-state factory

(where 1 ≤ r ≤ ℓ), the required number of physical qubits defines

the space occupied by the factory during that round. However, we

will often use logical qubit as unit area, since translating to phys-

ical qubits will simply pick up a d 2 r multiplicative factor as shown

in Section 2.2 .

In general, any particular round requires several modules each

comprised of several distillation protocol circuits. A generic n → k

protocol, under a ℓ -level block code construction, will need a total

number of protocols as follows:

N distill =

ℓ
∑

r=1

N r =

ℓ
∑

r=1

k r−1 n ℓ −r (7)

2.5.3. Magic-state factory time overhead

Each round of distillation can be shown to require 11 d r num-

ber of surface code cycles [33] . Suppose d r is the code distance for

round r (which depends upon the input and output error rates),

we arrive at the total time to execute full distillation as:

T distill = 11
ℓ

∑

r=1

d r (8)

A full assessment of the area and time costs under our pro-

posed architecture designs,will be presented in more detail in

Sections 4 and 5 . Specifically, we discuss how factory capacity, dis-

tillation rounds of each factory, and the input physical error rate

all affect the output state yield rate and resulting space and time

overhead.

60 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

Table 2

List of system parameters involved in the analysis and the optimization procedure.

Parameter Descriptions Parameter Descriptions

K Factory total capacity n Number of input states in distillation protocol

X Number of distributed factories k Number of output states in distillation protocol

ℓ Block-code levels of a factory N r Number of protocols at round r under block-code

r Distillation round, 1 ≤ r ≤ ℓ K output Number of effective output magic-states due to yield rate

d Surface code distance T distill Time to execute one full iteration of distillation

P s , P success Target success probability T t Time to deliver magic-state to target qubit

P L Logical fidelity n distill Distillation iterations to support one timestep of a program

ǫ inject Physical error rate of raw magic-state A factory Total area of factories (in physical qubits)

ǫ in/target/r Physical error rate at input, at output, or at round r

3. Related work

A number of prior work has been focused upon designing ef-

ficient magic-state distillation protocols [4,17,34,35] . There are also

some work that aim to concatenate different protocols together to

reduce the overall cost or improve output rate and fidelity [6,36] .

The problem of scheduling and mapping the distillation circuit is

tackled in this work [8] by taking advantages of the internal struc-

tures in the distillation protocol, and by minimizing CNOT-braid

routing congestions. The aim of that work is also to more effi-

ciently implement the distillation process, which is different from

ours, as we instead aim to optimize a full system architecture built

around these protocols and construct factory arrangements that ef-

ficiently deliver output magic states to their intended target qubits.

Prior work on this subject has often assumed either that magic

states will be prepared offline in advance [7,19] , or that the produc-

tion rate is set to keep up with the peak consumption rate in any

given quantum application, and any excess states will be placed

in a buffer [33,37] . This paper operates with the different assump-

tion that magic-state factories will be active during the computa-

tion, and states will not be able to be prepared offline or in ad-

vance. We do this to characterize the performance of the machine

online, and introduce the complexity of resource state distribution

throughout the machine, a problem that has been studied well in

classical computing systems but has received less of a focus in this

domain.

Other works closely related to architectural design optimized

the ancilla production factories that operate in different error cor-

recting codes [38,39] , or analyzed the overhead of CNOT operations

which dominate other classes of applications like quantum cryp-

tography and search optimization [11] . Our work focuses instead

on quantum chemistry and simulation applications that are likely

to represent a large proportion of quantum workloads in both the

near and far term.

4. Factory area overhead

To describe a magic-state distillation factory, we first make

a distinction between a factory cycle and a distillation round or

level . A distillation round refers to one iteration of the distillation

protocol, a subroutine that is repeated ℓ times for a particular

factory. A cycle refers to the total time required for the factory to

operate completely, taking n input states and creating k ℓ output

states. All ℓ distillation rounds are performed during a cycle. For

reference, Table 2 defines all parameters that are used throughout

our analysis.

A magic-state distillation factory architecture can be charac-

terized by three parameters: The total number of magic states

that can be produced per distillation cycle K , number of facto-

ries on the lattice X , and the total number of distillation rounds

that are performed per cycle ℓ . For simplicity, we assume uniform

designs where all K output states are to be divided equally into

X factories, all of which operate with ℓ rounds of distillation. We

now analyze the relationships presented in Section 2 to derive full

factory scaling behaviors with respect to these architectural de-

sign variables. These behaviors interact non-trivially, and lead to

space-time resource consumption functions that show optimal de-

sign points.

4.1. Role of fidelity and yield in area overhead

First we examine the fidelity of the produced magic-states that

is attainable with a given factory configuration, along with ex-

pected number of states that will in fact be made available. Once

again, we use the terminology “round” and “level” to both refer

to a single iteration of the Bravyi-Haah distillation protocol within

a factory. Applying the block code error scaling relationship de-

scribed by Eq. 3 recursively, as the number of total rounds (ℓ) of

a magic-state factory increases, the output error rates attainable

scale double-exponentially with the total number of rounds in a

factory: ℓ . In fact, for a given round r (between 1 and ℓ) of a fac-

tory, the explicit form of the output error rate can be written by

directly applying r copies of Eq. 3 :

ǫr = (1 + 3(K/X)
1
ℓ) 2

r −1 ǫ2 r

inject (9)

where (K / X) denotes the capacity of each factory on a lattice.

The yield rate of a particular factory can be expressed as

a product of the yield rate functions describing each individual

round, as in Eq. 5 . The effective output capacity can be written as

the product of the success probabilities of all ℓ rounds of a factory

as:

K output = K ·
ℓ

∏

r=1

[

(1 − (3(K/X)
1
ℓ + 8) ǫr−1

]

(10)

Here K output refers to the realized number of produced states

after adjusting for yield effects, while K refers to the desired or

specified number of output states. Eq. 10 actually imposes a yield

threshold on the system. For a given K, X , and ℓ , a system will have

a maximum error rate which, if exceeded, will cause the factory

to malfunction and stop producing states reliably. This threshold

can be seen by examining the product term, and noting that yield

must be positive in order to produce any states. The terms in the

sequence of Eq. 10 are decreasing in magnitude, so the threshold is

determined by the leading term which requires: 1 − (3(K/X) 1 /ℓ +

8) ǫinject > 0 , and thus:

ǫthresh <
1

3(K/X) 1 /ℓ + 8
(11)

Fig. 4 c shows the yield rate scaling behavior of single factories

of consisting of ℓ = 1 , 2 , 3 with fixed X = 1 . In order to reliably pro-

duce some fixed amount of states, the yield effects determine the

required number of rounds of distillation that must be performed.

On the other side, any given number of distillation rounds has a

maximum output capacity K for which the expected number of

produced states becomes vanishingly small. Increasing the num-

ber of distillation rounds will increase the maximum supportable

factory capacity.

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 61

4.2. Full area costs

We now use these relationships to derive the true area scal-

ing of these factories. For all ℓ level factories, the area of the first

round exceeds the area required for all other rounds. Using this

as an upper bound, we can write the area required for a specific

round explicitly in terms of physical qubits as:

A r = X · k r−1 (3 k + 8) ℓ −r (6 k + 14) · d 2 r (12)

≤ X (3 k + 8) ℓ −1 (6 k + 14) · d 2 1 (13)

Where k ≡ (K/X)
1
ℓ . The inequality in the last line arises due to the

fact that the first round always uses the largest area by block-code

construction, i.e. A r ≤A 1 for all 1 ≤ r ≤ ℓ . Here we have used sev-

eral relationships, namely that the total number of protocols and

modules scales as in Eq. 7 , a single protocol requires 6 k + 14 logi-

cal qubits [33] , and the area of a single logical surface code qubit

scales as d 2 [15] .

Although in an aggressively optimized factory design then, one

could conceivably save space within the distillation procedure by

utilizing the space difference between successive rounds of distil-

lation for other computation, we will assume in this work that this

cannot be done, and instead the first round area of any given fac-

tory defines the area required by that factory over the length of its

entire operation, and locks out the region for distillation only. As a

result, Fig. 5 a describes the scaling of factory area both by increas-

ing output capacity and increasing the total number of factories.

5. Factory latency overhead

This section presents a systematic study of the time overhead

of realizing magic-state distillation protocols. First, we will exam-

ine the characteristics of the T gate demand in our benchmark

programs, by introducing the concept of the T distribution. Next,

we will study the latency overhead caused by delivering magic

states to wherever T gates are demanded by looking at the con-

tention and congestion factors. Finally, we will arrive at an analyt-

ical model for the overall distillation latency integrating the infor-

mation from the program distribution.

5.1. Program distributions

While the majority of the prior works on this subject have been

abstracting algorithm behavior into a single number, the total T

gate count, we argue that the distribution of T gate throughout

a algorithm has a significant impact on the performance of the

magic-state factory. For example, a program with bursty T distri-

bution, where a large number of T gates are scheduled in a few

time steps, puts significant pressure on the factory’s capability of

producing a large amount of high fidelity magic states quickly.

In order to quantify this behavior, we choose two quantum

chemistry algorithms that represent the two extremes of T gate

parallelism. On one hand, the Ground State Estimation algorithm is

an application with very low T gate parallelism. An algorithm at-

tempting to find the ground state energy of a molecule of size m ,

this application can be characterized by a series of rotations on

single qubits [23] . Ising model , on the other hand, is a highly par-

allel application demanding T gates at a much higher rate. This

application simulates the interaction of an Ising spin chain, and

therefore requires many parallelized operations on single qubits,

along with nearest neighbor qubit interactions [25] . To capture

application characteristics, we use the ScaffCC compiler toolchain

that supports application synthesis from high-level quantum algo-

rithm to physical qubit layouts and circuits [40] .

The majority of the time steps in Ising Model algorithm has a

large number of parallel T gates with a mean T load of 440, where

as Ground State Estimation has no more than 12 T gates at each

time steps. As opposed to just using the single T gate count to

characterize algorithms, we will from now on use the T load dis-

tribution.

5.2. T-gate contention and congestion

In order to fully assess the space-time volume overhead of the

system, we require a low level description of how the produced

magic-states are being consumed by the program.

As discussed in the Section 2 , a T gate requires braiding be-

tween the magic-state qubit in the factory and the target qubit that

the T gate operates on. Now suppose our factory is able to produce

K high-fidelity magic states per distillation cycle, and at some time

step the program requests for t T gates. If we demand more than

the factory could offer at once (i.e. t > K), then naturally only K

of those requests can be served, while the others would have to

wait for at least another distillation cycle. So we will say that the

network has contention when the demand exceeds the supply ca-

pacity. By contrast, we define network congestion to capture the

latency introduced by the fact the some braids may fail to route

from the target to the factory on the 2D surface code layout, due

to high braiding traffic.

To estimate the overhead of network congestion, we will per-

form an average case analysis without committing to a particular

routing algorithm. Ideally, in the contention free limit where the

number of requests t is less than K , all requests could be sched-

uled and executed in parallel. However, often times the requests

will congest due to limitations of routing algorithms. We define a

congestion factor C g that represents the total latency required to ex-

ecute all of the T gate requests at any given time.

We model congestion as a factor that scales proportional to the

number of t requests made at any given time, within a particu-

lar region serviced by a factory. This assumes a general topology

in which a factory is placed in the center of a region, and all of

the surrounding data qubits are served by this factory alone. Nat-

urally, the center of the region is quite dense with T gate request

routes. In general, for a reasonable routing algorithm, the number

of routing options increases as area available increases. However,

because all of the routes have their destination in the center of the

region, increasing area of the region has no such effect. In fact, the

distance of a T request source from the factory increases the like-

lihood of congestion from a simple probabilistic argument. There

may be other T requests blocking available routes, and the num-

ber of these possible requests that block pathways increases as the

distance between a request and the factory increases. The combi-

nation of these effects interacts with the complexity of a routing

algorithm, and results in a scaling relationship proportional to both

the T request density t and the maximum distance of any T request

within any of these regions:

C g ∼ c
√
t (14)

for some constant c , depending upon the routing algorithm.

We validated this congestion model in simulation using simu-

lation tools and compiler toolchains of [11] , and find that they do

indeed agree. Section 7 discusses this in greater detail.

5.3. Resolving T-gate requests

For any given program, characterized as a distribution D of the

T load, we denote D [t] the number of timesteps in the program

that t parallel T gates are to be executed. Then the number of iter-

ations that the factory needs to resolve the t requests can be com-

puted based on the following latency analysis. In particular, in or-

der to maximize the utilization of the factory, we would execute as

62 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

many outstanding T gate requests as possible in parallel. When the

number of requests t exceeds the factory yield K , we will need to

stall the surpassed amount of requests. We denote s = ⌊ t/K⌋ the
number of fully-utilized iterations. So, we are serving at full ca-

pacity for s number of times, and at each time a congestion fac-

tor is being multiplied, as discussed in Section 5.2 . It follows that

the first sK requests are completed in s
√
K number of distillation

cycles. And finally the rest (t − sK) outstanding requests are then

being executed in
√
t − sK cycles. Notice that the time it takes to

execute the T gate is typically shorter than the factory distilla-

tion cycle time. So under the buffer assum ption made earlier, we

can stage the execution of requests within a distillation cycle such

that no data dependencies are violated, as long as there are magic-

states available in the factory. The time required to produce some

constant number k of states is T distill , while the time required to

deliver k states in parallel is T t
√
k due to network congestion. So

the number of distillation cycles needed to supply a single cycle

of k T gate requests is given by the ratio T t
√
k /T distill . Substituting

k = K/X and k = (t − sK) /X as described earlier, we can calculate

the number of distillation iterations we need to serve t T gates in

a particular timestep, as:

n distill =
T t

T distill
·
(

s ·

√

K

X
+

√

t − sK

X

)

(15)

where K is again the yield of each iteration from Eq. 10 .

Putting it together, we obtain our final time overhead of an ap-

plication:

T total = T distill ·
(

T peak
∑

t=0

n distill · D [t]

)

(16)

where T peak is the maximum number of parallel T gates scheduled

at one timestep. Notice that this is independent of T distill , as the

distillation cycle time has been captured by the ratio T t / T distill . The

scaling of this function is shown in Fig. 5 b, and is compared in

Fig. 6 across different applications.

6. Area and latency trade-offs

In this section, we will discuss some of the motivations of our

proposed algorithm for optimizing space-time resource overhead,

based on the area and latency analysis that we built up in the pre-

vious sections.

The Bravyi-Haah protocol shows an area expansion when a sin-

gle factory is “divided” into many smaller factories, that is, the

total area of x number of factories each with some capacity k is

larger than the area of a factory with capacity x · k . Fig. 5 a illus-
trates this trend, arising from the original area law Eq. 12 .

Why do we want a distributed factory architecture? Although

it might first seem undesirable to divide a single factory into many

factories due to the area expansion, there are many advantages

when doing so. One such advantage is that smaller factory can pro-

duce states with higher fidelity. So, for a fixed output capacity K ,

incrementing the number of factories used to produce in total that

K allows for all of those K states to have higher fidelity. The out-

put error rate scales inversely with the number of factories on the

lattice for a fixed output capacity K as seen in Eq. 9 .

This provides us with the unique ability to actually manipulate

the underlying physical error rate threshold . In particular, substitu-

tion of K / X for K in all of the previous equations shows that the

yield threshold now also has inverse dependence upon the num-

ber of factories used.

As Fig. 4 b shows, for a fixed output capacity and block code

level ℓ , increasing the number of factories on the lattice can greatly

increase the tolerable physical error rate under which the factory

architecture can operate.

Fig. 3. The concept of a unified versus distributed factory architecture, embedding

factories (green blocks) within computational surface code region (blue circles). (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

With this knowledge, we are immediately presented with ar-

chitectural tradeoffs. Using the representation of programs as dis-

tributions of T gate requests, any application can be characterized

by a T peak , again defined as the highest number of parallel T gate

requests in any timestep of an application. For a “surplus” configu-

ration, a system may set the factory output rate K = T peak , so as to

never incur any latency during the program execution. However,

as the threshold in Eq. 4 indicates, this sets an upper bound on

the tolerable input error rate ǫin . With a distributed factory archi-

tecture, this provides a system parameter enabling systems to be

designed that will be able to tolerate higher error rates, and still

achieve the same output capacity K , at the expense of area as seen

in the area law relationship from Fig. 5 a. Conversely, systems that

are constructed with great knowledge of low underlying physical

error rates may be able to reduce overall area of a surplus factory

configuration by reducing the number of individual factories to a

certain point. These are the tradeoffs in the design space that this

work explores, and in fact we can find for representative bench-

marks, configurations that are lower in capacity that can save or-

ders of magnitude in space-time overhead overall.

7. Evaluation methodology

7.1. System configuration

Here we lay out all of the assumptions made about the under-

lying systems that we are studying.

First, we assume that the factories will be operated continu-

ously. This means that each T distill , the factories will produce an-

other K output states. This abstracts away the time needed to de-

liver these states to their destinations, which would have to be

performed in a real system before the next distillation iteration

begins. In such real systems, we imagine an architecture that sup-

ports a limited, fixed size buffer region so that the subsequent dis-

tillation cycle will not overwrite the previously completed states.

However, this is a small constant offset in time that applies to all

studied designs symmetrically, so it is omitted. Because the facto-

ries are always online and producing magic states, the overall time

overhead is then equal to the number of distillation cycles required

to execute all the scheduled T gate requests, multiplied by the time

taken to perform a distillation iteration T distill from Eq. 8 .

Next, we assume three different levels of uniformity in these

designs: all distributed factories are laid out uniformly on the sur-

face code lattice as in Fig. 3 b (i.e. they are an equal distance

apart), all factories in a distributed architecture are identical (i.e.

they all operate with the same parameters such as K and ℓ), and

within each factory each block code round is identical (i.e. they

are composed of identical n → k protocols). Note that Campbell et.

al. in [33] allows varying k within a single factory, across different

rounds.

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 63

Fig. 4. (a) Higher fidelity output states are achievable with increasing number of factories at a fixed output capacity. (b) Increasing the number of factories in an architecture

allows for higher tolerance of input physical error rates. (c) Increasing factory output capacity puts pressure on the factory yield rate, and increasing the number of levels

pushes the yield dropoff point. (d) Maximum area to support multi-level factory is required of the lowest level of the factory, all higher levels require less area support.

Fig. 5. (a) Area required to implement a 2-level factory of varying numbers of factories X . As the distribution intensity increases, the total area increases significantly faster

as factory output is scaled up. Notice that some regions are not feasible due to the constraint K / X ≤1. (b) Latency as it scales with factory output capacity. For factories of

a fixed capacity, increasing the number of factories on the lattice reduces latency overall and speeds up application execution time, thanks to reductions in contention and

congestion. The flat tails at high K values are due to the fact that the capacity has exceeded the amount that a application ever demanded. (c) Yield as it scales with factory

output capacity and number of factories. For a fixed capacity K 0 , increasing the number of factories can significantly increase the success probability and yield rate of the

factory.

In performing our evaluations we consider four different sys-

tem configurations: surplus architectures that minimize applica-

tion latency by setting the magic-state output capacity to the

peak T gate request count in an application, singlet architectures

that minimize required space for the factory by producing only

a single state per distillation cycle, optimized-unified architectures

that use one central factory with an optimized choice of output

capacity K and number of distillation rounds ℓ , and optimized-

distributed architectures that choose an optimum output capacity

K distributed into an optimum number X of factories, each uti-

lizing ℓ distillation rounds. These architectures are summarized in

Table 3 .

7.2. Optimization algorithm

As keen readers may have already observed from Fig. 3 and

Fig. 4 d, for fixed output capacity K , it costs us both in time latency

and in factory footprint to implement a high ℓ block-code factory.

The only reason we design for high ℓ is to achieve the desired tar-

get error rate. This relation is best captured in the bottom half of

64 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

Fig. 6. (a)-(b) Total number of surface code cycles required by Ising Model and Ground State Estimation applications. Both figures are plotted for three different factory

block-code levels, i.e. X = 1 and L = 1 , 2 , and 3 .

Table 3

List of architecture configurations explored in this work.

Configuration Description

Surplus One central factory that can produce enough

states to always meet the demand at each time-

step of the program as in [33,37,39] .

Singlet One central factory that uses minimal

area and produces only one state per cycle.

Optimized-Unified One central factory that outputs an optimized

number of output states per distillation cycle

Optimized-Distributed A optimized set of factories that together

output an optimized number of output states

Fig. 7 , where the L = 1 factory is not feasible for K ≥1 since its out-

put error rate is higher than the target error rate, while the L = 2

factory is feasible for K ∈ [1, 50], and the L = 3 factory is feasible

for the entire plotted range.

We combine all of the details of the explicit overhead es-

timation derived above in order to find optimal design points

in the system configuration space. To do this, we must ensure

that designs are capable of producing the target logical error

rate for an application. Additionally, there exists a set of con-

straints C that K, X ∈ Z + have to satisfy: (i) 1 ≤X ≤K ; (ii) K/X ≤
(1 − 8 ǫinject) / (3 ǫinject) , due the Bravyi-Haah protocol error thresh-
olds. With the feasible space mapped out, standard nonlinear opti-

mization techniques are employed to explore the space and select

the space-time optimal design point.

With these constraints in mind, we explore the space by first

selecting the lowest ℓ possible. As the area law and full volume

scaling trends of the previous sections indicate, if there are any

feasible design points with ℓ = ℓ 0 , then any feasible design points

for systems with ℓ i > ℓ 0 will be strictly greater in overall volume.

This is somewhat intuitive, as concatenation of block code proto-

cols is very costly.

With the lowest ℓ selected, we check to see if there exists any

feasible design points for this ℓ by checking for solutions to the

equation:

(1 + 3 k
1
ℓ) 2

ℓ −1 ǫ2 ℓ

inject ≤
P s

N gates
(17)

If the K that solves this equation is greater than or equal to 1, then

there does exist feasible design space along this ℓ , and the algo-

rithm continues. Otherwise, ℓ is incremented.

Next, nonlinear optimization techniques are used to search

within the mapped feasible space for optimal design points in both

K and X . This procedure is described in pseudocode by Algorithm 1 .

Fig. 7. Space-time volume minimization under error threshold constraints imposed

by target error rate for each block code level. An application will set a target error

rate (black) that the factory must be able to achieve in output state fidelity. On

the lower plot, levels 2 and 3 are the only levels available that can satisfy this. In

the upper plot, we find that the lowest volume in the feasible area is located on

the level 2 factory feasibility line. Recall the volume shapes are explained earlier

in Section 5 . Here the tails after K ≈800 show an increase in volume, as the added

capacity grows the factory areas while maintaining constant latency.

7.3. Simulation and validation

This section explores the validity of our models through empir-

ical evaluation of the space-time resources. To do this, we improve

the surface code simulation tool from [11] to accurately assess the

latency and qubit cost of fully error-corrected applications with

various magic-state distillation factory configurations. Specifically,

we added support for arbitrary factory layouts, which manifests as

black boxed regions dedicated to factories that cannot be routed

through during computation, combined with sets of locations of

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 65

Algorithm 1 Space-time optimization procedure.

Input: P s , N gates , ǫinject , distribution D and constraints C

Output: K, X

1: procedure Optimize

2: K ← 1 , X ← 1 , ℓ max = 5

3: ǫtarget ← P s /N gates

4: for ℓ ∈ [1 , ℓ max] do

5: k ℓ ← (K/X) 1 /ℓ

6: n ℓ ← 3 k ℓ + 8

7: for r ∈ { 1 , · · · ℓ } do
8: if r == ℓ then ǫr ← ǫtarget
9: else ǫr ← (1 + 3 k ℓ)

2 r −1 ǫ2 r

inject

10: end if

11: d r ← Solve { d r · (100 ǫin) (d r +1) / 2 = ǫr , d r }
12: end for

13: R ≡ K/X ← Solve { ǫℓ = ǫtarget , R }
14: if R ≥ 1 then

15: K output ← K ·
∏ ℓ

r=1

[

(1 − n ℓ · ǫinject) ǫr
]

16: s ← ⌊ t/K output ⌋
17: T t ← 4 d ℓ + 4

18: T distill ← 11
∑ ℓ

r=1 d r

19: n distill ←
T t

T distill
·
(

s ·
√

K
X +

√
t−sK
X

)

20: T total ← T distill

(

∑ T peak
t=0 n distill

)

· D [t]

21: A factories ← X · n ℓ −1
l

· (6 k ℓ + 14) · d 2 1
22: (K, X) ← arg min (K , X): C A factories · T total
23: else

24: ℓ ← ℓ + 1

25: end if

26: end for

27: return K, X

28: end procedure

produced magic states. The result is a cycle precise simulator that

accurately performs production and consumption of magic states,

including all necessary routing.

One implementation detail that is supported is the ability to dy-

namically reallocate specific magic-state assignments during run-

time. Statically, each T gate operation is prespecified with a partic-

ular magic-state resource, located along the outer edge of a factory.

During runtime, this can introduce unnecessary contention, as two

nearby logical qubits can potentially request the same magic state.

This is avoided by implementing online magic-state resource shuf-

fling, so that if the particular state that was requested is unavail-

able, the system selects the next nearest state that is available. If

no such states exist, this T gate is stalled until the next distillation

cycle is completed.

Fig. 8 shows simulation results superimposed on top of those

driven analytically. We can see that the model shows the same

trend as the simulation behavior (blue line), and thus we will be

able to show relative tradeoffs between capacity and latency. For

simplicity the validation is performed on single unified factory lo-

cated at the center of the surface code lattice. The results extend

well to multiple factories, because in the distributed case, each fac-

tory will be responsible for magic-state requests in a sub-region of

the lattice.

We can validate this by simulating optimal operating points in

the space-time trade-off spectrum and comparing them to our ex-

pectation from the model. Using simulation data, we re-plot our

idealized tradeoff in Fig. 1 for the Ising Model Application and

show the results in Fig. 9 . We see that as factory capacities in-

crease, the applications time improves at the expense of its qubit

numbers. In this figure, the space-time volume is sketched in

Fig. 8. Model validation by simulation. The simulation data (blue line) lies between

the upper bound model prediction that overestimates congestion(orange line), and

the congestion-free lower bound (green line). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 9. Space-time tradeoff observed empirically in simulation for varying factory

capacities. A space-time volume (green line) can be chosen at K ≈40, which is an

optimal, minimized value on this curve. It corresponds here to a low-qubit, high

latency configuration. Notice that another configuration at K ≈300) could be chosen,

corresponding to a high-qubit, low-latency configuration. In this case, the former

of these choices is more resource optimized, as the space-time cost is lower. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

green, and has two near-optimal points: one with relatively few

qubits but high latency, and vice versa. The worst performance oc-

curs in the middle of this spectrum, when transition from level 1

to level 2 distillation needs to occur (causing a sudden jump in

qubits, but not much latency improvement).

8. Results

In this section we present the resource requirements of vari-

ous magic-state factory architectures, and show that by consider-

ing the scaling behaviors that we have highlighted and searching

the design space with our optimization algorithm, we can discover

system configurations that save orders of magnitude of quantum

volume.

We first compare the overheads of the surplus and singlet ar-

chitectures that represent baselines against which we compare our

optimized architectures. We then compare the surplus architec-

ture with the optimized-distributed design found with our opti-

mization algorithm. We look at two representative benchmarks for

the quantum chemistry and quantum simulation fields, the Ising

Model [25] and Ground State Estimation [23] algorithms, as well

as how performance of these architectures changes as the bench-

66 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

Fig. 10. Comparing surplus and singlet designs. There are regions where each out-

performs the other, showing great sensitivity to the underlying physical error rate

and the corresponding required ℓ . Recall that the step-like shape is due to level

transitions explained in Section 7.2 .

marks scale up in size. Next, we detail the space and time trade-off

that is made in our resource optimized design choices, and show

that the latency induced by a design is a more dominant factor

in these applications. We then present a full design space com-

parison, showing the performance of the surplus design against

the singlet design, as well as the optimized-unified factory design,

all compared to the performance of optimized-distributed design.

Lastly, we analyze the sensitivity of these designs to fluctuations

in the underlying physical error rates, and show that building out

a distributed factory design adds robustness that makes the archi-

tecture perform well for a wider range of input parameters.

8.1. Comparing surplus and singlet architectures

We begin with Fig. 10 by comparing two architectures that aim

solely to minimize application latency or required space. This com-

parison represents the range between two ends of the design space

spectrum for single factory architectures, and each shows a partic-

ular error rate range over which it performs more optimally. Ini-

tially, at the highest input error rate, the space optimal singlet de-

sign requires more resources than the time optimal surplus design,

as the application suffers from excessive latency from magic-state

factory access time. Note the inflection points at 10 −3 . 5 and 10 −4 . 5

input error rates. At these points, the singlet factory is able to re-

duce the number of rounds of distillation it must perform, as in-

put error rates are sufficiently low. Over this region, the reduction

in area compensates the expansion in computation time, and the

design outperforms the much larger surplus factory configuration.

At 10 −4 . 5 , the surplus factory is able to operate with fewer distilla-

tion rounds as well, enabling this configuration to outperform the

singlet design.

This behavior is surprising, as it indicates that with respect to

a high-parallelism application, there are input error rate regions

where intuitively conservative, space minimizing designs are able

to outperform what seem like aggressively optimized designs. We

see this because we are comparing space and time simultaneously,

which allows us to see that the trade-off is asymmetric and these

factors interact non-trivially.

8.2. Optimized design performance

We now move to comparing the surplus design against the

optimized-distributed design discovered by our optimization algo-

Fig. 11. (a)-(b) Resource reductions of optimized-distributed designs over surplus designs for both Ising Model and Ground State Estimation. While Ising Model is intrinsically

more parallel which leads to high choices of output capacity, both applications still show between a 12x and 16x reduction in overall space-time volume. (c)-(d) Ising Model

with varying problem sizes, comparing time optimal factories against fully space-time optimized configurations. We see that the trend of between 15x and 20x total volume

reduction extends to larger molecular simulations.

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 67

Fig. 12. Space-time volume reduces by moving from an optimized-unified factory to an optimized-distributed factory, as the designs trade space for time. Magic-state access

latency is a dominating effect in these applications, as can be seen by the large capacity values chosen by the optimized factory configuration.

rithm, that is allowed to subdivide factories across the machine.

Fig. 11 a and b depict the detailed results of our optimization proce-

dure on the Ising Model and Ground State Estimation applications,

respectively. Ising model is intrinsically very parallel, which leads

to a higher optimal capacity choice for the optimized-distributed

factory. Note however that it is able to choose a distribution level

that saves approximately 15x in space-time volume. Ground State

Estimation is very serial, yet for sufficiently low error rates the

optimized-distributed design is able to incorporate distribution of

factories into the lattice to lower the required block code concate-

nation level ℓ , resulting in a 12x reduction in volume across these

points.

The reason that the distributed factory design is able to out-

perform the surplus design is that the feasibility regions of the

two designs differ. Because the distributed factory utilizes many

small factories on the machine it can achieve a higher output state

fidelity than a single factory design, which enables it to operate

with a smaller number of distillation rounds. The optimization al-

gorithm respects this characteristic, which is why it searches iter-

atively from the lowest number of distillation rounds possible, one

by one until it discovers a feasible factory configuration.

8.2.1. Optimized design performance scaling

Fig. 11 c and d detail these trends as larger and larger quantum

simulation applications are executed. For extremely large simula-

tions, we find that the volume reductions that optimizing a factory

design yields become even more pronounced, resulting in between

a 15x and 18x full resource reduction. These designs also show

sensitivity to physical error rates that require designs to change

block code distillation level.

8.3. Distributed factory characteristics

As Fig. 12 a describes, an optimized-distributed set of factories is

able to save between 1.2x and 4x in total space-time volume over

the optimized-unified factory. Large volume jumps occur primarily

between 10 −3 . 5 and 10 −3 . 4 physical error rate, and this again cor-

responds to a requirement by this application to increment to a

higher block code level ℓ , which happens for both the unified and

distributed factory schemes.

These optimized designs trade space for time, as Fig. 12 a and b

indicate, and the net effect is an overall volume reduction. This

is indicative that for these highly parallel quantum chemistry ap-

plications, the magic-state factory access latency is a much more

dominating effect than the number of physical qubits required to

run these factories.

Fig. 12 c depicts the output capacities chosen by the optimiza-

tion procedure, and how they differ when the system is unified

or distributed. Notably, at both ends of the input error rate spec-

trum we find that both factory architectures choose the same out-

Fig. 13. Factory architectures and their sensitivities to fluctuations in underlying

physical error rates.

put capacity, as in the high error rate case this is driven by high ℓ

requirement, while in the low error rate limit both factory archi-

tectures can afford to be very large and not suffer from any yield

penalties. However, through the center of the error rate spectrum

the unified factory design must lower the chosen output capacity,

as supporting higher capacity would require a very expensive in-

crease in the number of distillation rounds.

8.4. Full design space comparison

Fig. 14 depicts the full space-time volume required by different

factory architectures across the design space. Shown are the four

main configurations: a surplus factory configured with output ca-

pacity K = T peak , a singlet factory with K = 1 , an optimized-unified

factory, and an optimized-distributed factory.

Distinct volume phases are evident visually on the graph, due

to the different feasibility regions of the architectures. Sweeping

from high error rates to low error rates, large volume jumps occur

as observed before, for specific configurations when that config-

uration can operate with fewer rounds of distillation in order to

convert the input error rate to the target output error rate. Notice

that this jump occurs earliest for the singlet, optimized-unified,

and optimized-distributed designs, at 10 −3 . 5 input error rate. All

of these designs show an inflection point here, where the config-

urations can achieve the target output error rate with a smaller

number of block code distillation levels. This is not true of the sur-

plus factory, which in fact has the largest output capacity of the

set. Because the output capacity is so high, the lowest achievable

output error rate is much higher than that of the other designs.

This forces the block code level to remain high until the input er-

ror rate becomes sufficiently low, which occurs at 10 −4 . 5 .

68 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

Fig. 14. Full volume comparison across distillation factory architectures.

8.5. Sensitivity analysis

Now we turn to analyzing how these designs perform if the en-

vironment in which they were designed changes. Supposing that

a design choice has been made specifying the desired factory ca-

pacity K , number of factories X , and block code distillation level

ℓ , different types of architectures show varying sensitivity to fluc-

tuations in the underlying design points around which the ar-

chitectures were constructed. For example, Fig. 13 details an in-

stance of this occurrence. The figure shows the surplus, singlet, and

optimized-distributed factory designs, in this case setting K ∼600

and X ∼200 for the distributed architecture. All of these factories

were designed under the assumption that the physical machine

will operate with 10 −5 error rate.

We see that while these applications perform similarly over the

range from 10 −5 to 10 −4 , just after this point the surplus factory

encounters a steep volume expansion due to the yield threshold

Eq. 11 . For this design the threshold of tolerable physical error

rates is quite high, significantly higher than that of the other de-

signs. Because of this, it can tolerate a smaller range of fluctuation

in the underlying error rate before it ceases to execute algorithms

correctly.

9. Conclusion

We present methods for designing magic-state distillation fac-

tory architectures that are optimized to execute applications that

present with a specific parallelism distribution. By considering ap-

plications with different levels of parallelism, we design architec-

tures to take advantage of these characteristics and execute the ap-

plication with minimal space and execution time overhead.

By carefully analyzing the interaction between various magic-

state factory characteristics, we find that choosing the most

resource optimized magic-state distribution architecture is a

complex procedure. We derive and present these trade offs, and

compare the architectures that have been commonly described in

literature. These comparisons show a surprising picture: namely

that even a modest factory capable of producing just a single

resource state per distillation cycle can outperform the more

commonly described surplus factory in particular input error

rate regimes. We also propose a method of distributing the total

number of magic states to be produced into several smaller fac-

tories uniformly distributed on a machine. In doing this, we see

that these types of architectures are capable of achieving higher

output fidelities of their produced states with added resilience

against fluctuations of the underlying error rate, when compared

to unified architectures composed of a single factory. While these

designs are tailored to specific applications, we conjecture that

distributed systems would in fact be more flexible in their abilities

to execute applications with different amounts of parallelism.

Intrinsic to their design is the ability to optionally compile smaller

applications to various subunits of the machine. Because of this,

these designs can be used to support a much wider range of

application types than those comprised of a single factory.

These systems also show that the trade off in space and time

is asymmetric. In quantum chemistry and simulation applications,

we notice that the resource optimized designs can use upwards of

2 orders of magnitude more physical qubits to be implemented,

while they end up saving over 3 orders of magnitude in time.

Magic-state access time, or latency induced specifically by delays

due to stalling as magic states are produced, we find is a dom-

inating effect in the execution of these applications. In order to

mitigate these effects in a resource-aware fashion, designing a dis-

tributed system of several factories allows for efficient partitioning

of the magic-state demand across the machine, at the cost of phys-

ical area.

These conclusions can have physical impacts on near-term de-

signs as well. Specifically, the construction of a factory architec-

ture can imply the location of physical control signals on an un-

derlying device. What we are showing then is the effect of several

theoretical long-term designs, and the conclusion that distributed

sets of factories outperform other designs should help motivate

device fabrication teams as they decide which physical locations

should be occupied by rotation generating control signals. As a

general principle, long term architectural design and analysis can

help guide the study and development of near term devices, which

ultimately will help hasten the onset of the fault-tolerant era [1] .

10. Future work

There are a number of immediate extensions to this study:

• Comparing distributed factory topologies. Choosing an optimal

layout for a distributed factory design is potentially very dif-

ficult, and requires an ability to estimate the overheads as-

sociated with different layouts. Using architectural simulation

tools and adapted network simulation mechanisms, we can

foresee evaluation of two new architectures: peripheral and

asymmetric-mesh placement. Peripheral placement refers to

factories surrounding a central computational region, while

A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70 69

asymmetric-mesh placement refers to embedding the factories

throughout the machine itself.

• Embedding data qubits within magic-state factories. While the de-

signs presented here assume that magic-state factory regions

are to be considered black boxes that are not to be occupied

by data qubits, because of their massive size requirements we

imagine a system that embeds the relatively smaller number of

data qubits within the factories themselves. A study of the ef-

fect of various embedding techniques on factory cycle latency

could determine the efficiency of such a design.

• Advanced factory pipeline hierarchy. We envision a concatena-

tion of clusters of the magic-state factories, targeting continu-

ous outputs in time, and hence reduction in contention caused

by the distillation latency. In particular, each sub-region in

the mesh contains multiple small, identical factories that were

turned on asynchronously. So at each time step, there will al-

ways be a factory that completes a distillation cycle, and thus

serving magic state continuously.

• Generalization to other distillation protocols. Although the Bravyi-

Haah protocol studied in this paper is among the best known

protocols, little analysis has been done on other techniques dis-

covered recently [5] .

• Optimizing the internal mapping and scheduling of magic-state

factories. This work has modeled factories as black-boxed re-

gions that continuously produce resources. A realistic imple-

mentation of those factories that optimize for internal conges-

tion would significantly reduce factory overhead, in conjunction

with designs proposed in this work that optimize for external

congestion. This was studied in [8] .

• Flexibility of distributed magic-state architectures. While these

designs are tailored to applications of a certain parallelism dis-

tribution, a study could analyze designs that balance domain

specific optimization against general application compatibility.

Acknowledgements

This work was funded in part by National Science Foundation

Expeditions in Computing grant 1730449 , Los Alamos National Lab-

oratory and the U.S. Department of Defense under subcontract

431682 , by NSF PHY grant 16 60 686, and by a research gift from

Intel Corporation.

References

[1] J. Preskill, Quantum computing in the nisq era and beyond, 2018 arXiv: 1801.
00862 .

[2] E. Dennis , A. Kitaev , A. Landahl , J. Preskill , Topological quantum memory, J.
Math. Phys. 43 (9) (2002) 4452–4505 .

[3] A.G. Fowler, Surface codes: towards practical large-scale quantum computa-
tion, Phys. Rev. A 86 (3) (2012), doi: 10.1103/PhysRevA.86.032324 .

[4] S. Bravyi , J. Haah , Magic-state distillation with low overhead, Phys. Rev. A 86
(2012) 052329 .

[5] J. Haah, M.B. Hastings, D. Poulin, D. Wecker, Magic state distillation with low

space overhead and optimal asymptotic input count, 2017 arXiv: 1703.07847 .
[6] C. Jones , Multilevel distillation of magic states for quantum computing, Phys.

Rev. A 87 (4) (2013) 042305 .
[7] A.G. Fowler , S.J. Devitt , C. Jones , Surface code implementation of block code

state distillation, Sci. Rep. 3 (2013) 1939 .
[8] Y. Ding, A. Holmes, A. Javadi-Abhari, D. Franklin, M. Martonosi, F.T. Chong,

Magic-state functional units: mapping and scheduling multi-level distillation
circuits for fault-tolerant quantum architectures, 2018 arXiv: 1809.01302 .

[9] L.S. Bishop, S. Bravyi, A. Cross, J.M. Gambetta, J. Smolin, Quantum volume,
Technical Report, Technical report, 2017., 2017 https://dal.objectstorage.
open.softlayer.com/v1/AUTH _ 039c3bf6e6e54d76b8e66152e2f87877/
community- documents/quatnum- volumehp08co1vbo0cc8fr.pdf .

[10] A. Paler , I. Polian , K. Nemoto , S.J. Devitt , Fault-tolerant, high-level quantum cir-
cuits: form, compilation and description, Quantum Sci. Technol. 2 (2) (2017)
025003 .

[11] A. Javadi-Abhari , P. Gokhale , A. Holmes , D. Franklin , K.R. Brown , M. Martonosi ,
F.T. Chong , Optimized surface code communication in superconducting quan-
tum computers, in: Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ACM, 2017, pp. 692–705 .

[12] F. Bloch , Nuclear induction, Phys. Rev. 70 (7–8) (1946) 460 .
[13] M.A. Nielsen , I.L. Chuang , Quantum computation and quantum information,

Cambridge University Press, 2010 .
[14] A. Barenco , C.H. Bennett , R. Cleve , D.P. DiVincenzo , N. Margolus , P. Shor ,

T. Sleator , J.A. Smolin , H. Weinfurter , Elementary gates for quantum compu-
tation, Phys. Rev. A 52 (5) (1995) 3457 .

[15] C. Horsman , A.G. Fowler , S. Devitt , R. Van Meter , Surface code quantum com-
puting by lattice surgery, New J. Phys. 14 (12) (2012) 123011 .

[16] D. Litinski , F. von Oppen , Lattice surgery with a twist: simplifying clifford gates
of surface codes, Quantum 2 (2018) 62 .

[17] S. Bravyi , A. Kitaev , Universal quantum computation with ideal clifford gates
and noisy ancillas, Phys. Rev. A 71 (2) (2005) .

[18] A. Steane, Space, time, parallelism and noise requirements for reliable quan-
tum computing, 1997 arXiv: quant-ph/9708021 .

[19] N.C. Jones , R. Van Meter , A.G. Fowler , P.L. McMahon , J. Kim , T.D. Ladd , Y. Ya-
mamoto , Layered architecture for quantum computing, Phys. Rev. X 2 (3)
(2012) 031007 .

[20] A. Montanaro , Quantum algorithms: an overview, NPJ Quantum Inf. 2 (2016) .
npjqi201523.

[21] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, G.K. Chan, Low depth
quantum simulation of electronic structure, 2017 arXiv: 1706.0 0 023 .

[22] I.D. Kivlichan , J. McClean , N. Wiebe , C. Gidney , A. Aspuru-Guzik , G.K.-L. Chan ,
R. Babbush , Quantum simulation of electronic structure with linear depth and
connectivity, Phys. Rev. Lett. 120 (11) (2018) 110501 .

[23] J.D. Whitfield , J. Biamonte , A. Aspuru-Guzik , Simulation of electronic structure
hamiltonians using quantum computers, Mol. Phys. 109 (5) (2011) 735–750 .

[24] N.C. Jones , J.D. Whitfield , P.L. McMahon , M.-H. Yung , R. Van Meter , A. Aspu-
ru-Guzik , Y. Yamamoto , Faster quantum chemistry simulation on fault-tolerant
quantum computers, New J. Phys. 14 (11) (2012) 115023 .

[25] R. Barends , A. Shabani , L. Lamata , J. Kelly , A. Mezzacapo , U. Las Heras , R. Bab-
bush , A.G. Fowler , B. Campbell , Y. Chen , et al. , Digitized adiabatic quantum
computing with a superconducting circuit, Nature 534 (7606) (2016) 222–226 .

[26] H.F. Trotter , On the product of semi-groups of operators, Proc. Am. Math. Soc.
10 (4) (1959) 545–551 .

[27] C. Batista , G. Ortiz , Generalized jordan-wigner transformations, Phys. Rev. Lett.
86 (6) (2001) 1082 .

[28] N.J. Ross, P. Selinger, Optimal ancilla-free clifford+ t approximation of z-
rotations, 2014 arXiv: 1403.2975 .

[29] D. Wecker , B. Bauer , B.K. Clark , M.B. Hastings , M. Troyer , Gate-count estimates
for performing quantum chemistry on small quantum computers, Phys. Rev. A
90 (2) (2014) 022305 .

[30] V. Kliuchnikov, D. Maslov, M. Mosca, Fast and efficient exact synthesis of single
qubit unitaries generated by clifford and t gates, 2012 arXiv: 1206.5236 .

[31] P. Selinger, Quantum circuits of t-depth one, Phys. Rev. A 87 (4) (2013), doi: 10.
1103/PhysRevA.87.042302 .

[32] M. Amy , D. Maslov , M. Mosca , Polynomial-time t-depth optimization of clif-
ford+ t circuits via matroid partitioning, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 33 (10) (2014) 1476–1489 .

[33] J. O’Gorman, E.T. Campbell, Quantum computation with realistic magic-state
factories, Phys. Rev. A 95 (2017) 032338, doi: 10.1103/PhysRevA.95.032338 .

[34] H. Anwar , E.T. Campbell , D.E. Browne , Qutrit magic state distillation, New J.
Phys. 14 (6) (2012) 063006 .

[35] A.M. Meier, B. Eastin, E. Knill, Magic-state distillation with the four-qubit code,
2012 arXiv: 1204.4221 .

[36] E.T. Campbell , H. Anwar , D.E. Browne , Magic-state distillation in all prime di-
mensions using quantum reed-muller codes, Phys. Rev. X 2 (4) (2012) 041021 .

[37] R. Van Meter , C. Horsman , A blueprint for building a quantum computer, Com-
mun. ACM 56 (10) (2013) 84–93 .

[38] A. Paetznick, B.W. Reichardt, Fault-tolerant ancilla preparation and noise
threshold lower bounds for the 23-qubit golay code, 2011 arXiv: 1106.2190 .

[39] N. Isailovic , M. Whitney , Y. Patel , J. Kubiatowicz , Running a quantum circuit
at the speed of data, in: ACM SIGARCH Computer Architecture News, 36, IEEE
Computer Society, 2008, pp. 177–188 .

[40] A. JavadiAbhari , S. Patil , D. Kudrow , J. Heckey , A. Lvov , F.T. Chong ,
M. Martonosi , Scaffcc: a framework for compilation and analysis of quantum
computing programs, in: Proceedings of the 11th ACM Conference on Comput-
ing Frontiers, ACM, 2014, p. 1 .

Adam Holmes I work on quantum computing architec-
ture and theory as a graduate student pursuing a Ph.D. at
the University of Chicago. I graduated with a bachelor’s
degree in physics concentrating in computer science from

Cornell University in May 2016.

70 A. Holmes, Y. Ding and A. Javadi-Abhari et al. / Microprocessors and Microsystems 67 (2019) 56–70

Yongshan Ding I am a second-year Ph.D. student at
the University of Chicago, advised by Fred Chong. Before
UChicago, I received my BS degrees in Computer Science
and in Physics from Carnegie Mellon University.

Ali Javadi-Abhari He is a Research Staff Member at IBM.
His research is focused on building a scalable software
stack for quantum computing. He holds a Ph.D. in com-
puter science from Princeton University, where he de-
signed compilers and software tools for general-purpose,
error-corrected quantum computation.

Diana Franklin Diana Franklin is a research associate pro-
fessor in computer science and director of computer sci-
ence education at UChicago STEM Education. Franklin re-
ceived her Ph.D. from UC Davis in 2002. She is a recipient
of the NSF CAREER award and an inaugural recipient of
the NCWIT faculty mentoring award. She was an assistant
professor (2002- 2007) and associate professor (2007) of
Computer Science at the California Polytechnic State Uni-
versity, San Luis Obispo, during which she held the Forbes
Chair (20 02–20 07). Her research interests include parallel
programming and architecture, computing education, and
ethnic and gender diversity in computing.

Margaret Martonosi Margaret Martonosi is the Hugh
Trumbull Adams ’35 Professor of Computer Science at
Princeton University, where she has been on the faculty
since 1994. She is also currently serving a four-year term
as Director of the Keller Center for Innovation in Engi-
neering Education. Martonosi holds affiliated faculty ap-
pointments in Princeton EE, the Center for Information
Technology Policy (CITP), the Andlinger Center for Energy
and the Environment, and the Princeton Environmental
Institute. She also holds an affiliated faculty appointment
in Princeton EE. From August 2015 through March, 2017,
she served as a Jefferson Science Fellow within the U.S.
Department of State.

Frederic T. Chong Fred Chong is the Seymour Goodman
Professor in the Department of Computer Science at the
University of Chicago. He is also Lead Principal Investiga-
tor for the EPiQC Project (Enabling Practical-scale Quan-
tum Computing), an NSF Expedition in Computing. Chong
received his Ph.D. from MIT in 1996 and was a faculty
member and Chancellor’s fellow at UC Davis from 1997–
2005. He was also a Professor of Computer Science, Direc-
tor of Computer Engineering, and Director of the Green-
scale Center for Energy-Efficient Computing at UCSB from

2005- 2015. He is a recipient of the NSF CAREER award
and 6 best paper awards.

	Resource optimized quantum architectures for surface code implementations of magic-state distillation
	1 Introduction
	2 Background
	2.1 Quantum computation
	2.2 Surface code
	2.2.1 CNOT braiding
	2.2.2 T magic-states

	2.3 T-gates in quantum algorithms
	2.4 Bravyi-Haah distillation protocol
	2.5 Block codes
	2.5.1 Magic-state factory error and yield scaling
	2.5.2 Magic-state factory area scaling
	2.5.3 Magic-state factory time overhead

	3 Related work
	4 Factory area overhead
	4.1 Role of fidelity and yield in area overhead
	4.2 Full area costs

	5 Factory latency overhead
	5.1 Program distributions
	5.2 T-gate contention and congestion
	5.3 Resolving T-gate requests

	6 Area and latency trade-offs
	7 Evaluation methodology
	7.1 System configuration
	7.2 Optimization algorithm
	7.3 Simulation and validation

	8 Results
	8.1 Comparing surplus and singlet architectures
	8.2 Optimized design performance
	8.2.1 Optimized design performance scaling

	8.3 Distributed factory characteristics
	8.4 Full design space comparison
	8.5 Sensitivity analysis

	9 Conclusion
	10 Future work
	Acknowledgements
	References

